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Formal concept analysis(FCA) is a mathematical theory based on lattice and order

theory used for data analysis and knowledge representation. Over the past several

years, many of its extensions have been proposed and applied in several domains in-

cluding data mining, machine learning, knowledge management, semantic web, soft-

ware development, chemistry ,biology, medicine, data analytics, biology and ontology

engineering.

This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA)

and its various extensions that have been developed and well-studied in the past sev-

eral years. We discuss their historical roots, reproduce the original definitions and

derivations with illustrative examples. Further, we provide a literature review of

it’s applications and various approaches adopted by researchers in the areas of data-

analysis, knowledge management with emphasis to data-learning and classification

problems.

We propose LearnFCA, a novel approach based on FuzzyFCA and probability

theory for learning and classification problems. LearnFCA uses an enhanced version

of FuzzyLattice which has been developed to store class labels and probability vectors

and has the capability to be used for classifying instances with encoded and unlabelled

features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot

and cancer images with interesting results and varying degrees of success.
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Chapter 1

Introduction

1.1 Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced in the early 1980s by Rudolf Wille

as a mathematical theory of complete lattices. It builds on original theory of ordered

sets and lattices developed by Garrett Birkhoff and others in the 1930s. It relies on a

basic notion of concept similar to a traditional approach to concepts as in traditional

logic. It is a formal way of deriving a concept hierarchy from a collection of objects

and their properties.

Development of Formal concept analysis(FCA) became a well-known technique

that provided real-world meaning to the mathematical order theory. This led to

transformation of two dimensional data tables into algebraic structures or complete

lattices, which could then be used for better visualization and interpretation of data.

A data item generally represents a heterogeneous relation between object and a set

of attributes, tabulating pairs of the form ”object g has attribute m”. A data table

consists of many such data items, which when transformed is referred to as a formal

context.

In this theory, a formal concept is defined to be a pair (A,B), where A is a set of

objects (called the extent) and B is a set of attributes (the intent) such that
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• the extent A includes all objects that have the attributes in B, and

• the intent B includes all attributes shared by the objects in A.

The formal concepts of a given formal context can be ordered in a hierarchy called

a ”concept lattice.” Intuitively, a concept in the hierarchy is a representation of set

of objects that share the same properties. Concepts at different level in the hierarchy

are known as sub-concepts or super-concepts. A sub-concept represents a subset of

the objects and a super-set of the properties in the concepts above it. The concept

lattice enables a graphical visualization in terms of a ”line diagram”, which becomes

very useful for providing meaning to the data. The lattice is then used to explore con-

cepts, associations and implication rules which are more meaningful and then can be

used for generating recommendations. Sometimes, the lattices can get too large for

visualization, however many recent techniques like incremental algorithms, decom-

posing lattices into smaller sub-lattices, ice-berging have been proven useful for easier

interpretation and made FCA more practical to be used in big-data applications.

The mathematical theory of Formal Concept Analysis(FCA) has been widely used

since its inception to study various characteristics of data and organizing its vari-

ous components, exploring relationships, mining implication rules, extracting hidden

knowledge, creating learning models and even clustering and classifying data. FCA

has been used in various domains including data mining, text mining, machine learn-

ing, knowledge management, semantic web, software development, chemistry ,biology,

medicine, data analytics, biology and ontology engineering with varying degree of suc-

cess. Various extensions of FCA have been proposed by researchers, which include

Fuzzy FCA, Rough FCA, Monotone FCA, Temporal FCA, Temporal Fuzzy FCA to

meet specific purposes.

We refer the reader to [2] for a comprehensive survey of state-of-art of FCA and
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lattice based algorithms. Introduction and applications of FCA are reviewed thor-

oughly in [3], and basic mathematical foundations of FCA are covered in [4]. FCA

forms an integral part of three international conferences, namely, ICFCA (Interna-

tional Conference on Formal Concept Analysis), CLA (Concept Lattices and Their

Applications), and ICCS (International Conference on Conceptual Structures).

Definition 1 A Formal Context is a triple K = (G,M, I), where G is a set of objects,

M is a set of attributes, and I is a binary relation from G to M , where each pair

(g,m) ∈ I has a membership value in {0, 1}. When (gIm) = 0, object g has the

attribute m and when (gIm) = 1, object g doesnot have attribute m.

A FCA context is a triple of sets K = (G,M, I), where I ⊆ G ×M is a binary

relation. These sets are generally represented using a table consisting of set of rows G

(called objects), columnsM (called attributes) and crosses representing the incidence

relation I. Table 1.1 shows an example of such a context where objects are some

undergraduate majors, attributes are various undergraduate courses offered and the

incidence relation shows the pre-requisite requirements for each undergraduate ma-

jor. A student of ”Computer Engineering” major needs to take pre-requisite courses

namely, ”Computer Architecture”, ”Digital Signal Processing”, ”Intro to Stats” and

”Calculus II”. When such a formal context is given, concepts are derived and ordered

using a subconcept-superconcept relation. These concepts are then arranged in a

lattice or more commonly called a line diagram which is easier to visualize.

Describing formally, for a set of objects O ⊆ G, the set of common attributes can

be defined by:

A = O′ = {m ∈M |(o,m) ∈ I for all o ∈ O}

Take the attributes that describe the major ”Computer Engg” in Table 1.1, for

instance. By collecting all required objects of this context that share these attributes,
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Computer
Science X X X X X

Software
Engg X X X X X

Computational
Biology X X X X

Computer
Engg X X X X

Electrical
Engg X X X X

Mathematics X X X X

Table 1.1: A formal context of undergraduate majors and pre-requisite courses at
UNL

we get to a setO which consists of ”Computer Engg” and ”Electrical Engg”. This setO

of objects is related to the set A consisting of the attributes “Computer Architecture”,

“Digital Signal Processing” and “Intro to Stats” and ”Calculus II”.

O = A′ = {o ∈ G|(o,m) ∈ I for all m ∈ A}

That is, O is the set of all objects sharing all attributes of A, and A is the set

of all attributes that are valid descriptions for all the objects contained in O. Each

such pair (O,A) is called a formal concept(or concept) of the given context. The set

A = O′ is called the intent, while O = A′ is called the extent of the concept (O,A).

Definition 2 A Formal Concept C of a formal context K = (G,M, I) is a pair C =

(O,A), where, for O ⊆ G, A ⊆M , A′ = O and O′ = A.

There is a natural hierarchical ordering relation between the concepts of a given
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context that is called the subconcept-superconcept relation.

(O1, A1) ≤ (O2, A2)⇔ (O1 ⊆ O2 ⇔ A2 ⊆ A1)

A concept C1 = (O1, A1) is called a sub-concept of a concept C2 = (O2, A2) (or

equivalently, C2 is called a super-concept of a concept C1) if the extent of C1 is a subset

of the extent) of C2 (or equivalently, if the intent of C1 is a super-set of the intent of

C2). For example, the concept with intent “Computer Architecture” is a sub-concept

of a concept with intent “Computer Architecture”, “Digital Signal Processing”, ”Intro

to Stats” and “Calculus II.” With reference to Table 1.1, the extent of the latter is

composed of majors ”Computer Engg” and ”Electrical Engg”, while the extent of the

former is composed of ”Computer Engg”, ”Electrical Engg” and ”Computer Science”.

Figure 1.1: Concept Lattice corresponding to the Formal Context from Table 1

The set of all concepts of a formal context ordered by this subconcept-superconcept
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relation can be organized into a lattice called the concept lattice of the context, i.e.

every subset of concepts has a meet and join w.r.t. ≤. Since, concept lattices are

ordered sets, they can be visualized by line diagrams, with nodes representing con-

cepts and edges connecting a pair of neighboring nodes w.r.t ≤. Figure 5.1, shows

the line diagram of the concept lattice of the formal context shown in Table 1.1. The

circles represent the formal concepts, boxes with text in black (upwards) represent

the objects used to name the concept and boxes in blue (downwards) represent the

attributes used to name the concept. To retrieve the extent of a formal concept,

one has to collect all objects on all paths leading down from the corresponding node.

Similarly, to retrieve the intent of a formal concept, all paths leading up from the

corresponding node has to be traced for collecting all attributes. The top and bot-

tom concepts in the lattice are special called the infimum and supremum nodes. The

top concept contains all objects in its extent. The bottom concept contains all at-

tributes in its intent. A concept is a sub-concept of all concepts that can be reached

by travelling upwards. This concept will inherit all attributes associated with these

super-concepts.

We can derive all the information in the formal context of Table 1.1 by traversing

through the line diagram and using the subconcept-superconcept relationship. For

example, the major ”Computer Science” is described by the attributes “Algorithm

Analysis”, “Computer Architecture”, “Programming Concepts”, ”Discrete Math” and

“Cryptography.” An interesting aspect of FCA which has many applications is the

concept of attribute implication. For subsets A,B ⊆M , one has A→ B if A′ ⊆ B′. A

set of implication rules can be reduced to a minimal subset called an implication base.

Some examples include Duquenne-Guigues base (Guigues, Duquenne 1986), which is

cardinality minimal, and proper premise base [4]. Ganter & Wille [4] described a

knowledge discovery procedure called Attribute Exploration which along with inputs
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from domain expert can be used to derive a complete useful implication base from

the lattice. In many cases, actual data is in the form of many-valued contexts, which

can be reduced to binary contexts by a method known as conceptual scaling, first

described by Ganter & Wille [4].

1.2 Motivation

The area of Formal Concept Analysis(FCA) has seen a huge growth in the last 40

years. Many generalizations of FCA have been proposed and applied to applications

in various domains. Use of FCA in data mining hasn’t been investigated thoroughly

until recent 2010’s [2, 3]. Applications of generalizations of FCA like Fuzzy FCA,

Monotone FCA and Temporal FCA in data analysis still needs a lot of research. The

role of FCA in machine learning also needs a great deal of exploration. Interesting

areas of research include integration of FCA based techniques into recent machine

learning approaches like reinforcement learning, genetic algorithms and deep learning.

Additionally, with the big-data explosion in the current era, where data is a valu-

able resource and data analytics a critical factor, the importance of FCA and its

generalizations in data analysis will further increase in the forthcoming years. FCA

can be used for organizing data and generating meaningful insights to support im-

portant processes (see [5]).

1.3 Thesis Objectives and Scope

The prime objective of this research is to study FCA & its generalizations, and its

applications in various domains with an emphasis to learning and classification prob-

lems. We propose, develop and evaluate a new classifying model called ”LearnFCA”,
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that integrates Fuzzy FCA, probability theory for learning and classifying data. The

sub-objectives are as follows:

• Survey the state of art of FCA and its generalizations with emphasis to learning

and classification problems.

• Discuss a new model ”LearnFCA” using Fuzzy FCA and a probabilistic ap-

proach for classifying unlabelled data into various classes.

• To propose an implementation approach and strategy for ”LearnFCA”.

• To demonstrate a model / proof of concept of the proposed architecture for

”LearnFCA”.

• To validate the proposed model by an using an experimental performance eval-

uation.

1.4 Research Contribution

The contributions of this thesis include:

1. Survey of FCA and its generalizations: Survey of various generalizations of

Formal Concept Analysis and their applications.

2. Develop LearnFCA: Propose, Develop, implement and evaluate a new approach

for learning and classification problems using FCA.

3. Evaluate LearnFCA: Performance Evaluation of LearnFCA

1.5 Thesis Outline

The rest of the thesis is organized in the following way:
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• Chapter 2. We discuss the various generalizations of Formal Concept Anal-

ysis(FCA), their historical backgrounds and reproduce their theory and defini-

tions as applicable.

• Chapter 3. We present a comprehensive survey on approaches and applications

of FCA and its generalizations in various fields of data analysis, knowledge

discovery & representation and learning & classification problems

• Chapter 4. We present a new novel approach “LearnFCA” for classification

and learning problems using Fuzzy FCA and probabilistic methods.

• Chapter 5. We describe our model, architecture, experiments, methodology,

data and results in greater detail.
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Chapter 2

Generalizations of Formal Concept Analysis

Formal concept analysis (FCA) is a method of data analysis with growing popular-

ity across various domains. Extensive work has been done using FCA in the past

five decades in variety of domains and in varied range of applications including data

analysis, information retrieval, and knowledge discovery. FCA can be understood

as conceptual clustering method, which clusters simultaneously objects and their de-

scriptions. FCA can also be used for efficiently computing association rules [6]. In

other words, FCA provides an inherent integration of various components of concep-

tual processing and visualization of data and knowledge and it’s dependencies. Since

its inception, researchers have incorporated ideas from other mathematical theories

into FCA to get interesting extensions which have been explored and used in a wide

range of applications. With the advancement of technology, availability of different

data formats and explosion of big data, the role of FCA has become more interesting;

substantial research has been done and many new techniques have been developed

using it’s various extensions. In this section, we broadly discuss various extensions of

FCA that have been developed by researchers along with their historical roots and

examples.
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m1 m2 m3 m4 m5 m6

g1 0.5 0.2 0.3
g2 0.1 0.5 0.2
g3 0.6 0.7
g4 0.3 0.4 0.6
g5 0.1 0.2 0.8
g6 0.6

Table 2.1: An example of fuzzy formal context with χ = 0.5

2.1 Fuzzy FCA

Fuzzy set theory is an extension of classical notion of set theory where elements

have degrees of membership rather than complete membership. Fuzzy set theory

was introduced by Lotfi A. Zadeh [7] and Dieter Klaua [8] in 1965. Fuzzy FCA

[9] uses this fuzzy set theory logic and generalizes FCA thereby representing object

attribute membership using an uncertainty value. In a set of papers over the years

[10, 11, 12, 13, 14], Belohlavek et al have done the major derivations for fuzzy galois

connections, fuzzy closure operators, fuzzy lattices and showed how fuzzy concept

lattice may be used as an ordinary concept lattice. Fuzzy FCA allows representation

of strengths of relationships to various degrees (from weaker to stronger) usually

in a unit interval [0, 1]. Fuzzy FCA is useful in applications where relationships

between objects and attributes are incomplete. Relationships in traditional FCA are

binary, either the attribute belongs or does not belong to the object. Table 2.1 shows

an example of Fuzzy FCA with objects g1 to g6 and attributes m1 to m6. In the

example, the object g3 has attributes m1 and m6 with a membership value of 0.6 and

0.7 respectively. Similarly, attributem5 belongs to objects g4 and g5 with membership

values 0.6 and 0.8 respectively.

Definition 3 A Fuzzy Formal Context is a five-tuple K = (G,M, I, µ, χ),where G is

a set of objects, M is a set of attributes, I = ((GM), µ) is a fuzzy set,with each pair
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(g,m) ∈ I has a membership value µ(g,m) in [0, 1] and χ the confidence threshold of

the context.

Each pair (g,m) ∈ I, where I is the fuzzy set, has a membership value µ(g,m) in

[0, 1]. In the example in Table 2.1 above, µ(g2,m2) = 0.5.

For sets G′ ⊆ G and M ′ ⊆ M , we define two sets G′′ = {m ∈ M |∀g ∈ G′,

µI(g,m) ≥ χ} and M ′′ = {g ∈ G|∀m ∈M ′, µI(g,m) ≥ χ}.

Definition 4 A Fuzzy Formal Concept(or fuzzy concept) C of a fuzzy formal context

K with a confidence threshold χ, is C = (I ′G,M
′), where, for G′ ⊆ G, I ′G = (G′, µ),

M ′ ⊆ M , G′′ = M ′ and M ′′ = G′ . Each object g has a membership µI′G
defined as

µI′G
(g) = minm∈M ′(µI(g,m)) where µI is the fuzzy function of I.

where (g,m) is the membership value between object g and attribute m, which

is defined in I. G′ and M ′ are the extent and intent of the formal concept (I ′G,M ′)

respectively.

2.2 Rough FCA

A Rough Set(RS) is an extension of basic set represented in terms of a pair of sets

which give the lower and the upper approximation of the original set. In 1991, a

Polish researcher Zdzislaw I. Pawlak first described this concept of rough set [15] as

an approximation of a crisp set. Rough FCA [16, 17] incorporates rough set(RS)

theory into traditional FCA to provide a generalization which finds applications to

many real-world scenarios.
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Figure 2.1: A continuous curve y = 4−x2/3 being approximated using discrete upper
and lower rough set(s)

Similar to probability theory and fuzzy set theory, rough set theory is another

technique for dealing with uncertain, inconsistent and imprecise information which is

very evident in today’s data. Figure 2.1 shows an intuition behind rough set. Let us

consider that we want to compute the area under the curve y = 4 − x2/3. Using a

rough set approach for practical purposes, a discrete approximation can be obtained

either using a lower-bound approach (where we sum up the area of the rectangles

bounded by blue color) or a higher-bound approach (where we sum up the area of

rectangles bounded by red color). Both the approaches though not be accurate, are

probably easier to compute and might be practical under certain circumstances.

In rough set theory, the data for analysis consists of universe U . By modeling in-

discernibility as an equivalence relation, one can partition a finite universe of objects

into pair wise disjoint subsets denoted by U/P . The partition provides a granulated

view of the universe. An equivalence class is considered as a whole, instead of many

individuals. For an object , the equivalence class containing x is given by [x]P = {y ∈



14

m1 m2 m3 m4 m5 m6

g1 Low No Normal Yes True False
g2 High Yes Very Low Yes True True
g3 Medium No Very High No False True
g4 High Yes Very Low Yes True True
g5 Medium No Low Yes False False
g6 Medium No Very High No False True
g7 Medium No Very High No False True

Table 2.2: An example of rough set

U |xPy}. Objects in [x]P are indistinguishable from x. The empty set, equivalence

classes and unions of equivalence classes form a system of definable subsets under

discernibility.

Definition of a Rough Set Let X ⊆ U be a target set of a universe U that we

wish to represent using attribute subset P ; The set of objects X comprises a single

class, and needs to be expressed using the equivalence classes induced by attribute

subset P . In general, X cannot be expressed exactly, because the set may include

and exclude objects which are indistinguishable on the basis of attributes P .

Consider the example in Table 2.2. Based on the properties m1 to m6, the data

can be partitioned into four equivalence classes namely

{{g1}, {g2, g4}, {g3, g6, g7}, {g5}}

Now, consider the setX = {g2, g3, g4, g5}, with the full attribute set P = {m1,m2,m3,m4,m5}

. The set X cannot be expressed exactly, because in [x]P , objects {g3, g6, g7} are in-

discernible. Hence, representing set X clearly such that it includes g3 but excludes

objects g6 and g7 becomes impossible. However, we can approximate X using only

the information contained within P by constructing the P -lower and P -upper ap-

proximations of X:
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PX = {x | [x]P ⊆ X}, PX = {x | [x]P ∩X ̸= ∅}

Lower approximation (positive region). The P -lower approximation, or positive

region, is the union of all equivalence classes in [x]P which are contained by (i.e., are

maximal subsets of) X. In the example above, PX = {g2, g4}∪ {g5}. Intuitively, the

lower approximation is a conservative approximation, it consists of a maximal set of

objects in U/P that can be positively (i.e., unambiguously) classified as belonging to

X.

Upper approximation (negative region). The P -upper approximation is the

union of all equivalence classes in [x]P which have non-empty intersection with the

target set (i.e minimal supersets of) X. In the example, PX = {g2, g4} ∪ {g5} ∪

{g3, g6, g7} which is the union of the three equivalence classes in [x]P that having

non-empty intersection with X. The upper approximation is a liberal approximation,

it consists of the minimal complete set of objects that in U/P that cannot be positively

(i.e., unambiguously) classified as belonging to the complement (X) of the target set

X (but are still possibly members of X). In other words, we can say that the set

U− PX represents the negative region, which consists the set of objects that can be

definitely not part of the target set.

Boundary region. The boundary region, given by set difference PX−PX, consists

of those objects that can neither be ruled in nor ruled out as members of X.

The rough set and its accuracy. The tuple ⟨PX,PX⟩ composed of the lower

and upper approximation is called a rough set; it is composed of two crisp sets, one

representing a lower boundary of the target setX, and the other representing an upper

boundary of the target set X.From the perspective of U/P , the lower approximation
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contains objects that are members of the target set with certainty (probability = 1),

while the upper approximation contains objects that are members of the target set

with non-zero probability (probability > 0).

In [15], Pawlak provide a measure of how closely the rough set is approximating

the target set. He defines the accuracy of the rough-set representation of the set X

using the following:

αP (X) =
|PX|∣∣PX∣∣

We note that 0 ≤ αP (X) ≤ 1. When the upper and lower approximations are equal

(i.e., boundary region empty), then αP (X) = 1, and the approximation is perfect; at

the other extreme, whenever the lower approximation is empty, the accuracy is zero

(regardless of the size of the upper approximation).

Various definitions of rough set approximations have been proposed in litera-

ture, namely the subsystem-based, granule-based and element-based formulation [18].

They have been found to be particularly useful for rule induction and feature selection

(semantics-preserving dimensionality reduction). The regions of rough sets can be in-

terpreted as three different regions of acceptance, rejection and deferment which leads

to a three-way decision making approach and many interesting applications. Rough

set-based data analysis methods have been successfully applied in bio-informatics,

economics and finance, medicine, multimedia, web and text mining, signal and image

processing, software engineering, robotics, and engineering (e.g. power systems and

control engineering) [18].

When combined with FCA, it is called as Rough Formal Concept Analysis(RFCA).

U/P is replaced by lattice L and the sets of objects by extents of formal concepts.

The extents of the resulting two concepts are the lower and upper approximations of

X which are defined by:
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m1 m2 m3 m4 m5 m6

g1 X X
g2 X X X X X
g3 X
g4 X X X X X
g5 X
g6 X X
g7 X X

m1 m2 m3 m4 m5 m6

g1 X X X
g2 X X X X X
g3 X X X
g4 X X X X X
g5 X X X
g6 X X X
g7 X X X

Table 2.3: Lower and upper approximation contexts using Rough Formal Concept
Analysis(RFCA)

lX = {x | (x, y) ∈ L, [x]P ⊆ X}, lX = {x | (x, y) ∈ L, [x]P ∩X ̸= ∅}

The lower approximation of a set of objects X is the extent of formal con-

cept ((lX, [lX]′)) and the upper approximation is the extent of the formal concept

((lX, [lX]′)). ((lX, [lX]′)) is the supremum of concepts where extents are subsets of

X and ((lX, [lX]′)) is the infimum of those concepts where extents are superset of

X. Table 2.3 shows an example of upper and lower approximation contexts of data

shown in Table 2.2.

A number of Rough FCA techniques [19] have been developed and very useful with

large and complex data in varied range of domains namely, data mining, knowledge

classification, knowledge representation and discovery, machine learning, knowledge

acquisition and discovery, decision analysis, expert system, decision support system,

inductive inference, conflict resolution, pattern recognition and medical diagnostics

applications to handle real-world data.. In [19], the authors indicate that Rough FCA

still needs to be researched thoroughly in a large number of problems, such as large

data sets, efficient reduction algorithm, parallel computing and hybrid algorithms.
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m1 m2 m3 m4 m5

g1 X X X
g2 X X X X
g3 X X X X
g4 X X
g5 X X
g6 X X

Table 2.4: A formal context used for monotone FCA

2.3 Monotone FCA

Deogun & Saquer [20] generalized the basic notion of formal concept to allow dis-

junctions in the intent and set unions in the extent. This yields in a new extension of

FCA called monotone FCA, for which they further derive order-theoretic properties

of concept hierarchies for a monotone concept.

The authors use boolean conjunctive and disjunctive expressions on attribute sub-

sets of a formal context and first define a notion of feasibility of a Boolean conjunctive

expression. They also define a monotone boolean formula as disjunction of boolean

conjuctive expressions and define its feasibility. That is, if B1, B2, ..., Bn are Boolean

conjunctive expressions, then F = B1 ∨ B2 ∨ · · · ∨ Bn =
∨n

i=1Bi is a monotone

formula. A monotone formula F =
∨n

i=1Bi is said to be feasible if each Bi is feasible

for i = 1, 2, ..., n. Otherwise, F is non-feasible. For example, F1 = (m3 ∧m4 ∧m5) ∨

(m1∧m2∧m3∧m4) and F2 = m1∧m5 ( also written as F1 = m3m4m5∨m1m2m3m4

and F2 = m1m5) are two different feasible monotone formulas for the context given

in Table 2.4.

This enables to extend the original attribute set M of a formal context (G,M, I) to

a new attribute setM whereM is the space of monotone formulas that can be built

from M . That is, M = {F |F =
∨n

i=1Bi}, where each Bi is a Boolean conjunctive

expression associated with B′
i ⊆ M}. It is important to note that M contains all
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the monotone formulas, feasible or non-feasible, that can be generated from M . A

monotone context and monotone concept is then defined as follows:

Definition 5 A monotone context is defined as a quadruple (G,M,M, I) where G

is a set of objects, M is a set of features, M is the space of all monotone formulas

that can be built from M , and I is a binary relation from G to M. For g ∈ G and

F ∈M , gIF means that g satisfies F .

Definition 6 A monotone concept in the monotone context (G,M,M, I) is a pair

(A,F ) where A =
∪n

i=1 is a monotone extent, F =
∨n

i=1Bi is a feasible monotone

Boolean formula, δ(F ) = A, γ(A) = F , and each (Ai, B
′
i), where B′

i is the set of

features associated with Bi, is an elementary concept for 1 ≤ i ≤ n.

This generalization allows knowledge to be represented as a monotone formula

and querying into an information retrieval system using disjunctions in the intent of

a monotone concept. The authors also show that the set of all monotone concepts

of a monotone context forms a complete lattice. Combining it with rough set theory,

in [21], they discuss a novel technique to find monotone concepts whose extents are

approximation of a set of objects.

2.4 Probabilistic FCA

Probability is a chance of occurrence of an event. The mathematical branch of proba-

bility theory expresses this in terms of a probability space, which is called a probability

measure between 0 and 1, to a set of outcomes called the sample space. Any specified

subset of these outcomes is called an event. Use of probability theory in FCA has

yielded in a few different extensions of FCA in last few years, with [22, 23] as the

most important ones.
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W1 m1 m2 m3

g1
g2 X X
g3
g4 X X

W2 m1 m2 m3

g1 X
g2 X
g3 X
g4 X X X

W3 m1 m2 m3

g1 X
g2 X X
g3 X
g4 X

Table 2.5: A probablistic formal context with P (W1) = 1/3, P (W2) = 1/4, P (W3) =
5/12.

In [23], the authors have integrated probability theory into traditional FCA lead-

ing to an interesting application of the membership relationship. They have extended

the traditional binary membership relationship to a set of worlds by including a prob-

abilistic measure which is a value between 0 and 1.

A probability measure P on a countable set W is a mapping P : ψ(W ) → [0, 1]

such that P(ϕ) = 0, P(W ) = 1, and P is σ-additive, i.e., for all countable families

(Un)n∈N of pairwise disjoint sets Un ⊆ W it holds that P(
∪

n∈N Un) =
∑

n∈N P(Un).

A world w ∈ W is possible if P{w} ≥ 0, and impossible otherwise. The set of all

possible worlds is denoted by Wϵ, and the set of all impossible worlds is denoted by

W0. Obviously, Wϵ ⊎W0 is a partition of W . Of course, such a probability measure

can be completely characterized by the definition of the probabilities of the singleton

subsets of W , since it holds true that P(U) = P(
∪

w∈U{w}) =
∑

w∈U P(w).

Definition 7 A probabilistic formal context K is a tuple (G,M,W, I, P ) that consists

of a set G of objects, a set M of attributes, a countable set W of worlds, an incidence

relation I ⊆ G×M×W , and a probability measure P on W . For a triple (g,m,w) ∈ I

we say that object g has attribute m in world w. Furthermore, the derivations in world

w as operators I(w) : ψ(G)→ ψ(M) and I(w) : ψ(M)→ ψ(G) where

AI(w) := {m ∈M |∀g ∈ A : (g,m,w) ∈ I} for object sets A ⊆ G, and

BI(w) := {g ∈ G|∀m ∈ B : (g,m,w) ∈ I} for attribute sets B ⊆M ,

i.e., AI(w) is the set of all common attributes of all objects in A in the world w, and
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W∗ m1 m2 m3

(g1, w1)
(g2, w1) X X
(g3, w1)
(g4, w1) X X
(g1, w2) X
(g2, w2) X
(g3, w2) X
(g4, w2) X X X
(g1, w3) X
(g2, w3) X X
(g3, w3) X
(g4, w3 X

Table 2.6: The scaled probabilistic formal context of Table 2.5

BI(w) is the set of all objects that have all attributes in B in w. The formal context

induced by a world w ∈ W is defined as K(w) := (G,M, I(w)).

A probabilistic formal context consisting of three objects g1, g2, g3, three attributes

m1,m2,m3, and three worlds w1, w2, w3 is shown in Table 2.5. We note that the

object g2 has the attribute m1 in all three worlds, and the object g3 has the attribute

m2 only in the world w2. The authors provide one approach of scaling the context

by integrating the object-world to generate a traditional formal context using the

definition below.

Definition 8 (Scaling). Let K be a probabilistic formal context. The certain scaling

of K is the formal context K× := (G×W,M, I×) where ((g, w),m) ∈ I× iff (g,m,w) ∈

I, and the almost certain scaling of K is the subcontext Kϵ := (G ×Wϵ,M, I×ϵ ) of

K×.

A scaled version of probabilistic context of Table 2.5 is shown in Table 2.6

Other approaches include [22], where Demin et al have introduced another ap-

proach for probabilistic extensions and appropriate probabilistic variants of formal
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concepts and implications. An inductive probabilistic approach to formal concept

analysis (FCA) is proposed in [24] where probabilistic concepts with predictive force

is defined. The authors also discuss ability to handle nonclassified objects, eliminat-

ing random attributes and generating concepts robust to noise. In [25], Deogun et al

present a logic model for Knowledge discovery in databases based on an integrated

approach of Bacchus probability logic and formal concept analysis which they use to

deduce previously unknown and potentially useful patterns in databases.

2.5 Temporal FCA

Temporal Concept Analysis (TCA) is the theory of temporal phenomena integrated

into Formal Concept Analysis (FCA). TCA was introduced and developed by the

Wolff [26], the main idea was to be able to represent a state of an object at a certain

time in a temporal system into FCA. States are defined as formal concepts and ’points

of time’ are generalized to ’time granules’, interpreted as ’pieces’ of time needed for

the realization of measurements. The authors in [26] discuss three important devel-

opments of TCA, namely Conceptual Time Systems with actual Objects and a Time

relation (CTSOTs), Temporal Conceptual Semantic System (TCSS) and Temporal

Conceptual Semantic Systems (TCSSs) among others. CTSOTs use temporal objects

and a time relationship, TCSS uses the notion of a distributed object which may

occupy at each time granule a certain volume and TRSS integrates recent develop-

ments in theory of Temporal Conceptual Semantic Systems with conceptual scaling

of formal context. Table 2.7 shows two example contexts for CTSOT and TCSS.

Temporal Fuzzy FCA. A very interesting and recent development in the field of

TCA was the notion of Temporal Fuzzy FCA(TFCA) by De Maio et al [5], where the

authors proposed integration of Temporal phenomena with Fuzzy Concept Analysis.
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Obs m1 m2 m3 m4 m5 m6

t1 X X
t2 X X X X X
t3 X
... ... ... .. .. .. ..
t5 X

m1 m2 m3

(g1t1)
(g2t2) X X
(g3t3)
(g4t4) X X
(g5t5) X

Table 2.7: Temporal FCA contexts: (i) CTSOTs where points of time (observations)
are used as objects in a formal context, (ii) TCSS where entities at a particular time
granule are used as objects

m1 m2 m3 m4 m5 m6

(obs1t1) 0.1 0.61 0.91 0.73
(obs2t2) 0.5 0.23 0.11
(obs3t3) 1.0 0.2 0.34
(obs4t4) 0.1 0.63 0.71 0.21

Table 2.8: Temporal Fuzzy FCA Context with threshold χ = 0.5

They applied TFCA on a distributed real-time computation system for big data

stream analysis in a smart city context to organize the knowledge of various aspects

of the city and generate temporal patterns of it’s evolution. The proposed approach

is similar to one in TCSSs above and index the time-stamped objects by adding a

time variable to the object of the fuzzy formal context, namely gti with g ∈ G. gti

represents the object g ∈ G at time ti, where t is the time variable and ti precedes tj

if i ≤ j. All the time intervals ti ∈ 1, ..., n, and the number of observations n made

on a particular object over time form a partial order relation.

Let M be the set of formal attributes, and mj be the jth attribute, where i and j

are integers.

Definition 9 The intension of an object O at time ti is the set of all attributes of

that particular object at time ti.

i{Oti} = {mj ∈M}
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Definition 10 An evolution of an object, Ev(O), is an ordered set of sets containing

all the intensions that this particular object from an arbitrary initial time t0 to a

certain time ti. The intension of the concept at time ti+1 is added to the resulting

evolution set when we consider the evolution up to time ti+1:

t0 ≤ ti, i{Oti} ∈ Evt0−ti(O)

Definition 11 A Timed Fuzzy Lattice Lt is a pair (L,Et) where L = (C,≤) is a

Fuzzy Lattice and Et is a set of temporal edges which are 2-element subsets of C.

Given Lt = (L,Et), the time relationship is reflected in temporal edge etij ∈ Et

between two concepts (Ci, Cj) ∈ C which exists iff there exist two objects gts ∈ Ci

and gtk ∈ Cj such that the time ts precedes the time tk.

Definition 12 A temporal path is defined as a path π = (Cs, · · · , Ct) ∈ C×C · · ·×C,

such that exists a temporal edge etij ∈ Et for s ≤ i ≤ j ≤ t.

In the Temporal Fzuzzy FCA context, the observation parameters are used as

attributes and observation times are used as objects. Table 2.1 shows one such exam-

ple. By using an incremental algorithm for generating timed fuzzy lattice and taking

snapshots at various points in time, the authors show that a temporal path can be

constructed to track the growth of various city parameters. This can be further used

in assisting and supporting smart city decision making processes.

2.6 Logical Concept Analysis

Logical Concept Analysis(LCA) is a generalization of Formal Concept Analysis pro-

posed by Ferre in [27]. The main idea is that the attribute set in traditional FCA are
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now logical expressions of arbitrarily any kind. The authors derive all order theoretic

properties of this extension of FCA and show that the lattice generated is isomorphic

to the original lattice.

The authors reformulate traditional FCA by replacing the traditional context

(O,A, I) by (O, 2A, i) , where 2A is the power-set of A and i is a mapping from O to

2A defined by i(o) := {a ∈ A|(o, a) ∈ I} . Also, (o, a) ∈ I ⇔ i(o) ⊇ {a}. Then, 2A

can be considered as a logic where ⊇ is the deduction relation, ∩ is the disjunctive

operation, and ∪ is the conjunctive operation. The power set of set of attributes 2A is

replaced by a set of arbitrary logical formulas L , to which are associated a deduction

relation |= , a disjunctive operation ∨̇ , and a conjunctive operation ∧̇.

Definition 13 (Logical context) A (formal) context is a triple (O,L, i) where:

1. O is a finite set of objects,

2. ⟨L; |=⟩ is a lattice of formulas, whose supremum is ∨̇ , and whose infimum is

∧̇ ; L denotes a logic whose deduction relation is |=, and whose disjunctive and

conjunctive operations are respectively ∨̇ and ∧̇ ,

3. i is a mapping from O to L that associates to each object a formula that describes

the intention of the object.

Definition 14 Let (O,L, i) be a context, O ⊆ O , and f ∈ L . Two applications σ

and τ are defined as follows:

σ : 2O → L, σ(O) :=
∨̇

o∈O
i(o)

τ : L → 2O, τ(f) := {o ∈ O|i(o) |= f}
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object description
g1 a
g2 b
g3 a ∨ c
g4 c ∧ (a ∨ b)

m1 = a m2 = b m3 = c m3 = a ∨ c ...
g1 X ...
g2 X ...
g3 X X ...
g4 X X ...

Table 2.9: An Logical Concept Analysis(LCA) table and its transformed context to
generate the logical concept lattice

σ and τ form a Galois connection. In other words, the Galois connection is between

sets of objects (extent) and logical formulas (intent).

Definition 15 (Logical concept) In a context (O,L, i) , a concept is a pair c = (O, f)

where O ⊆ O , and f ∈ L , such that σ(O) = f and τ(f) = O.

The set of all concepts that can be built in a context (O,L, i) is denoted by C(O,L, i) ,

and is partially ordered by ≤c to get a ordered set ⟨C(O,L, i);≤c⟩ which is a complete

lattice. Table 2.9 shows an example of LCA table and its reformulated context which

can be used to generate the LCA lattice.

Other approaches include logical scaling of object-attribute-value relationships

[28], epistemic extension based on modal logic AIK [29] and generating classification

rules based on lattice [30].

2.7 Relational Concept Analysis

Relational Concept Analysis(RCA) was first introduced by Huchard et al [31] where

the authors emphasized the role and applications of classical FCA to complex rela-

tional data. They propose a new extension that takes as a collection of contexts and

inter-context relations as inputs and yields a set of lattices whose concepts are linked

by relations. The main idea behind Relational concept analysis (RCA) is to allow
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processing of multi-relational datasets, i.e., with multiple sorts of individuals with its

own set of attributes, and relationships between them.

In RCA [31, 32], data are organized within a structure composed of a set of

contexts K = {K⟩} and of a set of binary relations R = {rk}, where rk ⊆ Oi × Oj,

Oi and Oj being sets of objects (respectively in Ki and Kj). The structure (K,R) is

called a relational context family (RCF) and can be compared to a relational database

schema, including both classes of individuals and classes of relations.

Definition 16 A relational context family R is a pair (K,R), where K is a set of

contexts Ki= (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi × Oj where Oi and Oj are

the object sets of the formal contexts Ki and Kj .

A relation r ⊆ Oi × Oj can be seen as a set-valued function r : Oi → 2Oj . Two

functions are defined on relation sets in RCF, domain and range:

- O = {Oi/Oj ∈ Ki = (Oi, Ai, Ii),Ki ∈ K}

- rk : Oi → 2Oj

- dom : R→ O with dom(rk) = Oi

- ran : R→ O with ran(r) = Oj ,

- rel : K → 2Randrel(Ki) = {rk|dom(rk) = Oi}

where O is the set of all object sets in the RCF, O = {O|K = (O,A, I) ∈ K}.

Moreover, an auxiliary function maps a context into the set of all relations whose

domain corresponds to the object set of the context:

rel : K → 2R; rel(K == (O,A, I)) = {r|dom(r) = O}.
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Figure 2.2: An example relational schema for Relational Concept Analysis(RCA)

Lets take an example student enrollment schema in Figure 2.2. Students ”enroll”

in Courses which are ”held at” different classrooms. A major ”requires” a set of

courses and ”has” a set of enrolled students. Each entity has its own set of attributes

or properties. Using RCA approach, this schema can be scaled (or transformed)

into a family of contexts, some of them are object/attribute contexts and others

object/object contexts which are as follows:

1. KStudent1 ∈ Student × name, KStudent2 ∈ Student × phone

2. KCourse1 ∈ Course × name, KCourse2 ∈ Course × credithours

3. KMajor1 ∈ Major × department, KMajor2 ∈ Major × duration

4. KClassroom1 ∈ Classroom × location, KClassroom2 ∈ Classroom × capacity

5. Kenrolls ∈ Student × Course
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n1 n2 n3 n4

s1 X
s2 X X
s3 X
s4 ... ... .. ..
s5 X

p1 p2 p3 p4
s1 X
s2 X X X
s3
s4 ... ... .. ..
s5 X

Table 2.10: RFCA object-attribute contexts for KStudent1 and KStudent2

co1 co2 co3 co4
s1 X X
s2 X X
s3 X X
s4 ... ... .. ..
s5 X X

cl1 cl2 cl3 cl4
co1 X X
co2 X
co3 X
co4 ... ... .. ..
co5 X

Table 2.11: RFCA object-object contexts for Kenrolls and Kheld

6. Kheld ∈ Course × Classroom

7. Kfor ∈ Classroom × Major

8. Khas ∈ Major × Student

9. Krequires ∈ Major × Course

Table 2.10 and 2.11 show few examples of object-attribute and object-object con-

texts generated from the relational schema. A scale attribute combining a relation r

with a formal concept c = (X,Y ) from the lattice Lj is assigned to an object o ∈ Oi

whenever r(o) is ”correlated” with the extent of c. In other words, given a relation r

such that dom(r) = Oi and ran(r) = Oj , the target set of concepts will correspond

to a concept lattice of the context underlying Oj.

Applying FCA to relational context families(RCF ) results in a family of lattices

due to expansion of contexts through relational scaling and a iterative process that is

repeated till the lattices evolve completely.This allows for a way of representing the

concepts and relations extracted with RCA in the framework of a description logic.
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The authors in [31] also state and define separate modes of relational scaling called

narrow (for ∀r.C) and wide (for ∃r.C). They implement RCA in a tool called Galicia

[33] which offers efficient tools for knowledge and software engineering allowing rea-

soning and problem-solving. To address the scalability issue for RCA, recently Bazin

et al [34] proposed an approach to generate only a concept and its neighbour concepts

at each navigation step during the generation of the extended concept lattices.

2.8 Other Generalizations

2.8.1 Triadic FCA

The triadic approach to concept analysis (TrCA) was introduced byWille and Liehman

in [35]. TrCA is an extension of Formal Concept Analysis which adds an additional di-

mension to Formal concept analysis; resulting in a triadic relation connecting objects,

attributes, and conditions.

Definition 17 (triadic context) A triadic context is a quadruple ⟨X,Y, Z, I⟩ where

X, Y , and Z are nonempty sets, and I is a ternary relation between X, Y , and Z,

i.e. I ⊆ X × Y × Z. X, Y , and Z are interpreted as the sets of objects, attributes,

and conditions, respectively and I is interpreted as the incidence relation. That is,

⟨x, y, z⟩ ∈ I is interpreted as: object x has attribute y under condition z and x, y, z

are related by I.

On similar principles, a triadic concept is defined and the structure of the triadic

concepts is analysed. Wille et al also show that the concepts can be organized as

”complete trilattices” which is isomorphic to traditional FCA lattice. Recent devel-

opments in TrFCA include [36] where the authors provide a general approach for

developing an unifying framework for concept-forming operators, [37] where fuzzy at-
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tributes are handled, [38] where analysis is done on data with graded attributes and

[39] where a tri-clustering approach is used.

2.8.2 Pattern Structures and FCA

Pattern structures with FCA generalize traditional FCA definitions to include graphs

and numeric intervals. Although pattern structures have been used since 1990’s, it

was formalized by Kuznetsov in [40]. Kuznetsov studies the analysis of complex data

with pattern structures, indicating that pattern structures can be more efficiently

computed and visualized compared to traditional FCA based methods.

Let G be a set of objects, let (D,⊓) be a meet-semilattice (of object descriptions)

and let δ : G→ D be a mapping. Then (G,D, δ) with D = (D,⊓) is called a pattern

structure, and if the set

δ(G) := {δ(g)|g ∈ G}

generates a complete subsemilattice (Dδ,⊓), of (D,⊓). Thus each X ⊆ δ(G) has an

infimum (⊓X) in (D,⊓) and (Dδ,⊓) is the set of these infima. Elements of D are

called patterns and are ordered by subsumption relation ⊑: given c, d ∈ D one has

c ⊑ d⇔ c ⊑ d = c.

A pattern structure (G,D, d) gives rise to two operators,

A□ = ⊓g∈Aδ(g) for A ⊆ G, g ∈ A and

d□ = {g ∈ G|d ⊑ δ(g)} for d ⊑ D.

These operators form a Galois connection between the powerset of G and (D,⊑).

Pattern concepts of G,D, d are pairs of the form (A, d), A ⊑ G, d ∈ D such that

A□ = d and A = d□ with extent A and intent d. The pattern lattice can then be

generated by starting from descriptions in an arbitrary order (P,≤) taking as (D,⊓),

the lattice of all order ideals of (P,≤).
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Pattern structures have been used on sets of graphs and vectors of intervals [41],

version spaces in FCA [42] to express version spaces in FCA. Some other applications

have been to mine gene expression data [43] and decision tree induction using interval

pattern structures [44].

2.8.3 Possibility Theory View of FCA

Possibility theory is a mathematical theory for dealing with certain types of uncer-

tainty and is an alternative to probability theory. Professor Lotfi Zadeh [7, 45] first

introduced possibility theory in 1978 as an extension of his theory of fuzzy sets and

fuzzy logic. Didier Dubois and Henri Prade further contributed to its major devel-

opment [46]. Possibility theory enables to retrieve an enlarged perspective for the

traditional formal concept analysis.

Possibility theory is characterized by four set functions - a possibility measure Π,

a dual measure of necessity N , a measure of ”actual or guaranteed possibility” · and

a dual measure of ”potential necessity or certainity” ∇. A possibility distribution

is defined on a universe U which represents a value of some quantity similar to a

membership function of a fuzzy set E in U .

A possibility-theoretic view of formal concept analysis [46] uses particular set-

valued counterparts of the four main set-functions of possibility theory. The Galois

connection is based on the actual (or guaranteed) possibility function, where each

object in a concept has all properties of its intent, and each property is possessed

by all objects of its extent. The concepts then form a lattice or a set of sub-lattices

analogous to traditional FCA.

Possibility theory with FCA has been studied in [46] for decomposing and charac-

terizing contexts into minimal sub-contexts, [47] for uncertainity handling based on

possibilistic representation framework, [48] for handling fuzzy data.
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Chapter 3

Applications of Formal Concept Analysis and its

generalizations

With ever-growing and never-ending complexity of techniques and approaches, it

becomes important to classify all work-done in a field using a variety of models and

methods to successfully describe the current state of research. This chapter surveys

the state-of-art of approaches and applications of Formal Concept Analysis and its

extensions from existing literature. We use a taxonomy to classify all relevant work

into three major categories which are defined as follows:

1. Data Analysis: This category includes data clustering (Table 3.1), data min-

ing (Table 3.2), data extraction & estimation (Table 3.3 & 3.4), data analysis

and recommendation (Table 3.5), data optimization (Table 3.6), data visualiza-

tion & personalization (Table 3.7) and data quality management (Table 3.8).

2. Knowledge Management: Concerning with overall transformation of knowl-

edge from one form to other, in this category, we include discovery of knowl-

edge, knowledge representation, learning and storage into ontologies (Table 3.9

& 3.10).

3. Learning and Classification: These approaches which are also applicable



34

to streaming or big data, include techniques to learning from existing complete

data and generating efficient models which can then be used to make predictions

on un-classified data. (Table 3.11 & 3.12).

3.1 Approaches in Data Analysis

3.1.1 Clustering

Authors Methodology

Freeman(1996) [49]
Use the Galois structure of containment among cliques
to produce clusters (communities) that are intuitive,
and consistent with ethnographic descriptions.

Maille (2005) [50] Use FCA to cluster incident reports based on
their outcome and initial situation.

Myat and Hla (2005) [51] Cluster textual web documents based using FCA
on the terms they contain.

Okubo and
Haraguchi (2006) [52]

Cluster web documents using FCA and
provide a conceptual meaning for each cluster.

Kuznetsov et al.
(2007) [53]

Find scientific communities using FCA and using a
stability measure to select pertinent concepts.

Roth, Obiedkov,
and Kourie (2006) [54],
Roth, Obiedkov,
and Kourie(2008) [55]

Use FCA with nested line diagrams and concept
stability to identify communities of researchers in
scientific papers on a well-defined topic.

Table 3.1: FCA Applications in Data Clustering
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3.1.2 Data Mining

Authors Methodology
Eisenbarth et al.
(2003) [56]

Construct mapping of features to source-code
using a semi-automatic technique and FCA.

Tonella and
Ceccato (2004) [57]

Aspect identification is done using FCA by means
of dynamic code analysis of execution traces

Busch and
Richards (2004) [58]

Use FCA for the modelling and analysis of psychological
questionnaire data.

Maille, Statler, and
Chaudron (2005) [50]

Use FCA in the developing a Kontex system to identify
causes in aeronautical incident reports.

Formica (2006,2008) [59, 60] Analyze similarity between ontology concepts using FCA

Girault (2008) [61]
Use concept lattices to devise an unsupervised method
to analyze the relations between named entities and their
syntactic dependencies observed in a training corpus.

Lounkine, Auer, and
Bajorath (2008) [62]

Use FCA to identify molecular fragment combinations by
analyzing structure-activity relationships between
compounds and biological activities.

Rouane-Hacene, Toussaint,
and Valtchev (2009) [63] and
Villerd, Toussaint and
Lillo-Le Louët (2010)[64]

Analyze case reports to mine adverse drug reactions
in pharmacovigilance data using formal concept analysis.

Ebner et al. (2010) [65] Analyzed twitter content generated using FCA during
and after a scientific conference.

Poelmans et al. (2010) [66] Analyze patient care activity data by combining FCA
with Hidden Markov Models.

Stumpfe,Lounkine,and
Bajorath (2011)[67]

Used FCA for computational selectivity studies and
analysis of structures of chemical compounds and their
selectivity towards certain targets.

Egho, Jay, Raissi,
and Napoli (2011) [68]

Apply sequential pattern mining to sequences of hospitals
(represented by attributes) and patients (represented
by objects) hospitalized during their cancer treatment.

Endres, Adam, Giese,
and Noppeney (2012) [69]

Analyzed fMRI scans using FCA of a human subject
while he was viewing 72 gray-scale pictures of animate
and inanimate objects during a target detection task.

Elzinga, Wolff, Poelmans,
Viaene, & Dedene (2012) [70]

Used Temporal Concept Analysis(TCA) and Temporal
Relational Semantic Systems(TRSS) to the analysis of
chat conversations.

Table 3.2: FCA Applications in Data Mining



36

3.1.3 Extraction and Estimation

Authors Methodology
Besson et al.
(2004, 2005)[71]

Introduced a D-miner algorithm to compute concepts under
constraints. (e.g. minimal and maximal frequency)

Mens and
Tourwé (2005) [72]

Used FCA to analyze source code of a system for
relevant concepts.

Sklenar, Zacpal, and
Sigmund (2005) [73]

Used FCA to find dependencies between demographic data and
degree of physical activity in epidemiological questionnaire data .

Old (2006) [74] Disambiguating homographs using FCA with illustrative examples,
using data from Roget’s Thesaurus

Breu, Zimmermann,
and Lindig (2006)[75]

Extracted aspects from Eclipse by analyzing where developers
added code to the program over time.

Fan and Xiao (2007) [76] Proposed an FCA-based method for ontology mapping.
Beydoun, Kultchitsky,
and Manasseh (2007) [77]

Developed a system KAPUST to capture user trails as they
search the internet and learn search trails.

Del Grosso, Penta,
and Guzman (2007) [78]

Identify pieces of functionality to be exported as services
from database-oriented applications. Dynamically extract database
queries during the execution of the application.

Belohlavek, Sklenar,
Zacpal, and Sigmund
(2007, 2011) [79, 80]

Build further on the work of Sklenar et al. (2005) and Sigmund, by
aggregating respondents and using fuzzy values to indicate the
relative frequency of attributes in the aggregated objects.

Sato, Okubo,
Haraguchi, and
Kunifuji (2007) [81]

Use FCA to analyze similarities in the time series data
related to medical test results.

Zhao, Halang, and
Wang (2007) [82]

Present an ontology mapping method based on rough FCA and
a proposed rough similarity measure.

Table 3.3: FCA Applications in Data Extraction and Estimation - I
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Authors Methodology
Kim, Hwang, and
Kim (2007b) [83]

Used FCA for extracting internet blogs, extracted tags become
attributes and bloggers become the objects of the context.

Lu and Zhang (2008)
[84]

Conflict detection and elimination between two equivalent concepts
in different source ontologies with different definitions
of value and cardinality restriction.

Cellier et al. (2008) [85] FCA is used in combination with association rules for fault
localization in software source code.

Molloy et al. (2008) [86] Use FCA for efficiently extracting roles from user-permission and
user-attribute information.

Motameny et al.
(2008) [87]
Gebert et al.
(2008) [88]

Use an FCA-based model to identify combinatorial biomarkers
of breast cancer.

Fenza et al.
(2008, 2009)[89, 90]

Present a method using fuzzy FCA for supporting the user in the
discovery of semantic web services.

Bertaux et al.
(2009) [91]

Describe a method to identify ecological traits of species based on
the analysis of their biological characteristics.

Dufour-Lussier et al.
(2010)[92]

Identify ingredients which can be used to replace an ingredient
in another recipe using FCA.

Poelmans et al. (2010,
2011, 2012) [93, 94, 95],
Elzinga et al. (2010) [96]

Use FCA to identify human trafficking and terrorism suspects
from observational police reports.

Falk et al.
(2010, 2011) [97, 98]

Use FCA and translation to extract most relevant verb-frame
associations in language data.

Messai et al. (2011) [99]
Use FCA to identify critical patient-related characteristics related
to physician non-compliance with Clinical Practice
Guidelines (CPG).

Keller et al. (2012) [100]
Use FCA lattice for gene associations to evaluate the complexity
of the relationships among diseases, and to identify concepts
for further functional analysis.

Priss et al. (2012) [101] Used FCA to gain insight into the conceptual structure of
difficulties in learning processes of students.

Table 3.4: FCA Applications in Data Extraction and Estimation -II
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3.1.4 Analysis and Recommendation

Authors Methodology

Cho et al. (2004) [102]
Developed a web search system that reuses keywords and
web pages previously entered and visited by other persons
and provide recommendations.

Rudolph (2004) [103]
Propose an incremental method based on FCA which uses
empirical data to systematically generate hypothetical axioms
about the domain of interest in ontologies.

Zhou et al. (2004) [104]
Use an FCA based model to mine association rules from web
usage logs and use a recommendation engine which matches
them with the user’s recent browsing history.

Chi et al. (2005) Construct ontological knowledge bases for digital archive systems.

Hauff and
Deogun (2007) [105]

Concept lattices are used for disjoint clustering of transactional
databases and several heuristics are developed to tune the support
parameters used in the algorithm.

Colton and
Wagner (2007) [106]

FCA is used in combination with mathematical discovery tools
to better facilitate mathematical discovery.

Ignatov and
Kuznetsov (2008)[107]

Used FCA to develop a recommender system for suggesting
potentially interesting advertisement terms that can be bought.

Quan et al.
(2006b) [108]

The authors apply a FCA based method to build an ontology
which can be used in a web-based help-desk application.

Jay et al. (2008) [109] Apply ice-berging and stability based concept lattices to choose
better medical treatment trajectories for cancer patients.

Huang (2008b) [110] Use Rough Concept analysis for marine ontology to generate
recommendations.

Wang et al. (2009) [111] Use FCA to compute the Concept- Concept similarity, the
Concept-Ontology similarity between two agent crawlers.

Dau and
Knechtel (2009) [112]

Apply FCA in combination with Description Logics to capture
the RBAC constraints and for deriving additional constraints.

Solesvik and
Encheva (2009) [113]

Use FCA as a quantitative instrument for partner selection in the
context of collaborative ship design.

Ignatov et al.
(2011) [114]

Built lattice based taxonomies to represent the structure of student
assessment data to identify the most stable student groups.

Romashkin et al.
(2011) [115]

Analyzed university applications using lattice-based taxonomies
derived from entrants’ decisions about undergraduate programs.

Table 3.5: FCA Applications in Data Analysis & Recommendation
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3.1.5 Optimization

Authors Methodology
Cole et al.(2000,2001,
2003) [116, 117, 118],
Eklund (2004) [119]

Use concept lattices for email search, discovery and visualization,
a Conceptual Email Manager was developed.

Stumme et al.
(2001) [120], Cure and
Jeansoulin (2008) [121]

Propose a solution for merging of ontologies using FCA.

Carpineto
et al. (2004) [122]

System optimization for information retrieval using ice-berging
of lattices.

De Souza et al.
(2004a, 2004b)
[123, 124]

Use ontology merging for aligning, evaluating concept similarities
to process user queries.

Richards (2004) [125]
Describes a method based on Ripple-Down rules and FCA in
the biology domain on four knowledge-bases about a
plant.

Cole et al. (2005) [126]
FCA is used to conceptually analyze relational structures
in software source code and to detect unnecessary dependencies
between software parts.

Koester (2005) [127],
Koester (2006) [128]

FooCA: Improving web search engine results with contexts
and concept hierarchies.

Dau et al. (2008) [129]
Ducrou and
Eklund (2007) [130]

Build Search-sleuth using a formal context which contains the
result of the query as objects and the terms found in the title &
summary of each result as attributes.

Yang et al.(2008b) [131] Build a topic-specific web crawler with concept similarity
context graph which gathers only particular pages.

Du et al. (2009) [132] Association rule mining optimization for web pages using FCA.

Boutari (2010) [133] Use FCA to expand short texts with additional terms to
reduce context sparseness.

Table 3.6: FCA Applications in Data Optimization

3.1.6 Visualization and Personalization

Authors Methodology

Priss (2004) [134], Priss
and Old(2010) [135]

Discuss how FCA can be used to visually represent lexical
databases, i.e. organized collections of words in electronic
form.

Kim and Compton
(2006) [136]

Combined lattice based browsing with conceptual scales to extend
the search functionality by reducing the complexity of
the visualization.

Wermelinger, Yu, and
Strohmaier (2009)[137]

Use FCA lattices to visualize the relations between the
software artifacts and to indicate developers for bug-fixing.

Table 3.7: FCA Applications in Data Visualization and Personalization
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3.1.7 Quality Management

Authors Methodology
Choi, et al. (2006) [138]
and Choi et al.
(2008) [139]

Created concept lattices from micro array data of genes and
compared to each other using a distance metric.

Choi et al. (2008) [139]
and Priss and Old
(2010) [135]

Investigate how FCA can be used for Roget’s thesaurus and for
visualizing WordNet.

Pan et al(2009) [140] Use FCA for comparison of radiology report content before and
after adoption of PACS system.

Le Grand et al.
(2009) [141]

Use FCA for complex systems analysis and compare different topic
maps with each other both in terms of content and structure.

Jiang, Pathak, and
Chute (2009) [142]

Audit the completeness and correctness of the International
Classification of Disease (ICD) codes using FCA.

Sertkaya (2009) [143]
Describe OntoComp, which supports ontology engineers in checking
an OWL ontology for relevant information about the application
domain and in extending the ontology if required.

Jiang and Chute
(2009) [144]

Used FCA to analyze the completeness and correctness of
SNOMED, a controlled vocabulary for the medical domain.

Kaytoue, et al
(2009 [43]),
Kaytoue, et al.
(2011) [145]

FCA in combination with interordinal scaling is compared to pattern
structures based on interval vectors for mining gene expression
data and extracting co-expressed genes.

Kirchberg et al.
(2012) [146]

Performed an in-depth comparison of all performance aspects of
analyzing large amounts of sematic web data, obtained from the
Internet, in real- time.

Table 3.8: FCA Applications in Data Quality Management
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3.2 Approaches in Knowledge Discovery, Representation

and Learning

3.2.1 Building Knowledge Base and Ontologies

Authors Methodology

Jiang et al.
(2003)[147]

Use FCA in combination with NLP for semi-automatically
building a Japanese ontology in the cardiovascular medicine
domain.

Soon and Kuhn
(2004) [148] Use FCA for producing task-oriented ontologies.

Cimiano et al.
(2004) [149]

Discuss and present several examples on how FCA can be used
to support ontology engineering and how ontologies can be
exploited in FCA applications.

Chi et al.(2005) [150] construct ontological knowledge bases for digital archive systems
Hwang et al.
(2005) [151]

Use FCA for the construction of ontologies in the domain of
software engineering.

Xu et al. (2006) [152] FCA is used to build an event ontology from a set of textual
documents.

Richards (2006) [153] Build personal and ad hoc ontologies using FCA
which may help gaining understanding of the research domain.

Quan et al.
(2006) [154]

Apply FCA to build an ontology which can be used in a
web-based help-desk application.

Fang et al.
(2007) [76]

Integrate FCA with Protege to build a knowledge sharing platform,
containing information about the acupuncture points from
traditional Chinese medicine.

Wollbold et al.
(2008) [155]

Derive a knowledge base using FCA using mRNA and protein
concentrations consisting of a set of transition rules between states.

Huang (2008a) [110] Proposed rough FCA for semi-automatically constructing a
marine domain ontology.

Wollbold et al.
(2009) [156]

Use FCA and attribute exploration for building a knowledge base
about a gene regulatory network of a bacterium.

Xu et al. (2009) [157] Contemplate on how FCA can be used to build a computer
network management information specification ontology.

Table 3.9: FCA Applications in Building Knowledge base and Ontologies
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3.2.2 Enhancing/Optimizing Knowledge Base and Ontologies

Authors Methodology
Richards and Malik
(2003) [158]

Use a method to restructure knowledge bases containing classification
rules in the domain of chemical pathology.

Cimiano, Hotho, and
Staab (2005)[159]

Applied FCA and NLP to textual data from the tourism and finance
domain to automatically learn ontological concept hierarchies.

Gamallo, Lopes, and
Agustini (2007) [160]

Use technical articles in computational linguistics and a list of 175
terms to extract lexico-syntactic contexts using FCA and find which
terms co-occur with which lexico-syntactic contexts.

Kim et al. (2007) [136] Propose a method to extract ontological elements from OWL
source code and create a context family of five kinds of contexts.

Kiu and Lee
(2008) [161]

Use FCA for managing existing ontological knowledge instead of
building an ontology.

Bendaoud, Toussaint,
and Napoli (2008)[162]

Propose an FCA-based system for semi-automatically enriching an
initial ontology from a collection of texts in the astronomy domain.

Table 3.10: FCA Applications in Enhancing Knowledge base and Ontologies
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3.3 Approaches in Learning and Classification Problems

Authors Methodology
Jean-Gabriel
Ganascia(1987)[163]

CHARADE: constructs classification rules based on k-DNF
expressions built from the generated lattice.

Carpineto et al.
(1993) [164]

GALIOS: classifies by computing similarity between
instances and coherent maximal concepts.

Liquiere et al.
(1993) [165]

LEGAL: searches for coherent maximal concepts and uses
majority vote for classification

Oosthuizen, G
(1994) [166]

GRAND: a classification strategy to use the most specific rules
containing largest number of examples and the smallest number
of attributes.

Sahami, M.
(1995) [167]

RuLearner: employs an algorithm to generate rules based on
having to find recursively the minimum set of attributes to
classify maximum set of instances.

Njiwoua et al.
(1999) [168]

CIBLE: adopts heuristic techniques to generate only the
pertinent and useful concepts without constructing the entire
lattice.

Xie et al. (2002) [169] CLNN & CLNB: integrated Naive Bayes and Nearest Neighbor
into concept lattice nodes to classify new instances.

Ganter and
Kuznetsov (2003) [170]

Combined version spaces from machine learning with FCA
lattices to generate new classifiers.

Ganter and
Kuznetsov(2000) [171],
Kuznetsov (2004a,
2004b) [172, 173]

Present a classification model of learning from positive and
negative examples using FCA lattice and and graph-theoretic
interpretations of concept-based classification rules.

Ganter et al.
(2004) [174]
Kuznetsov et al.
(2005) [175]

Introduced pattern structures and combined with JSM method
in machine learning to develop their classification model.

Auon-Allah et al.
(2006) [176]

Use FCA lattice to validate rules generated from a meta-classifier
for mining very large distributed databases.

Table 3.11: FCA Applications in Learning & Classification Problems - I
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Authors Methodology
Ricordeau (2003) [177]
Ricordeau and
Liquiere (2007) [178]

Introduced Q-concept learning algorithms, by generalizing
reinforcement algorithms in machine learning using the
standard FCA lattice.

Rudolph (2007) [179] Present an encoding strategy for knowledge processing using
FCA and develop a classification method using a neural network

Wen et al. (2007) [180] Propose a classification algorithm by using an ontology learning
method and clustering on fuzzy concept lattice

Chang et al.
(2008) [181]

Propose a document classifier system by using FCA on existing
knowledge ontology and integrating with Naive Bayes Classifier.

Girault (2008) [61] Use FCA concept lattice mining to develop an unsupervised
classifier for named entity annotation.

Tsopze et al
(2009) [182]

CLANN: a two-class supervised classifier, which uses the FCA
concept lattice to directly build the network architecture of a
neural network.

Carpineto et al.
(2009) [183]

Build a classifier using FCA lattice and integrating with Support
Vector Machines (SVM).

Belohlavek et al
(2009) [184]
Lindig, (2000) [185]

Proposed a classifier by constructing decision trees using nodes of
concept lattice generated from input data.

Outrata (2010) [1] Use FCA and Boolean Factor Analysis to build a classifier using
decision tree induction.

Visani et al.
(2011) [186]

NAVIGALA: uses a navigation based strategy on FCA lattice to
develop a supervised classification algorithm for noisy data.

Table 3.12: FCA Applications in Learning & Classification Problems - II
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Chapter 4

LearnFCA - A novel approach for learning and classification

4.1 Introduction

Classification problems traditionally fall into two main categories, supervised and un-

supervised learning. Machine learning is a scientific study of constructing computer

programs that can learn from data and improve with experience. FCA has originally

been used to exploit the relationship between a set of objects and their properties,

thereby learning predictable patterns from available data to build a knowledge base of

the domain. Use of FCA combined with various machine learning models and domain

expertise has yielded in some interesting results. These machine learning models

include mining classification rules [163, 164, 165, 166, 176], decision tree induction

[184, 1], artificial neural networks [168, 179], nearest neighbor algorithms [169, 186],

naive bayes classifier[169, 182, 186], support vector machines [183], version spaces

[170] , JSM method [41] and q-concept learning [177, 178].

In this chapter, we first introduce an intuitive and naive technique of using FCA

lattice for classification. We then discuss various approaches from existing literature.

Finally, we propose a new model ”LearnFCA” which integrates class information

into the FCA lattice and uses probabilistic techniques to classify instances. The

architecture and implementation of ”LeanFCA” is presented with an emphasis on
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our classification strategy.

4.2 Intuitive Example

Figure 4.1: An example formal context and its concept lattice taken from [1]

Figure 4.1 shows a small formal context defined by a set of animals representing ob-

jects and a set of properties exhibited by them representing attributes of the domain.

At first, the attributes are multi-valued and are scaled to binary values. The generated
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lattice consists of 21 concepts. The top and the bottom nodes are trivial concepts

and other concepts are identified by the labels of objects and attributes on them or

inherited based on the edges connecting the nodes.

Algorithm 1: A naive algorithm to generate classification rules from a concept

lattice
Input: A formal context K = (G,M, I, S)

Output: Classification rules of form A→ S ′, S ′ ∈ {yes,no}

1 Generate a list of concepts C and the concept-lattice L.

2 while all objects are not classified: do

3 From the top, move right and then down to find a concept c that classifies

most number of objects of a class but not the other classes.

4 Include c in C ′.

5 Remove the classified objects and their concept from C.

6 Generate classification rules based on C ′.
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Figure 4.2: An application of the naive algorithm (Algorithm 1) on lattice to generate
classification rules

A naive algorithm to generate classification rules from the concept lattice is de-

scribed in Algorithm 1. The five instances (two positive and three negative) are

classified into two categories (mammal or not-mammal). When Algorithm 1 is ap-

plied on the lattice (Figure 4.2), the generated classification rules are:

1. {bt-cold} → no

2. {gb-no} → no

3. {bt-warm,gb-yes} → yes

4.3 Related Work

FCA has been used with machine learning as early as 1980’s with work mostly concen-

trated around generating classification rules from the concept lattice and using them

to classify new instances. Probably, the earliest model of use of FCA for classification

can be seen in CHARADE [163] developed in 1987. It constructs classification rules

based on k-DNF expressions built from the generated lattice and claims to have bet-

ter performance than the basic machine learning ID3 algorithm. Carpineto et al [164]

developed GALIOS in 1993, which computes the similarity between a new instance

and a set of coherent/maximal concepts, uses a majority vote strategy to classify the

instance to the most similar class. LEGAL [165] proposed in 1993, uses a similar

inductive method, searches for coherent/maximal concepts and uses majority vote in

the set of pertinent regularity to classify new examples. GRAND, developed in 1994

[166] employs a classification strategy to use the most specific rules which contain
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the largest number of examples and the smallest number of attributes. The authors

select and choose the three best rules to classify a new instance. RuLearner(1995)

[167] formally defines and employs an algorithm to generate rules based on having to

find recursively the minimum set of attributes to classify maximum set of instances

of a specific category. CIBLE(1999) [168] adopts heuristic techniques to generate

only the pertinent and useful concepts without constructing the entire lattice. It

combines induction and k-NN, and one of the three distance measures: Mahalanobis,

Manhattan and Euclidean to classify an new instance.

In 2002, Xie et al [169] developed new composite classifiers (CLNN and CLNB)

by integrating Naive Bayes and Nearest Neighbor into the concept lattice nodes,

applying constraints and a new voting strategy to classify a new instance. Similar to

[168], they built only partial lattices using heuristic techniques for better efficiency

of their classification algorithm. Ganter & Kuznetsov [170] in 2003, combined the

model of version spaces in machine learning with FCA to generate classifiers that are

closed under conjunction and apply it to an example from predicitive toxicology. The

authors mention in certain cases, the classifiers can be too restrictive, and suggest

to use sets of hypotheses in terms of patterns structures as a possible remedy. In

another series of papers by Ganter & Kuznetsov [172, 173, 171], the authors present a

classification model of learning from positive and negative examples using FCA lattice

and graph-theoretic interpretations of concept-based classification rules (hypothesis).

Later in 2004 [174], they extended their work by introducing pattern structures and

combine with JSM method in machine learning and test their classification model on

Predictive Toxicology datasets.

Aoun-Allah and Mineau (2006) [176] use FCA lattice to validate rules gener-

ated from a meta-classifier for mining very large distributed databases. Ricordeau

& Liquiere [177, 178] introduce Q-concept learning algorithms, by generalizing rein-
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forcement algorithms in machine learning using the standard FCA lattice. In [179],

Rudolph uses FCA to present an encoding strategy for knowledge processing data

and provide a method to support the neural-symbolic learning cycle in a 3-feed for-

ward neural network. Wen et al [180] propose a classification algorithm by using an

ontology learning method, clustering on fuzzy concept lattice and apply it on UCI

Machine learning datasets. In [181], the authors propose a document classifier sys-

tem by using FCA on existing knowledge ontology and integrating with Naive Bayes

Classifier with an average effectiveness of 89%. Girault [61] use FCA concept lattice

mining to present an unsupervised classifier for named entity annotation to improve

the existing supervised classification process. Tsopze et al [182] propose CLANN, a

two-class supervised classifier, which uses the FCA concept lattice to directly build

the network architecture of a neural network. The authors believe that this approach

is helpful when prior knowlege of data is not available and show the soundness and

efficiency using various experiments on UCI datasets.

In 2009, Caprineto et al [183] use FCA for pre-processing and generating a doc-

ument lattice and integrate it with Support Vector Machines(SVM) to build a text

based classifier. They show that the proposed method is better than the standard

SVM when very little training data are available. Belohlavek et al [184] proposed a

classifier by constructing decision trees using nodes of concept lattice generated from

input data and experimentally evaluate with standard benchmark datasets. Outrata

[1] in 2010, used formal concept analysis in input data preprocessing to generate for-

mal concepts using boolean factor analysis and build a classifier using decision tree

induction, They evaluate their performance with standard decision tree induction al-

gorithms ID3 and C4.5. In 2011, Visani, Bertet, Ogier [186] proposed NAVIGALA,

which uses a navigation based strategy on FCA lattice to develop a supervised clas-

sification algorithm for noisy data. The algorithm selects relevant concepts from the
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huge amount of data, which then is processed by a k-nearest neighbors or the Bayesian

classifier. Some quantitative and qualitative evaluations are presented.

A chronological list of the related work is presented in Table 3.11 & 3.12.

4.4 Overview and Definitions

4.4.1 FCA with Classes

Below, we present a formal definition of traditional FCA with integrated class infor-

mation:

Definition 18 (context) A Classed Formal Context is a four-tuple K = (G,M, I, S),

where G is a set of objects, M is a set of attributes, I is a binary function from G to

M and S is a set of classes. Each pair (g,m) ∈ I has a membership value in {0, 1},

with each object g ∈ S belonging to a particular class s ∈ S.

In Figure 4.1, G = {cat,bat,salamander,eagle,guppy }, M = {bt cold, bt warm, gb

no, gb yes, fl no, fl yes, hb no, hb yes }, S = {yes, no}.

Definition 19 (concept) A Formal Concept with Class Cc of a formal context K is

Cc = (G′,M ′, S ′) where for G′ ⊆ G, M ′ ⊆M , G′′ =M ′ and M ′′ = G′. Each concept

Cc has a associated class s ∈ S which is determined by some classification strategy ζ.

Two formal concepts with class (Figure 4.2) are Cc1 = ({guppy},{bt cold, gb yes,

fl no, hb no}, no) and Cc2 = ({cat},{bt warm, gb yes, fl yes, hb no}, yes). Intuitively,

this means that the lattice node with the object set G = {guppy} has been assigned

a no class using certain classification strategy ζ. One example for ζ could be to use

the conjunction of classification rules generated earlier. Classification strategies could

vary from being simple to complex.
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For formal context lattices with large number of nodes, classification rules and

strategies can get fairly complex and it becomes difficult to assign a concept node to

a particular class s. One way to resolve this is to assign a probability vector P to

the concept where each item pi is the fractional value corresponding to the class si,

si ∈ S.

Definition 20 (concept probability vector) A concept probability vector P for a con-

cept C is a probability vector {p1, p2, p3...pn}, with each element corresponding to a

class s ∈ S, pi ∈ [0, 1], n = |S| such at
∑
pi = 1.

4.4.2 Fuzzy FCA with Classes

In this section, we extend the notion of FCA with Classes to Fuzzy FCA with Classes

by modifying the membership function to be from a fuzzy set [0, 1]. To address

the difficulty of assigning classes to concepts in the fuzzy lattice, we use a concept

probability vector P as discussed in the previous section.

Definition 21 A Fuzzy Formal Context with Class (FFCc) is a six-tuple K =

(G,M, I, S, µ, χ), where G is a set of objects, M is a set of attributes, I = ((GM), µ)

is a fuzzy set, with each pair (g,m) ∈ I has a membership value µ(g,m) in [0, 1], S

is a set of classes with each object g ∈ G belonging to a particular class s, and χ the

confidence threshold of the context.

Definition 22 A Fuzzy Formal Concept with Class (or classified concept) Cc of a

fuzzy formal context K with class and a confidence threshold χ, is Cc = (I ′G,M
′,P),

where, for G′ ⊆ G, I ′G = (G′, µ), M ′ ⊆ M , G′′ = M ′ and M ′′ = G′ . Each object g

has a membership µI′G
defined as µI′G

(g) = minm∈M ′(µI(g,m)) where µI is the fuzzy

function of I. P is a probability vector of the concept C representing the chances of

being classified into various classes in S.
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Figure 4.3 shows a fuzzy concept lattice with probability vectors associated with

each concept node.

Figure 4.3: Fuzzy Concept Lattice of Context in Table 4.1 with probability concept
vectors assigned to each node

4.4.3 Classification Strategy ζ

First, we calculate the probability concept vectors by defining pi ∈ P of a concept Cc

as the ratio of no of objects in it’s extent that belong to si and it’s extent size.
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m1 m2 m3 m4 s
g1 0.6 0.4 0.1 s1
g2 0.4 0.3 0.7 s3
g3 0.1 0.4 0.8 s3
g4 0.6 s2
g5 0.7 1.0 0.6 s1
g6 0.7 0.3 0.5 s3

Table 4.1: A fuzzy formal context with class information

pi =
No of objects in Extent(Cc) in class si

Extent Size(Cc)

The concept lattice in 4.3 shows probability vectors associated with each concept.

For example, for node 6 with extent O = {g2, g3, g5, g6}, intent A = {m4}; p1 = No

of objects in Extent in class s1 / Extent Size = 1/4 = 0.25. Similarly, p2 = 0.0 and

p3 = 0.75;

Next, we present Algorithm 2 to classify all individual objects in the given context.

The main idea is to traverse through the fuzzy lattice for each object (instance) o and

find the relevant concept Co that contains the object and has the maximum extent

size. The predicted class of o is then assigned as the class that has the maximum

value in the probability vector Pc for Co.

Algorithm 2 initializes an empty instance map ”insMap” which is gradually filled

with the instances o, their maximum extent size n, and the resultant probability

vector (pv) for each instance. The results of applying Algorithm 2 to the fuzzy

lattice in Figure 4.3 is shown in Table 4.2. The algorithm classifies 5 out of 6 objects

successfully (an accuracy of 83.33%).
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Algorithm 2: ClassifyUsingLattice(FuzzyL)
Input: A Fuzzy Lattice fuzzyL generated using Fuzzy FCA
Output: All instances and their predicted class

1 Initialize insMap← new empty;
2 foreach concept fc in fuzzyL do
3 foreach object o in fc.getExtent() do
4 n← fc.getExtentSize();
5 m← insMap.get(o).getSize();
6 if m ≤ n then
7 insMap.set(o, n, fc.getPV ()) ;

8 foreach o, n, pv in insMap do
9 Output ”Predicted class of o is :” max(pv);

Object Relevant
Concept

Probability
Vector

Predicted
Class

Actual
Class

g1 4 <1.0,0.0,0.0> s1 s1
g2 5 <0.0,0.0,1.0> s3 s3
g3 3 <0.5,0.0,0.5> s3 s3
g4 8 <0.0,0.33,0.66> s3 s2
g5 2 <1.0,0.0,0.0> s1 s1
g6 5 <0.0,0.0,1.0> s3 s3

Table 4.2: Results after applying strategy ζ to fuzzy lattice in Figure 4.3

4.5 LearnFCA - Architecture and Implementation

LearnFCA Model(LFM) has been developed from the java based Concept Explorer

tool (conexp) [187] and the conexpng tool [188]. Both of tools have the core FCA

functionality of processing contexts, generating lattices and implication rules. These

tools have been modified and adapted to support Fuzzy FCA, and to construct a

fuzzy lattice that can be used for classification. LFM has the capability to process

classes related information and classify instances based on a probabilistic strategy

described in Algorithm 2. The key characteristics of LFM are:

1. Java based implementation based on conexp and conexpng.
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2. Ability to support Fuzzy FCA and process classes related information.

3. A text based classifier that works using a probabilistic strategy, reports accuracy

for large datasets and has the ability to randomize and select training/test set

for experimentation.

A copy of the implementation can be obtained from https://git.unl.edu/

ssamal/conexpng.

4.5.1 Fuzzy Lattice Construction

Algorithm 3: GenFuzzyLattice (fuzzyC)
Input: A given Fuzzy Context fuzzyC (G,M, I, χ)
Output: A Fuzzy Lattice fuzzyL with fuzzy concepts, class information and

class probabilities
1 Initialize th← 0.5 ;
2 Initialize clsMap← new empty ;
3 Initialize trnMap← new empty;
4 fuzzyC ←CreateFuzzyContext(fuzzyC) ;
5 foreach object o in G do
6 UpdateClassMap(clsMap, o.class) ;
7 if isTraining(o) then
8 UpdateTrainingMap(trnMap, o) ;

9 fuzzyL←CreateLattice(fuzzyC,th) ;
10 Initialize nc←size(clsMap);
11 foreach fuzzyConcept fc in fuzzyL do
12 Initialize pv ← [0.0]*nc;
13 foreach class c in clsMap do
14 pv[c]← clsMap.getCount(c) / fc.getExtentSize();
15 fc.setPV (pv) ;
16 return fuzzyL

First, we use a few new data structures to extend the capability of conexpng tool

to support fuzzy contexts and storing classes. th is used for the threshold of the fuzzy

context. clsMap and trnmap are used for storing classes and whether a given instance

https://git.unl.edu/ssamal/conexpng
https://git.unl.edu/ssamal/conexpng
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is a training or a test instance. A vector pv is used for each lattice concept in the

fuzzy lattice for storing the classification probability values.

The steps for construction of fuzzy lattice are detailed in Algorithm 3. We initialize

the threshold th to a default value of 0.5. The data structure clsMap stores the

mapping of object to their classes as observed in the given context. trnMap is a data

structure to optionally separate out the training objects. The lattice is generated

using standard FCA process and stored in fuzzyL. The next step involves traversing

through each concept in the fuzzy lattice and adding a probability vector for each

concept based on classification strategy discussed in Section 4.4.3.

4.5.2 Object Classification Process

Classifying instances (objects) to various classes is done using the fuzzy lattice in a

similar way as done in 4.4.3. The classification process is detailed in Algorithm 2. An

instance map insMap of all objects and empty probability vectors is first initialized.

We traverse through the concepts in the fuzzy lattice, and for each object in the

concept, insMap is updated with the resultant probability vector if required. Finally,

we loop through each object in insmap and output the predicted class associated with

the maximum value in the probability vector.
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Chapter 5

LearnFCA - Experimental Evaluation

This chapter describes in detail how we apply LearnFCA to various data, the setup

and methodology used to perform the various experiments. We also discuss results,

their interpretation and future work that can be done in this direction.

5.1 Introduction and the big picture

The use of intelligent computing to assist clinical decision making and medical proce-

dures can be seen since early 1960’s, however its use has still been profoundly limited

to date due to various reasons. Healthcare procedures and clinical work-flows are

known to be inherently complex. Clinical decision making often involves processing

an enormous range of relevant data. Multiple terminologies and nomenclature exist

in medical domain that adds to the complexity. Recent years has seen the emergence

of big data, increasing risk of errors in diagnostic procedures all with a need of high

accuracy in medical diagnosis procedures. Hence, the use of advanced computing

technologies to assist clinicians has become almost indispensable. On the other hand,

recent applications of artifical intelligence have been proven very successful in com-

plex domains like self-driving cars, natural language processing and biological systems

engineering.
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Figure 5.1: LearnFCA Model in a proposed CDSS system

”LearnFCA” is proposed to be an integral part of a clinical decision support

system(CDSS) framework for physicians. The entire project aims to design and im-

plement an intelligent computing system that would assist physicians (doctors) with

decision making (treatment plan, diagnosis, other recommendations) and provide rec-

ommendations for clinical evaluation and treatment. The project uses deep learning

techniques to extract and incrementally learn vital data characteristics from medical

images and use LearnFCA Model (LFM) to classify, and finally provide recommen-

dations to physicians to assist in diagnostic procedures and clinical work-flows.
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5.2 Experimental Setup

5.3 Setup

We evaluate ”LearnFCA” on encodings (matrices) generated from images obtained

from various datasets. For the FCA context, each encoding is an object and each

feature is an attribute. Originally, each encoding has 64 attritbutes. Experiments

were run on two types of encodings, binary (values are either 0 or 1) and floating

(values are between 0 to 1). Attributes were scaled from 64 to 512 using a simple bin-

ning strategy explained in Algorithm 4. Encodings are obtained from three datasets,

MNIST [189] (having 10 classes), Omniglot [190] (512-659 classes), and GDC portal

cancer images [191] (2 classes).

5.3.1 Methodology

The entire process is composed of three steps: extending the features (optional),

generation of fuzzy lattice and classification using lattice all of which is depicted in

Algorithm 5. The first step involves extending the original features (attributes) of size

64 to a higher dimension (128-256) using Algorithm 4 (ExtendFeatures) if necessary.

This is done by reducing the range of each attribute. A single attribute value between

0 to 1 can be extended to four attributes by dividing the ranges to 0 to 0.25, 0.25 to

0.5, 0.5 to 0.75 and 0.75 to 1.0.

The next step involves using the extended encodings as input for a formal context

and generating a fuzzy lattice using Algorithm 3 (GenFuzzyLattice) . The generation

process involves tracking of training & test instances, generating fuzzy concepts and

updating the probability vectors within each lattice concept. The last and final step

involves traversing the lattice, using the classification strategy ζ and predicting the
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best class for each instance. This is detailed in Algorithm 2 (ClassifyUsingLattice).

Algorithm 4: ExtendFeatures (E, n)
Input: A matrix of encodings E[i× f ] with f features
Output: A matrix of encodings E ′[i× f ′] with f ′ features (|f ′| = |f | ∗ n)
/* Initialize encodings of size f ∗ n */

1 Initialize E ′ ← empty ;
2 n′ ← |f | ∗ n ;
3 foreach encoding e in E do
4 Initialize e′ ← [0.0] ∗ n′ ;

/* Assign the feature to appropriate bin in e' */
5 foreach feature e[j] in e do
6 bid← int(e[j] ∗ n);
7 e′[(j − 1) ∗ n+ bid]← e[j];
8 Add e’ to E ′;
9 return E ′

Algorithm 5: Algorithm to classify encodings based on Fuzzy lattice
Input: A set of encodings matrix Enc[i× f ], with i instances and f features.

i = i1(training instances) +i2(test instances) and F = f1 (features)

+f2 (classes)

Output: instances and their classified classes

1 EncX ←ExtendFeatures(Enc, n);

2 FuzzyL←GenFuzzyLattice(EncX);

3 ClassifyUsingLattice(FuzzyL);

5.3.2 Results

MNIST Image Encodings [189]

MNIST is a database of handwritten digits, having a training set of 60, 000 exam-

ples, and a test set of 10, 000 examples and 10 classes. It is widely used for training

and testing in the field of machine learning and classification problems. The digits

have been size-normalized and centered in a fixed-size image of 28x28 pixels each.
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We apply our classification algorithm to 100 to 500 of these images. With original

set of encodings (64 attributes), our algorithm classifies about 25% of the instances

accurately. On scaling the attributes to 512, the accuracy goes to as high as 96.4%

(Table 4.2).

Omniglot Data Encodings [190]

The Omniglot data set contains 1623 characters (classes) spanning 50 different

alphabets and about 14000 instances. However, it has very few examples per class.

We apply our classification algorithm by selecting about 1000 to 5000 images from

the dataset. The accuracy is low(1.5%- 2.5%) with original set of encodings with

64 attributes, but when scaled to 512 attributes, the accuracy increases to be in the

range 39%− 55% (see Table 4.2). One of the limitations of our model is the inability

to handle larger number of instances.

Colorectal Cancer Images Dataset [191]

We apply our classification alogrithm to the cancer image encodings generated

from National Cancer Institute’s GDC Portal [191]. The dataset consists of 1041

colon cancer images with 705 training and 336 testing images. The goal is to classify

them to two classes, Colon Adenocarcinoma(CA) and Colon Mucinous Adenocarci-

noma(CMA). American Cancer Society [192, 193] reports that colon cancer is respon-

sible for one-thirds of all cancer related deaths in the country (about 101K cases and

51K deaths estimated in 2009). Use of Machine Learning Techniques with FCA is

anticipated to enable faster processing and earlier detection of colateral cancer images

and thereby reducing its overall risk and increasing the chances of patients survival.

The results are presented in Table 4.2. Our algorithm reported an overall accuracy

of 86.84% with training accuracy of 82.84% and testing accuracy of 95.24%. When

the attributes are scaled, the overall accuracy increased to 98.27%.
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Dataset Encoding
Type

Total
Objects Classes Train

Size
Test
Size

Scaled
Attributes Concepts Train

Accuracy
Test

Accuracy
Overall

Accuracy

mnist1

binary 500 10 400 100 64 2081 25.25 25.00 25.20

floating 500 10 400 100
64 2081 25.50 23.00 25.00
256 7996 36.75 41.00 37.60
512 26019 96.00 98.00 96.40

mnist2

binary 100 10 80 20 64 2081 33.75 15.00 30.00

floating 100 10 80 20
64 2081 31.25 20.00 29.00
256 7088 93.75 100.00 95.00
512 8249 100.00 100.00 100.00

omniglot
(1000)

floating
1000 512 800 200

64 1832 2.50 1.50 2.30
floating 256 6487 38.50 38.13 38.20
floating 512 16411 54.50 59.00 55.40

omniglot
(2000)

floating
2000 634 1600 400

64 1832 1.50 2.25 1.65
floating 256 7091 24.31 21.00 23.65
floating 512 18524 39.19 41.00 39.55

omniglot
(3000)

floating
3000 652 2400 600

64 1832 1.75 0.83 1.56
floating 256 7155 17.79 18.50 17.93
floating 512 19994 32.75 35.00 33.2

omniglot
(5000)

floating
5000 659 4000 1000

64 1833 1.15 0.90 1.10
floating 256 7205 12.83 15.10 13.28
floating 512 21870 25.58 25.80 25.62

cancer
images

floating
1041 2 705 336

64 2077 82.84 95.24 86.84
floating 256 6419 89.50 99.11 92.60
floating 512 13164 97.59 99.70 98.27

Table 5.1: Results of applying LearnFCA onto various datasets

5.3.3 Discussion

LearnFCA has proven to be successful with varying degrees on the three datasets.

The following general observations were made:

1. Encoding Type (binary vs floating): Floating encodings represent data in a

range compared to binary encodings (0 or 1) and hence are expected to cap-

ture features more efficiently. LearnFCA performs atleast as better on floating

encodings as compared to the binary encodings in all the three datasets (mnist

30-100%, omniglot 2-55% , cancer images 86-98%).

2. Scaling of Features: Feature scaling which applies to only the floating encod-

ings proved to be another mechanism to capture relevant features efficiently.
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When scaling the features to four times, the accuracy of our model increased

considerably to about 100% in all the three datasets (mnist 29-100%, omniglot

38-55% , cancer images 92-98%).

3. Number of Classes: Number of classes is an very important factor for classifica-

tion accuracy. It is expected, that the more the number of classes, the harder

it is to classify and lower the performance. With omniglot data which had

the highest number of classes (about 650), the classification accuracy was just

about 33%. With the cancer images (2 classes) , and mnist data (10 classes),

our model performed close to 98% accurate.

4. Size of Dataset: The number of instances in the dataset plays a good role

in the learning and classification process. With higher size of dataset, it is

expected that a model would learn and classify more efficiently and perform

better. LearnFCA performs better with smaller size data (till 500), but its

accuracy drops with very large datasets. Building the fuzzy lattice is expo-

nential, the process is slow and hence the classification accuracy drops. With

about 5000 images from omniglot dataset, the process took about 2 hours and

classification accuracy was just about 25%. Our model was not able to run

the entire omniglot dataset (1623 classes,14000 instances) and this stands for

further analysis for future work.

5.4 Conclusion

This thesis provided a comprehensive review on FCA and its generalizations and

their applications in various domains related to data mining and machine learning.

We reviewed about 150 papers related to FCA and categorized them into three major

areas, data analysis, knowledge management and learning and classification. We also



65

proposed LearnFCA, a classifier based on Fuzzy FCA and probabilistic techniques

for learning and classification purposes. Our proposed model was evaluated on three

datasets with varying number of classes with varying degrees of success.

5.5 Future Work

The work presented in this thesis can be extended in several ways. Most of them

follow from our analysis and our experimental results in previous section. Following

are some research directions for future work:

One improvement to our LearnFCA is to explore techniques to efficiently build

the concept lattice using incremental algorithms like the AddIntent [194], InClose2

[195] and [196, 197]. This would make processing faster and help in scaling to larger

datasets. Other suggested approaches are noise removal before processing, ice-berging

(removal of irrelevant concepts during lattice generation) [34], and use of context

reduction techniques [198].

Use of FCA with big data and streaming data has not been much until recently

[5] and this is an emerging research area. There is a need to build efficient classifiers

and tools to support various intelligent processes. One limitation of LearnFCA is

its inability to scale to larger datasets and big data. Extending the model by using

python packages, it’s in-built, bench-marked tools for FCA and machine learning

packages is another direction to explore, which might enable the model’s usage with

with big and streaming data.

Finally, LearnFCA could be combined with Temporal FCA, Ontology and RCA

to enable our model have the ability to persist information, classification rules and

save their changes over time. This would help us in retrieving snapshots of data at

various time and even predicting changes in future.
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