254 research outputs found

    Freedom, Anarchy and Conformism in Academic Research

    Get PDF
    In this paper I attempt to make a case for promoting the courage of rebels within the citadels of orthodoxy in academic research environments. Wicksell in Macroeconomics, Brouwer in the Foundations of Mathematics, Turing in Computability Theory, Sraffa in the Theories of Value and Distribution are, in my own fields of research, paradigmatic examples of rebels, adventurers and non-conformists of the highest caliber in scientific research within University environments. In what sense, and how, can such rebels, adventurers and non-conformists be fostered in the current University research environment dominated by the cult of 'picking winners'? This is the motivational question lying behind the historical outlines of the work of Brouwer, Hilbert, Bishop, Veronese, Gödel, Turing and Sraffa that I describe in this paper. The debate between freedom in research and teaching, and the naked imposition of 'correct' thinking, on potential dissenters of the mind, is of serious concern in this age of austerity of material facilities. It is a debate that has occupied some of the finest minds working at the deepest levels of foundational issues in mathematics, metamathematics and economic theory. By making some of the issues explicit, I hope it is possible to encourage dissenters to remain courageous in the face of current dogmasNon-conformist research, economic theory, mathematical economics, 'Hilbert's Dogma', Hilbert's Program, computability theory

    To the Beat of Different Drumer....Freedom, Anarchy and Conformism in Research

    Get PDF
    In this paper I attempt to make a case for promoting the courage of rebels within the citadels of orthodoxy in academic research environments. Wicksell in Macroeconomics, Brouwer in the Foundations of Mathematics,Turing in Computability Theory, Sraffa in the Theories of Value and Distribution are, in my own fields of research, paradigmatic examples of rebels, adventurers and non-conformists of the highest calibre in scientific research within University environments. In what sense, and how, can such rebels, adventurers and nonconformists be fostered in the current University research environment dominated by the cult of picking winners? This is the motivational question lying behind the historical outlines of the work of Wicksell, Brouwer, Hilbert, Bishop, Veronese, Gödel, Turing and Sraffa that I describe in this paper. The debate between freedom in research and teaching and the naked imposition of correct thinking, on potential dissenters of the mind, is of serious concern in this age of austerity of material facilities. It is a debate that has occupied some the finest minds working at the deepest levels of foundational issues in mathematics, metamathematics and economic theory. By making some of the issues explicit, I hope it is possible to encourage dissenters to remain courageous in the face of current dogmas.Non-conformist research, macroeconomics, foundations of mathematics, intuitionism, constructivism, formalism, Hilbertís Dogma, Hilbertís Program, computability theory

    Mathematics and the real world

    Get PDF
    In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility) turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured

    From Philosophical Traditions to Scientific Developments: Reconsidering the Response to Brouwer’s Intuitionism

    Get PDF
    Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics that eventually did not prevail. The current paper offers a new perspective on the scientific community’s lack of reception to Brouwer’s intuitionism by considering it in light of Michael Friedman’s model of parallel transitions in philosophy and science, specifically focusing on Friedman’s story of Einstein’s theory of relativity. Such a juxtaposition raises onto the surface the differences between Brouwer’s and Einstein’s stories and suggests that contrary to Einstein’s story, the philosophical roots of Brouwer’s intuitionism cannot be traced to any previously established philosophical traditions. The paper concludes by showing how the intuitionistic inclinations of Hermann Weyl and Abraham Fraenkel serve as telling cases of how individuals are involved in setting in motion, adopting, and resisting framework transitions during periods of disagreement within a discipline

    Constructive set theory and Brouwerian principles

    Get PDF
    The paper furnishes realizability models of constructive Zermelo-Fraenkel set theory, CZF, which also validate Brouwerian principles such as the axiom of continuous choice (CC), the fan theorem (FT), and monotone bar induction (BIM), and thereby determines the proof-theoretic strength of CZF augmented by these principles. The upshot is that CZF+CC+FT possesses the same strength as CZF, or more precisely, that CZF+CC+FTis conservative over CZF for 02 statements of arithmetic, whereas the addition of a restricted version of bar induction to CZF (called decidable bar induction, BID) leads to greater proof-theoretic strength in that CZF+BID proves the consistency of CZF

    On the untrustworthiness of axiomatic-founded science

    Get PDF
    The idea of science being the best – or the only – way to reach the truth about our cosmos has been a major belief of modern civilization. Yet, science has grown tall on fragile legs of clay. Every scientific theory uses axioms and assumptions that by definition cannot be proved. This poses a serious limitation to the use of science as a tool to find the truth. The only way to search for the latter is to redefine the former to its original glory. In the days well before Galileo and Newton, science and religion were not separated. They worked together to discover the truth and while the latter had God as its final destination, the former had God as its starting point. Science is based on the irrational (unproven) belief that the world is intelligible along many other assumptions. This poses a serious limitation to science that can only be overcome if we accept the irrationality of the cosmos. The motto “Credo quia absurdum” holds more truth than one can ever realize at first glance. There is nothing logical in logic, whereas there is deep wisdom in the irrational. For while the former tries to build castles on moving sand, the latter digs deep inside the depths of existence itself in order to build on the most concrete foundations that there can be: the cosmos itself. The only way forward is backwards. Backwards to a time when religion led the quest for knowledge by accepting what we cannot know, rather than trying to comprehend what we do not. Science was anyway based on that in the first place

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint
    • 

    corecore