116 research outputs found

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    A class of structured P2P systems supporting browsing

    Get PDF
    Browsing is a way of finding documents in a large amount of data which is complementary to querying and which is particularly suitable for multimedia documents. Locating particular documents in a very large collection of multimedia documents such as the ones available in peer to peer networks is a difficult task. However, current peer to peer systems do not allow to do this by browsing. In this report, we show how one can build a peer to peer system supporting a kind of browsing. In our proposal, one must extend an existing distributed hash table system with a few features : handling partial hash-keys and providing appropriate routing mechanisms for these hash-keys. We give such an algorithm for the particular case of the Tapestry distributed hash table. This is a work in progress as no proper validation has been done yet.Comment: 14 page

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    Browsing Digital Collections with Reconfigurable Faceted Thesauri

    Get PDF
    Faceted thesauri group classification terms into hierarchically arranged facets. They enable faceted browsing, a well-known browsing technique that makes it possible to navigate digital collections by recursively choosing terms in the facet hierarchy. In this paper we develop an approach to achieve faceted browsing in live collections, in which not only the contents but also the thesauri can be constantly reorganized. We start by introducing a digital collection model letting users reconfigure facet hierarchies. Then we introduce navigation automata as an efficient way of supporting faceted browsing in these collections. Since, in the worst-case, the number of states in these automata can grow exponentially, we propose two alternative indexing strategies able to bridge this complexity: inverted indexes and navigation dendrograms. Finally, by comparing these strategies in the context of Clavy, a system for managing collections with reconfigurable structures in digital humanities and educational settings, we provide evidence that navigation dendrogram organization outperforms the inverted index-based one

    Supporting scientific knowledge discovery with extended, generalized Formal Concept Analysis

    Get PDF
    In this paper we fuse together the Landscapes of Knowledge of Wille's and Exploratory Data Analysis by leveraging Formal Concept Analysis (FCA) to support data-induced scientific enquiry and discovery. We use extended FCA first by allowing K-valued entries in the incidence to accommodate other, non-binary types of data, and second with different modes of creating formal concepts to accommodate diverse conceptualizing phenomena. With these extensions we demonstrate the versatility of the Landscapes of Knowledge metaphor to help in creating new scientific and engineering knowledge by providing several successful use cases of our techniques that support scientific hypothesis-making and discovery in a range of domains: semiring theory, perceptual studies, natural language semantics, and gene expression data analysis. While doing so, we also capture the affordances that justify the use of FCA and its extensions in scientific discovery.FJVA and AP were partially supported by EUFP7 project LiMo- SINe (contract288024) for this research. CPM was partially supported by the Spanish Ministry of Economics and Competitiveness projects TEC2014-61729-EXP and TEC2014-53390-P

    Formal Concept Analysis and Information Retrieval – A Survey

    Get PDF
    International audienceOne of the first models to be proposed as a document index for retrieval purposes was a lattice structure, decades before the introduction of Formal Concept Analysis. Nevertheless, the main notions that we consider so familiar within the community (" extension " , " intension " , " closure operators " , " order ") were already an important part of it. In the '90s, as FCA was starting to settle as an epistemic community, lattice-based Information Retrieval (IR) systems smoothly transitioned towards FCA-based IR systems. Currently, FCA theory supports dozens of different retrieval applications, ranging from traditional document indices to file systems, recommendation, multi-media and more recently, semantic linked data. In this paper we present a comprehensive study on how FCA has been used to support IR systems. We try to be as exhaustive as possible by reviewing the last 25 years of research as chronicles of the domain, yet we are also concise in relating works by its theoretical foundations. We think that this survey can help future endeavours of establishing FCA as a valuable alternative for modern IR systems

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu

    Knowledge discovery through creating formal contexts

    Get PDF
    Knowledge discovery is important for systems that have computational intelligence in helping them learn and adapt to changing environments. By representing, in a formal way, the context in which an intelligent system operates, it is possible to discover knowledge through an emerging data technology called formal concept analysis (FCA). This paper describes a tool called FcaBedrock that converts data into formal contexts for FCA. This paper describes how, through a process of guided automation, data preparation techniques such as attribute exclusion and value restriction allow data to be interpreted to meet the requirements of the analysis. Examples are given of how formal contexts can be created using FcaBedrock and then analysed for knowledge discovery, using real datasets. Creating formal contexts using FcaBedrock is shown to be straightforward and versatile. Large datasets are easily converted into a standard FCA format
    • …
    corecore