270 research outputs found

    Stochastic scheduling and workload allocation : QoS support and profitable brokering in computing grids

    No full text
    Abstract: The Grid can be seen as a collection of services each of which performs some functionality. Users of the Grid seek to use combinations of these services to perform the overall task they need to achieve. In general this can be seen as aset of services with a workflow document describing how these services should be combined. The user may also have certain constraints on the workflow operations, such as execution time or cost ----t~ th~ user, specified in the form of a Quality of Service (QoS) document. The users . submit their workflow to a brokering service along with the QoS document. The brokering service's task is to map any given workflow to a subset of the Grid services taking the QoS and state of the Grid into account -- service availability and performance. We propose an approach for generating constraint equations describing the workflow, the QoS requirements and the state of the Grid. This set of equations may be solved using Mixed-Integer Linear Programming (MILP), which is the traditional method. We further develop a novel 2-stage stochastic MILP which is capable of dealing with the volatile nature of the Grid and adapting the selection of the services during the lifetime of the workflow. We present experimental results comparing our approaches, showing that the . 2-stage stochastic programming approach performs consistently better than other traditional approaches. Next we addresses workload allocation techniques for Grid workflows in a multi-cluster Grid We model individual clusters as MIMIk. queues and obtain a numerical solutio~ for missed deadlines (failures) of tasks of Grid workflows. We also present an efficient algorithm for obtaining workload allocations of clusters. Next we model individual cluster resources as G/G/l queues and solve an optimisation problem that minimises QoS requirement violation, provides QoS guarantee and outperforms reservation based scheduling algorithms. Both approaches are evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategies combined with traditional scheduling algorithms performs considerably better in terms of satisfying QoS requirements of Grid workflows than scheduling algorithms that don't employ such workload allocation techniques. Next we develop a novel method for Grid brokers that aims at maximising profit whilst satisfying end-user needs with a sufficient guarantee in a volatile utility Grid. We develop a develop a 2-stage stochastic MILP which is capable of dealing with the volatile nature . of the Grid and obtaining cost bounds that ensure that end-user cost is minimised or satisfied and broker's profit is maximised with sufficient guarantee. These bounds help brokers know beforehand whether the budget limits of end-users can be satisfied and. if not then???????? obtain appropriate future leases from service providers. Experimental results confirm the efficacy of our approach.Imperial Users onl

    A Mean Field Approach for Optimization in Particles Systems and Applications

    Get PDF
    This paper investigates the limit behavior of Markov Decision Processes (MDPs) made of independent particles evolving in a common environment, when the number of particles goes to infinity. In the finite horizon case or with a discounted cost and an infinite horizon, we show that when the number of particles becomes large, the optimal cost of the system converges almost surely to the optimal cost of a discrete deterministic system (the ``optimal mean field''). Convergence also holds for optimal policies. We further provide insights on the speed of convergence by proving several central limits theorems for the cost and the state of the Markov decision process with explicit formulas for the variance of the limit Gaussian laws. Then, our framework is applied to a brokering problem in grid computing. The optimal policy for the limit deterministic system is computed explicitly. Several simulations with growing numbers of processors are reported. They compare the performance of the optimal policy of the limit system used in the finite case with classical policies (such as Join the Shortest Queue) by measuring its asymptotic gain as well as the threshold above which it starts outperforming classical policies

    New e-Learning system architecture based on knowledge engineering technology

    Get PDF
    The paper focuses on the field of research on next generational e-Learning facility, in which knowledge-enhanced systems are the most important candidates. In the paper, a reference architecture based on the technologies of knowledge engineering is proposed, which has following three intrinsic characteristics, first, education ontologies are used to facilitate the integration of static learning resource and dynamic learning resource, second, based on semantic-enriched relationships between Learning Objects (LOs), it provides more advanced features for sharing, reusing and repurposing of LOs, third, with the concept of knowledge object, which is extended from LO, an implementing mechanism for knowledge extraction and knowledge evolution in e-Learning facilities is provided. With this reference architecture, a prototype system called FekLoma (Flexible Extensive Knowledge Learning Object Management Architecture) has been realized, and testing on it is carrying out

    Survey of grid resource monitoring and prediction strategies.

    Get PDF
    This literature focuses on grid resource monitoring and prediction, representative monitoring and prediction systems are analyzed and evaluated, then monitoring and prediction strategies for grid resources are summarized and discussed, recommendations are also given for building monitoring sensors and prediction models. During problem definition, one-step-ahead prediction is extended to multi-step-ahead prediction, which is then modeled with computational intelligence algorithms such as neural network and support vector regression. Numerical simulations are performed on benchmark data sets, while comparative results on accuracy and efficiency indicate that support vector regression models achieve superior performance. Our efforts can be utilized as direction for building online monitoring and prediction system for grid resources

    Towards Understanding Uncertainty in Cloud Computing Resource Provisioning

    Get PDF
    In spite of extensive research of uncertainty issues in different fields ranging from computational biology to decision making in economics, a study of uncertainty for cloud computing systems is limited. Most of works examine uncertainty phenomena in users’ perceptions of the qualities, intentions and actions of cloud providers, privacy, security and availability. But the role of uncertainty in the resource and service provisioning, programming models, etc. have not yet been adequately addressed in the scientific literature. There are numerous types of uncertainties associated with cloud computing, and one should to account for aspects of uncertainty in assessing the efficient service provisioning. In this paper, we tackle the research question: what is the role of uncertainty in cloud computing service and resource provisioning? We review main sources of uncertainty, fundamental approaches for scheduling under uncertainty such as reactive, stochastic, fuzzy, robust, etc. We also discuss potentials of these approaches for scheduling cloud computing activities under uncertainty, and address methods for mitigating job execution time uncertainty in the resource provisioning.Peer ReviewedPostprint (published version

    The 5th Conference of PhD Students in Computer Science

    Get PDF

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Perfect simulation, monotonicity and finite queueing networks

    No full text
    International audienceTutorial on perfect sampling with applications to queueing network

    09131 Abstracts Collection -- Service Level Agreements in Grids

    Get PDF
    From 22.03. to 27.03.09, the Dagstuhl Seminar 09131 ``Service Level Agreements in Grids \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore