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Abstract: This paper investigates the limit behavior of Markov decision processes (MDPs)
made of independent particles evolving in a common environment, when the number of particles
goes to infinity.

In the finite horizon case or with a discounted cost and an infinite horizon, we show that
when the number of particles becomes large, the optimal cost of the system converges almost
surely to the optimal cost of a deterministic system (the “optimal mean field”). Convergence
also holds for optimal policies.

We further provide insights on the speed of convergence by proving several central limits
theorems for the cost and the state of the Markov decision process with explicit formulas for the
variance of the limit Gaussian laws.

Then, our framework is applied to a brokering problem in grid computing. The optimal
policy for the limit deterministic system is computed explicitly. Several simulations with growing
numbers of processors are reported. They compare the performance of the optimal policy of the
limit system used in the finite case with classical policies (such as Join the Shortest Queue) by
measuring its asymptotic gain.

Key-words: Markov Decision Processes, Mean Field, Optimization, Particles System, Grid
Broker



Une approche champ moyen pour l’optimisation dans les

systèmes de particules et ses applications

Résumé : Cet article examine le comportement limite de processus de décision Markovien
constitués de particules indépendantes évoluant dans un environnement commun, lorsque le
nombre de particules tend vers l’infini.

Dans le cas où on s’intéresse à un coût à horizon fini ou dans le cas d’un coût à horizon
infini avec décote, nous montrons que lorsque le nombre de particules devient grand, le coût
optimal du système converge presque sûrement vers le coût optimal du système déterministe. La
convergence vaut également pour les politiques optimales.

De plus, nous donnons un aperçu de la vitesse de convergence en prouvant plusieurs théorèmes
de la limite centrale pour le coût ainsi que l’état moyen du processus en donnant des formules
explicites pour la variance des lois gaussiennes limites.

Enfin, ce modèle est appliqué à un problème de gestionnaire de ressources dans des grilles
de calcul. Nous donnons un algorithme explicite pour calculer la politique optimale de la limite
puis plusieurs simulations avec un nombre variable de processeurs sont étudiées. Nous compa-
rons les performances de la politique optimale de la limite appliquée au système initiale avec
plusieurs politiques classiques, (telles que joindre la file la plus courte). Nous mesurons le gain
asymptotique, ainsi que le seuil à partir duquel elle surpasse les politiques classiques.

Mots-clés : Processus de décision Markovien, Champ moyen, Optimisation, Systèmes de
particules, Gestionnaire de ressource
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1 Introduction

The general context of this paper is the optimization of the behavior of controlled Markovian
systems, namely Markov Decision Processes composed by a large number of particles evolving
in a common environment.

Consider a discrete time system made of N particles, N being large, that evolve randomly and
independently (according to a transition probability kernel K). At each step, the state of each
particle changes according to a probability kernel, depending on the environment. The evolution
of the environment only depends on the number of particles in each state. Furthermore, at each
step, a central controller makes a decision that changes the transition probability kernel. The
problem addressed in this paper is to study the limit behavior of such systems when N becomes
large and the speed of convergence to the limit.

Several papers ([3], [6]) study the limit behavior of Markovian systems in the case of vanishing
intensity (the expected number of transitions per time slot is o(N)). In these cases, the system
converges to a differential system in continuous time. In the case considered here, time remains
discrete at the limit. This requires a rather different approach to construct the limit.

In [8], discrete time systems are considered and the authors show that under certain conditions,
as N grows large, a Markovian system made of N particles converges to a deterministic system.
Since a Markov decision process can be seen as a family of Markovian kernels, the class of systems
studied in [8] corresponds to the case where this family is reduced to a unique kernel and no
decision can be made. Here, we show that under similar conditions as in [8], a Markov decision
process also converges to a deterministic one. More precisely, we show that the optimal costs
(as well as the corresponding states) converge almost surely to the optimal costs (resp. the
corresponding states) of a deterministic system (the “optimal mean field”).

On a practical point of view, this allows one to compute the optimal policy in a deterministic
system which can often be done very efficiently, and then to use this policy in the original random
system as a good approximation of the optimal policy, which cannot be computed efficiently
because of the curse of dimensionality. This is illustrated by an application of our framework to
optimal brokering in computational grids. We consider a set of multi-processor clusters (forming
a computational grid, like EGEE [1]) and a set of users submitting tasks to be executed. A
central broker assigns the tasks to the clusters (where tasks are buffered and served in a fifo
order) and tries to minimize the average processing time of all tasks. Computing the optimal
policy (solving the associated MDP) is known to be hard [13]. Numerical computations can only
be carried up to a total of 10 processors and two users. However, our approach shows that when
the number of processors per cluster and the number of users submitting tasks grow, the system
converges to a mean field deterministic system. For this deterministic mean field system, the
optimal brokering policy can be explicitly computed. Simulations reported in Section 4 show
that, using this policy over a grid with a growing number of processors, makes performance
converge to the optimal sojourn time in a deterministic system, as expected. Also, simulations
show that this deterministic static policy outperforms classical dynamic policies such as Join the
Shortest Queue, as soon as the total number of processors and users is over 50.

In general, how good the deterministic approximation is and how fast convergence takes place
can also be estimated. For that, we provide bounds on the speed of convergence by proving of
central limit theorem for the state of the system under the optimal policy as well as for the cost
function.

RR n° 6877



4 N.Gast & B. Gaujal

2 Notations and definitions

The system is composed of N particles. There are S possible states for each particle, the state
space is denoted by S={1, . . . , S}. The state of the nth particle at time t is denoted XN

n (t). We
assume that the particles are distinguishable only through their state and that the dynamics of
the system is homogeneous in N . In other words, this means that the behavior of the system only

depends on in the proportion of particles in every state i. For all i ∈ S,
(
MN
t

)
i

def
=

∑N

n=1 1XN
n (t)=i

is the proportion of particles in state i and we denote by MN
t the vector (

(
MN
t

)
1
. . .

(
MN
t

)
S
). The

set of possible values for MN is the set of probability measures p on {1 . . . S}, such that Np(i) ∈ N

for all i ∈ S, denoted by PN (S). For each N , PN (S) is a finite set. When N goes to infinity, it
converges to P(S) the set of probability measures on S.

The system of particles evolves depending on their common environment. We call C ∈ R
d

the context of the environment. Its evolution depends on the mean states of the particles MN ,
itself at the previous time slot and the action at chosen by the controller (see below):

CNt+1 = g(CNt , MN
t+1, at),

where g : PN (S)×R
d ×A → R

d is a continuous function.

2.1 Actions and policies

At each time t, the system’s state is M ∈ PN (S). The decision maker may choose an action a
from the set of possible actions A. A is assumed to be a compact set (finite or infinite). The
action determines how the system will evolve. For an action a ∈ A and an environment C ∈ R

d,
we have a transition probability kernel K(a, C) such that the probability that a particle goes
from state i to state the j is Ki,j(a, C):

P(XN
n (t + 1) = j|XN

n (t) = i, at = a, CNt = C) = Ki,j(a, C).

The evolutions of particles are supposed to be independent once C is given. Moreover, we
assume that Ki,j(a, C) is continuous in a and C. The assumption of independence of the users is
a rather common assumption in mean field models [8]. However other papers [3, 6] have shown
that similar results can be obtained using asymptotic independence only (see [10] for results of
this type).

Here, the focus is on Markov Decision Processes theory and on the computation of optimal
policies. A policy Π = (Π1 . . .Πt . . . ) specifies the decision rules to be used at each time slot.
A decision rule Πt is a procedure that provides an action at time t. In general, Πt is a random
measurable function that depends on the events ((M1, C1) . . . (Mt, Ct)) but it can be shown that
when the state space is finite and the action space is compact, then deterministic Markovian
policies (i.e. that only depends deterministically on the current state) are dominant, therefore
we will only focus on them [14].

2.2 Reward functions

To each possible state (M, C) of the system at time t, we associate a reward rt(M, C). The reward
is assumed to be continuous in M and C. This function can be either seen as a reward – in that
case the controller wants to maximize the reward –, or as a cost – in that case the goal of the
controller is to minimize this cost. In this paper, we will focus on two problems: finite-horizon
reward and discounted reward.

INRIA



A Mean Field Approach for Optimization in Particles Systems and Applications 5

In the finite-horizon case, we want to maximize the sum of the rewards over all time t < T
plus a final reward that depends on the final state, rT (MN

T , CNT ). The expected reward of the
policies Π0, . . . , ΠT−1 is:

V N
Π0...ΠT

(MN
0 , CN0 )

def
= E

[ T−1∑

t=1

rt(M
N
t , CNt ) + rT (MN

T , CNT )

]
,

where the expectation is taken over all possible (MN
t , CNt ) when the actions are Πt(M

N
t , CNt ),

for all t.
Let 0 ≤ δ < 1, the discounted reward associated to δ and the policy Π0 . . . Πt . . . is the

quantity:

V N
(δ),Π0...

(MN
0 , CN0 )

def
= E

[ ∞∑

t=1

δtrt(M
N
t , CNt )

]
.

Again, the expectation is taken over all possible (MN
t , CNt ) when the actions at time t is

Πt(M
N
t , CNt ), for all t.

In both cases, the goal of the controller is to find a policy that maximizes the expected reward:

V ∗N (MN
0 , CN0 )

def
= sup

Π1...ΠT

V N
Π1...ΠT

(MN
0 , CN0 ),

V ∗N
(δ) (MN

0 , CN0 )
def
= sup

Π1...

V N
(δ),Π1...

(MN
0 , CN0 ).

2.3 Summary of the assumptions

Here is the list of the assumptions under which all our results will hold, together with some
comments on their tightness and their degree of generality and applicability.

(A1) Independence of the users, Markov system – If at time t if the environment is C and
the action is a, then the behavior of each particle is independent of other particles and its
evolution is Markovian with a kernel K(a, C).

(A2) Compact action set – The set of action A is compact.

(A3) Continuity of K, g, r – the mappings (C, a) 7→ K(a, C), (C, M, a) 7→ g(C, M, a) and
(M, C) 7→ rt(M, C) are continuous deterministic functions, uniformly continuous in a.

(A4) Almost sure initial state – Almost surely, the initial measure MN
0 , CN0 converges to a

deterministic value m0, c0. Moreover, there exists B < ∞ such that almost surely ‖CN0 ‖∞ ≤ B
where ‖C‖∞ = supi |Ci|.

To simplify the notations, we choose the functions C and g not to depend on time. However
as the proofs will be done for each time step, they also hold if the functions are time-dependent
(in the finite horizon case).

Also, K, g and r do not to depend on N , while this is the case in most practical cases. Adding
a uniform continuity assumption on these functions for all N will make all the proofs work the
same.

Here are some comments on the uniform bound B on the initial condition (A4). In fact, as
CN0 converges almost surely, CN0 is almost surely bounded. Here we had a bound B which is
uniform on all events in order to be sure that the variable CN0 is dominated by an integrable

RR n° 6877



6 N.Gast & B. Gaujal

function. As g is continuous and the sets A and P(S) are compact, this shows that for all t,
there exists Bt < ∞ such that

‖CNt ‖∞ ≤ Bt. (1)

Finally, in many cases the rewards also depend on the action. This is not the case here, at a
small loss of generality.

3 Convergence results and optimal policy

In the case where there is no control, one can adapt the results proved in [8] to show that when
N goes to infinity, the system converges almost surely to a deterministic one. In our case, this
means that if the actions are fixed, the system converges.

For any fixed action a and any value M ∈ PN(S), we define the random variable ΦNa (M, C)
that corresponds to the state of the system M′, C′ after one iteration started from M, C. For
m ∈ P(S), we define Φa(m, c) the (deterministic) value corresponding to one iteration of the
mean field system: Φa(mt, ct) = (mt+1, ct+1) where

mt+1 = mt.K(a, ct)

ct+1 = g(mt+1, ct).

We call ΦNa0...aT−1
(resp. Φa0...aT−1

) the compositions of ΦNa0
, . . . , ΦNaT−1

(resp. of Φa0
. . . ΦaT−1

).
In [8], the system is homogeneous in time. However, the proofs are done for each step time

and the results still hold without time homogeneity. With our notations, theorem 4.1 of [8] says
that if the actions are a0 . . . aT−1, and if the initial state converges almost surely, then the system
of size N converges almost surely.

Theorem 1 (Mean Field Limit, th. 4.1 of [8]). Under assumptions (A1,A3,A4), if the controller
takes the actions at at time t, then for any fixed T :

(MN
t , CNt )

a.s−−→ Φa0...aT−1
(m0, c0).

In the following, we will first show that if we fix the actions, the total reward of the system
converges when N grows, then we will show that the optimal reward also converges.

3.1 Finite horizon model

In this section, the horizon T is fixed, the infinite horizon case will be treated in Section 3.3. Using
the same notation and hypothesis as in Theorem 1, we define the reward of the deterministic
system starting at m0, c0 under the actions a0, . . . , at−1:

va0...at−1
(m0, c0) =

T∑

t=1

rt(Φa0...at−1
(m0, c0)).

For any t, if the action taken at instant t is fixed equal to at, then (MN
t , CNt ) converges almost

surely to (mt, ct). Since the reward at time t is continuous, this means that the finite-horizon
expected reward converges as N grows large:

Lemma 2 (Convergence of the reward). Under assumptions (A1,A3,A4), if the controller takes
actions a0 . . . aT−1, the finite-horizon expected reward of the stochastic system converges to the
finite-horizon reward of the deterministic system:

lim
N→∞

V N
a0...at−1

(MN
0 , CN0 ) = va0,...,at−1

(m0, c0) a.s.

INRIA



A Mean Field Approach for Optimization in Particles Systems and Applications 7

Proof. For all t, (MN
t , CNt ) converges almost surely to (mt, ct). Since the reward at time t is

continuous in (M, C), then rt(M
N
t , CNt )

a.s−−→ rt(mt, ct). Moreover, as (M, C) are bounded (see
Equation (1)), the dominated convergence theorem shows that E[rt(M

N
t , CNt )] goes to rt(mt, ct)

which concludes the demonstration.

Now, let us consider the problem of convergence of the reward under the optimal strategy
of the controller. First, it should be clear that the optimal strategy exists for the limit system.
Indeed, the limit system being deterministic, starting at state (m0, c0), one only needs to know
the actions to take for all (mt, ct) to compute the reward. The optimal policy is deterministic and

v∗T (m0, c0)
def
= supa0...aT−1

{va0...aT−1
(m0, c0)}. Since the action set is compact, this supremum is

a maximum: there exist a∗
0 . . . a∗

T−1 such that v∗T (m0, c0) = va∗
0
...a∗

T−1
(m0, c0). In fact, in many

cases there are more than one optimal action sequence. In the following, a∗
0 . . . a∗

T−1 is one of
them, and will be called the sequence of optimal limit actions.

Theorem 3 (Convergence of the optimal reward). Under assumptions (A1,A2,A3,A4), as N
goes to infinity, the optimal reward of the stochastic system converges to the optimal reward of
the deterministic limit system: almost surely,

lim
N→∞

V ∗N
T (MN

0 , CN
0 ) = lim

N→∞
V N
a∗
0
...a∗

T−1

(MN
0 , CN

0 ) = v∗T (m0, c0)

In words, this theorem says that, at the limit, the reward of the optimal policy under full
information V ∗N

T (MN
0 , CN

0 ) is the same as the reward obtained when the optimal limit actions
(a∗

0 . . . a∗
T−1) are used in the original system, both being equal to the optimal reward of the limit

deterministic system, v∗T (m0, c0).

Proof. For all N and 0 ≤ t ≤ T and (M, C) ∈ PN (S)×R
d, let us define by induction on t the

function V ∗N
t...T :

V ∗N
T...T (M, C) = rT (M, C)

V ∗N
t...T (M, C)=rt(M, C)+ sup

a∈A

EM,C[V ∗N
t+1...T (ΦNa (M, C))]. (2)

where the expectation EM,C[·] is taken over all possible values of ΦNa (M, C) given (M, C). Also
notice that V ∗N

t...T (M, C) is the maximal expected reward between time t and time T starting in
(M, C) and therefore V ∗N

0...T = V ∗N
T .

Let us also define for the limit system, v∗t...T similarly (by removing the expectation):

v∗T...T (m, c) = rT (m, c)

v∗t...T (m, c) = rt(m, c) + sup
a∈A

[
v∗t+1...T

(
Φa(m, c)

)]
, (3)

and let Π∗
t (m, c) be an action that maximize the sup in the previous equation (it exists because

of (A2): A is compact).
We will show by induction on t < T that V ∗N

t...T (·, ·) is continuous (note that since M ∈ PN(S)
is discrete the continuity in M is trivial) and that we can define an optimal policy Π∗N

t (M, C),
such that:

V ∗N
t...T (M, C)=rt(M, C)+E

[
V ∗N
t+1...T (ΦNΠ∗

t
N (M,C)(M, C))

]
. (4)

For t = T , the assumption holds by the continuity of r (A3).
Let us assume that it holds for t + 1 ≤ T . By assumption (A3), the mapping g and the

kernel K are continuous in a thus if {a(k)}k∈N is a sequence of action converging to a, ΦN
a(k)

converges (in law) to ΦNa . As V ∗N
t+1···T is continuous, a 7→ E[V ∗N

t+1...T (ΦNa (M, C))] is continuous.
Using this continuity and the compacity of A, the optimal action Π∗N

t (M, C) ∈ A exists. The

RR n° 6877



8 N.Gast & B. Gaujal

functions r, g, K are uniformly continuous in a, therefore the convergence of the continuity of
the function a 7→ supa E[V ∗N

t+1...T (ΦNa (M, C))] is uniform in M, R. This shows that (M, R) 7→
supa E[V ∗N

t+1...T (ΦNa (M, C))] is continuous and the property for all t is proved.
Let us now prove by induction on t that for all sequences (MN , CN) converging almost surely

to (m, c), v∗Nt...T (MN , CN )
a.s−−→ v∗t...T (m, c). This is clearly true for t=T . Assume that it holds for

some t+1≤T and let us call a∗
t . . . a∗

T−1 a sequence of optimal actions for the deterministic limit.

Lemma 2 shows that V N
a∗t ...a

∗
T−1

(MN , CN )
a.s−−→ va∗t ...a∗T−1

(m, c) = v∗t...T (m, c). In particular, this

shows the second inequality (which holds a.s.) of the following equation:

lim inf V ∗N
t...T (MN , CN) ≥ lim inf V N

a∗t ...a
∗
T−1

(MN , CN )

= v∗t...T (m, c).
(5)

Let a∗N be a sequence of actions maximizing the expectation in (2). As A is compact,
there exists a subsequence a∗ψ(N) converging to a value a. Again by lemma 2, the lim sup of

r(Mψ(N), Cψ(N))+E[V
∗ψ(N)
t+1...T (Φ

ψ(N)
a (Mψ(N), Cψ(N)))] converges a.s. to r(m, c)+v∗t+1(Φa(m, c)) ≤

v∗t...T (m, c). Using both inequalities, this shows that V
∗ψ(N)
t...T (Mψ(N), Cψ(N))

a.s−−→ v∗(m, c).
To conclude the proof, remark that since the limit system is deterministic and takes the

values (m0, c0), . . . , (mt, ct), fixing the policy at time t to the action a∗
t

def
= Π∗(mt, ct) achieves

the optimal reward.

This result has several practical consequences. Recall that the limit actions a∗
0 . . . a∗

T−1 is a
sequence of optimal actions in the limit case, i.e. such that va∗

0
...a∗

t−1
(m, c) = v∗T (m, c). This

result proves that in the limit case, the optimal policy does not depend on the state of the system.
This also shows that incomplete information policies are as good as complete information policies.
However, the state (MN

t , CNt ) is not deterministic and on one trajectory of the system, it could
be quite far from its deterministic limit (mt, ct). In the proof of proposition 2, we also defined
the policy Π∗

t (M
N
t , CNt ) which is optimal for the deterministic system starting at time t in state

mt, rt. The least we can say is that this strategy is also asymptotically optimal, that is:

lim
N→∞

V N
Π∗

0
...Π∗

T
(M, C) = lim

N→∞
V N
a∗
0
...a∗

T
(M, C).

In practical situations, using this policy will decrease the risk of being far from the optimal state.
On the other hand, using this policy has some drawbacks. The first one is that the complexity of
computing the optimal policy for all states can be much larger than the complexity of computing
a∗
0 . . . a∗

T−1. An other one is that the system becomes very sensitive to random perturbations:
the policy Π∗ is not necessarily continuous and may not have a limit. In Section 4, a comparison
between the performances of a∗

0 . . . a∗
T−1 and Π∗

0 . . .Π∗
T−1 is provided over an example.

3.2 Central Limit Theorems

In this part we prove central limit theorems for interacting particles. This result provides es-
timates on the speed of convergence to the mean field limit. This section contains two main
results:

The first one is that when the control action sequence is fixed, the gap to the mean field
limit decreases as the inverse square root of the number of particles. The second result states
that the gap between the optimal reward for the finite system and the optimal reward for the
limit system also decreases as fast as 1/

√
N . These properties are formalized in theorems 5 and

4 respectively.
To prove these results, we will need additional assumptions (A4-bis) and (A5) or (A5-bis).

INRIA



A Mean Field Approach for Optimization in Particles Systems and Applications 9

(A4-bis) Initial Gaussian variable – There exists a Gaussian vector G0 of mean 0 with co-
variance Γ0 such that the vector

√
N((MN

0 , CN0 )−(m0, c0)) (with S+d components) converges

in law to G0. (This is denoted as
√

N((MN
0 , CN0 ) − (m0, c0))

L−→ G0). This assumption also
includes (A4), i.e. almost sure convergence of the initial state.

(A5) Continuous differentiability – For all t and all i, j ∈ S, all functions g, Kij and rt are
continuously differentiable.

(A5-bis) Differentiability in a0 . . . aT−1 – Let (mt, ct) be the deterministic limit of the system
if the controller takes the actions a0 . . . aT−1 then for all i, j ∈ S, the functions g, Kij and rt
are differentiable in the points (mt, ct).

These assumptions are slightly stronger than (A3) and (A4) but remain very natural. (A4-
bis) is clearly necessary for Theorems 5 and 4 to hold. The differentiability condition implies
that if the gap between Mt and mt is of order 1/

√
N , it remains of the same order at time t + 1.

For Theorem 5, (A5-bis) is necessary but can be replaced by a Lipschitz continuity condition for
Theorem 4. This will be further discussed in Section 4.2.

Theorem 4 (Central limit theorem for costs). Under assumptions (A1,A2,A3,A4bis,A5),
(i)- there exists constants βand γ such that for all x:

lim sup
N→∞

P(
√

N
∣∣∣V ∗N
T (MN

0 , CN0 ) − v∗T (m0, c0)
∣∣∣ ≥ x)

≤ P(β‖G0‖∞ + γ ≥ x);
(6)

(ii)- there exist constants β′, γ′ > 0 such that for all x:

lim sup
N→∞

P(
√

N
∣∣∣V ∗N
T (MN

0 , CN0 ) − V N
a∗
0
...a∗

T−1

(MN
0 , CN0 )

∣∣∣
≥ x) ≤ P(β′‖G0‖∞ + γ′ ≥ x);

(7)

where ‖G′‖∞ = supi |G′
i|.

This theorem is the main result of this section. The previous result (Theorem 3) says that
lim supN→∞ V ∗N

T (MN
0 , CN0 ) = lim supN→∞ V N

a∗
0
...a∗

T−1

(MN
0 , CN0 ) = v∗t...T (m0, c0). This new theo-

rem says that both the gap between the cost under the optimal policy and of the cost when using
the limit actions (i) or the gap between the latter cost and the optimal cost of the limit system
(ii) are random variables that decrease to 0 with speed

√
N and have Gaussian laws. Actually,

a stronger result (using almost sure convergence instead of convergence in law) will be shown in
Corollary 8. A direct consequence of this result is that there exists a constant γ′′ such that:

E

[√
N |V ∗N

T (MN
0 , CN0 ) − v∗T (m0, c0)|

]
→ γ′′ (8)

The rest of this section is devoted to the proof of this theorem. A first step in the proof of
Theorem 4 is a central limit theorem for the states, which has an interest by its own.

Theorem 5 (Mean field central limit theorem). Under assumption (A1,A2,A3,A4bis,A5-bis),
if the actions taken by the controller are a0 . . . aT−1, there exist Gaussian vectors of mean 0,
G1 . . . GT−1 such that for every t:

√
N((MN

0 , CN0 ) − (m0, c0), . . . , (M
N
t , CNt ) − (mt, ct))

L−→ G0, . . . , Gt.
(9)
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10 N.Gast & B. Gaujal

Moreover if Γt is the covariance matrix of Gt, then:

Γt+1 =

[
Pt Ft
Qt Ht

]tr
Γt

[
Pt Ft
Qt Ht

]
+

[
Dt 0
0 0

]
(10)

where for all 1 ≤ i, j ≤ S and 1 ≤ k, ℓ ≤ d: (Pt)ij=Kij(at, ct), (Qt)kj=
∑S

i=1 mi
∂Kij

∂ck
(at, ct),

(Ft)ik=
∂gk

∂mi
(mt+1, ct), (Ht)kℓ = ∂gk

∂rℓ
(mt, ct), (Dt)jj =

∑n
i=1 mi(Pt)ij(1 − (Pt)ij) and (Dt)jk =

−∑n

i=1 mi(Pt)ij(Pt)ik (j 6= k).

Proof. Let us assume that the Equation (9) holds for some t ≥ 0.
As

√
N((MN , CN )t−(m, c)t) converges in law to Gt, there exists another probability space and

random variables M̃N and C̃N with the same distribution as MN and CN such that
√

N((M̃N , C̃N )t−
(m, c)t) converges almost surely to Gt [9]. In the rest of the proof, by abuse of notation, we will

write M and C instead of M̃ and C̃ and then we assume that
√

N((MN , CN )t − (m, c)t)
a.s−−→ Gt.

Gt being a Gaussian vector, there exists a vector of S+d independent Gaussian variables
U = (u1, . . . , uS+d)

T and a matrix X of size (S+d)×(S+d) such that Gt = XU .

Let us call PN
t

def
= K(at, C

N
t ). According to lemma 6 there exists a Gaussian variable Ht

independent of Gt and of covariance D such that we can replace MN
t+1 (without changing Mt and

Ct) by a random variables M̃N
t+1 with the same laws such that:

√
N(M̃N

t+1 − MN
t PN

t )
a.s−−→ Ht. (11)

In the following, by abuse of notation we write M instead of M̃. Therefore we have

√
N(MN

t+1−mtPt) =
√

N
(
Mt+1−MN

t PN
t + mt(P

N
t −Pt)+

(MN
t −mt)Pt + (MN

t −mt)(P
N
t −Pt)

)

a.s−−→ Ht + mt lim
N→∞

√
N(PN

t −Pt) + lim
N→∞

√
N(MN

t −mt)Pt.

By assumption, lim
√

N(MN
t − mt)i = (XU)i. Moreover, the first order Taylor expansion

with respect to all component of C gives a.s.

lim
N→∞

mt

√
N(PN

t − Pt)j =

S∑

i=1

mti

d∑

k=1

∂Kij

∂ctk
(at, ct)(XU)S+k

=

d∑

k=1

Qkj(XU)S+k.

Thus, the jth component of
√

N(MN
t+1 − mtPt) tends to

Ht +

d∑

k=1

Qkj(XU)S+k +

S∑

i=1

(XU)iPij (12)

Using similar ideas, we can prove that
√

N(CNtk−ctk) converges almost surely to
∑S

i=0
∂gk

∂mi
(XU)i+∑d

ℓ=0
∂gk

∂ctℓ

(XU)S+ℓ. Thus
√

N((MN
t+1, C

N
t+1) − (mt+1, ct+1)) converges almost surely to a Gaus-

sian vector.
Let us write the covariance matrix at time t and time t + 1 as two bloc matrices:

Γt =

[
M O
OT C

]
and Γt+1 =

[
M′ O′

O′T C′

]
.

INRIA



A Mean Field Approach for Optimization in Particles Systems and Applications 11

For 1 ≤ j, j′ ≤ S, M′
j,j′ is the expectation of (12) taken in j times (12) taken in j′. Using the

facts that E[(XU)S+k(XU)S+k′ ] = Ckk′ , E[(XU)S+k(XU)i] = Oik and E[(XU)i(XU)i′ ] = Mii′ ,
this leads to:

M′
j,j′ = E[HjH

′
j ] +

∑

k,k′

QkjQk′j′Ckk′ +
∑

k,i′

QkjOi′kPi′j′

+
∑

i,k′

Qk′j′Oik′Pij +
∑

i,i′

PijMii′Pi′j

= Djj′+(QTCQ)jj′+(QTOTP )jj′+(PTOQ)jj′+(PTMP )jj′ .

By similar computation, we can write similar equations for O′ and C′ that lead to Equation
(10).

Lemma 6. Let MN be a sequence of random measure on {1, . . . , S} and PN a sequence of

random stochastic matrices on {1, . . . , S} such that (MN , PN )
a.s−−→ (m, p). Let (Uik)1≤i≤S,k≥1 be

a collection of iid random variables following the uniform distribution on [0; 1] and independent
of PN and MN and let us define Y N : for all 1 ≤ j ≤ S:

Y N
j

def
=

1

N

S∑

i=1

NMN
i∑

k=1

1P

l<k
PN

il
<Uik≤

P

l≤k
PN

il

then there exists a Gaussian vector G independent of MN and PN and a random variable ZN

with the same law as Y N such that

√
N(ZN − MNPN )

a.s−−→ G.

Moreover the covariance of the vector G is the matrix D:

{
Djj =

∑
imipij(1 − pij)

Djk = −∑
i mipijpik (j 6= k).

(13)

Proof. As (MN , PN ) and (Uik)1≤i≤S,k≥1 are independent, they can be viewed as functions on

independent probability space Ω and Ω′. For all (ω, ω′) ∈ Ω×Ω′, let XN
ω (ω′)

def
=

√
N(Y N (ω, ω′)−

MN (ω)PN (ω)).
By assumption, for almost all ω ∈ Ω, (MN (ω), PN(ω)) converges to (m, p). A direct computa-

tion shows that, when N grows, the characteristic function of XN
ω converges to exp(− 1

2ξT
∑S

i=1 miCiξ).
Therefore for almost all ω, XN

ω converges in law to G, a Gaussian random variable on Ω′.

Therefore for almost all ω, there exists a random variable X̃N
ω with the same law as XN

ω

that converges ω′-almost surely to G(ω′). Let ZN (ω, ω′)
def
= MN (ω)PN (ω) + 1

N
X̃N
ω (ω′). By

construction of X̃N
ω , for almost all ω, ZN (ω, .) has the same distribution as Y N(ω) and

√
N(ZN−

Y NPN )
ω,ω′−a.s−−−−−−→ G. Thus there exists a function Z̃N(ω, .) that has the same distribution as

Y N (ω) for all ω and that converges (ω, ω′)-almost surely to G.

The first application of the mean field CLT is to show that it also works for the cost. Let
us assume that the controller takes actions a0 . . . aT−1 and let us introduce the definition of

RN
a0...aT−1

(MN
0 , CN0 ) =

∑T
t=1(rt(M

N
t , CNt )) and ra0...aT−1

(m0, c0) =
∑T

t=1 rt(mt, ct). Lemma 2,

says that RN
a0...aT−1

(MN
0 , CN0 )

a.s−−→ ra0...aT−1
(m0, c0), the following results is more accurate:
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12 N.Gast & B. Gaujal

Corollary 7 (Application of the CLT to reward). Under assumption (A1,A2,A3,A4-bis,A5-bis),
if the controller takes the actions a0 . . . aT−1 and if we call Drt(mt, ct) the differential of rt(M, C)
at the point (mt, ct), we have:

√
N(RN

a0...aT−1
(MN

0 , CN0 ) − ra0...aT−1
(m0, c0))

L−→
∑T

t=1 Drt(mt, ct)Gt.
(14)

Proof. Let G0 . . .GT be the Gaussian variables defined in the central limit theorem. The proof
of Theorem 5 says that one can replace (MN

t , CNt ) by variables with the same law such that the
convergence is almost sure. Let ω be an event such that limN

√
N((MN

t (ω), CNt (ω))− (m, c)t)) =
Gt(ω). For this event, we have limN→∞

√
N(ct(M

N
t , CNt ) − rt(mt, ct)) = Drt(mt, ct)Gt which

leads to Equation (14) by using a Taylor expansion at order one.

As the means of the Gaussian variables are 0, we have directly:

Corollary 8. Under the same assumptions and if the convergence of the initial condition is
almost sure ((MN

0 , CN0 )
a.s−−→ (m0, c0)), one has:

√
N

∣∣∣V N
a0...aT−1

(MN
0 , CN0 ) − va0...aT−1

(m0, c0)
∣∣∣

≤N→∞ |Dr0(m0, ct)G0| a.s.
(15)

Proof. vNa0...aT−1
(MN

0 , CN0 )−va0...aT−1
(m0, c0) = r(MN

0 , CN0 )−r(m0, c0)+EMN
0
,CN

0

[rN1...T (MN
1 , CN1 )−

r1...T (m1, c1)]. As
√

N((MN
0 , CN0 ) − (m0, c0)) converges almost surely, the first part of the sum

can be upper bounded by |Dr0(m0, c0)G0|. As for the second part of the sum, using the Berry-
Esseen Theorem (Durrett 2.4.d [9]), one can refine Lemma 6 and show that the convergence is
uniform. Therefore one can switch the expectation and the limit, the second part of the sum
becomes EMN

0
,CN

0

[limN→∞

√
N(rN1...T (MN

1 , CN1 ) − r1...T (m1, c1))] =a.s 0 which proves Equation

(15).

We are now ready for the proof of Theorem 4.

of theorem 4. For a vector G, let us write ‖G‖1 =
∑
i |Gi|. Because of assumption (A4), there

exists a compact set B such that for all t from 0 to T , MN
t , CNt will remain in B.

Let us prove by induction on t from T to 0 that there exist βt, γt ∈ R
+ such that if there

exists a Gaussian variable Gt satisfying
√

N
(
(MN

t , CNt ) − (mt, ct)
) a.s−−→ Gt, then

lim supN→∞

√
N

∣∣∣V ∗N
t...T (MN

t , CNt )−v∗t...T (mt, ct)
∣∣∣

≤ βt‖Gt‖∞ + γt.
(16)

For t = T , Corollary 8 can be used to transform Equation (16) into
√

N |DrT (mT , cT )GT | ≤
‖Drt(mT , cT )‖1‖GT ‖∞. Therefore, Inequality (16) is true if βT = ‖Drt(mT , cT )‖1 and γT = 0.

Let us assume that (16) holds for some t+1 ≤ T and that
√

N
(
(MN

t , CNt )− (mt, ct)
) a.s−−→ Gt.

At time t, (16) can be upper bounded by:

√
N |rt(MN

t , CNt ) − rt(mt, ct)|
+
√

N
∣∣∣ supa EMN

t ,C
N
t

[V ∗N
t...T (ΦNa (MN

t , CNt ))]

− supa v∗t...T (Φa(mt, ct))
∣∣∣.

The first part can be bounded by ‖Drt(mt, ct)‖1‖Gt‖∞. The rest of the proof focuses in the
second part of the sum. In the proof of Theorem 5, we showed that for all a (up to the replacement
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A Mean Field Approach for Optimization in Particles Systems and Applications 13

of ΦNa (MN
t , CNt ) by a random variable with the same law), there exists a matrix Pa and a Gaussian

variable Ga independent of Gt such that
√

N(((MN
t , CNt ), (MN

t+1, C
N
t+1))−((mt, ct), (mt+1, ct+1)))

converges almost surely to (Gt, PaGt + Ga). Using the fact that supa f(a) − supa g(a) ≤
supa(f(a) − g(a)), the expectation can be upper bounded by:

sup
a

√
NEMN

t ,C
N
t

∣∣∣V ∗N
t+1...T (ΦNa (MN

t , CNt )) − v∗t+1...T (Φa(mt, ct))
∣∣∣.

Let us consider an arbitrary action a. The Berry-Esseen Theorem shows that
√

N((MN
t+1, C

N
t+1)−

(mt+1, ct+1))− PaGt converges uniformly to Ga, therefore we can switch the limit in N and the
expectation and by induction, it can be upper bounded by EG[γt‖PaGt + Ga‖∞ + βt+1] ≤
βt+1‖PaGt‖∞ + γt + βtE[‖Ga‖∞]. As A is compact and (MN

t+1, C
N
t+1) remains in a compact

set B (Equation (1)), supa∈A,(M,C)∈B ‖Pa‖1 < ∞ and supa∈A,(M,C)∈B E[‖Ga‖∞] < ∞. Thus

to obtain an uniform bound on all (M, C), taking βt
def
= βt+1 supA,B ‖Pa‖1 and γt

def
= γt+1 +

βt+1 supA,B E[‖Ga‖∞] satisfy (16).

Assumption (A4bis) says that at time t = 0,
√

N
(
(MN

t , CNt ) − (mt, ct)
)
→ Gt holds in

distribution. Using appropriate random variables (M̃N
t , C̃Nt ) with the same laws as (MN

t , CNt )
makes this convergence almost sure so that the induction above holds from t = 0. This ends the
proof for assertion i of the theorem.

As for assertion ii, it comes from the triangular inequality

∣∣∣V ∗N
T (MN

0 , CN0 ) − V ∗N
a∗
0
···a∗

T
(MN

0 , CN0 )
∣∣∣

≤
∣∣∣V ∗N
T (MN

0 , CN0 ) − v∗T (m0, c0)
∣∣∣

+
∣∣∣v∗T (m0, c0) − V ∗N

a∗
0
···a∗

T
(MN

0 , CN0 )
∣∣∣.

An upper bound on the first term of the right side comes from assertion i and the second term
can be bounded using Corollary 8. This ends the proof.

3.3 Infinite horizon discounted reward

In this section, we prove the first order results for infinite-horizon discounted Markov decision
processes. As in the finite case, we will show that when N grows large, the maximal expected
discounted reward converges to the one of the deterministic system and the optimal policy is
also asymptotically optimal. To do this , we need the following new assumptions:

(A6) Homogeneity in time – The reward rt and the probability kernel Kt do not depend on
time: there exists r, K such that, for all M, C, a rt(M, C) = r(M, C) and Kt(a, C) = K(a, C).

(A7) Bounded reward – supM,C r(M, C) ≤ K < ∞.

The homogeneity in time is clearly necessary as we are interested in infinite-time behavior.
Assuming that the cost is bounded might seems strong but it is in fact very classical and holds
in many situation, for example when C is bounded. The future reward are discounted according
to a discount factor 0 ≤ δ < 1: if the policy is Π, the expected total discounted reward of Π is
(δ is omitted in the notation):

V N
Π (MN

0 , CN0 )
def
= EΠ

[ ∞∑

t=1

δt−1r(MN
t , CNt )

]
.
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14 N.Gast & B. Gaujal

Notice that Assumption (A7) implies that this sum remains finite. The optimal total discounted
reward V ∗N is the supremum on all policies. For T ∈ N, the optimal discounted finite-time
reward until T is

V ∗
T
N (M0, C0)

def
= sup

Π
EΠ

[ T∑

t=1

δt−1r(Mt, Ct)
]
.

As r is bounded, one can show that it converges uniformly in (M, C) to V ∗N :

lim
T→∞

sup
M,C

∣∣∣V ∗
T
N (M, C) − V ∗N (M, C)

∣∣∣ = 0. (17)

Equation (17) is the key of the following analysis. Using this fact, we can prove the convergence
when N grows large for fixed T and then let T go to infinity. Therefore with a very few changes
in the proofs of Section 3.1, we have the following result:

Theorem 9 (Optimal discounted case). Under assumptions (A1,A2,A3,A4,A6,A7), as N grows
large, the optimal discounted reward of the stochastic system converges to the optimal discounted
reward of the deterministic system:

lim
N→∞

V ∗N (MN , CN ) =a.s v∗(m, c),

where v∗(m, c) satisfies the Bellman equation for the deterministic system:

v∗(m, c) = r(m, c) + δ sup
a∈A

{
v∗(Φa(m, c))

}
.

3.3.1 Problems for other infinite horizon criteria

Again, the discounted problem is very similar to the finite case because the total reward mostly
depends on the rewards during a finite amount of time. As for other other infinite-horizon criteria
such as average reward or its variants, the average reward is (if it exists) limT→∞

1
T

EΠ

∑T

t=1 c(Mt, Ct).
This raises the problem of the exchange of the limits N → ∞ and T → ∞. Consider a

case without control with two states S={0; 1} and Ct is the mean number of particles in state 1
(Ct = (Mt)1) and with a function f :[0; 1]→[0; 1] such that the transition kernel K is Ki1(C) =

f(C) for i ∈ S. If MN
0 (0)

a.s−−→ m0 then for any fixed t, MN
t converges to f(f(. . . f(m0) . . . )).

Using techniques that can be found in [7], one can prove that as N grows large, limt→∞ MN
t

might converges to almost any subset of L⊂[0; 1] such that L = f(L). However, in general
limt→∞ limN→∞ MN

t 6= limN→∞ limt→∞ MN
t . For example if f(x) = x, the deterministic system

is constant while the stochastic system converges almost surely to a random variable (as a
bounded Martingale) that takes values in {0; 1}.

Similar difficulties arise for the central limit theorem in the discounted case: the convergence
depends on the behavior of the system when T tends to infinity.

4 Application to a brokering problem

To illustrate the usefulness of our framework, let us consider the following model of a brokering
problem in computational grids. There are A application sources that send tasks into a grid
system and a central broker routes all theses tasks into d clusters (seen as multi-queues) and
tries to minimize the total waiting time of the tasks. A similar queuing model of a grid broker
was used in [12, 4, 5].
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A Mean Field Approach for Optimization in Particles Systems and Applications 15

Here, time is discrete and the A sources follow a discrete on/off model: for each source

j ∈ {1 . . .A}, let (Y j
t )

def
= 1 if the source is on (i.e. it sends a tasks between t and t + 1) and 0

if it is off. The total number of packets sent between t and t + 1 is Yt
def
=

∑
j Y j

t . Each queue
i ∈ {1 . . . d} is composed of Pi processors, and all of them work at speed µi when available. Each

processor j ∈ {1 . . . Pi} of the queue i can be either available ( in that case we set X ij
t

def
= 1 ) or

broken (in that case X ij
t

def
= 0). The total number of processors available in the queue i between

t and t + 1 is X i
t

def
=

∑
j X ij

t and we define Bi
t to be the total number of tasks waiting in the

queue i at time t. At each time slot t, the broker (or controller) allocates the Yt tasks to the
d queues: it chooses an action at ∈ P({1 . . . Yt}d) and routes each Yt packets in queue i with
probability ait. The system is represented figure 1. The number of tasks in the queue i (buffer
size) evolves according to the following relation:

Bi
t+1 =

(
Bi
t − µiX

i
t + aitYt

)+

. (18)

...

M on/off
sources

Yt

tasks

a1
tYt

adtYt

Broker

...

µ1

µ1

P1 procsC1

...

µd

µd
Pd procsCd

...

Figure 1: The routing system

The cost that we want to minimize is the sum of the waiting times of the tasks. Between t and

t + 1, there are
∑
i B

t
i tasks waiting in the queue, therefore the cost at time t is rt(B)

def
=

∑
i B

i
t.

As we consider a finite horizon, we should decide a cost for the remaining tasks in the queue. In

our simulations, we choose rT (B)
def
=

∑
iB

i
T .

This problem can be viewed as a multidimensional restless bandit problem where computing
the optimal policy for the broker is known to be a hard problem [17]. Here, indexability may
help to compute near optimal policies by solving one MDP for each queue [17, 16]. However the
complexity remains high when the number of processors in all the queues and the number of
sources are large.

4.1 Mean field limit

This system can be modeled using the framework of particles evolving in a common environment.� There are N
def
= A+

∑d
i=1 Pi “particles”. Each particle can either be a source (of type s) or a

server (belonging to one of the queues, q1 · · · qd), and can either be “on” or “off”. Therefore,
the possible states of one particle is an element of S =

{
(x, e)|x ∈ {s, q1, · · · , qd}, e ∈ {on, off}

}
.

the population mix M is the proportion of sources in state on and the proportion of servers
in state on, for each queue.� The action of the controller are the routing choices of the broker: adt is the probability that a
task is sent to queue d at time t.
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16 N.Gast & B. Gaujal� The environment of the system depends on the vector Bt = (Bt1 . . . Btd), giving the number
of tasks in queues q1, . . . qd at time t. The time evolution of the i-th component is

Bt+1i
= gi(Bt, M

N
t+1, at)

def
=

(
Bti − µiX

i
t + aitYt

)+

.

The shared environment is represented by the context CN
t

def
= (

Bt1

N
. . .

Btd

N
).� Here, the transition kernel can be time dependent but is independent of a and C. The probabil-

ity of a particle to go from a state (x, e) ∈ S to (y, f) ∈ S is 0 if x 6= y (a source cannot become
a server and vice-versa). If x = y then K(x,on),(x,off)(a, C)(t) as well as K(x,off),(x,on)(a, C)(t)
are arbitrary probabilities.

Here is how a system of size N is defined. A preliminary number of sources A0 as well as
a preliminary number Pi of servers per queue is given, totaling in N0 particles. For any N , a
system with N particles is composed of ⌊A0N/N0⌋ (resp. ⌊PiN/N0⌋) particles that are sources
(resp. servers in queue i). The remaining particles (to reach a total of N) are allocated randomly
with a probability proportional to the fractional part of A/N0 and PiN/N0 so that the mean
number of particles that are sources is A/N0 and the mean number of particles that are servers
in queue i is PiN/N0. Then, each of these particles changes state over time according to the
probabilities Ku,v(a, C)(t). At time t = 0, a particle is in state “on” with probability one half.

It should be clear that this system satisfies Assumptions (A1) to (A4) and therefore one can
apply the convergence theorem 3 to this system that shows that if using the policies a∗ or Π∗,
when N goes to infinity the system converges to a deterministic system with optimal cost. An
explicit computation of the policies a∗ and Π∗ is possible here and is postponed to Section 4.3.

4.2 CLT applicability

As for the central limit theorem, Assumption (A4-bis) on the convergence of the initial condition
to a Gaussian variable is true since the random part of the initial state is bounded by N0

N
and√

N N0

N
goes to 0 as N grows. Unfortunately Assumption (A5) does not hold since the function g

is not differentiable when Cit−µiX
i
t+aitYt = 0. However, as mentioned in the beginning of section

3.2 the differentiability condition in Assumption (A5) can be replaced by a Lipschitz continuity
condition. Let us consider Assumption (A5-ter):

(A5-ter) Continuous Lipschitz – For all t and all i, j ∈ S, all functions g, Kij and rt are
Lipschitz continuous on all compact sets of their domain.

This assumption is weaker than (A5) since, if a function is C1, it is Lipschitz on every compact
set (with Lipschitz constant sup ||f ′||). In the example, function g has a right-derivative and a
left-derivative at all points and therefore satisfies (A5-ter). The central limit theorem 4 should
apply here as well:

Theorem 10. Theorem 4 still holds when replacing (A5) by (A5-ter).

(Sketch of the proof). The proof is very similar to the one of 4 and we just sketch the main
differences.

As seen at the end of section 2.3, all variables are almost surely bounded. By assumption (A5-
ter), all functions are Lipschitz, thus let Lg, LK , Lrt

be the Lipschitz constants on the compact
space B (see Equation (1)) for g, K and rt respectively and L = max{Lg, LK , Lrt

}. The main
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idea is to replace all equalities in the proof of all CLT theorems by inequalities. For instance, in
Theorem 5, Equation (9) is replaced by the following statement: for all x1 . . . xt ∈ R

t,

lim supN P
(√

N(‖(MN
0 , CN0 ) − (m0, c0)‖∞, . . . ,

‖(MN
t , CNt ) − (mt, ct)‖∞

)
≥ (x1 . . . xt)

)

≤ P((‖G0‖∞, . . . , ‖Gt‖∞) ≤ (x1 . . . xt))
(19)

where the variables Gt have covariance Γt = L2Γt−1 + Dt−1. The other steps in the proof can
be changed in almost the same way. Formula (14) in Corollary 7 is replaced by

√
N |RN

a0...aT−1
(MN

0 , CN0 ) − ra0...aT−1
(m0, c0)|

≤st
∑T

t=0 L‖Gt‖∞
(20)

and Formula (15) of Corollary 8 by

√
N

∣∣∣V N
a0...aT−1

(MN
0 , CN0 ) − va0...aT−1

(m0, c0)
∣∣∣

≤ α‖G0‖∞ + δ, a.s.
(21)

where α and δ are constants depending on L.

4.3 Optimal policy for the deterministic limit

As the evolution of the sources and of the processors does not depend on the environment, for all
i, t, the quantities µiX

i
t and Yt converge almost surely to deterministic values that we call xit and

yt. If yit is the number of packets distributed to the ith queue at time t, cit+1 = (cit + yit − xit)
+.

The deterministic optimization problem is to compute

min
y1

1
...yd

T

{
T∑

t=1

d∑

i=1

cit with
cit+1 = (cit + yit − xit)

+
∑

i y
i
t = yt

}. (22)

Let us call wit the work done by the queue i at time t: wit = cit− cit−1 + yit−1. The sum of the
size of the queues at time t does not depend on with queue did the job but only on the quantity
of work done:

d∑

i=1

cit =

d∑

i=1

ci0 −
∑

u≤t,i

wit

Therefore to minimize the total cost, we have to maximize the total work done by the queues.
Using this fact, the optimal strategy can be computed by iteration of a greedy algorithm.

The principle of the algorithm is the following.

1. The processors in all queues, which are “on” at time t with a speed µ are seen as slots of
size µ.

2. At each time t, yt units of tasks have to be allocated. This is done in a greedy fashion by
filling up the empty slots starting from time t. Once all slots at time t are full, slots at
time t+1 are considered and are filled up with the remaining volume of tasks, and so forth
up to time T .

3. The remaining tasks that do not fit in the slots before T are allocated in an arbitrary
fashion.

See figure 2 for an illustration of the execution of the algorithm on an example. It should be
clear that the algorithm is linear in the number of slots nk and that this algorithm computes an
optimal allocation.
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18 N.Gast & B. Gaujal

Time t 0 1 2 3 4 5 6

yt (tasks) 8 1 0 1 7 6 6

Queue 1

X τ0 τ0 τ3 τ4 τ4 τ6

X τ0 τ0 τ4 τ5

τ0 τ4

τ4

Queue 2
X X τ5 τ6

τ5

Queue 3
X τ0 τ1 τ4 τ5 τ6

X τ0 τ4 τ5 τ6

τ0 τ5

Optimal allocation
5 . . 1 5 1 1+2
. . . . . 2 1
3 1 . . 2 3 2

Figure 2: This figure presents an example of an execution of the algorithm. We consider a case
with 3 queues. At t = 0 (resp. 1, ..., 6) there are 8 (resp. 1, 0, 1, 7, 6, 6) packets arriving in the
system. Each processor has speed 1 and the processors in state “off” are represented by grey
cells (for example, at time 0, there are respectively 3, 0 and 2 processors available in queue 1, 2
and 3). All queues start at time 0 with 2 packets. The top part of the table shows at which time
a packet will be processed while the bottom part shows the corresponding optimal allocation
(X represent tasks present in the queues before t = 0; A label τi in a slot of queue j at time t
represents one task arriving at time i allocated to queue j that will be processed at time t. The
number of slots with label τi should be equal to yi; At the end, 2 packets cannot be allocated in
empty slots. They are routed arbitrarily (in queue 1)).

4.4 Numerical example

We consider a simple instance of the resource allocation problem with 5 queues. Initially, they
have respectively 1, 2, 2, 3 and 3 processors running at speed .5, .1, .2, .3 and .4 respectively. There
are 3 initial sources. The transition matrices are time dependent and are chosen randomly before
the execution of the algorithm – that is they are known for the computation of the optimal policy
and are the same for all experiments. We ran some simulations to compute the expected cost of
different policies for various sizes of the system. We compare different policies:

1. Deterministic policy a∗ – to obtain this curve, the optimal actions a∗
0 . . . a∗

T−1 that the
controller must take for the deterministic system have been computed. At time t, action
a∗
t is used regardless of the currently state, and the cost up to time T is displayed.

2. Limit policy Π∗ – here, the optimal policy Π∗ for the deterministic case was first computed.
When the stochastic system is in state (MN

t , CNt ) at time t, we apply the action Π∗
t (M

N
t , CNt )

and the corresponding cost up to time T is reported.

3. Join the Shortest Queue (JSQ) and Weighted Join the Shortest Queue (W-JSQ) – for JSQ,
each packet is routed (deterministically) in the shortest queue. In W-JSQ, a packet is
routed in the queue whose weighted queue size Bi/(µiXi) is the smallest.

The results are reported in Figures 3 and 4.
A series of several simulations for with different values of N was run. The reported values in

the figures are the mean values of the waiting time over 10000 simulations for small values of N
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Deterministic cost
A* policy
Pi* policy

JSQ
weighted JSQ

Size of the system: N

Figure 3: Expected cost of the policies a∗, Π∗, JSQ and W-JSQ for different values of N .

and around 200 simulations for big values of N . Over the whole range for N , the 95% confidence
interval is less than 0.1% for the expected cost – figure 3 – and less than 5% for the central limit
theorem – figure 4.

Figure 3 shows the average waiting time of the stochastic system when we apply the different
policies. The horizontal line represents the optimal cost of the deterministic system v∗(m0, c0)
which is probably less than V ∗N (M0, C0). This figure illustrates Theorem 3: if we apply a∗ or
Π∗, the cost converges to v∗(m0, c0).

In Figure 3, one can see that for low values of N , all the curves are not smooth. This
behavior comes from the fact that when N is not very large with respect to N0, there are at least
⌊ N
N0

A⌋ (resp. ⌊ N
N0

Pi⌋) particles that are sources (resp. processors in queue i) and the remaining
particles are distributed randomly. The random choice of the remaining states are chosen so that
E[AN ] = N

N0

A, but the difference AN − NN0A may be large. Therefore, for some N the load
of the system is much higher than the average load, leading to larger costs. As N grows, the
proportion of remaining particles decreases and the phenomena becomes negligible.

A second feature that shows in Figure 3, is the fact that on all curves, the expected waiting
times are decreasing when N grows. This behavior is certainly related to Ross conjecture [15]
that says that for a given load, the average queue length decreases when the arrival and service
processes are more deterministic.

Finally, the most important information on this figure is the fact that the optimal determin-
istic policy and the optimal deterministic actions perform better than JSQ and weighted JSQ
as soon as the total number of elements in the system is over 200 and 50 respectively. The
performance of the deterministic policy a∗ is quite far from W-JSQ and JSQ for small values of
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20 N.Gast & B. Gaujal

N , and it rapidly becomes better than JSQ (N ≥ 30) and W-JSQ (N ≥ 200). Meanwhile the
behavior of Π∗ is uniformly good even for small values of N .

√
N

(V
N X
−

v
∗
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10  100  1000  10000

A* policy
Pi* policy

Size of the system: N

Figure 4: Speed of convergence of the policies X = a∗ or Π∗ for different values of N .

The figure 4 illustrates Theorem 4 which says that the speed of convergence towards the limit
is of order

√
N . On the y-axis,

√
N times the average cost of the system minus the optimal

deterministic cost is plotted. One can see that the gap between the expected cost of the policy
Π∗ (resp. a∗) and the deterministic cost v∗(m0, c0) is about 250/

√
N (resp. 400/

√
N) when N

is large.This should be an upper bound on the constant δ defined in Equation (21).
Besides comparing a∗ and Π∗ to other heuristics, it would be interesting to compare it to

the optimal policy of the stochastic system, whose cost is V ∗N (M, C). One way to compute this
optimum would be by using Equation (3). However to do so, one needs to solve it for all possible
values of M and C. In this example, C can be as large as the length of the five queues and each
particle’s state can vary in {on,off}. Therefore even with N = 10 and if we only compute the
cost for queues of size less than 10, this leads to 2N105 ≈ 108 states which is hard to handle even
with powerful computers.

5 Computational issues

Throughout the paper, we have shown that if the controller uses the optimal policy Π∗ of the
deterministic limit of the finite real system, the expected cost will be close to the optimal one
(Theorem 3). Moreover, Theorem 4 gives a bound on the error that we make. However to apply
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these results in practice, a question remains: how difficult is it to compute the optimal limit
policy?

The first answer comes straight from the example. In many cases, even if the stochastic
system is extremely hard to solve, the deterministic limit is often much simpler. The best case
of course is, as in the example of section 4, when one can compute the optimal policy. If one can
not compute it, there might also exist approximation policies with bounded error (see [11] for a
review on the subject). Imagine that a 2-approximation algorithm exists for the deterministic
system, then, Theorem 3 proves that for all ε, this algorithm will be a (2+ε)-approximation for
the stochastic system if N is large enough. Finally, heuristics for the deterministic system can
also be applied to the stochastic version of the system.

If none of this works properly, one can also compute the optimal deterministic policy by
“brute-force” computations using Equation (3): v∗t...T (m, c) = rt(m, c) + supa v∗t+1...T (Φa(m, c)).
In that case, an approximation of the optimal policy is obtained by discretizing the state space
and by solving the equation backward (from t = T to t = 0), to obtain the optimal policy for
all states. The brute force approach can also be applied directly on the stochastic equation

using (2): V ∗N
t...T (M, C) = rt(M, C) + supa∈A EM,C

[
V ∗N
t+1...T

(
ΦNa (M, C)

)]
. However, solving the

deterministic system has three key advantages. The first one is that the size of the discretized
deterministic system may have nothing to do with the size of the original state space for N
particles: it depends mostly on the smoothness of functions g and φ rather than on N . The
second one is the suppression of the expectation which might reduce the computational time by
a polynomial factor1 by replacing the |PN (S)| possible values of MN

t+1 by 1. The last one is that
the suppression of this expectation allows one to carry the computation going forward rather
than backward. This latter point is particularly useful when the action set and the time horizon
are small.

6 Conclusion and future work

In this paper, we have shown how the mean field framework can be used in an optimization
context: the results known for Markov chains can be transposed almost unchanged to Markov
decision processes. We further show that the convergence to the mean field limit in both cases
(Markovian and Markovian with controlled variables) satisfies a central limit theorem, providing
insight on the speed of convergence.

We are currently investigating several extensions of these results. First, if one allows the
actions to depend on the particles, it seems natural that the limit behavior of such systems is the
same as the limit behavior of systems where the actions are random variables and that they both
converge to mean field system whose cost is averaged. Another possible direction is to consider
stochastic systems where the event rate depends on N . In such cases the deterministic limits are
given by differential equations and the speed of convergence can also be studied.
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