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Abstract. Knowledge discovery is important for systems that have com-
putational intelligence in helping them learn and adapt to changing en-
vironments. By representing, in a formal way, the context in which an
intelligent system operates, it is possible to discover knowledge through
an emerging data technology called Formal Concept Analysis (FCA).
This paper describes a tool called FcaBedrock that converts data into
formal contexts for FCA. The paper describes how, through a process
of guided automation, data preparation techniques such as attribute ex-
clusion and value restriction allow data to be interpreted to meet the
requirements of the analysis. Examples are given of how formal contexts
can be created using FcaBedrock and then analysed for knowledge dis-
covery, using real datasets. Creating formal contexts using FcaBedrock
is shown to be straightforward and versatile. Large data sets are easily
converted into a standard FCA format.

1 Introduction

Formal Concept Analysis (FCA) was introduced in the 1990s by Rudolf Wille
and Bernhard Ganter (Ganter and Wille, 1998), building on applied lattice and
order theory developed by Birkhoff and others in the 1930s. It was initially de-
veloped as a subsection of Applied Mathematics based on the mathematisation
of concepts and concepts hierarchy, where a concept is constituted by its exten-
sion, comprising of all objects which belong to the concept, and its intension,
comprising of all attributes (properties, meanings) which apply to all objects
of the extension (Wille, 2005). The set of objects and attributes, together with
their relation to each other, form a formal context, which can be represented by
a cross table.



Airlines

L
a
ti

n
A

m
e
ri

c
a

E
u
ro

p
e

C
a
n
a
d
a

A
si

a
P

a
c
ifi

c

M
id

d
le

e
a
st

A
fr

ic
a

M
e
x
ic

o

C
a
ri

b
b

e
a
n

U
S
A

Air Canada × × × × × × × ×
Air New Zealand × × ×
Nippon Airways × × ×
Ansett Australia ×
Austrian Airlines × × × × × ×

1.1 Formal Contexts

The cross-table above shows a formal context representing destinations for five
airlines. The elements on the left side are formal objects; the elements at the top
are formal attributes. If an object has a specific property (formal attribute), it
is indicated by placing a cross in the corresponding cell of the table. An empty
cell indicates that the corresponding object does not have the corresponding
attribute. In the Airlines context above, Air Canada flies to Latin America (since
the corresponding cell contains a cross) but does not fly to Africa (since the
corresponding cell is empty). However, an empty cell might also mean that it
is unknown whether the corresponding object has the corresponding attribute
(Wolff, 1993).

In mathematical terms, a formal context is defined as a triple K := (G,M, I),

with G being a set of objects, M a set of attributes and I a relation defined

between G and M. The relation I is understood to be a subset of the cross

product between the sets it relates, so I ⊆ G×M . If an object g has an attribute

m, then g ∈ G relates to m by I, so we write (g,m) ∈ I, or gIm. For a subset of

objects A ⊆ G, a derivation operator ′ is defined to obtain the set of attributes,

common to the objects in A, as follows:

A′ = {m ∈ M | ∀g ∈ A : gIm}

Similarly, for a subset of attributes B ⊆ M, the derivation operator ′ is defined

to obtain the set of objects, common to the attributes in B, as follows:

B′ = {g ∈ G | ∀m ∈ B : gIm}

1.2 Formal Concepts

Now, a pair (A, B) is a Formal Concept in a given formal context (G,M, I) only
if A ⊆ G, B ⊆ M, A′ = B and B′ = A. The set A is the extent of the concept
and the set B is the intent of the concept. A formal concept is, therefore, a
closed set of object/attribute relations, in that its extension contains all objects
that have the attributes in its intension, and the intension contains all attributes
shared by the objects in its extension. In the Airlines example, it can be seen
from the cross-table that Air Canada and Austrian Airlines fly to both USA and



Europe. However, this does not constitute a formal concept because both airlines
also fly to Asia Pacific, Canada and the Middle East. Adding these destinations
completes (closes) the formal concept:

({Air Canada, Austrian Airlines}, {Europe, USA, Asia Pacific, Canada,
Middle East}).

1.3 Computing Formal Concepts

For the computation of formal concepts, a Boolean matrix is frequently used to
represent the formal context. In the boolean matrix, the rows and columns are
computationally interchangeable; the same will apply if ‘A’, ‘extent’, ‘object’ and
‘row’ are substituted for ‘B’, ‘intent’, ‘attribute’ and ‘column’ (and vice-versa).

There are several algorithms for computing the formal concepts in a formal
context – reviews of such algorithms, that take a variety of approaches, can be
found in (Arevalo et al, 2007; Kuznetsov and Obiedkov, 2002; Zaki and Hsiao,
2005).

An example of such an algorithm is given in Figure 1, implemented in the
formal concept miner In-Close1, developed by one of the authors. In-Close is
based conceptually on Kuznetsov’s Close-By-One algorithm (Kuznetsov, 1999).
To better understand the algorithm, I is a Boolean matrix representing a formal
context, with m rows, representing a set of objects, and n columns, representing
a set of attributes. A formal concept is represented by an extent A[r] (an ordered
list of objects) and an intent B[r] (an ordered list of attributes), where r is the
index of the concept. In the algorithm, j is the current attribute, r is the index
of the concept being closed, rnew is a global index of the candidate new concept
and y is a starting column. InClose(r, y) means ‘incrementally close concept r,
beginning at attribute y ’. IsCanonical checks if a concept is new by examining its
cannonicity (lexicographical order) to circumvent the need to explicitly search for
repeated results (Ganter, 1984). For a more thorough and technical explanation
of how the algorithm works, refer to (Andrews, 2009b, 2011).

1.4 Galois Connections

Another central notion of FCA is a duality called a ‘Galois connection’, which is
often observed between items that relate to each other in a given domain, such as
objects and attributes. A Galois connection implies that “if one makes the sets of
one type larger, they correspond to smaller sets of the other type, and vice versa”
(Priss, 2008). Using the formal concept above as an example, if Africa is added
to the list of destinations, the set of airlines reduces to {Austrian Airlines}.

1.5 Concept Lattices

The Galois connections between the formal concepts of a formal context can be
visualized in a Concept Lattice (Figure 2), which is an intuitive way of discovering

1 http://sourceforge.net/projects/inclose/



Fig. 1. The In-Close algorithm.

hitherto undiscovered information in data and portraying the natural hierarchy
of concepts that exist in a formal context.

A concept lattice consists of the set of concepts of a formal context and the
subconcept-superconcept relation between the concepts. The nodes in Figure
2 represent formal concepts. It is conventional that formal objects are noted
slightly below and formal attributes slightly above the nodes, which they label.

A concept lattice can provide valuable information when one knows how to
read it. As an example, the node which is labeled with the formal attribute ‘Asia
Pacific’ shall be referred to as Concept A. To retrieve the extension of Concept
A (the objects which feature the attribute ‘Asia Pacific’), one begins at the node
where the attribute is labeled and traces all paths which lead down from the
node. Any objects one meets along the way are the objects which have that
particular attribute. Looking at the lattice in Figure 2, if one takes the attribute
‘Asia Pacific’ and traces all paths which lead down from the node, one will collect
all the objects. Thus Concept A can be interpreted as ‘All airlines fly to Asia
Pacific’. Similarly, the node which is labeled with the formal object ‘Air New
Zealand’ shall be referred to as Concept B. To retrieve the intension of Concept
B (the attributes of ‘Air New Zealand’), one begins at the node where the object
is labeled and traces all paths which lead up from the node. Any attributes one
meets along the way, are the attributes of that particular object. Looking at the
lattice once again, if one takes the object ‘Air New Zealand’ and traces all paths
which lead up from the node, one will collect the attributes ‘USA’, ‘Europe’,
and ‘Asia Pacific’. This can be interpreted as ‘The Air New Zealand airline flies



Fig. 2. A lattice corresponding to the Airlines context.



to USA, Europe and Asia Pacific’. The concept that we formed previously by
inspecting the cross-table,

({Air Canada, Austrian Airlines}, {Europe, USA, Asia Pacific, Canada,
Middle East}),

is the node in the center of the lattice; the one labeled with ‘Middle East’ and
‘Canada’. It becomes quite clear, for example, that although Air New Zealand
and Nippon Airways also fly to Europe, USA and Asia Pacific, only Air Canada
and Austrian Airlines fly to Canada and the Middle East as well.

Although the Airline context is a small example of FCA, visualising the
formal context clearly shows that concept lattices provide richer information
than from looking at the cross-table alone. This type of hierarchical intelligence
that is gleaned from FCA is not so readily available from other forms of data
analysis.

1.6 Converting Data for FCA

It has been shown that FCA can be usefully applied to large sets of data (Poel-
mans et al, 2011; Kaytoue-Uberall et al, 2008; Sawase et al, 2009; Ignatov and
Kuznetsov, 2009) and that it has applications in data mining (Boulicaut and
Besson, 2008; Rioult et al, 2003). Algorithms exist that are capable of processing
large formal contexts in good time (Andrews, 2011; Krajca et al, 2008). However,
data is rarely in a form immediately suitable for FCA tools and applications.
For FCA to be carried out, these data must be converted into formal contexts.
The existing, typically many-valued, attributes must be converted into formal
attributes. This can be an involved and time consuming task, usually requiring
a programming element. The task is, essentially, a process of Booleanising data;
taking each many-valued attribute and converting it into as many Boolean at-
tributes as it has values. The incorporation of many-valued attributes into FCA
is well known (Wolff, 1993; Ganter and Wille, 1998) and continuous data can
be used for FCA by being hierarchically scaled (Priss, 2008) or discretized as
disjoint ranges of values (Kaytoue-Uberall et al, 2008). However, it is not always
obvious how or even if a particular attribute should be converted. If an attribute
has hundreds of values, converting it into hundreds of formal attributes may be
pointless if this leads to a hugely complex lattice - it is probably not suitable
for FCA. For continuous values the question arises as to how to form the ranges
to discretise them; how many and how large? Consequently, there is less work
describing how these techniques can be applied in an automated, reproducible
way.

A process of data conversion leads to the possibility of diverse interpretation
of data. Different choices of which of the data to convert and how to convert
them can, without careful documentation, lead to inconsistent and incomparable
analyses and lead to problems in measuring the performance of FCA tools and
algorithms (Kuznetsov and Obiedkov, 2002). It was thus proposed at CSTIW’09
that a tool should be developed to apply automation to the process of conversion
and to address these issues (Andrews, 2009a).



2 FcaBedrock Overview

FcaBedrock2 is an open-source tool for automating the conversion of existing,
flat-file csv datasets into formal contexts. Creating formal contexts is a common
process which, until now, was done manually. Several FCA tools, such as the
ToscanaJ kit for browsing conceptual schemas and the lattice builder ConExp3

(Yevtushenko, 2000), exist which are capable of creating formal contexts, but
are time consuming and not ‘automated’, as they were not built for this purpose.

FcaBedrock implements a novel approach, using a process of guided automa-
tion (Andrews and Orphanides, 2010a), meaning that while most processes of
the tool are automated, it is the user who has the final say on how to interpret
the data (guided automation is explained in section 5 of this article). The user
supplies the tool with appropriate metadata for conversion, such as the names
of the attributes and their values, and with decisions as to what to convert
and how to convert it. After reading in the original data file, these metadata
are used by FcaBedrock to create a formal context file in a standard form for
FCA (Figure 3). The metadata is stored in a separate text document called a
Bedrock (.bed) file. This can be used for subsequent conversions and act as a
record of the interpretation made of the dataset. Bedrock files can be loaded into
FcaBedrock, allowing the reproduction of context files and allowing changes in
the interpretation to be made. User-defined constraints applied to the data al-
low different analyses to be carried out. Each analysis can be documented with a
Bedrock file. Multiple data files with the same attributes can be converted using
the same Bedrock file.

Fig. 3. FcaBedrock Process

2.1 Input Formats

FcaBedrock currently supports two input data file formats: many-column and
three-column delimiter separated values (dsv). The comma and tab characters

2 https://sourceforge.net/projects/fcabedrock/
3 https://sourceforge.net/projects/conexp/



are currently supported as value delimiters. FcaBedrock outputs the formal con-
text in the widely used Burmeister (.cxt) and FIMI (.dat) file formats.

Many-column dsv is a traditional flat-file format for many-valued data. Each
row represents an instance (object) and each column a many-valued attribute.

The three-column format is becoming popular as a standardized data format
and is the approach used, for example, in triple-stores (Rohloff et al, 2007)
and the Resource Description Format (RDF) (Abadi et al, 2009). FcaBedrock
assumes that, when reading a three column data file, the first value is a formal
object, the second is a many-valued attribute and the third is an attribute value.
The first values are used by FcaBedrock as object names when outputting a
formal context in the Burmeister format (see below). If auto-detection is used
(this feature shall be explicated later on in this article), the second values are
detected as attribute names. The order in which triples appear in a data file is
not significant.

2.2 Output Formats

The Burmeister formal context format (cxt) is a popular format in FCA. A cxt
file begins with the number of objects and number of attributes and then lists
the objects followed by the attributes. It then stores the body of the formal
context as a grid using crosses for True values and dots for False values.

The Frequent Itemset Mining Implementations (FIMI) data format (dat) is
used in data mining, particularly in testing the efficiency of algorithms (Goethals
and Zaki, 2004). Unlike Burmeister, FIMI does not include object or attribute
names, but just the formal attributes featured in each formal object.

3 Attribute Values

Figure 4 shows FcaBedrock. There are three sections on top, for specifying how
continuous attributes should be scaled, what delimiter is used in the input file
and if the first row in the input file is to be used as attribute names. There are
windows for the names and types of the original data attributes, whether they
are to be converted or not, their categories and the corresponding category val-
ues found in the data file. All these must initially be entered by the user (unless
FcaBedrock’s auto-detection feature is being used - see Section 5.2), although
copy and paste is available and useful if the names of the categories and the cat-
egory values are the same. This is often but not always the case, so FcaBedrock
uses both; the category values are required for the computation because these
are the values that appear in the input file, but the category names are the ones
that will appear in the output context file. This means that human-readable
names can be given to code values, for example, to make the resultant concept
lattice understandable. The example shown is of the well-known Mushroom data
set from UCI (Frank and Asuncion, 2010), where arbitrary letters are used in the
data file to represent attribute categories. The cap-surface attribute, for exam-
ple, has four possible categories, fibrous, grooves, scaly and smooth, represented



by the values f, g, y and s, respectively, in the data file. In another UCI example,
the Adult data set has category values in the data file that each contain a leading
space character. The spaces are better omitted from the category names to make
them more readable, but are required for converting the data.

Fig. 4. FcaBedrock showing metadata for the UCI mushroom data set

4 Attribute Types

4.1 Categorical Attributes

The predominant attribute type is categorical. This is the typical many-valued
attribute and is converted by creating one formal attribute for each of the at-
tribute categories. In the conversion process, each row of comma separated values
read in from the data file is split into a list of individual values. Each value is
compared with the category values listed for the corresponding attribute in the
Values (File) window. Attribute zero corresponds to the first column in the data
file and so on. A match is recorded as a True value in the formal context.

In the Mushroom example shown in Figure 4, all but one of the attributes are
categorical. The gill-spacing attribute, for example has three categories: close,
crowded, and distant. FcaBedrock will create three corresponding formal at-
tributes and name them by concatenating the attribute and category names,
thus gill-spacing-close, gill-spacing-crowded, and gill-spacing-distant.



4.2 Boolean Attributes

A Boolean attribute can be interpreted as a single formal attribute. Typically,
a Boolean attribute in a data set is one that has two categories that represent
True and False. In the Mushroom example, the Boolean type is being used
for the bruises? attribute. The attribute has two categories, bruises and no,
represented in the data file by the values t and f. For a Boolean attribute,
FcaBedrock uses the first category value as the True value, t in this example.
During the conversion process, it compares the corresponding value read in from
the data file with the True value. If they match, this is recorded as a True value
in the formal context. FcaBedrock names the formal attribute using the original
attribute name, without concatenating the name of the True category. So, in
this example, the original Bruises? attribute becomes a single formal attribute
also called Bruises?.

Fig. 5. UCI Adult metadata in FcaBedrock

4.3 Continuous Attributes

Continuous attributes are dealt with in FcaBedrock by discretising the data
using user-defined ranges (e.g. 0-10, 10-20...), or by hierarchical scaling (e.g. >0,
>10, >20...) (Priss, 2008). Figure 5 shows the metadata of the Adult data set
in FcaBedrock. The age attribute is to be converted as a continuous attribute.
The boundaries of the ranges are entered as comma separated values. In this
case, the boundaries are <, 20, 40, 60 and >. FcaBedrock will apply these



boundaries as four categories: less than 20, 20 to less than 40, 40 to less than
60 and greater than or equal to 60. The formal attribute names are created
by concatenating values appropriately: age-<20 and age-20to<40, for example.
During the conversion process, FcaBedrock compares a continuous value read in
from the data file with the appropriate boundary values, assigning a True value
to the corresponding formal attribute in the formal context.

4.4 Ordinal Attributes

Ordinal attributes have been introduced as a new feature, in a version of FcaBedrock
not available online during the writing of this article (although it may be avail-
able, of course, by the time this article has gone to press). Ordinal attributes are
categorical attributes where the ordering of the attribute values is important.
Taking as an example an attribute Education containing higher education de-
grees, it is important that a foundation course comes before a Bachelors degree,
a Doctorate comes after a Masters degree and so on. Ordinality also allows the
creation of sensible ranges to summarize values for non-continuous attributes.
Using the same example, creating ranges for the Education attribute can be
used to group education levels to undergraduate and postgraduate: Foundation–
Bachelors, Masters–Doctorate. Capturing the order of non-numerical data is a
feature that allows analyses that are not easy using traditional means of data
analysis. FCA of such ordinal data can provide novel intelligence from a concept
lattice, as will be seen later in this article.

Declaring ranges for ordinal attributes is possible in FcaBedrock using the
same process used for declaring ranges for continuous attributes. For example,
the boundaries <, Bachelors, Masters and > will be used by FcaBedrock to
create three categories: less than Bachelors, Bachelors to less than Masters and
greater than or equal to Masters. Discrete and hierarchical scaling is supported
for ordinal attributes as well.

When an ordinal attribute has been declared, FcaBedrock assigns a numerical
value to each of the attribute values. During the conversion process, FcaBedrock
reads an attribute value, finds it’s numerical counterpart and compares it with
the appropriate boundary values, assigning a True value to the corresponding
formal attribute in the formal context.

4.5 Date Attributes

Date attributes have been introduced as a new feature, in a version of FcaBedrock
not available online during the writing of this article. The most common date
formats are supported. As an example, creating ranges for a Dates attribute can
be used to group months into seasons: 01/12/2010–28/02/2011, 01/03/2011–
31/05/2011, 01/06/2011–31/08/2011 and 01/09/2011–30/11/2011. Declaring ranges
for date attributes is possible in FcaBedrock using the same process used for
declaring ranges for continuous attributes. For example, the boundaries 01/12/2010,
01/03/2011, 01/06/2011, 01/09/2011 and > will be used by FcaBedrock to cre-
ate four categories: 01/12/2010 to less than 01/03/2011, 01/03/2011 to less than



01/06/2011, 01/06/2011 to less than 01/09/2011 and greater than or equal to
01/09/2011. Adding hours, minutes and seconds to a date is also possible –
23/09/2011 01:55:40 AM is valid as a date value.

During the conversion process, FcaBedrock reads a date value and compares
it with the appropriate boundary values, assigning a True value to the corre-
sponding formal attribute in the formal context.

5 Guided Automation

5.1 Attribute Exclusion and Restriction

It may be necessary or desirable to exclude attributes from a formal context
for a number of reasons: the attribute may be unsuitable for conversion (if it
is a free-text attribute for example) or it may be that a particular attribute is
not of interest in the analysis being undertaken. The user of FcaBedrock can
decide which attributes in the data set to include in the formal context using
the Convert window. Entering a y (for yes) will mean that the corresponding
attribute will be included in the conversion. Entering an n (for no) will mean
that the corresponding attribute will be excluded from the conversion. Individual
attribute categories can be excluded from the formal context by simply not
including them in the list.

Sub-contexts can be also created by restricting the conversion to user-specified
attribute values. By specifying one or more category values of one or more at-
tributes, the formal context will only contain objects with those values. For ex-
ample, taking the Mushroom data set, a sub-context containing only poisonous
mushrooms can be created simply by specifying the category value p for the
class attribute.

5.2 Auto-detection of Metadata

If a data file is read without first loading or creating a Bedrock file, FcaBedrock
can detect attribute values and create metadata automatically. It initially as-
sumes that all attributes are categorical. It adds each new value it finds in a
data-column to a corresponding list of category values. If FcaBedrock determines
that there is a high proportion of different numerical values for an attribute, it
provides the option of automatically creating ranges and declares the attribute
as continuous. This also applies for dates – if FcaBedrock determines that there
is a high proportion of different dates for an attribute, it provides the option of
automatically creating ranges and declares the attribute as date.

6 A Mini-Adult example

The following is an example adapted from the UCI Adult data set, to better
illustrate the transformation of data into a formal context.



39, Bachelors, Clerical, Male, Yes,<=50K

50, Bachelors, Managerial, Female, Yes,<=50K

38, HS-grad, Unskilled, Male, Yes,<=50K

53, 11th, Unskilled, Male, Yes, <=50K

28, Bachelors, Professional, Female, Yes,>50K

37, Masters, Managerial, Female, No,<=50K

49, ?, Clerical, Female, No,<=50K

52, HS-grad, Managerial, Male, Yes,>50K

File 1. mini-adult.data

The example uses a data file (see File 1) called mini-adult.data with just
eight instances and five attributes: age, education, employment, sex and US-
citizen. There are two classes indicating a salary above or below $50k.

The mini-adult metadata in FcaBedrock are shown in Figure 6. The output
Burmeister context file, mini-adult.cxt, is shown in File 2.

B
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education-Masters

education-11th

Fig. 6. mini-adult metadata in FcaBedrock



education-HS-grad

employment-Clerical

employment-Managerial

employment-Professional

employment-Unskilled

sex-Male

sex-Female

US-citizen

.X..X...X...X.X

...XX....X...XX

.X.....X...XX.X

...X..X....XX.X

X...X.....X..XX

.X...X...X...X.

..X.....X....X.

...X...X.X..X.X

File 2. mini-adult.cxt, Burmeister context file.

7 Analysing Formal Contexts for Knowledge Discovery

To illustrate how knowledge discovery is possible through analysing formal con-
texts, practical examples are given, using real datasets from the UCI Machine
Learning Repository.

7.1 Mushroom Dataset

The Mushroom dataset contains information of 8124 edible and poisonous mush-
rooms of the agaricus and lepiota families. These are many-valued categorical
data which have attributes that describe properties such as veil type, veil colour,
population and habitat.

Figure 7 shows two mushrooms of the agaricus family; Agaricus Arvensis and
Agaricus Xanthodermus. On first sight, both mushrooms seem to be edible. How-
ever, Agaricus Xanthodermus has poisonous properties. This is a good example
of how mushroom identification can be a confusing process for non-experts who
are unable to distinguish subtle but important differences between mushrooms
which resemble to each other. Figure 8 shows how the attribute restriction and

Fig. 7. Agaricus Arvensis (to the left) and Agaricus Xanthodermus (to the right)



attribute exclusion capabilities of FcaBedrock can be applied to create a sub-
context of this dataset, in order to determine if a mushroom is safe to eat or not
based on some of it’s characteristics. In this analysis, 20 attributes were excluded
from this conversion, except from the class (edible and poisonous), cap-color and
habitat attributes. In addition, the cap-color attribute was restricted to the val-
ues red, pink, green and purple and the habitat attribute was restricted to the
values woods, urban, meadows and grasses. The restrictions set resulted in 996
objects (out of the initial 8124) and 19 formal attributes (out of the initial 125).
Essential to the analysis is the fact that this sub-context contains few enough
formal concepts (nodes) to make the visualisation practical.

Fig. 8. Creating a mushroom class-habitat-cap color sub-context in FcaBedrock

Visualising the sub-context in ConExp (Figure 9) produced some interesting
information. By labeling each concept in the lattice with the object count and
percentage of the overall number of objects, in ConExp, it appears that, in the
sample, 98% of all the mushrooms live in woods, out of which 61% are safe to
eat. It also appears that the most dominant mushrooms have a red cap, of which
576 are edible and 300 are poisonous, perhaps indicating that mushroom cap
colors are not the safest indicator for determining their edibility. In contrast,
pink-capped mushrooms can be found in woods and less frequently in grasses or
meadows and all of them are poisonous. Mushrooms with a green or purple cap
are extremely rare, but if one is lucky enough to find some they are safe to eat.



Let us now say that we are interested in the relationship between mushroom

Fig. 9. A mushroom class-habitat-cap color sub-context, created by FcaBedrock, visu-
alised in ConExp

habitat and population type. Once again, FcaBedrock’s attribute exclusion fea-
ture was used to create a sub-context containing only the habitat and population
type attributes. There were 13 formal attributes in all, corresponding to the 7
categories of habitat and the 6 categories of population type.

The concept lattice of this sub-context is shown in Figure 10. In ConExp,
the size of the node in the lattice was made proportional to the number of own
objects (mushrooms), so it can be seen that, for example, clusters of mushrooms
are found in similar numbers in woods, leaves and waste ground, but not in other
habitats. Solitary mushrooms are usually found in woods, although they can be
occasionally found in paths, urban areas and grassland.

7.2 Adult Dataset

The Adult dataset comprises of US Census data of 32,561 adults, describing
properties such as age, education, employment type, race and sex.



Fig. 10. A mushroom habitat-population sub-context, created by FcaBedrock, visu-
alised in ConExp

Converting all the suitable attributes of this dataset results in a formal con-
text with more than 100,000 concepts – far too many to visualise. However, let
us say we are interested in comparing how pay is affected by gender in adults
who have had a higher education. For this analysis to be carried out, only the
sex (male, female), class (<=50k, >50k) and education attributes. The attribute
value restriction feature was also used to convert only those objects (adults) with
the education attribute value Bachelors, Masters or Doctorate (3 out of the 16
possible categories of education in the dataset). This resulted in a sub-context
with 7,491 (out of the initial 32,561) and 7 formal attributes (out of the initial
129).

The resulting concept lattice in ConExp is shown in Figure 12, containing
37 concepts. The number of objects (and the percentage of the whole) is be-
ing displayed for the concepts of interest. Because only objects with Bachelors,
Masters or Doctorate education categories were included in the conversion, there
were 13 education categories (such as 10th grade and high school graduate) left
with zero objects associated with them. Such unsupported formal attributes are
normally labeled at the infimum of the concept lattice, but these labels can be
hidden in ConExp.

Although a little cluttered with lines, the lattice is still readable, aided by
a ConExp feature whereby information regarding a concept is displayed when
a node is pointed to with the mouse. An examination of the concepts allows
us to compare the percentage of males and females who earn more than $50k,
for each type of higher education. With a Bachelor’s degree, 21% of females



Fig. 11. Adult degree-sex-pay sub-context, created by FcaBedrock

and 50% of males earned more than $50k. This ‘gender gap’ was maintained at
Master’s level, with 33% of females and 65% of males earning more than $50k,
but narrowed slightly at Doctorate level, with 58% of females and 78% of males
earning more than $50k.

Let us say that we are now interested in how age relates to the number of
hours worked per week. For this analysis, only the age and hours-per-week at-
tributes are converted, using progressive scaling. The lattice for this sub-context
is shown in Figure 13. The first scale represents the age of the adults, using the
ranges <20, <40, <60 and all. The second scale shows the hours worked per
week, using the ranges<20, <40, <60, <80 and all.

By reading the concept lattice, intelligence concerning the hours worked per
week, according to the age of the population, can be determined. For example,
it can be clearly seen that 8% of the population work more than 60 hours per
week. However, when it comes to young adults (less than 20 years old) about
a quarter of them work less than 20 hours per week and about three-quarters
work less than 40 hours per week. This can be compared to the population as
a whole, where only 5% work less than 20 hours and only a quarter work less
than 40 hours.

An interesting analysis is possible if the education attribute is considered as
an ordinal attribute: In the analysis in Figures 11 and 12, the education attribute
was declared as categorical and restricted to the 3 values Bachelors, Masters and
Doctorate, out of the initial 16. However, the ordinality of educational attainment



Fig. 12. Adult degree-sex-pay sub-context, created by FcaBedrock, visualised in Con-
Exp

can be used to capture all the education levels as sensible groupings. Further-
more, as opposed to the previous analysis where restricting the conversion to
specific attribute values only converts objects which have those particular at-
tribute values, in this analysis all objects are included in the analysis since no
restrictions are set. This allows us to have a broader conceptual overview of the
data.

Let us now say that we are interested in how does education and income
relate for all the people in the dataset. For this analysis, only the age, class and
education attributes were converted. For the education attribute to make sense
as ordinal, the values of the education attribute were re-ordered from lower
to higher education levels, as shown in Figure 14. The boundaries <, Some-
college, Bachelors and > were set for the education attribute, resulting in three
ranges: <Some-college, Some-college to <Bachelors and >=Bachelors. For the
age attribute, the boundaries <, 20, 30 and 45 were set, resulting in three ranges:
<20, 20 to <30 and 30 to <45.

Although somewhat cluttered with lines, the resulting concept lattice in Fig-
ure 15 still shows some interesting results. It appears that 55% of the entire
population has not attended college whatsoever, while the rest 45% is almost
evenly distributed between attending some college and earning one or more de-
grees. Looking at the obvious, larger concepts (nodes) in the lattice, it can be
seen that 45% of the population did not attend college and earn less than 50k,



Fig. 13. Adult age-hours per week sub-context, created by FcaBedrock, visualised in
ConExp



Fig. 14. Adult age-pay-degree sub-context, created by FcaBedrock. Note the ordering
of the attribute values of education: Preschool, 1st-4th, 5th...

out of which 35.7% are in the 30–45 age group, 26.1% are in the 20–29 age group
and 8.1% are less than 20 years old. This could possibly indicate the economic
and social difficulties of attending college for older generations and how educa-
tion is considered an essential advantage in terms of career evolution for younger
generations.

On the other hand, only 24% of the entire population earns more than 50k,
out if which 29% belongs to the 30–45 group, with 48% of them having a college
degree. For the 20–30 group, 19.4% have a college degree, out of which only 14%
earn more than 50k, although a similar percentage of this age group earns more
than 50k without attending college whatsoever.

Some of the smaller concepts yield useful intelligence too. For example, it
appears that 187 people of the 20–30 age group and 2 people younger than
20 earn more than 50k and have not attended college. Similarly, there are 101
people of the 20–30 group which are college dropouts and earn more than 50k.
It appears that, for some, lack of educational attainment has not been a barrier
to gainful employment. Indeed, a significant few have forgone further education
to pursue early success.



Fig. 15. Adult age-pay-degree sub-context, created by FcaBedrock, visualised in Con-
Exp



7.3 Sheffield Parking Tickets Dataset

This dataset is provided by the City Council of Sheffield (United Kingdom) and
contains raw data of parking tickets issued in the name of the council within the
last five year period, broken down by date, time, location, narrative of infraction,
current status of case, next status of case, transaction details (i.e. date, time and
payment methods) and the IDs of the officers issuing the tickets.

Let us say that we are interested in seeing what kind of offenses have taken
place for the reporting period of April 2009 to August 2009. For this analysis
to take place, the Issue Date/Time and Offense Description attributes were
converted. The Issue Date/Time attribute was grouped into three ranges: April–
June, June–August and greater than August. Furthermore, in order to avoid long
labels in the lattice, the Offense Description attribute was shortened to Offense,
and each offense description was given a shorter title than the ones appearing in
the dataset; for example, “Parked in a permit space without displaying a valid
permit” was renamed to “No permit”. These modifications were made directly in
FcaBedrock without altering the original dataset whatsoever, by just modifying
the names of the offense descriptions, as they would appear in the formal context,
in the Categories window (Figure 16).

The resulting concept lattice is shown in Figure 17. Only the first 6 offenses
are displayed – the rest have been deselected, in ConExp, to make the lattice
more readable. The lattice shows that the most dominant of the six offenses
is parking in a restricted street during prescribed hours, with a percentage of
21%, while the least dominant offense is parking for longer than permitted,
with a percentage of 3%. The lattice also shows that a similar amount of park-
ing tickets have been issued for the periods 1/4/2009–1/6/2009 and 1/6/2009–
1/8/2009 (7162 and 7002 respectively). Only 1660 tickets have been issued from
01/08/2009 onwards, but it should be noted that these data only contain entries
up to 10/8/2009. The same offense ‘popularity’ applies when observing each time
period separately, apart from the 10-day reporting period of August, where the
most popular offenses are evenly distributed between parking during prescribed
hours, parking during load restrictions and parking without a permit.

8 Conclusion

Knowledge Discovery is possible through creating formal contexts and then vi-
sualising them. FcaBedrock has been used successfully to convert large datasets
into formal contexts. Where the concepts in a formal context become far too
many to visualise, FcaBedrock’s attribute restriction and exclusion features have
been used to create sub-contexts of the same data, so as to focus the analysis on
specific business questions and to make the resulting concept lattices readable
and manageable. Furthermore, datasets containing different kinds of attribute
have been used to demonstrate how FcaBedrock can handle datasets of different
nature, although free-text data have proven to still be a problem and no means
for converting them has been implemented yet. For converting free-text data,



Fig. 16. Parking Tickets issue date-offense sub-context, created by FcaBedrock. Note
how the Offense Description attribute was renamed to Offense and how it’s values in
the Categories window were shortened, when compared to the values as they appear
in the original data, in the Values (File) window.



Fig. 17. Parking Tickets issue date-offense sub-context, created by FcaBedrock, visu-
alised in ConExp



further work is required, such as implementing a Natural Language Processing
(NLP) technique, in order to identify values.

The tool is straightforward to use: the metadata required are usually easy to
obtain (datasets usually come with descriptive documentation) and enter, but
even without descriptive documentation, the auto-detection and repeat features
can be used to obtain the initial metadata, after which the user can modify them
as required. In terms of converting attributes, the five attribute types categorical,
boolean, continuous, ordinal and dates are straightforward and easy to convert,
although more means for dealing with attributes are being considered for the
next version of FcaBedrock, such as giving the user the ability to create ranges
for continuous attributes based on certain characteristics of the numerical data
under investigation. For example, if during the auto-detection phase the tool
determines that the attribute being read is logarithmic, it could let the user
know that this is the case and suggest ranges suitable for demonstrating the
true distribution of that attribute.

FcaBedrock is a versatile tool. It currently supports two standard input for-
mats and more formats will be added to the next version of the tool, such as
XML and the ability to read and query RDBMS data. The two output formats
Burmeister and FIMI allow interoperability between various FCA tools, in order
to avoid unnecessary and time-consuming conversions between FCA file formats.

Through a process of guided automation, FcaBedrock gives the user control
over the conversion process to interpret data and create sub-contexts, to suit the
needs of an analysis.

The further development of FcaBedrock will form a core part of the CUBIST
project (see Acknowledgments, below). CUBIST aims to develop an approach
for semantic and user-friendly Business Intelligence (BI) by augmenting seman-
tic technologies with BI capabilities and providing conceptually relevant, user-
friendly, visual analytics. To this end, FcaBedrock is currently being developed
to accept RDF formats as input and pulling data directly from triple stores. In
addition, the natural language processing element of CUBIST will make intel-
ligence available from unstructured data sources. The project is also providing
industrial use cases to demonstrate that the creation of formal contexts from
industrial data can yield important business intelligence. The data provided by
the use cases are large in volume (millions of objects, thousands of attribute
values). Optimisations are taking place in FcaBedrock to significantly reduce
the time required for parsing the data and converting them to formal contexts:
faster methods for handling attributes with many attribute values, indexing the
data using integers rather than strings, better algorithms for reading triples,
and making the tool scalable to the processing cores of the environment it is
running on, so as to make FCA of large-scale data less time-consuming and less
resource-intensive.
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