68 research outputs found

    Bringing pervasive embedded networks to the service cloud: a lightweight middleware approach

    Get PDF
    The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute to build new context-aware applications that interpret the state of the physical world at real-time. However, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an internetworking approach is proposed in order to address that important issue. The main part of our proposal is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols which enable developers and business processing designers to deploy, expose, discover, compose, and orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Middleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetworking approach has been validated through a real healthcare telemonitoring system deployed in a sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded networks to the Service Cloud

    Un middleware fiable para el desarrollo de aplicaciones sobre redes inalámbricas de sensores y actores

    Get PDF
    Middleware fiable para simplificar y gestionar el uso de redes inalámbricas de sensores y actores basado en el paradigma de comunicación publicador/suscripto

    A System Architecture for Software-Defined Industrial Internet of Things

    Full text link
    Wireless sensor networks have been a driving force of the Industrial Internet of Things (IIoT) advancement in the process control and manufacturing industry. The emergence of IIoT opens great potential for the ubiquitous field device connectivity and manageability with an integrated and standardized architecture from low-level device operations to high-level data-centric application interactions. This technological development requires software definability in the key architectural elements of IIoT, including wireless field devices, IIoT gateways, network infrastructure, and IIoT sensor cloud services. In this paper, a novel software-defined IIoT (SD-IIoT) is proposed in order to solve essential challenges in a holistic IIoT system, such as reliability, security, timeliness scalability, and quality of service (QoS). A new IIoT system architecture is proposed based on the latest networking technologies such as WirelessHART, WebSocket, IETF constrained application protocol (CoAP) and software-defined networking (SDN). A new scheme based on CoAP and SDN is proposed to solve the QoS issues. Computer experiments in a case study are implemented to show the effectiveness of the proposed system architecture.Comment: To be published by IEEE ICUWB-201

    Semantic Web and the Web of Things: concept, platform and applications

    Get PDF
    The ubiquitous presence of devices with computational resources and connectivity is fostering the diffusion of the Internet of Things (IoT), where smart objects interoperate and react to the available information providing services to the users. The pervasiveness of the IoT across many different areas proves the worldwide interest of researchers from academic and enterprises worlds. This Research has brought to new technologies and protocols addressing different needs of emerging scenarios, making difficult to develop interoperable applications. The Web of Things is born to address this problem through the standard protocols responsible for the success of the Web. But a greater contribution can be provided by standards of the Semantic Web. Semantic Web protocols grant univocal identification of resources and representation of data in a way that information is machine understandable and computable and such that information from different sources can be easily aggregated. Semantic Web technologies are then interoperability enablers for the IoT. This Thesis investigates how to employ Semantic Web protocols in the IoT, to realize the Semantic Web of Things (SWoT) vision of an interoperable network of applications. Part I introduces the IoT, Part II investigates the algorithms to efficiently support the publish/subscribe paradigm in semantic brokers for the SWoT and their implementation in Smart-M3 and SEPA. The preliminary work toward the first benchmark for SWoT applications is presented. Part IV describes the Research activity aimed at applying the developed semantic infrastructures in real life scenarios (electro-mobility, home automation, semantic audio and Internet of Musical Things). Part V presents the conclusions. A lack of effective ways to explore and debug Semantic Web datasets emerged during these activities. Part III describes a second Research aimed at devising of a novel way to visualize semantic datasets, based on graphs and the new concept of Semantic Planes.La presenza massiva di dispositivi dotati di capacità computazionale e connettività sta alimentando la diffusione di un nuovo paradigma nell'ICT, conosciuto come Internet of Things. L'IoT è caratterizzato dai cosiddetti smart object che interagiscono, cooperano e reagiscono alle informazioni a loro disponibili per fornire servizi agli utenti. La diffusione dell'IoT su così tante aree è la testimonianza di un interesse mondiale da parte di ricercatori appartenenti sia al mondo accademico che a quello industriale. La Ricerca ha portato alla nascita di tecnologie e protocolli progettati per rispondere ai diversi bisogni degli scenari emergenti, rendendo difficile sviluppare applicazioni interoperabili. Il Web of Things (WoT) è nato per rispondere a questi problemi tramite l'adozione degli standard che hanno favorito il successo del Web. Ma un contributo maggiore può venire dal Semantic Web of Things (SWoT). Infatti, i protocolli del Semantic Web permettono identificazione univoca delle risorse e una rappresentazione dei dati tale che le informazioni siano computabili e l'informazione di differenti fonti facilmente aggregabile. Le tecnologie del Semantic Web sono quindi degli interoperability enabler per l'IoT. Questa Tesi analizza come adottare le tecnologie del Semantic Web nell'IoT per realizzare la visione del SWoT di una rete di applicazioni interoperabile. Part I introduce l'IoT, Part II analizza gli algoritmi per supportare il publish-subscribe nei broker semantici e la loro implementazione in Smart-M3 e SEPA. Inoltre, viene presentato il lavoro preliminare verso il primo benchmark per applicazioni SWoT. Part IV discute l'applicazione dei risultati a diversi domini applicativi (mobilità elettrica, domotica, semantic audio ed Internet of Musical Things). Part V presenta le conclusioni sul lavoro svolto. La Ricerca su applicazioni semantiche ha evidenziato carenze negli attuali software di visualizzazione. Quindi, Part III presenta un nuovo metodo di rappresentazione delle basi di conoscenza semantiche basato sull’approccio a grafo che introduce il concetto di Semantic Plane
    corecore