321,470 research outputs found

    Forecasting peak energy demand for smart buildings

    Get PDF
    Predicting energy consumption in buildings plays an important part in the process of digital transformation of the built environment, and for understanding the potential for energy savings. This also contributes to reducing the impact of climate change, where buildings need to increase their adaptability and resilience while reducing energy consumption and maintain user comfort. The use of Internet of Things devices for monitoring and control of energy consumption in buildings can take into account user preferences, event monitoring and building optimization. Detecting peak energy demand from historical building data can enable users to manage their energy use more efficiently, while also enabling real-time response strategies (including control and actuation) to known or future scenarios. Several statistical, time series, and machine learning techniques are proposed in this work to predict electricity consumption for five different building types, by using peak demand forecasting to achieve energy efficiency. We have used several indigenous and exogenous variables with a view to test different energy forecasting scenarios. The suggested techniques are evaluated for creating predictive models, including linear Regression, dynamic regression, ARIMA time series, exponential smoothing time series, artificial neural network, and deep neural network. We conduct the analysis on an energy consumption dataset of five buildings from 2014 until 2019. Our results show that for a day ahead prediction, the ARIMA model outperforms the other approaches with an accuracy of 98.91% when executed over a 168 h (1 week) of uninterrupted data for five government buildings

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Holistic Measures for Evaluating Prediction Models in Smart Grids

    Full text link
    The performance of prediction models is often based on "abstract metrics" that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging "big data" domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.Comment: 14 Pages, 8 figures, Accepted and to appear in IEEE Transactions on Knowledge and Data Engineering, 2014. Authors' final version. Copyright transferred to IEE

    Indoor mould growth prediction using coupled computational fluid dynamics and mould growth model

    Get PDF
    This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment
    corecore