

II

iii

© Anas Al-Roubaiey

2015

iv

 أهدي هذا العمل المتواضع إلى والدي ، حفظهما الله ورعاهما

To my parents, may Allah protect them and give them good health and happiness

v

ACKNOWLEDGMENTS

 .وعونهعلى توفيقه ومن بعدمن قبل للهالحمد و الصالحات،ي بنعمته تتم الذ لله الحمد

Praise be to Allah , Lord of all creation

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS ... XIII

ABSTRACT ... XVI

 XVII.. ملخص الرسالة

1 CHAPTER INTRODUCTION ... 1

1.1 Problem Statement .. 7

1.2 Proposed Solution ... 9

1.3 Research Questions .. 11

1.4 Research Objectives .. 12

1.5 Dissertation Organization ... 13

2 CHAPTER LITERATURE REVIEW .. 15

2.1 Pub/Sub Model Overview ... 16

2.1.1 Principles of The Pub/Sub Model .. 17

2.1.2 Pub/Sub Middleware Components ... 19

2.2 Pub/Sub in WSAN ... 34

2.2.1 Existing Solutions ... 34

2.2.2 WSAN Pub/Sub Reference Model ... 45

vii

3 CHAPTER A PUB/SUB MIDDLEWARE COST IN SENSOR NETWORKS 50

3.1 Case Study .. 50

3.2 Cost and Performance Evaluation ... 53

4 CHAPTER RTDDS: RELIABILITY PROTOCOL FOR WSAN 59

4.1 RTDDS Implementation ... 59

4.2 Performance Evaluation .. 66

4.2.1 Experiments setup.. 68

4.2.2 Full Reliability QoS Results ... 70

4.2.3 Partial Reliability QoS Results ... 75

4.2.4 Memory and Energy Consumption Results .. 78

5 CHAPTER ONLINE ENERGY MODEL ... 81

5.1 Online Energy Model Description .. 82

5.1.1 Radio Component .. 83

5.1.2 Microcontroller (MCU) Component .. 85

5.2 Simulation and Validation ... 87

6 CHAPTER BROCKER-LESS TINYDDS .. 90

6.1 Proposed Solutions ... 90

6.1.1 Default TinyDDS ... 91

6.1.2 Broker-Less TinyDDS ... 92

6.1.3 Hybrid TinyDDS .. 93

6.2 Performance Evaluation .. 95

6.2.1 Test Scenario and simulation setup .. 95

6.2.2 Performance Metrics .. 97

6.2.3 Results and Analysis ... 99

viii

7 CHAPTER EATDDS .. 114

7.1 EATDDS Description .. 114

7.2 Performance Evaluation .. 116

7.2.1 Experiment setup ... 116

7.2.2 Performance metrics .. 117

7.2.3 Results and analysis ... 118

8 CHAPTER CONCLUSIONS AND FUTURE WORKS ... 126

REFERENCES ... 130

APPENDIX A ... 142

ID-Based Routing ... 142

APPENDIX B ... 146

Adaptive Reliability Protocol for Wireless Sensor Networks using Packet Delivery Ratio Metric 146

VITAE ... 154

ix

LIST OF TABLES

Table 1 Pub/Sub WSAN Solutions (D: Deadline; P: Priority; R: Reliability 47

Table 2 Pub/Sub WSAN Solutions, Evolution and Features Summary 48

Table 3 Simulators Used in Evaluating Pub/Sub Solutions for WSAN 49

Table 4 Simulation setup .. 69

Table 5 The three main scenarios in the simulation study .. 69

Table 6 RTDDS performance with high and low data rates ... 75

Table 7 Radio Current Consumption of MicaZ and TelosB ... 85

Table 8 MCU Current Consumption of MicaZ and TelosB ... 87

Table 9 The OEM and PTZ validation comparison .. 89

Table 10 Simulation setup .. 97

Table 11 MicaZ Energy model parameters ... 105

Table 12 Energy consumption figures' symbols ... 110

Table 13 Prototype end-to-end delay .. 123

x

LIST OF FIGURES

Figure 1 Traditional WSN architecture ... 2

Figure 2 WSAN architecture with partially and fully automated interaction 3

Figure 3 Middleware layer hides the complexity of underlying layers 7

Figure 4. Simple architecture for publish/subscribe communication model 18

Figure 5. Main components of publish/subscribe middleware ... 20

Figure 6. The 3-Layers WSAN architecture ... 22

Figure 7. General message format .. 23

Figure 8. Pub/Sub schemes ... 24

Figure 9. Topics represented by C++ structures ... 26

Figure 10. Content-based vs. Topic-based Pub/Sub interaction 28

Figure 11. Notification Service ... 30

Figure 12. Directed Diffusion simplified schematic. (a) Interests propagation. (b)

Gradients setup. (c) Reinforced path. .. 36

Figure 13. Mires Architecture ... 37

Figure 14. MQTT-S architecture .. 38

Figiure 15. TinyCOPS architecture... 39

Figure 16. PS-QUASAR architecture ... 40

Figure 17. UPSWSN-MM publish/subscribe system ... 41

Figure 18. TinyDDS architecture over TinyOS and MicaZ platform 44

Figure 19 Pub/sub middleware reference model .. 46

Figure 20: Case study network topology; Sub (BS): subscriber (base station), Pub (Sr):

publisher (sender). ... 52

Figure 21. Basic application algorithm ... 52

Figure 22 Packet delivery ratio comparison. .. 54

Figure 23 End-to-end delay comparison. .. 56

Figure 24 Memory cost comparison. .. 57

Figure 25 Energy consumption comparison ... 58

Figure 26 RTDDS Architecture .. 62

Figure 27 RTDDS Classifier on the publisher side .. 64

Figure 28 The reliability algorithm of RTDDS with FRQoS level 65

file:///C:/Users/PS3-279/SkyDrive/PhD/writing/EATDDS%20v9.docx%23_Toc423618670
file:///C:/Users/PS3-279/SkyDrive/PhD/writing/EATDDS%20v9.docx%23_Toc423618670
file:///C:/Users/PS3-279/SkyDrive/PhD/writing/EATDDS%20v9.docx%23_Toc423618673

xi

Figure 29 PRQoS level algorithm ... 66

Figure 30 Interference effect on the performance of RTDDS .. 71

Figure 31 The impact of RTO and No. of hops on RTDDS perfromance 72

Figure 32 The impact of number of publishers and data rate on RTDDS performance ... 74

Figure 33 Partial Reliability QoS results with five and one seconds IPI and five

publishers ... 76

Figure 34 RTDDS and TinyDDS Memory consumption based on TelosB platform 79

Figure 35 Energy consumption of RTDDS (FRQoS level) and TinyDDS 80

Figure 36 Online Energy Model Architecture .. 83

Figure 37 Energy consumption of the Radio Component .. 88

Figure 38 Energy Consumption of the MCU component ... 89

Figure 39 The sequence diagram of the discovery and data dissemination phases of

DefTDDS ... 92

Figure 40 The sequence diagram of the discovery and data dissemination phases of

BLTDDS .. 93

Figure 41 The sequence diagram of the discovery and data dissemination phases of

HyTDDS .. 94

Figure 42 The tested scenario with 5 publishers, 3 subscribers and 3 topics 96

Figure 43 The number of discovery process messages vs. IPI 101

Figure 44 The average discovery time of new subscriber .. 101

Figure 45 Packet delivery ratio of the reliable scenario ... 102

Figure 46 Packet delivery ratio of the best-effort scenario ... 103

Figure 47 End-to-End scenario of the reliable scenario .. 104

Figure 48 End-to-End delay of the best-effort scenario .. 104

Figure 49 Total energy consumption in milli-Joule for reliable QoS 106

Figure 50 Total Energy Consumption in milli-Joule for Best Effort QOS 106

Figure 51 Radio and MCU energy consumption of DefTDDS with Reliable QoS 108

Figure 52 Radio and MCU energy consumption of BLTDDS with Reliable QoS 108

Figure 53 Radio and MCU energy consumption of HyTDDS with Reliable QoS 109

Figure 54 DefTDDS energy consumption distribution over the network nodes 111

Figure 55 BLTDDS energy consumption distribution over the network nodes 113

xii

Figure 56 HyTDDS energy consumption distribution over the network nodes 113

Figure 57 Cluster formation of EATDDS ... 115

Figure 58 The network Total Energy Consumption ... 118

Figure 59 Remaining energy at the end of network life time ... 119

Figure 60 Packets per Joule vs. Inter-Packet Interval ... 119

Figure 61 Network life time at the moment the first node dies 120

Figure 62 TelosB mote platform ... 121

Figure 63 Experiment environment and testbed ... 122

Figure 64 The Base Station attached to the PC USB port .. 122

Figure 65 Network life time using 7 motes with AA energizer batteries 123

Figure 66 ROM occupied space after uploading EATDDS .. 124

Figure 67 RAM occupied space after uploading EATDDS to TelosB mote 125

Figure 68: Id-based Routing method .. 143

Figure 69 Rounds distribution over the network life time .. 150

Figure 70 Round algorithm flowchart... 151

Figure 71 Adaptive reliability switching algorithm flowchart 152

Figure 72 Adaptive reliability regions .. 153

xiii

LIST OF ABBREVIATIONS

BE : Best-Effort

BEQoS : Best-Effort Quality of Service

BLTDDS : Broker-Less TinyDDS

BLTDDS : Broker Less TinyDDS

DDS : Data Distribution Service

DefTDDS : Default TinyDDS

DMR : Dropped Message Ratio

DYMO : Dynamic MANET On demand

EATDDS : Energy-Aware TinyDDS

EDF : Earliest Deadline First

EED : End-to-End Delay

FIFO : First In First Out

FR : Full Reliability

FRQoS : Full Reliability Quality of Service

HyTDDS : Hybrid TinyDDS

HyTDDS : Hybrid TinyDDS

IFS : Interference Free Scheduling

xiv

IPI : Inter-Packet-Interval

JMS : Java Message Server

MANET : Mobile Ad-hoc NETworks

MCU : MicroController Unit

PDR : Packet Delivery Ratio

PR : Partial Reliability

PRQoS : Partial Reliability Quality of Service

Pub/Sub : Publisher/Subscriber

QoS : Quality of Service

RAM : Random Access Memory

Rd/Msg : Redundunt per Message

R-DR : Reliable Data Reader

R-DW : Reliable Data Writer

ReTx : Retransmissions

RN : Rendezvous Node

ROM : Read Only Memory

RTDDS : Reliable TinyDDS

xv

RTO : Retransmission TimeOut

SA : Sensor/Actuator

TOSSIM : TinyOS SIMulator

WSAN : Wireless Sensor/Actuator Network

WSN : Wireless Sensor Network

xvi

ABSTRACT

Full Name : [Anas Abdelwahid Al-Roubaiey]

Thesis Title : [ENERGY-AWARE PUBLISH/SUBSCRIBE DDS-BASED

MIDDLEWARE FOR WIRELESS SENSOR AND ACTUATOR

NETWORKS]

Major Field : [Computer Science and Engineering]

Date of Degree : [May, 2015]

In the recent years, the publish/subscribe (pub/sub) communication model has emerged as

a suitable communication paradigm for large-scale distributed systems. That is due to its

effective decoupling properties for the network’s participants in time, space, and

synchronization. These properties are well-suited for Wireless Sensor/Actuator Networks

(WSAN) applications. Data Distribution Service (DDS) is a well-known standard in the

academic and industrial communities for supporting real-time distributed systems based on

the pub/sub model. In addition to the pub/sub model advantages, DDS has a rich set of

Quality of Service (QoS) polices. Therefore, porting DDS function into WSAN may

significantly improve its performance in terms of QoS support, scalability, portability, and

interoperability. TinyDDS is a light weight and partial porting of DDS middleware to WSN

platforms. As such, TinyDDS in its current form has several limitations, such as: (1) it does

not support any form of reliability for data delivery, (2) it has a battle neck problem in the

event routing protocol, and (3) it does not has an energy aware mechanism to tackle the

scares energy source problem of WSAN. This work added several contributions to the

efforts of porting DDS standard benefits into WSAN. These contributions are: (1) a

comprehensive review for the pub/sub model, and the state of the art solutions of

integrating pub/sub into WSAN is conducted; (2) The cost of adding pub/sub model into

WSAN is thoroughly evaluated; (3) the DDS reliability QoS is improved to suit WSAN

requirements and the improved DDS reliability QoS is ported into TinyDDS; (4) the

problem of central event routing is tackled by proposing broker-less solutions; (5) an

energy aware protocol is developed and tested.

xvii

 ملخص الرسالة

 حسن الربيعي دعبد الواح أنس :الكاملالاسم

 لطاقةومعلومات انشر البيانات والتحكم بموثوقيةبرنامج النشر والإشتراك لشبكات الإستشعار :عنوان الرسالة

 الالي وهندسة الحاسبعلوم التخصص:

 2015مايو، :تاريخ الدرجة العلمية

(كنموذج إتصالات مناسب جدا للنظم pub/subالنشر والإشتراك)نشر/إشتراك برز نموذج الأخيرة،في السنوات
 ين،المرسلعناوين الإرسال،إلى خصائصه الفعالة في عدم ربط النظام بوقت ويعود ذلكالموزعة على نطاق واسع.

 مؤخرا،(. WSAN) والتحكم اللاسلكيةالبيانات. هذه الخصائص تعتبر مناسبة تماما لشبكات الاستشعار وتزامن نقل
(, و هو معيار مشهور و DDSبرز ايضا معيار معتمد لنموذج النشر والإشتراك, يسمى خدمة توزيع البيانات)

مجموعة يحتوي على والاشتراك بأنهمعروف جدا اكاديميا و صناعيا. يتمتع هذا المعيار بالإضافة الى خصائص النشر
 وكجهد اولي. وكفاءة عاليةور اداء الأنظمة الموزعة بشكل فعال تط التي(QoSغنية من سياسات جودة الخدمة)

 لطاقة،والتخزين وابشكل كبير من نقص الموارد كالمعالجة والتي تعاني الاستشعار،شبكات الى DDSلنقل مميزات
لتناسب قدرات الشبكات DDSفي بوسطن بتطوير نسخة مصغرة من سماساتشوستقامت مجموعة خبراء من جامعة

لا زال هناك اولي، وكأي جهد. DDSالنسخة المصغرة من TinyDDSالنسخة بتقنية وسمية هذه ستشعارية،الا
(لا يدعم اي شكل من اشكال الموثوقية لنقل 1ايجازها فيما يلي:) والتي يمكن TinyDDSبعض الثغرات في

(3عار.)شتسع القدرات المحدودة لشبكات الإا ميتناسب اطلاق والذي لا(يستخدم النقل المركزي للبيانات 2البيانات.)
لا تعتمد وظيفته على توزيع الطاقة المتبقية على عناصر الشبكة مما قد ينهي عمر الشبكة ولا زال لديها كمية كبيرة

مع اختبار دقيق TinyDDSلمشاكل ونضع حلولانقدم نظرة شاملة لهذه التقنيات العمل،من الطاقة المخزنة. في هذا
المساهمات التي يقدمها هذا العمل ويمكن حصر. TinyDDSللحلول المقدمة مع النسخة الاصلية ل رنة عادلةومقا

للحلول المقدمة طبقا لهذا النموذج لشبكات ودراسة دقيقة اشتراك،(مراجعة شاملة لنموذج ال نشر/1كالتالي:)
عن التكلفة الفعلية متكاملوتحقيق تقديم دراسة (2الاستشعار مع مقارنتها مع بعضها من حيث المميزات والعيوب.)

(تحسين جودة الخدمة 3القدرات.) ةالمحدودشعارية تسالى الشبكات الإ ،DDSمتمثلا بال النموذج،ضافة هذا لإ
الخدمة الى ونقل هذهلتناسب قدرات الشبكات الاستشعارية مع تطوير DDSنقل البيانات للمعيار والموثوقية في

(4TinyDDS. حل المشكلة المركزية في نقل البيانات في تقنية)TinyDDS بتقديم حلول تنهي تماما او جزئيا
تقنية تعتمد في نقل بإضافة TinyDDSتقديم حل متكامل لكل ما سبق مع تطوير اداء واخيرا،(5هذه المشكلة.)

شعارية ينتج عنه زيادة في عمر الشبكات الاستالبيانات على مراقبة الطاقة المتبقية في عناصر الشبكات اللاسلكية مما
 (. WSANوالتحكم)للمراقبة

1

1 CHAPTER 1

INTRODUCTION

Sensor networks are composed of tens/hundreds of low-priced and tiny devices with

limited capabilities that are deployed to an area of interest to monitor the behavior of a

particular phenomenon. In traditional single sink/base station WSN applications, the data

flow usually moves from the sensors to the monitoring application through a sink node, as

shown in Figure 1. The deployed sensors collect and send the data to the sink node using

one-to-many communication pattern [1]. Thus, the main function on WSN was to sense

and collect the data from the surrounding area without doing any action. Many applications

benefit from this functionality, such as environmental monitoring, Structural Health

Monitoring (SHM), Human Health Monitoring (HHM), habitat monitoring, and military

surveillance. However, due to the recent advances in sensor-based network technology the

Wireless Sensor and Actor Networks (WSAN) have emerged as enabling technology for

in-network decision making, where the network can sense and react without the need to go

to external and control applications [2].

2

Monitoring

Application

Sink
Sink

Sensors

Monitored

Area

Figure 1 Traditional WSN architecture

Figure 2 depicts this technology, and how it supports the process automation in many

applications such as home automation, Industrial Process Automation (IPA), detection and

reaction systems, e.g., nuclear, chemical and toxic gas attacks detection, and recently smart

cities and Internet of Things (IoT); where WSAN is one of the main enabling factors of

IoT [3] [4]. According to the data exchange in WSAN, the process automation in WSAN

applications can be classified into partial and fully automated applications [5].

Figure 2, part (a) illustrates the partial automation interaction, where the sink is involved

in decision making, which is more centralized and controlled, but incurs more delay. In

contrast, in the fully automated interaction, as shown in

Figure 2 part (b), the sensors sense the data and send it directly to the actuators for

processing and reacting in response to the result of the local data analysis. The fully

automated approach is more suitable for real-time applications since it reduces the time

and overhead of centralized approach, i.e. partial automated approach.

3

Sink
Sink

Monitored

Area

a. Partially Automated

Sink
Sink

Monitored

Area

b. Fully Automated

Sensor

Actuator

Figure 2 WSAN architecture with partially and fully automated interaction

After knowing what WSAN is, we define the publish/subscribe model and its suitability

for WSAN. A publish/subscribe (pub/sub) paradigm is a messaging based communication

model, where senders, called publishers, send their data to a logical data space, called

middleware, without knowledge of who or where are the receivers, called subscribers.

Similarly, subscribers receive only the data of interest, without knowledge of who or where

are the publishers. The Pub/Sub interaction paradigm is designed to suite large-scale

distributed real-time applications. Oh et al. [6] have done a suitability analysis for pub/sub

scheme, their main remarks were as follows:

 Pub/sub model has advantage when system is large and data transfer is shared

among many clients; which is mostly the case in sensor networks where large

number of sensors are deployed to deliver the monitored object information to

multiple sinks and/or actuators.

 Pub/sub model is suitable when events or data updates occur infrequently. For

example, event-based applications that mainly monitor and control distributed

systems (e.g. WSAN).

4

 Pub/sub model is suitable when the degree of common interest is high. For example,

in WSAN applications the data gathered by sensors highly has a common interest

by the multiple sinks, applications, or actuators.

 Pub/sub model is more suitable than request/replay model in less user intervention

applications.

 In pub/sub model data updates are immediately delivered to subscribers which is

more suitable for real-time applications where deadline is short or strict. For

example, in battlefield surveillance WSN.

 When clients seldom use published data, pub/sub model is not suitable.

The scalability and robustness of the paradigm came from its decoupling properties in time,

space, and synchronization [7]. Particularly, these properties make it more suitable for data-

centric sensor network applications. Moreover, the sensor network applications have

distinct characteristics that make Pub/Sub middleware the appropriate solution for such

environments [8] [9].

These main characteristics and design issues that make pub/sub suitable for WSAN are as

follows:

Many-to-Many Interaction. Multiple sinks (base stations) sensor networks and WSAN

applications migrate the sensor network based applications form one-to-many to many-to-

many communication model. In these new applications, the data should flow in both

directions from sensors to actuators or sinks and vice versa. For example, the main role of

the sensor is to publish the data that is collected for the monitored area, whereas the actuator

5

is the subscriber who subscribe to the sensor data to be analyzed and do some appropriate

action. However, the sensor also needs to be a subscriber to get the control data from the

sink (e.g. sleep, wake up, or configuration data like software new setting parameters and

updates); also the actuator needs to be a publisher to send the information to the sink nodes.

Thus, the large-scale distributed sensors and actuators with many-to-many communication

requirements are realized by Pub/Sub interaction model, where it is basically a many-to-

many communication model [7].

Data-Centric. Data-centricity is a key feature of WSANs that distinguishes them from

other wireless data networks; it provides efficient usage of their limited resources and

matches well their nature [10]. In WSAN the application is not interest in the identity of

the sensor, rather the interest is in the data gathered from the monitored physical

environment. Nowadays many applications may be interested in different types of data

from the same WSAN infrastructure, whereas the traditional single sink WSN applications

were designed mostly to support one application per network. For example, a building

monitoring application may need to concurrently monitor the building temperature, wall

cracks, light intensity, and movements. Moreover, it may contain actuators to support

physical reaction, e.g. reduce the building temperature by loosening the cooling valve in

the cooling system. This type of applications leads to the concept of data-centric

producer/consumer (Pub/Sub) communication paradigm; where the subscribers (sinks,

actuators and end user applications) are interested in the information coming from the

publishers (sensors), and they do not know exactly from where the data comes in terms of

network address. Another example, in a tracking system the end-user who is responsible

for the monitoring process is interested in the location of the monitored object, but not in

6

the addresses of the GPS devices which delivered this information [11]. From the data flow

of the sensor device, it can be a publisher, e.g. publishing readings like temperature, gas

intensity, location, or humidity, and a subscriber at the same time, e.g. subscribing to

controls signals.

Network Dynamics. Although sensor networks are mostly stationary, the dynamicity

appears in several situations; (1) when the nodes are joining or leaving the network due to

the hardware or software failures in the node or network links (wireless links are error-

prone). (2) New applications may be added at the end-user monitors or crashed due to

software errors. (3) For energy saving, node state changes continuously from active to sleep

modes or deep sleep modes where it may join again with new network address. (4) Some

of the WSN network protocols are changing their network addresses from time to time (e.g.

ZigBee) [12]. This dynamic network behavior makes Pub/Sub interaction paradigm the

most suitable solution for such type of networks. In which the data is stored in buffers

(queue structures) and submitted whenever there is a connection (decoupling in time

property). Moreover, the Pub/Sub middleware hides the underlying network details from

the application to mitigate the network addresses continuous changes when nodes leave

and join the network.

Heterogeneity. Currently different varieties of sensor platforms exist in the industry field,

due to the lack of standards in WSN technology [13]. As a result, a tightly coupled

application is developed to meet the applications’ requirements, where the developers

should be aware of the detailed information of underlying network layers of the targeted

platform. Also, it will be a very difficult and complex task when they want to integrate

different platforms or integrate the WSN to the pub/sub-based enterprise networks [11].

7

Eventually, after intensive efforts that have been done by developers, a tightly coupled

complex applications are developed, where these applications are very complex, not

reusable, not portable, and even very difficult to upgrad. For instance, Valley Forge ship

sank on 2 November 2006 because the system software could not integrate new technology

and modern weapons; shockingly, upgrading the software cost too much to justify the

existence of a billion-dollar asset [14]. The pub/sub middleware comes to mitigate this

problem by implementing an intermediate layer between applications and underlying

platforms ,as shown in Figure 3, to ease the applications development and makes them

more portable, interoperable, and upgradable.

Figure 3 Middleware layer hides the complexity of underlying layers

1.1 Problem Statement

The data-centricity and decoupling properties in time, space, and synchronization of the

pub/sub interaction scheme make it an appropriate solution for real-time and large-scale

distributed computing systems. Also, Data-centricity and decoupling properties are key

Physical (PPP, DSL, Ethernet, WLAN, SONET, Bluetooth, GSM, ….)

HW (e.g. Servers, PC,

PDA,Sensors, …)

OS (e.g. Windows, Unix,

Linux, Solaries, Android,

VxWoRK, TinyOS, …)

MAC (e.g. CDMA, TDMA, S-

MAC, B-MAC, Zigbee, …)

Network (e.g. IP4, IP6, ICMP,

BGP,RIP, DSR, …)

Transport (e.g. TCP, UDP,

DCCP, ..)

HW (e.g. Servers, PC,

PDA,Sensors, …)

OS (e.g. Windows, Unix,

Linux, Solaries, Android,

VxWoRK, TinyOS, …)

Mac (e.g. CDMA, TDMA, S-

MAC, B-MAC, Zigbee, …)

Network (e.g. IP4, IP6, ICMP,

BGP,RIP, DSR, …)

Transport (e.g. TCP, UDP,

DCCP, ..)

HW (e.g. Servers, PC,

PDA,Sensors, …)

OS (e.g. Windows, Unix,

Linux, Solaries, Android,

VxWoRK, TinyOS, …)

MAC (e.g. CDMA, TDMA, S-

MAC, B-MAC, Zigbee, …)

Network (e.g. IP4, IP6, ICMP,

BGP,RIP, DSR, …)

Transport (e.g. TCP, UDP,

DCCP, ..)

Middleware

Application 1 Application 2 Application n

P
la

tf
o

rm
 1

P
la

tf
o

rm
 2

P
la

tf
o

rm
 n

APIs APIsAPIs

8

features of WSANs that distinguish them from other wireless data networks. Therefore, the

pub/sub model provides efficient usage of their limited resources and matches well their

functionality [10] [15] [16]. Many works have been done in enabling publish/subscribe

interaction scheme in WSN/WSANs [17] [18] [16]. However, to the best of our knowledge,

none of them thoroughly investigated the cost of enabling this technology in networks with

constrained resources like WSAN; most of their focus was on adapting the pub/sub service

for sensor networks and providing them with Quality of Service (QoS) support.

With limited resources networks, it is important to evaluate the cost of adding an

advantage. The major resource constraint in WSAN is energy, where sensors and actuators

are battery-powered devices. In most cases, it would be very costly and difficult,

impossible sometimes, to change their batteries due to the hazard and harsh environments

where they are deployed, e.g. in battle field surveillance. Therefore, energy saving is a

critical issue in such type of networks, where it highly impacts network life time.

Unfortunately, most of the pub/sub WSN/WSAN proposed solutions have not been

evaluated in terms of energy consumption; consequently, nearly no energy saving

techniques have been proposed. One recently proposed solution [19] has taken this in

account and added energy consumption balancing technique in his proposed middleware.

However, the energy consumption evaluation and analysis was very brief and did not even

evaluate the QoS parameters cost in terms of energy consumption. Moreover, the proposed

solution was not standard-based solution that would facilitate the integration of

sensor/actuator networks to enterprise networks.

9

1.2 Proposed Solution

To tackle the lack of standardization and QoS support in WSN/WSAN, our proposed

solution is, unlike the previous work, standard-based middleware, based on Object

Management Group (OMG) Data Distribution Service (DDS), and focuses on evaluating

the actual cost of applying pub/sub interaction scheme to WSAN; specifically in terms of

energy consumption, memory footprint, and communication overhead. Furthermore,

improvements are added to the existing pub/sub WSAN protocol to get an energy aware

protocol and to fit the WSAN. Here, the big question would be why we selected DDS-based

solution? , the answer is in the following points:

 DDS is a well-known pub/sub middleware standard and widely used in current

enterprise networks, which should facilitate the integration of such networks to

WSANs.

o “DDS proposes an interesting pub/sub abstraction that greatly simplifies

the communication tasks. It also provides a way to specify QoS constraints

in the communication and the fact that it is an OMG standard makes it an

attractive option for WSAN CIP (Critical infrastructure protection)

systems” [20].

 That makes it a potential unified middleware for WSAN.

 DDS provides a rich of QoS policies that can be ported into WSAN

 Energy consumption for DDS-based solutions have not been thoroughly

investigated yet in the WSN/WSAN context.

 No energy saving or balancing mechanism has been proposed.

10

 WSAN not evaluated yet, where the only evaluated DDS-based solution was for

WSN.

In an attempt to integrate the various benefits in terms of standardization, real-time

communication and QoS functions into WSN, TinyDDS [21] provides a light-weight and

partial porting of the DDS middleware for WSN. Unfortunately, the current porting of the

TinyDDS [22] has the following limitations:

 It does not thoroughly investigate the TinyDDS cost

 It does not implement any of the reliable data delivery functions supported in the

original DDS standard.

 It still has a centralized problem, which leads to bottleneck and single point of

failure

 It does not have an energy aware mechanism

In this work, all these limitations are tackled and a final energy-aware version that provides

the pub/sub and DDS technologies benefits is developed. Specifically, a thorough cost

evaluation for adding TinyDDS to sensor-based networks is conducted. Throughput the

reminder of this work, we refer to both WSN and WSAN as sensor-based networks. In

adding reliability to TinyDDS, we enhance the original DDS standard middleware by

adding a third reliable data delivery level, referred to here by partial reliability (PR), and

port all the respective reliability functions into the existing TinyDDS. The resulting new

middleware is referred to by Reliable-TinyDDS (RTDDS). For the centralized problem,

we proposed two main solutions that totally eliminate the central control node in TinyDDS.

The new solutions are extensively evaluated via simulations and prototyping. The last

11

enhancement is the addition of an energy-aware mechanism to RTDDS, to minimize the

energy consumption and thus prolong network life time. The resulting new middleware is

referred to as Energy-Aware TinyDDS (EATDDS).

1.3 Research Questions

RQ1: What are the existing techniques of applying pub/sub model over sensor-based

networks? What are their capabilities and limitations?

RQ2: What is the actual cost of applying pub/sub model on sensor-based networks in terms

of memory footprint, energy consumption, and communication overhead?

RQ3: What are the main limitations of TinyDDS?

RQ4: To what extent would the pub/sub middleware scale up, in terms of number of nodes

and/or work load, specifically when using full reliability QoS?

RQ5: What is the efficient energy consumption model that can be developed to test the

default TinyDDS and its enhanced versions in terms of energy consumptions?

RQ6: What are the possible improvements to be added to TinyDDS to get a low energy

consumption protocol while continuing to support QoS?

 RQ7: What are energy saving mechanisms that can improve the performance of TinyDDS

and prolong the network life time?

12

1.4 Research Objectives

The main objective of this research is to use standard-based solution to minimize the energy

consumption of WSANs when applying the pub/sub interaction scheme, while maintaining

the QoS support. Specifically, the objectives of this study are as follows:

1. Conducting an extensive literature review for the following:

o The pub/sub interaction scheme (i.e. its main concepts, components,

architectures, and variants).

o Previous work in pub/sub middleware for WSN and WSAN, and

conducting a comparison study.

2. Conducting extensive simulations to thoroughly investigate the following

issues:

o Energy and memory consumptions in different scenarios and under

different workloads with/without using pub/sub interaction scheme.

o Network performance in terms of packet delivery ratio and end-to-end

delay with/without applying pub/sub middleware.

3. Developing an energy consumption model that can be used to estimate the

default and enhanced versions of TinyDDS, and to develop EATDDS. Note that

this objective is due to the lack of online energy consumption measurements in

TinyOS simulators, which restricts the TinyOS research community from

developing energy-aware protocols for TinyOS based applications.

13

4. Implementing and testing a reliability protocol for TinyDDS, by improving and

porting the reliability QoS levels of DDS standard, called RTDDS.

5. Investigating the different solutions that can be added to TinyDDS middleware

to come up with a reliable and fully decentralized middleware.

6. Developing and energy-aware protocol for TinyDDS that improve its energy

consumption and prolong network life time, called EATDDS.

1.5 Dissertation Organization

The remaining part of this thesis is organized as follows:

 Chapter 2: introduces a comprehensive background about pub/sub

communication model, including its main properties, functions, components. In

addition, this chapter surveys and compares the state of the art solutions of the

pub/sub middleware for sensor-based networks. Finally, this chapter introduces

a general reference model of pub/sub middleware for WSAN.

 Chapter 3: the main point of this chapter is evaluating the cost evaluation of

integrating pub/sub middleware into sensor-based networks. It provides a

description of the scenarios used in the evaluation study, and presents the results

and analysis.

 Chapter 4: introduces the first TinyDDS improvement, where the reliability

protocol RTDDS’ implementation is described in details. It includes the porting

of DDS standard reliability QoS levels into TinyDDS, and also the new

reliability QoS level that we added to meet the requirements of WSAN

applications. Also, this chapter includes the simulation experiments, results,

14

and analysis of RTDDS. In addition, a prototype of RTDDS results and analysis

are described.

 Chapter 5: introduces the TinyOS SIMulator (TOSSIM) enhancement that

enable it to measure the energy consumption metric. It describes in detail the

online energy model and its implementation in TOSSIM simulator. Also, it

includes the validation study of this model by comparing its results with a well-

known simulator in this field.

 Chapter 6: this chapter uses the model introduced in chapter 5 to evaluate the

proposed solutions of the single point of failure problem in TinyDDS. Where

two techniques are proposed: (1)The Broker-Less that completely eliminates

the TinyDDS broker, and (2) the Hybrid solution that partially eliminates the

TinyDDS broker. It also includes the simulation results and analysis.

 Chapter 7: this chapter describes improvements introduced to RTDDS to make

it an energy-aware protocol, and the final version is called EATDDS. It includes

the EATDDS protocol description and also the comparative study of RTDDS

and EATDDS results and analysis.

 Chapter 8: introduces conclusions, recommendations.

15

2 CHAPTER 2

LITERATURE REVIEW

Many studies have been conducted to adapt Pub/Sub communication model to WSN. In

this paper, we review the Pub/Sub interaction paradigm in the context of WSN. Moreover,

we classify, analyze and synthesize different solutions proposed recently in WSN/WSAN

and discuss the open problems and new research directions in the area. Finally, we propose

a new reference model for pub/sub middleware in wireless sensor and actuator networks.

To the best of our knowledge this is the first survey on pub/sub in WSAN in the literature.

Pub/Sub interaction scheme has been proven as a scalable and robust solution in many

applications, including many industrial systems and research prototypes. Several surveys

have been conducted in the literature on pub/sub systems and prototypes [7] [23] [24] [25].

However these surveys were general and not specific for WSN/WSAN and limited

resources systems; where the focus on sensor-based networks was very little. Also,

numerous previous surveys were more generic under the title of middleware in WSN [26]

[27] [28]. In contrast, this study is more specific where it is totally focused on the Pub/Sub

solutions and covers state of the art solutions. These solutions are thoroughly described,

investigated, and compared in detail in terms of their architectures, implementations, and

evaluation mechanisms.

The methodology used to perform the conducted searches is described in this paragraph.

Our concern was mainly on papers published during the last decade. For example, the

following journals and conference proceedings were included: IEEE Transactions on

16

Parallel and Distributed Systems, Computer Networks, Wireless Networks, IEEE/ACM

Transactions on Networking, and Ad Hoc Networks; the IEEE Conference on Computer

Communications (INFOCOM), the International Conference on Distributed Computing

Systems (ICDCS). We observed that some of the techniques have multiple publications

that were considered as improvements to the same technique, for example, TinyDDS has

three papers titled “Middleware Support for Pluggable Non-functional Properties in

Wireless Sensor Networks” [29] , “Self-Configuring Publish/Subscribe Middleware for

Wireless Sensor Networks” [30], and “TinyDDS: An Interoperable and Configurable

Publish/Subscribe Middleware for Wireless Sensor Networks” [21]. In such cases, we

counted them as one technique and the enhancements were taken in consideration in the

comparison. During the searching process, we found that some of the papers do not propose

a new technique of pub/sub in sensor networks, rather they describe some issues related to

the subject, for example, data matching algorithms were thoroughly investigated by

Heidemann et. al. [31]; these papers also included in the description part.

2.1 Pub/Sub Model Overview

In this section we review the pub/sub interaction scheme in the context of sensor networks.

The main components of any pub/sub system are described and their implementation

challenges in sensor networks are highlighted. Also, pub/sub model variants are identified

in terms of subscription model and notification service architecture. We used the

information presented here in the classification of the existing solutions of pub/sub scheme

in WSN/WSAN applications in the next section.

17

2.1.1 Principles of The Pub/Sub Model

The pub/sub interaction scheme is proposed for large-scale distributed systems to make

them flexible, scalable, and faster. Figure 4 depicts the basic model of pub/sub system and

its main components. The core component is the pub/sub service or notification service

that mainly provides storage service and manages the subscriptions. As illustrated in Figure

4, data logically appears as a global data space whereas in real implementations it is

distributed over the system end-nodes and/or brokers, i.e. centralized servers. The

notification service acts as a mediator between publishers (producers) and subscribers

(consumers). The subscriber who is interested in a certain event, for example in Figure 4

like E1, E2, or E3, has the ability to express his interest by using subscribing function

sub(E), and subsequently the notification service matches the subscription with the existing

events which have been published by the publishers, and delivers the matched event to the

subscriber. Three main operations are used in publish/subscribe systems: (1) pub (E) to

publish the events, (2) sub (E) to subscribe to a certain event, and (3) unsub (E) to

unsubscribe to an event. The participants could be either a publisher or subscriber or both

at the same time as depicted in the Figure by pub/sub entity. Eugster et al. [7] described the

pub/sub model in more detail.

18

Publish/subscribe
Service

E3

E2

E1

SubscriberSubscriber

PublisherPublisher

SubscriberSubscriber

PublisherPublisher

PublisherPublisher

Publisher/
Subscriber

Publisher/
Subscriber

Global Data Space

Pub(E1)

Pub(E2)

Pub(E3)

Pub(E3)

Sub(E2)

Sub(E3)

Sub(E1)

Figure 4. Simple architecture for publish/subscribe communication model

For flexibility and scalability, pub/sub service provides the decoupling between

publishers and subscribers in three dimensions named as decoupling properties [32]:

 Space dimension: the interacting entities (publishers and subscribers) do not need to

know each other because their main interest is in the event itself no matter from

where it comes. The pub/sub service is the mediator between publisher and

subscriber; where the publisher publishes events through the pub/sub service and the

subscriber gets the events indirectly from the pub/sub service.

 Time dimension: the interacting entities do not need to be actively participating in

the interaction at the same time. For example, the publisher can publish certain event

while the subscriber to that event might come after a while or even after the publisher

life time is over; also the subscriber might subscribe to certain event that has not

been published yet. That is very useful for high dynamic networks such as high error-

prone wireless networks where the nodes disconnection rate is high.

 Synchronization dimension: that means no blocking in both sides (publisher and

19

subscriber); while executing some concurrent tasks, publishers and subscribers are

not blocked during publishing or subscribing to events. In contrast, in synchronous

communication paradigms the end node is blocked until the other node receives the

message, which leads to rigid and static applications.

Distributed systems are asynchronous by nature, such as mobile systems [33] and

sensing dynamic environments in WSN [34]. Removing dependencies between the

interacting participants makes the decoupling properties significantly increase the

scalability of these systems and make them faster.

2.1.2 Pub/Sub Middleware Components

In this section we describe the main components of pub/sub system within the context of

sensor-based networks. As shown in Figure 5, the Pub/Sub system consists mainly of five

components: 1) the programming abstractions and APIs (Application Programming

Interfaces), 2) end nodes which are publishers and subscribers, 3) event/query

(publications/subscriptions) messages, 4) pub/sub service (Notification service), and 5) QoS

mechanisms that could be supported by pub/sub applications.

20

Figure 5. Main components of publish/subscribe middleware

Programming abstractions

In order to reduce the complexity and increase the efficiency of the WSAN applications

development, programming abstractions are introduced in the form of Application

Programming Interfaces (APIs). For example, in Pub/Sub based applications, which are

mostly event-driven applications [35], the main middleware APIs (Application Programming

Interface) are provided to create, publish, subscribe, and unsubscribe a certain event. These

programming abstractions are built to ease the application development by hiding the

heterogeneity and the detailed and complex information of the underlying network layers

from the application developers. For example, a sense-and-react application program can be

developed easily by writing six instructions in Maté middleware [36]. There are two main

abstraction levels regarding WSAN applications, the node level and system level. At the node

level, the developer has a fine-grained control on the network, where he can program the

action and cooperation of the individual SA (Sensor/Actuator) devices [37]. Thus, this level

of abstraction supports the developer to build more efficient WSAN applications in terms of

resource allocation and power consumption. At the system level, the WSAN abstracts to one

Pub/Sub Middleware

Components

Programming

Abstractions

Messages

Event/Query

QoS

Mechanisms

Notification

Service

End nodes

Pub/Sub

21

single virtual system with global behavior, which makes the task easier but with less control

to the Sensor/Actuator (SA) devices [38] [39]. A centralized program is built, where the

developers concentrate more on the whole system functionality without bothering

themselves with the SA devices coordination mechanism.

End-nodes

Any communication system has two end users, the sender and the receiver; in Pub/Sub

system we call them the publisher (sender) and the subscriber (receiver). The publisher

creates the events and sends them to the notification service which in turn sends it to the

interested subscriber. If there is no interested subscriber, the event is stored in the notification

service by means of events table until either a new subscription is received or it reaches its

expiry data. The subscriber creates the subscriptions and sends them to the notification

service where matching process is triggered to search for a matching event. If no matching

event is found, the subscription is stored in the subscriptions table until a matching event is

found or it reaches its expiry date. In WSAN, see Figure 6, the system consists of four main

entities (publishers and subscribers): sensor, actuator, sink, and the application (end user).

These entities are distributed over 3 virtual layers; each layer has different hardware and

software capabilities. As a result, different versions of Pub/Sub middleware are distributed

over the 3 layers. If we take the SA device main function into consideration, we would

consider the sensor as a publisher and the actuator as a subscriber. However, in fact, all four

entities are publishers and subscribers at the same time. For example, sensor nodes publish

collected data and subscribe to control signals, e.g. sleep or wakeup signals, and also to

software updates.

22

Figure 6. The 3-Layers WSAN architecture

Messages (Event/Query)

There are three main message types in the pub/sub interaction paradigm: advertise, event

(publication), and query (subscription). Advertise messages are used to advertise the events

before the publication, such as in Mires [8] and MQTT-S [11]. These messages, created by

the application, include message header and payload (user-data) message, and typically have

main fields in the message header such as identifier, issuer, and some fields related to the

QoS parameters supported by the application such as priority, deadline, and expiration time.

The message format varies from one implementation to another; for example, some solutions

represent the message as an array of bytes like in IBM MQSeries [40], or use a set of types,

e.g. text or XML, as in DDS [41] and MQTT-S [42], or allow the programmer to create

his/her own message structure, e.g. TEBCOO [43]. Figure 7 illustrates the general message

format and gives the average size of the packet header in pub/sub solutions in WSN such as

in TinyDDS [21], Mires, and PSQUASAR [19].

23

Figure 7. General message format

The query (subscription) message is very important since the way it is expressed can be used

to classify the most widely used Pub/Sub systems. At the node level, a higher level of

expressiveness requires more computation power and advanced algorithm designs. However,

at the network level a higher degree of expressiveness leads to higher performance due to the

reduction in the consumed bandwidth by eliminating the unwanted information. Usually

subscribers receive the events which they are interested in; they do not register to all events

but to some or to patterns of them. From the event expressiveness point of view, the ways

the subscribers express their interest in those events differ from one implementation to

another and directly affect the architecture and the algorithms used for notification service

implementation. Figure 8 shows the four common schemes of expressing events in the

Pub/Sub interaction model, which are: channel-based, topic-based, content-based, and type-

based. In this study, we call these Pub/Sub systems since we will use this classification to

distinguish between the surveyed WSAN Pub/Sub protocols. However, their name varies

from one study to another, e.g. Pub/Sub variants [7], subscription models [24], and event

subscription [32].

Header
2-4 bytes

Payload
n bytes

24

Figure 8. Pub/Sub schemes

Channel based. A channel-based system groups the events (notifications) under different

channels, such that the subscribers only have to subscribe to the channel that includes the

events they are interested in. The main difference between this approach and topic-based is

that no topic name is associated with the published events; instead a channel-id is embedded

to each published event. Thus, publishing an event to a specific channel implies broadcasting

this event to all the subscribers who have subscribed to that channel, and vice versa. Java

Message Service (JMS) [44] is a concrete example for such approach. In JMS, a queue

structure is used to implement channels in the notification service broker (a centralized

server). For example, if the publisher publishes an event with a specific channel-id (queue-

id), the broker searches for the queue-id associated with the event and insert it to the queue

on a FIFO (First In First Out) basis. On the other side, the subscriber subscribes to the channel

by specifying the queue-id (e.g., queue_name==queue-id); then the broker will immediately

route the events that just come from the publisher to the subscriber who has the same queue-

id. When the event has been received by the broker, it will check if there is no queue with the

same event queue-id then it creates a new one. Other examples of industrial implementations

Pub/Sub Systems

Type-based

Content-based

Topic-based

Channel-based

25

are the CORBA notification service [45] and CORBA event service [46] [47]. To the best of

our knowledge, no channel-based Pub/Sub solution for WSN/WSAN has been proposed in

the literature. That might be because the WSAN applications are resource-constrained and

tend more to the fine-grand schemes like content-based subscriptions. That is because a

content-based system provides a fine-grained control on the event contents, which

significantly reduces the overall network traffic and consequently minimizes the bandwidth

and energy consumption.

Topic based. The topic-based system extends the notion of channel-based scheme by adding

more classification and characterization for the event content [7] [48]. The topic-name

corresponds to channel-id , where it forms a logical channel that connects the publisher to all

subscribers who are interested in this particular topic. A fixed set of topics are made in the

development stage (static subscription model), and the publisher tags the notification with a

unique topic-id which is used by the notification service in the matching process to get the

corresponding subscriber who is interested in the published topic. To make this scheme more

expressive, a hierarchical approach is used to go further in event content classification [49]

[50]. In this way, the topic can be further divided into sub-topics using a tree structure. For

example, topic A can be divided into sub-topics B and C, thus topic A is the root node in the

tree and has two children B and C. Thereby, during matching process, all the events that

match B will be sent to all subscribers of topic A and sub-topic B. A concrete example for

topic-based scheme is the OMG DDS standard [41], where topics could be implemented

using C++ struct type that includes the topic name of type string, as in RTI Connext product

[51] [52] . Each individual topic has a unique keyword and each topic includes multiple

instances where each instance inherits the topic attributes and identified by a topic key

26

attribute which can be any field within the topic, for the example in Figure 9 the keyword

can be the color. Other implementations from industry are iBus [53], and TIBCO Rendezvous

[43]. Many research proposals have been introduced in the literature on the topic-based

Pub/Sub middleware in WSN; for example, Mires [8], PS-QUASAR [19], and TinyDDS

[21]. The advantage of this approach is the potential to simply use the existing group-based

multicast techniques, e.g. IP Multicasting [54] [55] or an equivalent overlay multitasking

facility [56] [57], by assigning every topic to a multicast group. For more information about

pub/sub multicast techniques see [58] [59] [60].

Figure 9. Topics represented by C++ structures

Content based. The content-based system is a fine-grained control approach that increases

the expressiveness degree of the subscriptions. The main difference between the topic-based

and content-based is that the subscriber can express its interest in a more dynamic and

accurate way, where the topic-based (even the hierarchical) approach offers static and limited

expressiveness. Also, in topic-based scheme the content of the published event is hidden to

Pub/Sub service except for the topic-id, whereas in content-based scheme, it is aware of the

published event contents (attributes). As a result, the subscriber can filter out the topics that

it is not interested in by putting conditions (constraints) over the content (the values of the

topic attributes) of the subscribed topic.

27

To illustrate the difference between topic and content based schemes, we describe a practical

example in heat monitoring systems. In this system, the sensors (publishers) are deployed

and periodically read the data (Temperature) from different places (e.g., machines or rooms),

and the actuators (subscribers) are distributed over the environment to do specific tasks such

as controlling the alarm and cooling system. In our example, see Figure 10, we have multiple

sensors (S1, S2, …, Sn), two actuators (A1 and A2), and one sink node that is attached to

historical data base server, which is used to store the sensor readings and distribute them to

the end users’ monitors for further online monitoring and data analysis. In content-based

systems, it is allowed to subscribe to an event with applying particular constraints using

comparison operators (e.g., =, <,>, >=, <=). The sensors publish a topic m (e.g., particular

machine temperature), and each subscriber (actuators and sink) receives different patterns

from the published topic based on their predefined interest, as in the following example:

 The sink node receives the topic m as is without applying any type of filtering.

 The alarm actuator receives the topic m when the temperature degree is greater than

some threshold (30º)

 The cooling valve receives the topic m when the temperature degree is greater than

(50º)

28

Figure 10. Content-based vs. Topic-based Pub/Sub interaction

There is a tradeoff between the high performance behavior in terms of delay and resource

consumption and the degree of expressiveness, and the design and implementation of such

filtering algorithms is not that easy. A lot of algorithms in Pub/Sub infrastructures have been

proposed to minimize the overhead and time consumed by the content filtering process [61]

[62] [63] [60] [64] [65] [66]. In resource-limited systems like WSAN, the event filtering

process significantly affects their performance, specifically for real-time applications. On

one hand, it increases the processing overhead (simple and fast algorithms is better) and adds

more end-to-end delay. On the other hand, it reduces the total bandwidth consumption which,

as a result, increases the network performance in terms of delay and throughput. Several

content-based protocols for WSN have been proposed, for examples, the MQTT-S [11],

TinyDDS [21], µDDS [67], Dv/DRP [68] and TinyMQ [69]. For applications where the event

space can be divided to limited set of possible discrete values, it is better to use the topic-

based scheme to avoid the additional overhead caused by content filtering mechanism.

29

Type based. Another event subscription model is presented by Eugester [70] [71] named as

type-based scheme. Instead of subscribing to topic name (e.g. topic == “temperature”), in

typed-based the subscribers subscribe to the events that have a particular structure or type.

For example, in Figure 9 instead of subscribing to the topic (color name), the subscriber will

subscribe to the structure name, which is shape in this example. Thus, the subscriber will

receive all the events that have the same structure illustrated in Figure 9.

Notification service

In Pub/Sub systems, the responsibility of data dissemination lies on the Notification Service

(NS) component. It is the heart of Pub/Sub middleware, where it mediates and coordinates

between publishers and subscribers. It interacts with the publishers and subscribers through

specific operations as illustrated in Figure 11. The publisher uses publish () and advertise ()

for publishing and advertising new topics; and the subscriber uses subscribe () and

unsubscribe () to subscriber and unsubscribe to a particular topic, and the NS uses notify ()

to notify the subscriber with the matched topic. The main services include storing the

publications and subscriptions, managing Pub/Sub Quality of Services (QoS), discovering

the participants (publishers and subscribers), filtering the events based on the subscriptions

constraints, matching the subscriptions with the publications, and routing the events based

on the matching results, see Figure 11 . Each of these services is still an open issue for

research especially for limited-resources systems such as WSAN. According to Carzaniga et

al. [61] the two main services are (a) the matching service where it determines which

publications match with subscriptions, and maintain that with matching tables; (b) the routing

service where it routes the matching publications from the publishers to the relevant

subscribers.

30

P S

P S

P

Notification Service

Pub(a)

Adv(e)

Pub(d) Unsub(a)

Pub(b)

Sub(a)

Notify(a)

P/SSub(e)

Notify(e)
Pub(e)

Routing
Matching

Filtering

Storing
Discovering

S: Subscriber P: Publisher P/S: Publisher and Subscriber

QoS management

Figure 11. Notification Service

Matching. The matching service is the process of checking the published events against the

subscriptions to decide whether to send the event to the subscriber or not. In topic-based

systems, this process has small effect on the overall performance, since the comparisons just

including the topic name without going deeper to the event specific attributes (event content).

On the other hand, it causes significant performance degradation in case of content-based

systems in terms of delay and resource consumption (e.g., CPU cycles). The number of

matching cycles increases exponentially with the number of subscriptions and the maximum

length of the matching cycle, which needs a large amount of space to store

intermediate results [72]. Several studies have been conducted to mitigate this problem, and

propose efficient matching approaches especially in the content-based Pub/Sub applications

[73] [74]. Rajibi et al. [75] have classified the matching algorithms to two main categories:

predicate indexing and testing network. The predicate indexing algorithms [63] [76] [77]

[62] consist of two phases. The first phase determines all the predicates (in all subscriptions)

that are satisfied by the event. The second phase finds all the subscriptions that are matched

31

by the event based on the results of the first phase. The algorithms based on testing networks

pre-process the set of subscriptions into a matching tree. Events enter the tree at the root node

and are filtered through by intermediate nodes. An event that passes all intermediate testing

nodes reaches a leaf node where a reference to a matching subscription is stored [78] [79].

One recent research [65] has exploited High Performance Computing (HPC) technology and

propose a parallel algorithm to avoid the drawbacks of the traditional sequential search. In

[31], the authors classify the matching point based on the application, if the publishers are

less than subscribers the matching is better to be at the publisher side and vice versa.

Although a lot of research has been done on matching techniques, to the best of our

knowledge, no study has tried yet to examine those algorithms on WSN infrastructures; and

no one from the WSN Pub/Sub solutions that we have surveyed had mentioned the matching

algorithms used, except TinyCOPS [80] . Therefore, one of the open research directions is to

investigate the suitability of such algorithms in resource-constrained applications, and to find

the best matching point based on the nature of the application.

Routing. The proposed routing protocols for pub/sub sensor networks can be categorized

into three main categories, flooding, selective and gossiping routing techniques. In flooding

routing, either the publisher or the subscriber will broadcast its publications/subscriptions to

the whole network. Unlike the fully deterministic flooding routing, the gossiping-based

routing is fully probabilistic, random approach where a random neighbor is selected for

sending the packet to, and then this neighbor will randomly select one of its neighbors and

so on. In between, the selective routing combines both the broadcasting and random walk

techniques, e.g. the semi-probabilistic approach proposed by Costa et al [81], or the semi-

broadcast approach that reduces the subscriptions propagation in response to broadcast part

32

of the publication content [82].

The flooding routing protocols are simple to implement and do not require any state

information, e.g. routing tables, to be saved in memory; however, it overwhelms the network

by message overhead which in turn increases the collisions in the network. Therefore, this

type is more suitable for applications when a large number of subscribers are interested in

most of the events, and when the subscriptions change at low rate [61].In gossiping, broadcast

overhead of flooding approaches is mitigated by avoiding broadcast transmissions and use

random walks to reach the destination. Thereby reducing the traffic overhead of the flooding

approaches in the cost of adding time delay and probabilistic guarantee to reach the

destination. The selective routing protocols combines the advantages of both types by using

broadcast to some predefined extent and random path selection. A data-centric energy aware

routing in WSN is also proposed in the literature [83], which depends on the residual energy

for routing process. For further information about these routing classes the reader is

recommended to refer to the survey studies in [24], [84] [63] [85] [58] [86].

QoS Mechanisms

The communication medium provides guarantees to support qualities of services, where

these guarantees vary strongly between different systems [7]. One of the advanced features

of any WSN middleware is support for Quality of Service (QoS). Unlike the direct

connection between sender and receiver, in pub/sub model the decoupling properties make

the system behavior less deterministic. As a result, providing QoS support in pub/sub systems

is not an easy task [87]. Moreover, providing QoS support in resource-constrained networks

is even more challenging issue, where in sensor networks it is still an open issue for research

33

[88] [26]. QoS can be expressed in the application layer by data accuracy, aggregation delay,

coverage, and system lifetime; whereas in the network layer by latency, throughput,

bandwidth utilization, message delay, jitter, and loss. If the QoS requirements in the

application layer cannot by satisfied by the network layer the middleware should negotiate

between the two layers to get a new QoS guarantee [89]. Recommended references on QoS

support in WSAN are [20] [90] [88] . Among of the most common QoSs provided by pub/sub

model, we selected the most relevant for WSN and those used in previous works. These QoSs

are as follows:

Reliability. specifies the ability of the network to ensure reliable data transmission between

nodes. Information in pub/sub application needs to be transmitted in a reliable way to make

sure that important measurements, alarms, or notifications generated by the system reach

their desired destination.

Priority. defines a way to assign different level of importance to the data flows. In this way,

the more important the data is, the sooner the system will try to process it. In WSAN systems,

usually different levels of importance are associated with the messages exchanged between

nodes. For example, monitoring readings does not usually have the same importance as

failure or attack notification events.

Deadline. is also known as maximum allowed latency. It defines a maximum length of time

the subscriber will wait for an update. In real-time systems, if data received beyond a certain

threshold, it would not make sense, and thus will be dropped. This is used in event

transmission scheduling in which Earliest Deadline First (EDF) algorithm can be used.

34

Energy-awareness. WSAN devices relay on battery energy which are limited and in most

cases batteries are very difficult to change. The energy is mostly consumed in the wireless

transmission, since the energy consumed by sensing and computation is very little compared

to transmission. Therefore, the transmissions have to be managed sensibly to minimize the

energy consumption in order to maximize the network life time. Consequently, handling the

duty cycles of the SA devices is a critical issue. The WSAN devices need to go to sleep mode

or even deep sleep mode whenever they do not have new data, and then wake up and publish

whenever the new data arrives. In most applications, the sleeping time could potentially be a

very long, ranging from several seconds to hours. The middleware techniques should be

aware of this to save energy as much as possible. However, energy efficiency and QoS

support are two conflicting requirements and the WSAN design needs to efficiently set the

tradeoffs between them [90]. For more information the reader should refer to previous works

on energy efficiency techniques in WSN, e.g. [91] [92].

2.2 Pub/Sub in WSAN

In this section we discuss the pub/sub based solutions for WSN/WSAN in the past years. We

focused on gathering the most important information about each technique including its main

features, components, architecture, and drawbacks. A comparative study was then conducted

to show the pros, cons, differences, and similarities of those techniques. The pub/sub WSAN

general reference model is presented at the end of this section.

2.2.1 Existing Solutions

Directed Diffusion [93] is the earliest pub/sub communication paradigm for wireless sensor

networking. It is a data-centric protocol in that all the communications concern named data

35

that is described by attribute-value pairs. As any pub/sub system, it has almost the same

common elements and functions, Figure 12 depicts a simplified scheme for this paradigm.

The subscriptions are called interests, and are broadcasted throughout the whole network.

During the subscriptions dissemination, gradients are set up within the network, to be used

later to draw the events (requested data). Each node examines the interest and do a matching

process locally. If it has the requested data, then it sends back the information to the sink by

reinforcing the reverse path of the interest. Otherwise, it just propagates the interest through

the network. Thus, the matching process is distributed and does not need a centralized broker.

This avoids the disadvantages of the centralized processing (which is not suitable for sensor

networks) and evenly distributes the energy consumption. However, it will add an overhead

in terms of memory, processing and communications, since all the nodes have to do the same

process for each interest. Intermediate nodes can cache interests and use them to be directly

forwarded based on previously cached data; also they do in-network data aggregation to

minimize the data traffic and thus consume less energy. The data is represented using

structures in the form of attribute-value pairs; and these attributes can be filtered to get

specific information (content filtering). For each received interest, there is a gradient

associated with it; it is a direction state that is directed towards the node sending the interest.

Recently, a secured version of this protocol has been proposed, it provides authenticity and

integrity with a relatively low overhead [94].

36

Mires [8] is a pub/sub middleware for WSN. Mires is designed mainly to facilitate the

development of WSN applications. It was implemented on top of TinyOS [95], an event-

based operating system for sensor networks. In Mires, each sensor advertises its available

topics (e.g. temperature, pressure, luminosity or humidity) to the user applications through

the sink node. Hereafter, each application selects the topics that it is interested in and

broadcasts the subscription into the network. The sensors then match their topics against the

subscriptions and send the matched data to the interested application. An aggregation service

is provided to minimize the overhead of the transmitted messages. Although, a Multi-Hop

routing protocol is included with the middleware, any multi-hop routing protocol can be

added as long as it implements the required interface by Mires. As illustrated in Figure 13,

the architecture is fully distributed over the network nodes (no centralization). However, it

has some limitations; it is made for traditional WSN where a single sink controls the network

behavior and collects the data from sensors to end-user applications; also it does not support

actuator, QoS, or energy-aware mechanisms. Moreover, no performance evaluation has been

published for this solution.

(a) (b) (c)

Figure 12. Directed Diffusion simplified schematic. (a) Interests propagation. (b) Gradients setup. (c)
Reinforced path.

37

Figure 13. Mires Architecture

MQTT-S [11] is an IBM pub/sub protocol that was invented by Stanford-Clark and Hunkeler

in 1999; it is named as MQTT which stands for Message Queuing Telemetry Transport [96].

Telemetry means remote data transmission to monitor environmental conditions or

equipment parameters. It is an extremely simple and lightweight messaging protocol

designed for constrained devices and low-bandwidth, high-latency or unreliable networks.

Consequently and due to its lightweight properties, an extension version of MQTT protocol

was proposed for wireless sensor networks [97]. The main goal was to simplify the

integration of the WASN with the enterprise networks by extending the enterprise pub/sub

middleware protocols into the WSN infrastructure. The pub/sub service (notification service)

is located in brokers that use the original MQTT protocol, where the SA devices software is

kept as simple as possible; Figure 14 illustrates the MQTT-S architecture. The SA devices

use the collection tree protocol (CTP) [98] as its underlying routing protocol which allow

any device to send data to the closest gateway. Reliability QoS is implemented at three levels:

(1) best effort (send just once either successfully received or not), (2) retransmit until the

message is acknowledged (may incurs redundancy), (3) assure no redundancy. Several

38

drawbacks exist in this solution; for example, the broker architecture raises the centralized

approaches problems such as single point of failure and bottleneck. Also, the translation from

gateways (MQTT-S) to broker (MQTT) incurs more delay which increases the potential of

considering this protocol being unsuitable for real time systems. Moreover, the protocol does

not support or evaluate sleeping modes for energy saving purposes.

Figure 14. MQTT-S architecture

TinyCOPS [80] is a component-based middleware that provides a well-defined content-

based pub/sub service to WSN. It simplifies the selection and composition of the

components, which allows the application designer to easily adapt the service by making

orthogonal choices about the: (1) communication protocol components for subscription and

notification delivery, (2) supported data attributes, and (3) set of service extension

components. As directed diffusion, it uses an attribute-based naming scheme; this scheme is

augmented with metadata information that is provided through pub/sub API and is used to

send control information to the publisher, e.g. sensing rate, and to add additional

communication control information (timestamps, message sequence number, etc.) for the

service extension components. The service extension components (SEC) are decoupled from

the TinyCOPS core in which it can be reusable in different applications and platforms. Two

39

different types are supported: Communication SEC (CSEC) which adds services to the

communication protocol, and Attribute SEC (ASEC) which adds services to the endpoints.

Figiure 15 depicts the high-level decomposition of the framework.

PS-QUASAR [19] is a pub/sub middleware that focuses on providing QoS (reliability,

deadline, priority) support and high level programming model to the WSAN applications. In

this solution all nodes in the network are potential publishers of each of the topics. PS-

QUASAR also handles a many-to-many exchange of messages between nodes in a fully

distributed way by means of multicasting techniques. It consists of three different modules:

maintenance protocol, routing module, and API. Figure 16 depicts the PS-QUASAR

architecture and shows how the three modules are inter-connected. The maintenance protocol

is in charge of creating the links between neighbor nodes, and discovering pub/sub end nodes

(publishers and subscribers). The information collected from the maintenance protocol is

used by the routing module to route the events. A topic-based (less matching overhead than

content-based) programming model API is used to provide a set of methods for developers

to develop WSAN applications using PS-QUASAR middleware. The Bellman-Ford

Figiure 15. TinyCOPS architecture

40

algorithm [99] is enhanced and used to build a routing tree protocol where each node

maintains a routing table. Although PS-QUASAR provides QoS-aware, energy efficient, and

robust protocol, the cost of such mechanisms would be in memory space, a very critical

resource in SA devices. Thus, memory footprint was one of the most important performance

evaluation measurements that the paper should have considered. Also, performance

evaluation considered only deterministic behavior in topology (deployments) and data rates,

while most of the WSAN applications require random distribution for sensor nodes.

Figure 16. PS-QUASAR architecture

UPSWSN-MM stands for Ubiquitous Publish/Subscribe platform for WSN with Mobile

Mules. It is an application-specific pub/sub middleware with content-based subscription

model [18]. The system main components are illustrated in Figure 17; where it is composed

of stationary (sensors and traditional network) and mobile networks (mobile phones). The

internet users can access the WSN data anytime from anywhere (Ubiquitous) through

platform server (broker). The sensors are distributed over the monitored area and publish the

41

data to the mobile phones which then send it to the interested subscribers (internet clients)

via mobile phone networks, e.g. 3G. The proposed solution was tested using an outdoor test-

bed, and a hiking trial monitoring application was developed on top of the PSWSN-MM

middleware. The application can provide the subscribers with sensing data such as

temperature, humidity, light intensity, and hiking speed; such that they can decide whether

to go for hiking in that particular area or not. Due to its reliability mechanism, where a packet

is not sent until the previous one is acknowledged, the system is not suitable for the real time

systems. Moreover, the system lacks other QoS mechanisms support like priority and

deadline.

Figure 17. UPSWSN-MM publish/subscribe system

PUB-2-SUB+. Unlike the gossiping routing where message content is ignored during the

dissemination, Pub-2-Sub+ [100] is based on content-guided routing to offer better efficiency

(less storage and communication costs) than the traditional approach. It is based on a naming

scheme [101] designed for content-based pub/sub for WSN. Pub-2-Sub+ maintains a set of

m spanning trees, each rooted at a node in the network. The root nodes are dedicated reliable

nodes placed at random network positions. Each tree corresponds to a naming tree assigning

a binary-string name to each node; hence, a node has m names. The names on a tree form a

prefix tree. Based on the naming scheme, each node is assigned a “zone" of binary strings to

42

own. The zone of a node is the set of all binary strings starting with this node’s name but not

with any child node’s name. A query is subscribed to a random tree and an event is published

to all the trees. Pub-2-Sub+ formats an event as a binary string (e.g., ‘0110010’) and a query

as an interval of binary strings (e.g., [‘0110001’, ‘0110101’]). On the randomly chosen tree,

a query is routed to, and stored at, all the nodes whose zone overlaps with the query’s interval.

On each tree, an event is published to the node whose name is the longest prefix of the event

string. In general, the notification path is bounded by two times the tree height which should

be O(log n) in most cases. Also, because there are multiple paths for event notification, the

disconnection of a path due to some failure does not stop an event from finding its way to

the matching queries.

TinyMQ [69] is a content-based pub/sub middleware for WSN. It is considered as an

improvement for the PUB-2-SUB+ solution by adding content-based routing and avoiding

the congestion at the sink (tree root) by using multiple sinks. An overlay structured network

is constructed to route events/publications and queries/subscriptions without location

information. The network is logically connected by assigning virtual addresses (unique keys)

to all network nodes and using naming scheme based on binary strings. The unique keys

represented by the binary strings chosen from {0, 1} are used as the logical addresses to

enable hash based content-based message matching and routing. This matching approach

guarantees that the events meet the queries in the certain rendezvous nodes. First the network

is divided into m-tree based clusters and each cluster contains one tree with sink node as a

root, and there is no overlapping between the clusters (trees), the trees are constructed using

a maintenance protocol.

The system architecture consists of two layers:

43

1 Overlay network layer: a logical topology is constructed despite of the network

churn or node failures. A naming structure is used to assign a virtual unique address

to each node.

2 Pub/Sub layer: Provides message mapping (subscriptions with publications) and

message routing (subscriptions, publications, and notifications) services, where

routing is based on the virtual addresses of the nodes.

TinyMQ provides interoperability among the nodes in WSN (not with the traditional

networks, e.g. enterprise network). Also, similar to gossiping protocol [102] it provides none

location-based information dissemination, and better in the sense of content-based routing,

where gossiping routing ignores the message content. However, TinyMQ does not support

actuators and QoS to WSN. Furthermore, the cost of the algorithm in terms of energy

consumption and communication overhead was not evaluated, although it is an important

performance measurement in such limited resources systems.

TinyDDS [21] is the adopted version of OMG DDS standard for WSN. It is a lightweight

pub/sub middleware that allows applications to interoperate across the boundary of WSNs

and access networks, regardless of their programming languages and protocols. Moreover, it

allows WSN applications to have fine-grained control over application-level and

middleware-level non-functional properties and flexibly specialize in their own

requirements. It can adaptively perform event publication according to dynamic network

conditions and autonomously balances its performance among conflicting objectives (Using

an evolutionary multi-objective optimization mechanism). The main contributions of

TinyDDS to WSNs are (1) providing interoperability with access networks and (2) adding

44

flexibility to customize non-functional properties such as data aggregation, event filtering,

and routing. Although TinyDDS provides great services and support for WSN, a complete

and robust DDS system for WSAN is yet to be developed [20]. TinyDDS lacks energy saving

mechanisms and energy consumption evaluation because it is still not lightweight enough to

fit the WSAN requirements. The TinyDDS architecture and main components is depicted in

Figure 18.

Figure 18. TinyDDS architecture over TinyOS and MicaZ platform

Quad-PubSub [17] is a pub/sub solution for WSN that exploits the location-based addressing

scheme to offer support for the transparent operation of resource-aware routing. It aims to

minimize the communication costs by targeting the shared event dissemination paths, and

balances the routing load over multiple paths to overcome energy hole problem and, thus,

increasing the network life time. Quad-PubSub uses localized resolving algorithm that is easy

in operation and comprising distance calculations. This algorithm iteratively resolves the

45

sub/unsub operations over the network. It establishes paths without the involvement of end-

point publishers or subscribers, where it decouples the publishers and subscribers using a set

of intermediate nodes, called Event Brokers (EB). The network area is divided into sub-areas

each of which is controlled by EB. The subscriptions forwarded to the EB that matches them

with the published events in its area and serve the interested subscribers with the matched

events. Thus, the data dissemination is distributed among the EB to balance the

communication load. However, this may make the EBs dies first before the other nodes and

significantly affects the network connectivity. Although the protocol aim is to reduce the

energy consumption, there is no evaluation in the paper for energy consumption. Moreover,

no QoSs are supported and the implementation is highly abstracted.

The comparison of the reviewed solutions is summarized in two tables. Table 1 and

Table 2 compares the proposed prototypes based on the criteria that were discussed in

the pub/sub model overview section; and summarizes the implementation and

evaluation issues of each proposed solution. One of the most important issues that

should be extracted from the proposed solutions is the methodologies used to verify and

evaluate their performance. Several surveys have been done in WSN simulators that are

used in the literature such as [103] [104] [105]. To make this part fully self-contained,

we present the mostly used simulators in the literature for evaluating pub/sub solutions

of WSN/WSAN. Table 3 summarizes their features and limitations, languages

supported, license type, generality, whether they are specific for WSN or general, and

whether they are open or closed source.

2.2.2 WSAN Pub/Sub Reference Model

Based on the insight gained from this study, we proposed a reference model for pub/sub

46

middleware in WSAN. This model is extracted from the surveyed solution’s architectures, as

shown in Figure 19. A middleware layer can be added between application and operating

systems layers. A complete pub/sub middleware solution should include four main

components that were described earlier in middleware components section, in addition to the

messaging component. Figure 19 illustrates the organization and relationship of these

components. The supported services and QoS mechanisms vary from one implementation to

another. For example, the routing service may be implemented within the middleware such

as in Mires and PS-QUASAR or using the existing routing service such as in MQTT-S and

TinyDDS. However, adding these services to the WSAN platforms is very critical due to

their scarce resources. As a result, it is a challenging issue to design QoS aware middleware

for WSAN; where it depends significantly on the application requirements. The most used

platforms are TinyOS [95] and Contiki [106] operating systems over ZigBee communication

protocol.

MAC Layer

Sensors/Actuators … CPU … Radio

Operating System

Application Layer

Middleware Layer

API API API API API

Pub Sub

Network Layer

Publish/subscribe service

Routing

Service

Aggregation

Service

Storing

Service

Filtering

Service

Q
o
S

M
ec

h
a
n

is
m

s

Figure 19 Pub/sub middleware reference model

47

Table 1 Pub/Sub WSAN Solutions (D: Deadline; P: Priority; R: Reliability

Solution
Sub

Scheme

Overlay

Infra-

structure

Event

Routing

Multiple

Sinks

Actuator

Support

QoS

Energy

Awareness
Mobility

R P D

Directed

Diffusion (2003)

Topic/

content

based

P2P Sub/BCast Y N N N N Y Y

Mires

(2005)

Topic

based
P2P Sub/BCast N N N N N N N

Quad-PubSub

(2007)

Topic

based
Broker

Distributed

Brokers
Y N N N N Y N

TinyCOPS

(2008)

Content

based
Broker/P2P

Sub/Pub

BCast

Y N N N N Y Y

MQTT-S

(2008)

Topic

based
Broker Centralized N Y Y N N N N

TinyDDS

(2009)

Topic/

Content

based

P2P Sub/BCast Y N Y Y Y N N

PUB-2-SUB+

(2010)

Content

based
P2P

Naming

Based

Y N N N N N N

TinyMQ

(2011)

Content

based
P2P

Naming

based
Y N N N N N N

UPSWSN-MM

(2012)

Content

based
Broker Centralized Y N Y N N N Y

PS-QUASAR

(2013)

Topic

based
P2P Sub/BCast Y Y Y Y Y Y N

48

Table 2 Pub/Sub WSAN Solutions, Evolution and Features Summary

Solution Test approach Testing tools Performance measurements Remarks

Directed

Diffusion

analytical/simulat

ion
NS2

Avg. dissipated Energy/ Avg.

delay/ distinct-event delivery

ratio

Data aggregation, reverse path

reinforcement, analytical analysis for

data delivery cost, distributed

matching process

Mires none None

Case Study

An environment monitoring

Apps / no measurements

Data aggregation, Topic

advertisement, focused on facilitating

WSN apps development

Quad-PubSub simulation JiST/SWANS
Msgs overhead/event; Hops vs

subscribers;

Support for resource-awareness and

shared events dissemination paths

TinyCOPS Indoor testbed TWIST [107]/TinyOS

Subscriptions and notifications

delivery ratio / active publishers

/ PSLOC* / flash and RAM size

The main properties are the

decoupling of communication

protocols and the adaptive matching

point

MQTT-S testbed

TinyOS;

Tmote and MicaZ

Just SA memory footprint

(12Bytes)

Seamless integration of the WSN with

traditional Networks (MQTT based)

TinyDDS
simulation /

testbed

TinyOS; TOSSIM;/

SunSPOT; Solarium

emulator.

PKT header overhead; Memory

Footprint; Processing; and

power consumption.

Standard-based solution (OMG DDS);

seamless integration with access

networks.

PUB-2-SUB+ simulation Own simulator

No. of hops per even/query; No.

of replicas per query;

Notification delay; storage,

comm., computation loads.

Content/based routing; no need for

location information; less overhead

than gossip routing;

TinyMQ simulation OPNET

Comparison with pub-2-sub in

hops/query and notification

delay; and repair cost (number

of repaired nodes)

Adding interoperability within WSN;

content-based routing without location

information.

UPSWSN-MM Outdoor testbed

HTC smart phones with

Android OS; Tmote

sensors with Contiki

OS; Apache server

(Broker)

Delay; number of delivered

data; communication overhead

Supporting internet users to get

sensing data anytime from anywhere;

integrate WSN to internet via mobile

phones.

PS-QUASAR Simulation
Contiki (OS) TelosB

motes; Cooja simulator

Energy consumption; delivery

ratio of packets; delay

QoS support and high level

programming; multicast support

49

Table 3 Simulators Used in Evaluating Pub/Sub Solutions for WSAN

Simulator Language GUI Generality
Open

Source
License Features Limitations

TOSSIM

[108] [109]

nesC No WSN Yes Free

*Apps ported directly to HW

platform.

*Bit-level simulation

*Restricted for TinyOS.

*Lack decent

documentations.

* Add-on to support energy

consumption, PowerTossim

z [110]

COOJA

[111]

Java/C Yes WSN Yes Free

*Best choice for Contiki-

based WSN

*Able to simulate non-Contiki

nodes

*easy to use and understand

*Support large-scale protocols

and algorithms

*Supports a limited number

of

Simultaneous node types.

*Making extensive and time

dependent simulations

difficult.

OPNET

[112]

C++ Yes General

Only

protocol

models

sources

Comme-

rcial

*Lots of protocol models

including TCP/IP, ATM,

Ethernet, etc.

*Simple GUI to build difficult

scenarios and get simulation

results.

*Expensive

*quite difficult to modify

the protocols

NS-3

[113]

C++ No General Yes Free

* Support real-time

scheduling, multiple radio

interfaces, and multiple

channels.

* Packet-level simulation.

*Lack of an application

model.

*Code not portable to HW.

*Not scalable for WSN.

GloMoSim

[114]

C/Parsec Yes General Yes Free

* supports purely for wireless

networks protocols.

*Using standard APIs

between simulation layers.

*parallel simulation support

*Less accurate in sensor

networks simulations.

*Code not portable to HW.

Castalia (

based on

OMNET++)

[115] [116]

C++ Yes General Yes Free

*Highly tunable MAC

protocol and a flexible

parametric physical process

model.

*Application level simulator

*Not a sensor specific

platform.

*Not useful for portable

sensor code.

PSLOC : Physical Source Lines Of Code

50

3 CHAPTER 3

A Pub/Sub Middleware Cost in

Sensor Networks

A pub/sub middleware has many benefits, as described earlier in chapter 2, such as

simplifying application development and integrating sensor-based networks into access

networks; also, makes the network more scalable, portable, interoperable, and flexible.

However, these benefits are at the expense of sensor-based network resources. In this

chapter, the cost of adding pub/sub middleware technology to WSN/WSAN is investigated.

We perform an extensive simulation study to estimate the actual cost of adding pub/sub

middleware to sensor nodes. Specifically, we use TinyDDS and compare it with a baseline

application that is doing the same functionality without utilizing the pub/sub middleware

technology.

3.1 Case Study

In this section, we describe in detail the case study that is used in the cost estimation study.

Two applications are implemented, one application with middleware, and another

application without middleware, called a baseline application. More specifically, TinyDDS

middleware is used in middleware scenario. For the baseline application, we built a simple

application that provides the same basic functionality of TinyDDS but without using

pub/sub middleware technology. Both scenarios use Dynamic MANET On demand

(DYMO) protocol [117] as a multi-hop underlying routing protocol.

51

The main function of the tested application is to collect readings from two predefined

sensors, and send them to the base station. The network topology used in the evaluation is

illustrated in Figure 20, where a square grid topology composed of 16 nodes is deployed

in a 100x100 square meter area. The node at the upper right corner with id 15 is the base

station/subscriber, and the two nodes at the bottom left corner with ids 4 and 1 are the

senders/publishers, the remaining nodes are relay nodes. Thereby, the maximum number

of hops nearly 3 hops, sometimes due to network congestions/failures the routing protocol

selects longer paths. The network traffic load varies by changing the Inter Packet Interval

(IPI) from 2 to 10 seconds. The IPI values are extracted from different simulation tests to

get stable and accurate results. When we use less than 2 seconds IPI, the DYMO protocol

becomes instable, where it results in very low throughput which indicates a high rate of

packet loss. A simple algorithm was implemented to do the function of this tested

application; where it comprises two sensors that collect the measurements of the battery

voltage at sampling rate of 4Hz. The sensor then aggregates these readings locally and

takes the average and send it to the base station with constant data rate based on the value

of IPI, the flowchart of this algorithm is depicted in Figure 21.

52

Figure 20: Case study network topology; Sub (BS): subscriber (base station), Pub (Sr): publisher (sender).

Boot
 Timer1= 200 ms

Timer2 = IPI

Timer1> 200

Read sample

Add to readings[]

Reset Timer1

Timer2 > IPI

Average readings

Send to BS

Reset Timer2

Yes

Yes

Increment

Timer1
No

Increment

Timer2
No

IPI: Inter Packet

Interval

Figure 21. Basic application algorithm

53

3.2 Cost and Performance Evaluation

In our evaluation study to estimate the middleware cost in sensor networks, we perform

several experiments using TinyOS SIMulator (TOSSIM) [118]. The main disadvantage of

TOSSIM is that it does not support energy consumption measurements; therefore, we used

POWERTOSSIMZ [119] to get energy consumption measurements. To perform fair

comparison, the topology and simulation parameters are the same in both scenarios, i.e.

baseline and middleware, as discussed previously.

Performance metrics. In our evaluation of the middleware overhead, three main performance

metrics are used. 1) Packet Delivery Ratio (PDR) which is defined as the number of packets

successfully received by the subscribers over the number of packets sent by the publishers.

As more overhead is added to the network, the probability of network congestion, buffer

overflow, and thus packet dropping rate is expected to increase. 2) End-to-end delay metric,

which is the average delay for all successfully received packets. Although this metric

highly depends on the underlying protocols, we evaluate the two scenarios over the same

underlying protocols to get more accurate results. 3) Energy consumption, where energy is

a very important metric and critical issue in studying sensor networks. We compute the

total energy consumption of the whole network by taking the summation of all nodes

consumption. Then, we compute the percentage of energy consumption by dividing the

total consumption by the initial energy of the whole network. The initial energy of each

node in the network was 2000 mAh, which is equivalent to 21600 Joules. 4) Memory

footprint, which is a scarce resource in sensor devices and a critical metric in evaluating

sensor applications and protocols. Both Random Access Memory (RAM) and Read Only

Memory (ROM) memory footprints are measured. The number of bytes of both RAM and

54

ROM are measured after running the middleware and baseline scenarios. Different

platforms, namely: mica2, micaz, iris, and telosb, are evaluated in terms of memory

footprint.

Each data point in the results graphs is the average of ten simulation runs, and the error

bars represents the standard deviation of the ten runs.

Figure 22 Packet delivery ratio comparison.

Figure 22 shows the effect of the network load on the PDR on both tested scenarios. The

PDR tests the network reliability. In our test, we do not use the reliability QoS of TinyDDS

for the purpose of fair comparison. It should be noted that in this study our main concern is

to evaluate the middleware overhead without using its QoSs. In the baseline scenario, the

PDR varies very little with the IPI, which means that the overall network load of the network

is low. In contrast, the middleware scenario has larger variation with the increase of IPI,

because it has more control traffic used in publisher, subscriber, and matching processes. The

middleware overhead can be extracted from the drop of the network performance,

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10

P
ac

ke
t

D
e

liv
e

ry
 R

at
io

Inter Packet Interval (sec)

baseline middleware

55

represented by PDR value, where it is nearly 10% compared to the baseline scenario. The

error bars show the standard error for every single point in the results. This is added to show

the level of accuracy of our results. For example, in middleware scenario, when IPI equals 6

the PDR mean value that is calculated from 10 runs is 0.76.

From the PDR in Figure 22, we can see that the network in case of middleware scenario is

more congested than in baseline scenario. As a result, the average packet end-to-end delay is

higher in case of the middleware scenario as shown in Figure 23. The difference in the delay

between both scenarios depends on the network traffic load, where the difference decreases

as the IPI increases. That is because when the network is not overloaded, the packet delay

almost the same when we have the same packet size. Thus, the figure shows that the

difference in the delay nearly ranging from 60 ms (in case of IPI = 10 sec) to 80 ms (in case

of IPI = 2 sec). Intuitively, the delay decreases as network load decreases (IPI increases).

However, in case of the baseline scenario the end-to-end packet delay is nearly the same.

That is because the network in case of baseline scenario has lightweight load and in all IPI

values the packets reaches the base station using almost same number of hops. Whereas, in

the other scenario the network was overloaded which results in more queuing delay and

might be more hops due to network congestion.

56

Figure 23 End-to-end delay comparison.

The memory requirements in each scenario are illustrated in Figure 24. This figure describes

the ROM and RAM consumption for four platforms: telosb, micaz, mica2, and iris. This

figure includes the exact number of bytes needed by each scenario. For example, for the

telosb platform, the baseline scenario uses 20270 bytes in program flash memory (ROM) and

1162 in RAM; whereas, the middleware scenario allocates 23034 bytes in ROM and 5512

bytes in RAM for the same telosb platform. Thereby, we can evaluate the memory overhead

of a sensor device when a middleware is added. In telosb platform, the middleware overhead

versus the without middleware application is about 14% more memory space in ROM and

3.7 times more memory space in RAM. This is considered a quite large memory space,

relative to limited resources devices such sensor nodes. However, from telosb datasheet these

values are still acceptable where it has 48 KBytes ROM, and 10 KBytes RAM, and also 1

MBytes for logs, measurements readings, etc.

0

20

40

60

80

100

120

140

2 4 6 8 10

E
n
d

-t
o

-E
n
d

 D
el

ay
 (

m
s)

Inter Packet Interval (sec)

baseline middleware

57

Figure 24 Memory cost comparison.

The energy consumption evaluation is conducted using the POWERTOSSIMZ tool.

POWERTOSSIMZ tool assumes each node has two AA batteries with capacity of 2000

mAh. In Figure 25, the energy consumption is computed as a percentage of the average of

fully charged batteries. For example, in case of IPI equals 2 seconds the total energy

consumption of the network in the middleware scenario is 1.24% calculated from the total

energy of the network; whereas, it is 0.87% in case of the baseline scenario. Due to the small

interval of the simulation time, the total energy consumption is very small; however, clearly

it shows the difference of energy consumption in both scenarios. In case of high traffic, IPI

= 2 sec, the middleware consumption is higher than the baseline scenario by 37%; whereas,

in case of low traffic, IPI = 10 sec, it is higher by 24% which means almost third of the

network life time would be reduced when we use middleware technology in sensor networks.

ROM RAM ROM RAM ROM RAM ROM RAM

baseline 20270 1162 25672 996 22520 900 24234 1089

middleware 23034 5512 29844 5366 26532 5270 28330 5457

0

5

10

15

20

25

30

35

M
e
m

o
ry

 c
o
n

su
m

p
ti

o
n

 (
K

 b
y

te
s)

telosb micaz mica2 iris

58

Figure 25 Energy consumption comparison

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2 4 6 8 10

E
n
er

g
y
 C

o
n

su
m

p
ti

o
n

 p
er

ce
n

ta
g

e

Inter Packet Interval (sec)

baseline middleware

59

4 CHAPTER 4

RTDDS: Reliability Protocol for

WSAN

The DDS specification offers two disparate quality-of-service (QoS) levels of data

reliability, namely best-effort (BE) and fully-reliable (FR). TinyDDS is a light weight and

partial porting of DDS middleware to WSN platforms, specifically those with limited

resources. As such, TinyDD in its current form does not support any form of reliability for

data delivery. This chapter extends the DDS data reliability QoS levels by adding an

intermediate level, referred to herein by the partial reliability (PR) level, and provides an

implementation of the DDS reliability functions for TinyDDS. For the PR function,

publisher messages are classified into either critical or not critical and then handled using

the FR or BE data delivery functions, respectively. The new version of TinyDDS is called

Reliable TinyDDS (RTDDS). In addition, this chapter provides a comprehensive

performance evaluation of the proposed reliability functions taking into account number of

hops, number of publishers, and several other network parameters.

4.1 RTDDS Implementation

In this section, a description of RTDDS protocol and its offered levels is introduced. In

more details, we describe its implementation over pub/sub architecture, main components,

procedure and algorithms.

60

RTDDS is a reliability protocol for WSAN based on DDS standard. It is implemented over

TinyDDS middleware, whose reliability QoS has not been implemented yet [22]. As

mentioned before, DDS has two distinct reliability levels: best-effort and fully reliable.

From our simulation results, we got that the cost of fully reliable QoS is very high in terms

of retransmissions, e.g. around 8 retransmissions per message in case of 50% publishers

and one second inter-packet interval, which consumes much energy and thus significantly

reduces the network lifetime. Therefore, to suit the WSN requirements the DDS reliability

QoS levels are extended by adding a new level. Intuitively, this level could be inspired

from the nature of most WSAN applications, where the collected data from monitoring

systems is often redundant, and some of them is very important, i.e. those that exceed a

certain threshold. For example, in fire or toxic gas detection systems, the sensors collect

data every second or a predefined appropriate period. The data can be easily classified into

reliable and best-effort based on the sensor readings, where the sensor will do in-network

processing to examine the reading if it exceeds a predefined threshold, then it marks the

message as a reliable message. On the other hand, if the readings are normal, i.e. do not

exceed the threshold, then the sensor marks the message as a best-effort message.

Consequently, RTDDS offers three reliability QoS levels that can be summarized as

follows:

 Best-Effort QoS (BEQoS): it already exists in DDS standard, and often used for

time-sensitive applications, e.g. video transmission applications. In this level, as

soon as RTDDS receives a message from the application layer, it sends it only once;

then the message is either successfully received or dropped. Therefore, the

61

reliability overhead, such as buffering, acknowledgments and retransmissions, does

not exist.

 Fully Reliable QoS (FRQoS): it is the second level of DDS standard, and used for

data-sensitive applications, e.g. file transfer applications. In this level, all messages

are buffered at the publisher side until the last sent message gets an

acknowledgment from the receiver. If there is a new message from the application

layer while the buffer is full, the new message will be dropped accordingly. The

message is persistently retransmitted until it is successfully received on the

subscriber side, i.e. acknowledged.

 Partially Reliable (PRQoS): it is the new proposed level of DDS standard for

sensor networks. In this level, the messages are classified into two types: Best-

Effort and Reliable messages. The buffer at the publisher side will only be used

whenever there is a Reliable message. Therefore, the Best-Effort message will only

be buffered if there is a Reliable message in the buffer, otherwise it is immediately

sent as soon as it is generated. In case there will be a sent Reliable message, the

Best-Effort message will wait in the buffer until the acknowledgment of the sent

Reliable message is received.

According to DDS standard and TinyDDS architectures, RTDDS architecture is depicted

in Figure 26. As a pub/sub middleware, it includes four main entities: publisher, subscriber,

pub/sub service, and the Application Programming Interfaces (APIs). DDS associates with

every topic in the network two main components: Data Writer (DR), at the publisher side,

and Data Reader (DR), at the subscriber side. The RTDDS basic mechanism is

implemented in the DW and DR, therefore, after the modification these components are

62

referred to as R-DW, and R-DR, where R stands for Reliable. On R-DW, the buffering,

timer, and classifier mechanisms are implemented, whereas the acknowledgment

mechanism is implemented on R-DR. As shown in the architecture, the RTDDS

middleware intermediates between the application and the platform details, such as TinyOS

[108] protocols and Sensor/Actuator hardware. Thereby, the application can interact with

the system only through the DDS API interfaces, which makes the application development

easier.

Sensor Node

Application

RTDDS Middleware

APIs DDS Interface

SubscriberPublisher

Pub/Sub Service
Storage, Matching, DHT Overly Routing

TinyOS

Sensor/Actuator devices

R-DW R-DR

Figure 26 RTDDS Architecture

Basically, RTDDS follows the stop and wait mechanism due to its simple implementation

[120] that cope with WSN requirements [121]. On the publisher side, R-DW includes three

main mechanisms: buffering, timer, and classifier mechanisms. A ring buffer data structure

is used to build the RTDDS buffer at the publisher side, and in our implementation the

buffer size is 20 messages, each message is 20 byte. This buffer follows First In First Out

(FIFO) queue discipline, where, for example, in case of FRQoS, the first message that

63

arrives to the R-DW component will be sent first; and if it arrives while there are some

messages in the queue, it will be added to the end of the queue. If the message arrives while

the queue is full, the arrived message is dropped due to buffer overflow. In the timer

mechanism, the Retransmission Time-Out (RTO) is controlled. Where the timer is reset

every time a message is sent, and if no an acknowledgment is received during the

predefined RTO period, the timeout event occurs and a retransmission process is initiated

again. In RTDDS, RTO is experimentally determined based on the available memory in

TelosB platform [122] and set to 400 milliseconds. The last mechanism in the publisher

side is the classifier, where the messages are classified into two types: Full Reliable (FR)

and Best-Effort (BE) messages, as shown in Figure 27. Notice that this mechanism is only

used in the PRQoS level. One bit is added to the TinyDDS header to be used as a message

classifier, we call it reliability bit, where the application examines the readings and

accordingly set this bit. If a reading exceeds the threshold, then the bit is set, which means

this message is FR message. On the other hand, if the reading does not exceed the threshold,

then the bit is reset, which means this message is BE. As long as there are no reliable

messages in the readings the buffer is always empty. On the subscriber side, the only

mechanism is the acknowledgment mechanism. In this mechanism, every arrived message

is examined by checking the reliability bit. If this bit is set (FR message) then a

corresponding acknowledgment message is generated and sent back to the message origin.

Otherwise, if the bit is reset, the BE message is silently received without any response to

the message origin.

64

Classifier Transceiver
Readings

Marking Queuing Sending

Figure 27 RTDDS Classifier on the publisher side

Figure 28 illustrates the flow chart of the main RTDDS algorithm with FRQoS level. Since

we are using ring buffer and FIFO queue discipline, the “buffer in” means adding the new

message to the end of the buffer, and the “buffer out” means sending the first message from

the front of the buffer; and the “buffer remove” means removing the first message at the

front of the buffer, since it has already successfully received on the subscription side.

Therefore, in case of retransmitting a message we just recall “buffer out” command. The

buffer out command either resends an old message when the timeout event is fired, or sends

a new message when the corresponding acknowledgment of the sent message is received.

In the case of PRQoS, the subscriber sends its interest to the middleware service with a

certain threshold, hereby the classifier at the publisher side classifies the messages into BE

and FR messages based on the required threshold. For instance, in case of one sample

exceeds a certain specified threshold, the publisher will mark this message as a FR

message; otherwise it will mark it as a BE message, Figure 29 shows a simple pseudo code

for the algorithm of PR QoS of RTDDS, which is implemented in both R-DW, and R-DR

components. This algorithm is integrated into the main algorithm in Figure 28. In PRQoS

algorithm, we use a wait variable to wait for the acknowledgments of the FR messages.

Consequently, any message arriving at the R-DW, whether it is a BE or FR message will

be buffered until the acknowledgment of the sent FR message is received. Thereby, we

ensure in-sequence data delivery service, since the BE messages cannot be sent until the

all front FR messages are sent. In DDS each data writer and reader is associated with a

65

particular topic. Therefore, each topic in RTDDS can be associated with different QoS

level, and each subscriber can also request a different QoS level. For example, in one WSN

scenario there might be several subscribers and each of which requested a distinct QoS

level, best-effort, fully reliable, or partially reliable QoS.

Wait is 0?

TimeOut

Ack
Received?

No

Buff remove
Wait = 0

Buff in

Buff out

Set timer

Send
wait=1

start

Buff is full?

Sensor
Read

PKT drop Yes

No

End

No

yes

Yes

No

Yes

Figure 28 The reliability algorithm of RTDDS with FRQoS level

66

Algorithm1: Data-Writer Partial Reliability QoS

 1: If msg is BE and wait is False

 then msgSend;

 2: Elseif msg is BE and wait is True

 then BufferInsert;

 3: Elseif msg is FR and wait is False

 then msgSend;

 wait=True;

 4: Elseif msg is FR and wait is True

 then BufferInsert;

Figure 29 PRQoS level algorithm

4.2 Performance Evaluation

In this section we extensively evaluate the proposed reliability protocol RTDDS. The

evaluated factors that have impact on RTDDS performance are: Retransmission Time Out

(RTO), Number of hops, data rate or Inter-Packet-Interval (IPI), number of publishers, and

the percentage of reliable messages in case of PRQoS. The impact of these factors is

evaluated using the following performance metrics:

 Packet Delivery Ratio (PDR): the main performance measurement of a reliability

protocol. It is calculated by dividing the total number of successfully received

messages at the subscriber side by the total sent messages from the publisher side.

For an ideal reliability protocol this metric should be equal to one for all scenarios.

67

 End-to-End Delay (EED): it is measured from the moment of sending or

publishing data on a publisher side until it is successfully received on a subscriber

side. Therefore, it includes the buffering time at the publisher side, which is the

major effect on the delay, and also the transmission, propagation, and receiving

time at the subscriber side; the retransmission trails also included.

 Dropped Message Ratio (DMR): this metric is related to the buffering at the

publisher side, where it calculates the dropped messages due to the buffer overflow.

This happens when a message arrives to the data writer while it is still waiting for

an acknowledgment and the buffer is full. Thus, the DMR is calculated by dividing

the total number of dropped messages due to buffer overflow by the total number

of sent messages by the application layer.

 Retransmissions per Message (ReTx/Msg): this metric represents the cost of

successfully received messages in terms of number of retransmissions. Each sent

message might be successfully received from the first sending time or it may need

to be retransmitted several times until it is successfully received. This metric is

calculated by dividing the total number of retransmissions by the total number of

successfully received messages.

 Redundant per Message (Rd/Msg): this metric indicates the efficiency of the

protocol in terms of redundant messages received at the subscriber side for the same

sent message. It is calculated by dividing the total number of redundant messages,

excluding the first received message, by the total number of successfully received

messages.

68

 Energy consumption: this metric is very important in WSN since energy is scarce

and it determines the network lifetime. It is measured as the voltage drain by the

network nodes from the moment the network is initiated until the last message

received from the last alive node in the network.

 Memory footprint: this metric is measured as the number of bytes consumed by the

RTDDS code, when it is uploaded to TelosB platform. Both RAM and ROM

memories are considered in evaluating this metric.

4.2.1 Experiments setup

Several experiments were conducted to evaluate the RTDDS performance. These

experiments are divided into simulation and empirical experiments. In both types, RTDDS

is compared against TinyDDS, where TinyDDS is represented by the BEQoS. The

empirical experiments are conducted using TelosB motes. While Table 4 includes all the

common simulation parameters, Table 5 specifies the variable network parameters and

their values in each used scenario. Three main scenarios are used in simulation

experiments: two for FRQoS, where RTO, IPI, number of publishers, and number of hops

are examined, and one for PRQoS, where reliability percentage factor is examined. RTDDS

is tested over two platforms, one by TOSSIM [109] simulator, a micaZ mote platform, and

the other by a prototype that is downloaded over TelosB motes. We use static routing for

multi-hop scenarios, and the radio model is based on Chipcon CC2420 model [123]. For

more details on the experiments’ simulation setup, refer to Table 4. Each data point in the

results represents the average of ten times of simulation runs. In addition, the standard

deviation of the ten runs is represented by the error bars in the results’ charts.

69

Table 4 Simulation setup

Parameter Value

Topology Squared grid

Area 100 X 100 Meter2

Number of Nodes 50

Simulation time 500 seconds

Radio model Chipcon CC2420 [123]

Mote platform micaZ

Data rates 60, 30, 20, 15, 12 Msg\Minute

Number of publishers 1, 5, 10, 15, 20, 25

Message size 20 bytes

Maximum hops 10

RTO 400 milliseconds

Percentages of Reliable messages 0, 20, 40, 60, 80, 100 %

Runs per results’ data point 10

Table 5 The three main scenarios in the simulation study

Scenario
Examined

factors

Performance

metrics

No. of

publishers

No. of

hops

IPI

(sec)
RTO (ms)

Reliability

level

FRQoS-RTO
RTO, No.

of hops

PDR,

ReTx/Msg,

EED, DMR

2
1, 2, 3,

4, 5
1

200, 400,

600, 800,

1000

FRQoS

FRQoS-IPI
IPI, No. of

publishers

PDR, Rd/Msg,

EED, DMR

1, 5, 10,

15, 20, 25

Max

3

1, 2,

3, 4, 5
400 FRQoS

PRQoS
Reliability

percentage

PDR, No. of

ReTx, EED,

DMR

5

Max

3

1, 5 400

FRQoS,

PRQoS,

BEQoS

70

4.2.2 Full Reliability QoS Results

Since FRQoS is the level causes the largest protocol communication overhead, almost all

the factors that affect RTDDS performance are evaluated in this level. Moreover, we

experimentally adjust the RTO according to this level. Consequently, the performance of

the other two levels, i.e. PRQoS, and BEQoS, would be less effected by the different

network parameters. That means, under the same examined conditions here, the other levels

perform better than FRQoS level in terms of EED, ReTx/Msg, Rd/Msg, and DMR; and, in

return, FRQoS is the best in terms of PDR.

Before starting the simulations, an improvement is added to RTDDS to minimize the

significant effect of the Co-Channel Interference (CCI) on RTDDS protocol. Figure 30

shows the significant effect of the CCI on the PDR of the BEQoS level. To reduce this

effect, we use a simple algorithm for Interference-Free Scheduling (IFS) at the middleware

layer, in which each set of adjacent nodes are sending at different times, i.e. Time Division

Multiple Access (TDMA). Using IFS algorithm improves the PDR of the BEQoS level

nearly 3.5 times. In contrast, the FR level shows more robustness against CCI, where the

PDR almost the same in both cases, with and without IFS. However, in the cost of

retransmissions and delay, in case of five IPI it incurs about 1.9 times the number of

retransmissions of with IFS, and the delay of with IFS is nearly 2.4 times less than in case

of without IFS (NIFS). Also, notice that the PDR of the BEQoS level almost the same in

both cases of one and five IPI, which is because the nodes in case of five IPI stay not active

for almost four seconds and then send at the 5th second, consequently, the channel

contention would be almost the same in both cases of one and five IPI. Finally, in terms of

PDR the FRQoS is more robust than BEQoS, which is because FRQoS level persistently

71

deliver the data to the receiver side. That can be deduced from the error bars showed in the

figure, where they are much higher in case of BEQoS level.

Figure 30 Interference effect on the performance of RTDDS

In FRQoS-RTO scenario, we use two publishers and one subscriber (BS) with different

number of hops and different values for RTO, as described in Table 5. Figure 31 depicts

the RTDDS performance versus number of hops and also versus different RTO values. The

hops are started from one to ten hops, however, it is worth mentioning here that the smallest

number of hops is two hops, i.e. one to the rendezvous node where the matching process

and publication routing are conducted, as mentioned earlier in Chapter 2, and one to the

interested subscriber. For instance, if one publisher is away from the interested subscriber

by six hops, that means three to the rendezvous node and three to the interested subscriber.

In addition, the RTO values range from 200 to 1000 milliseconds (ms), where 200 ms is

the minimum Round Trip Time (RTT) of five hops distance in our testing environment.

That means, the minimum time required from the publisher to wait for the acknowledgment

is equal 200 ms, in case of five hops distance between the publisher and BS. And the upper

bound is 1000 ms because the data rate in this test is one message per second, thus if the

0

0.2

0.4

0.6

0.8

1

1.2

1IFS 1NIFS 5IFS 5NIFS

P
D

R

Inter-Packet Interval (Sec)

BEQoS FRQoS

72

timeout is higher than the data rate it causes buffer overflow, which leads to system

instability.

(a) Packet Delivery Ratio (b) No. of ReTx per message

(c) End-to-End Delay (d) Dropped Messages Percentage

Figure 31 The impact of RTO and No. of hops on RTDDS perfromance

Since the packet loss is the most important performance metric in reliability protocols, we

give it the highest priority in our selection of RTO. In Figure 31, part (d), we can see that

there are no dropped messages in case of RTO 200 ms and RTO 400 ms, even in the worst

case, i.e. ten hops. From the same part, it shows that RTDDS with FRQoS level is robust

until six hops whatever the timeout is. That is because in case of six hops the PDR is 100%

and the DMR is zero for all the cases of RTO. In addition, in part (d) it also shows that

until the six hops case the delay cost is in the range of milliseconds. In general, the four

parts of the figure show that the RTDDS performance degrades as the timeout increases,

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10

P
D

R

No. of Hops

RTO200 RTO400 RTO600 RTO800 RTO1000

0

0.5

1

1.5

2

2.5

2 4 6 8 10

R
e

Tx
/M

sg

No. of Hops

RTO200 RTO400 RTO600 RTO800 RTO1000

0

5

10

15

20

25

30

35

2 4 6 8 10

EE
D

 (
Se

c)

No. of Hops

RTO200 RTO400 RTO600 RTO800 RTO1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10

D
M

R

No. of Hops

RTO600 RTO800 RTO1000

73

since it goes to the system instability state, as discussed. Herein, we have two choices, 200,

and 400 ms to be used as our RTO of RTDDS. From part (b), the ReTx/Msg cost is lower

in case of 400 ms than 200 ms, and at the same time both of them almost have the same

PDR in part (a). As a result, we selected 400 ms as RTDDS Retransmission timeout for the

rest of our tests.

In FRQoS-IPI scenario, RTDDS with FRQoS level is evaluated under heavy network

conditions such as increasing number of publishers and data rate, the results are shown in

Figure 32. The number of publishers is increased until it reaches 50% of the network nodes,

and network data rate is increased from one message per five seconds to one message per

one second. The reason why we chose this range is that we experimentally decreased the

data rate until we got zero messages dropping in case of 50% of the number of publishers.

Wherein, the minimum data rate to get this result was one message per five seconds, as

shown in part (d). In this part, the worst case is with one sec IPI and 50% number of

publishers, where the DMR is around 60% and that is due to the high collision rate because

of the heavy network load. From the same part, we can see that the only guaranteed scenario

to ensure reliable data delivery service is the five sec scenario, where there is zero dropped

messages in all cases of the number of publishers. Therefore, we can deduce that RTDDS

with FRQoS is more suitable for applications that have a time-sensitivity response time not

less than five seconds. Thus, the maximum delay of the five seconds scenario would be, as

shown in part (c), around five seconds with 100% PDR, as shown in part (a). As an

alternative measure for cost, we use redundant per message instead of retransmissions per

message, as shown in part (b), which is around 60% redundant messages in case of five sec

scenario. In general, from the four parts, the results are intuitive where the cost in terms of

74

EED, DMR, and Rd/Msg increases as the network load increases in terms of data rate and

number of publishers, whereas the performance in terms of PDR decreases.

(a) Packet Delivery Ratio (b) Redundant per Message

(c) End-to-End Delay (d) Dropped Messages Percentage

Figure 32 The impact of number of publishers and data rate on RTDDS performance

In the previous analysis we targeted the time-sensitive applications or soft real-time

applications, since the sensor updates are in the order of few seconds. In Table 6, RTDDS

is validated by simulation that it works perfectly in the non-time sensitive applications, e.g.

with data rate of one packet per minute or slower. In this test, 50% of the sensors send one

packet every one minute to the base station. As shown in the table, the RTDDS cost in

terms of delay, retransmissions, and redundant messages is significantly reduced. Where

the delay is minimized from around five seconds to 243 milliseconds; also, the ReTx/Msg

0.00

0.20

0.40

0.60

0.80

1.00

1% 10% 20% 30% 40% 50%

P
D

R

No. of Publishers

1sec 2sec 3sec
3sec 5sec

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1% 10% 20% 30% 40% 50%

R
d

/M
sg

No. of Publishers

1sec 2sec 3sec

4sec 5sec

0

10

20

30

40

50

1% 10% 20% 30% 40% 50%

EE
D

 (
se

c)

No. of Publishers

1sec 2sec 3sec 4sec 5sec

0.00

0.20

0.40

0.60

0.80

1% 10% 20% 30% 40% 50%

D
M

R

No. of Publishers

1sec 2sec 3sec 4sec 5sec

75

are reduced from nine messages to one message. Moreover, Rd/Msg minimized from 68%

to 42%, which means that less than the half of the transmitted messages would get

redundant in case of data rate of one Msg/Minute.

Table 6 RTDDS performance with high and low data rates

4.2.3 Partial Reliability QoS Results

In PRQoS scenario test, we use the scenario of five publishers are sending to the base

station (subscriber) with two different data rate, and the network maximum hops are six

from the publisher to the base station. The worst case represented by one second IPI, where

there would be message dropping, due to buffer overflow. The second scenario is the zero

message dropping scenario, which is represented by five seconds IPI, since it has been

tested experimentally and there was no message dropping until 50% of the network are

publishers. As discussed previously, in PRQoS the first two levels are employed to work

together, namely BEQoS and FRQoS levels. To observe the effect of different levels of

PRQoS on the protocol performance, we control the published messages in which the

percentage of FR messages is 0%, 20%, 40%, 60%, 80%, and 100% from the total sent

messages. Notice that 0% represents BEQoS level and 100% represents FRQoS level.

Thus, this test can be considered as a comparison between the three QoS levels offered by

RTDDS.

IPI SimTime # MSGs PDR Delay ReTx/PKT Dropd Rd/PKT

5 500 2500 1 5172 9.22 0 0.68

60 7200 3000 1 243 1.18 0 0.42

76

(a) PDR with five and one second IPI (b) No. of RxTx per message for 2495 messages

(c) End-to-End delay (second) (d) No. of dropped messages

Figure 33 Partial Reliability QoS results with five and one seconds IPI and five publishers

As the previous results, Figure 33 depicts the comprehensive results of this test, including

PDR, No. ReTx, EED, and the DMR. In part (a), intuitively, as the number of FR messages

decreases the PDR decreases. That is expected because the number of unguaranteed

messages increase as we increase the BE messages, also the effect of the packet dropping

due to network conditions become more observable. At 0% PRQoS, which exactly means

BEQoS, we can observe that there is no difference between one and five seconds IPI. That

is because the packet dropping due to the channel contention is the same in one and five

seconds' scenarios. That means, in both scenarios the sending period is almost one second

for all the publishers, and this one second could be the first or the fifth, where the remaining

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100% 80% 60% 40% 20% 0%

P
D

R

Reliability QoS Percentage

5 sec 1sec

0

1

2

3

4

5

6

100% 80% 60% 40% 20% 0%

N
o

. o
f

R
e

Tx

Thousands

Reliability QoS Percentage

5sec 1sec

0

1

2

3

4

5

6

7

100% 80% 60% 40% 20% 0%

EE
D

 (
se

c)

Reliability QoS Percentage

5sec 1sec

0

50

100

150

200

250

300

350

100% 80% 60% 40% 20% 0%

M
D

R

Reliability QoS Percentage

1sec

77

four seconds the sensors stay in the sleep or inactive mode. This might be improved by

extending the IFS (Interference-Free Scheduling) based on the IPI of the application, i.e.

in case of five seconds, the transmissions would be distributed over the whole 5 seconds.

In part (b), due to the huge traffic of applying reliability QoS and the fast publication rate

in case of one second IPI, massive packet dropping occurs and thus it is reflected by the

number of retransmissions. However, it is very important to notice that both the 5000

ReTxs and 1000 ReTxs in case of FRQoS are corresponding to two ReTxs/Msg, that is

because the total number of sent messages is 2500 and 500 respectively. For real-time

systems that have response time sensitivity less than one second, applying full reliability

required huge amount of resources in terms of processing, memory, bandwidth, and power.

However, since the number of retransmissions decreases from around 5000 ReTxs to 1000

ReTxs, this emphasizes that RTDDS is very suitable for the applications that have response

time sensitivity around one minute or more. This observation can also be supported by the

result of part (c), where in the case of five seconds the end-to-end delay is in the order of

milliseconds, even when we use 100% PRQoS or FRQoS. Finally, part (d) shows the

dropped messages at the publisher side because of buffer overflow. As shown in the figure,

only the scenario of one second IPI is illustrated because there is no message dropping in

five seconds scenario. The number of dropped messages almost linearly decreases with the

PRQoS percentage decreasing. In FRQoS level, nearly 12% of the messages are dropped,

whereas in 20% PRQoS, nearly 2% of the messages are dropped. Therefore, it is obvious

that in case of partial reliability QoS the reliability protocol is significantly improved.

Besides, PRQoS level is often used in sensor applications, where most of the data is

redundant unless a few readings that exceeds the predefined threshold.

78

4.2.4 Memory and Energy Consumption Results

For more accurate and realistic measurements, we develop an RTDDS prototype version

and install it on TelosB mote platform. In this test, RTDDS with FRQoS and normal

TinyDDS are compared regarding memory and energy consumption. The test scenario

includes four motes: Base station, Rendezvous, RTDDS, and TinyDDS nodes. These motes

are deployed in indoor environment. Notice that, in terms of energy consumption, we can

consider this test as a comparison between FRQoS and BEQoS, since TinyDDS default

QoS is a BEQoS level. The publishers of RTDDS and TinyDDS nodes send data with one

message per second rate to the base station through the rendezvous node. The message size

is 20 bytes, and it is acknowledged by the base station in the RTDDS case. The RTDDS

and TinyDDS nodes are supplied by AA Energizer batteries, which means that each one

has an initial voltage of around 3V.

In the memory test, the RAM and ROM occupied space is computed as a percentage of the

free and used memory where TelosB RAM is 10 Kbytes and ROM is 48 Kbytes. Figure 34

shows the results of the memory space occupied by RTDDS and TinyDDS. Part (a)

represents the RAM usage, wherein RTDDS and TinyDDS occupy around 60% and 40%

respectively. Thus, the difference is 20% more by RTDDS, which is because of the buffer

at the publisher side and the control variables in both sides such as wait and timer variables.

In conclusion, the RAM still has 40% after adding reliability protocol to TinyDDS, which

makes it extremely efficient and applicable. Furthermore, in part b, the ROM test supports

this conclusion, where the difference even much less than in the RAM in which RTDDS

implementation increases the ROM by only around 5% compared to TinyDDS.

79

(a) RAM usage by RTDDS and TinyDDS (b) ROM usage by RTDDS and TinyDDS

Figure 34 RTDDS and TinyDDS Memory consumption based on TelosB platform

To measure the Network Life Time (NLT) the network continuously works until the

receiving of last message just before batteries death. Figure 35 shows the results of RTDDS

and TinyDDS NLT when data acquisition is continuously being performed with one

message per second data rate. According to TelosB reference [124], the minimum voltage

for the mote to work properly is 1.8 V as illustrated in the figure. However, both RTDDS

and TinyDDS motes work until it reaches 1.53 V. The result shows that the NLT of RTDDS

and TinyDDS are 5.5 and 6.25 days respectively. Of course this is too short because our

test is conducted under intensive data rate, whereas in real world applications the duty

cycles are much less than that, and energy saving modes are also used, i.e. sleep, and deep

sleep modes. As a result, the real world NLT would be extended to months or even years.

Moreover, we can observe that RTDDS, which is working in FRQoS level, energy

consumption (represented by voltage drain) is more than TinyDDS due to the extra traffic

used as acknowledgments, and more processing for reliability mechanisms. Further, the

difference between TinyDDS and RTDDS increases almost linearly with time. However,

it is important to consider that our test is nearly a perfect environment since there were

6112

4290

4128

5950

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

RTDDS TinyDDS

Free

Used
27002

26366

22150
22786

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

RTDDS TinyDDS

Free

Used

80

almost zero retransmissions in case of RTDDS. It is also worth noting that the total data

received by RTDDS, and TinyDDS are 471561, and 517322 bytes respectively.

Accordingly, the volts per bit for both scenarios are 1.94832E-08, and 1.77597E-08

respectively. Given this information, this result is important, since it would be used for

energy consumption or NLT estimation for RTDDS or TinyDDS middlewares. Finally, the

result shows that RTDDS is applicable and efficient in terms of energy/memory

consumption.

Figure 35 Energy consumption of RTDDS (FRQoS level) and TinyDDS

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2

1
0

8

1
1

4

1
2

0

1
2

6

1
3

2

1
3

8

1
4

4

1
5

0

V
o

lt
ag

e
 (

V
)

Time (hours)

RTDDS TinyDDS Min-Volt

81

5 CHAPTER 5

ONLINE ENERGY MODEL

TinyDDS is implemented over TinyOS code, therefore, the main challenging issue in this

research was how to use TinyOS SIMulator (TOSSIM) to develop our energy aware

protocol EATDDS. In this section, we elaborate on our proposed Online Energy Model

(OEM), and shed light on its implementation and validation.

One of the most well-known and accurate simulators for wireless sensor networks is

TOSSIM [109] [108], an event-driven simulator for TinyOS applications. However, no

energy measurements are supported by TOSSIM which is considered as a major shortage

in a WSN simulator since the energy consumption is a very important metric in the

performance evaluation of any WSN protocol or application. Therefore, two main

extensions have been developed to tackle this problem by integrating energy measurements

tools into TOSSIM. These extensions are: POWERTOSSIM [125] and POWERTOSSIMZ

[110], where the difference between the two is that POWERTOSSIM is for mica2 platform

and TinyOS 1x, whereas POWETOSSIMZ ports the model to TinyOS 2x, and micaZ

platform. Both simulators work by accurately tracking the power states of each component

in TOSSIM simulator, e.g. Microcontroller unit (MCU), Memory, LEDS, and Radio,

during the whole period of simulation run. At the end of the simulation, the output file from

these energy simulators is subjected to post processing to compute the final results of

simulation energy consumption of each component. The post processing process depends

on the energy measurements from the micaZ datasheet [126].

82

The main limitations of the POWERTOSSIM and POWERTOSSIMZ are: (1) they support

only the mica series platforms, while they do not support telos platforms; (2) they do not

support online energy measurements since they compute the final energy measurements

after the simulation run and based on post processing process that uses the energy model

of the used platform. The second limitation is very important for any energy aware

simulation study, because in such protocols the energy level of the network nodes should

be known during the simulation to take the proper action according to the energy readings.

Therefore, one of the challenging issues in this work was to come up with an energy model

that allow us to develop and test our proposed energy-aware protocol EATDDS. In this

chapter, we describe in details the proposed energy model that is used in our simulations

and its implementation in TOSSIM components. Furthermore, we validate our model by

comparing our results with the previous work PWOERTOSSIMZ.

5.1 Online Energy Model Description

Unlike POWERTOSSIMZ, in Online Energy Model (OEM) we only focus on the Radio

and MCU components, since they are the most components that contribute in energy

consumption, more specifically the Radio component. TinyOS is a component-based

operating system, which consists of many components and these components are wired

using interfaces that are either provided or used by a component. The TOSSIM simulator

is part of TinyOS code; it consists of many components, where each mote unit, e.g. MCU

and Radio, corresponds to one or more components. The main components that we use in

our online energy model implementation are the TossimPacketModel component which is

corresponding to the Radio unit, and SimSchedularBasic which corresponds to the MCU

83

unit. Figure 36 depicts the architecture of this model, as shown in the figure the power state

tracking code is embedded into TOSSIM, and the energy model of the mote platform can

be easily integrated into the simulator before a simulation run.

TOSSIM SIMULATOR

Platform specific Energy Model

(MicaZ, TelosB, Iris, … ect)

…. HW Implementations

Power state tracking

Figure 36 Online Energy Model Architecture

5.1.1 Radio Component

The radio is the largest energy consumer among all the other components in the mote. Both

micaZ and telosB platforms use CC2420 Radio Chip. The corresponding component of the

Radio in TOSSIM provides three main interfaces: Send, Receive and Splitcontrol. In OEM

we use Send and Receive interfaces to track the radio power states in TOSSIM simulator;

specifically in the TossimPacketModel.nc component. Three main states are tracked in the

Radio component: Send, Receive and sleep. Thereby, the total energy consumption is

calculated using equation 5.1, where the Δ𝑡 represents the state duration (receiving, sending

or sleeping), and 𝑉 represents the used voltage, which is approximately 3 V, and 𝐼𝑠𝑡𝑎𝑡𝑒

represents the consumed current of the power state, which is obtained from the energy

84

model/datasheet of the used platform, e.g. as shown in Table 7. The OEM Radio algorithm

is shown in algorithm 5.1.

𝐸𝐶𝑅𝑎𝑑𝑖𝑜 = Δ𝑡 ∗ 𝑉 ∗ 𝐼𝑃𝑠𝑡𝑎𝑡𝑒 (5.1)

Algorithm 5.1: Online Energy Consumption of the Radio

while sim ranning do {

 while RoundTimre not fired do {

 if (send.start || receive.start)

 eventstamp = simtime;

 if (send.done || receive.done) {

 duration = simtime-eventstamp;

 ActiveTime +=duraiton;

 if(send.done) ECs += duration * V * Itx;

 else ECr += duration * V * Irx;

 }

 }

 IdleTime= SimTime - ActiveTime;

 ECi += IdleTime * V * Iidle;

 send (ECs,ECr,ECi);

 reset RoundTimer;

}

ECs: Sending Energy Consumption

ECr: Receiving Energy Consumption

ECi: Idle or Sleep Energy Consumption

V: source voltage; Itx: transmission current; Irx: receiving current; Iidle: Idle current.

Note: V, Itx, Irx, and Iidle are fed into the simulator before running based on the tested

platform.

85

As mentioned above, this modification is on the core code of TOSSIM simulator. Now, to

use the energy measurements online by TinyOS applications/protocols, we added a new

component to represent the global energy measurements variables; this is due to the lack

of supporting global variables in nesC [127]. Hereafter, these variables can be easily

accessed by any component in the simulator during the simulation run.

Table 7 Radio Current Consumption of MicaZ and TelosB

MicaZ TelosB

Mode Current Mode Current

Receive 19.7 mA Receive 23 mA

Tx, -0 dBm 17.4 mA Tx, -0 dBm 17.4 mA

Idle 20 uA Idle 21 uA

Sleep 1 uA Sleep 1 uA

5.1.2 Microcontroller (MCU) Component

To compute the energy consumption by MCU, it is important to track the amount of time

the MCU spends in each MCU power state. Similar to the Radio component, equation 5.2

can be used to compute the energy consumption of MCU for each state. The current

consumption of the MCU for MicaZ and TelosB motes are shown in Table 8. The main

states that we use in our tests for MCU were Active and Idle states as illustrated in

algorithm 5.2. As described earlier in this chapter, the MCU power state tracking code is

integrated with SimSchedularBasic.nc component, specifically in the

scheduler.runNextTask event. The main condition used in the MCU algorithm 5.2, if the

86

scheduler has no tasks, then the MCU in the idle state; otherwise it is in the Active state.

The OEM of MCU algroithm is shown in algorithm 5.2.

𝐸𝐶𝑀𝐶𝑈 = Δ𝑡 ∗ 𝑉 ∗ 𝐼𝑃𝑠𝑡𝑎𝑡𝑒 (5.2)

Algorithm 5.2: Online Energy Consumption of the Microcontroller

while sim running do {

 while RoudTime not fired do {

 duration = SimTime - PrevStateTime;

 if (PrevState == Active)

 ECactiveMCU= duration * V * IactiveMCU;

 if(PrevStateMCU == Idle)

 ECidle = duration * V * IidleMCU;

 if (nextTask == noTask) {

 PrevState = Idle;

 PrevStateTime = SimTime;

 } else {

 PrevState = Active;

 PrevStateTime = SimTime;

 }

 }

 Send(ECactiveMCU, ECidleMCU);

}

87

Table 8 MCU Current Consumption of MicaZ and TelosB

MicaZ (ATmega128) TelosB(MSP430)

Mode Current Mode Current

Active 8 mA Active 1.8 mA

Idle 4 mA Idle 54.5 uA

Sleep 9 uA Sleep 5.1 uA

5.2 Simulation and Validation

Since the last extension for TOSSIM that enable energy measurements was the

POWERTOSSIMz (PTZ), our validation will use PTZ results to be compared with our

OEM results. Also, since PTZ cannot provide online results, we run the simulation of PTZ

several times in order to get several points that we can use to compare with our OEM.

The simulation scenario uses the default TinyDDS with Best Effort service, it includes five

publishers and one subscriber, with transmission rate of one message per second; the

simulation lasts for 120 minutes. The OEM measurements were taken during the whole

simulation, whereas the PTZ measurements were taken at the end of several simulations

with different times, i.e. 5, 35, 75, 120 minutes. Since we are testing the internal mote

components, namely the Radio and MCU, we select one publisher node and take our energy

measurements for both OEM and PTZ. The results are shown in Figure 37 and Figure 38

for Radio and MCU respectively.

The energy model that we use in this validation is the MicaZ model. The radio component

has just two power states, Transmission and receiving state. If it is not transmitting it

88

switches to the receiving state, this is the default states in PTZ. On the other hand, the MCU

has also two power states, active and idle.

The results show that the energy consumed according to the OEM for both Radio and MCU

approximately increases linearly with time. That is because the data rate is constant and the

network is very light, which means almost no probabilistic behavior that can change the

consumption rate. This is adequate for our test since we are comparing two energy

measurement tools, where any randomization can affect the comparison fairness. Table 9

shows the exact values of the results, only for the comparison points, i.e. 5, 35, 75 and 120

minutes. The error of the OEM relative to the results of PTZ is in the order of nano-Joule,

which can be considered negligible.

Figure 37 Energy consumption of the Radio Component

0

50

100

150

200

250

300

350

400

450

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
ill

i J
o

u
le

)

Th
o

u
sa

n
d

s

Simulation Time (Minutes)

ROEM RPTZ

89

Figure 38 Energy Consumption of the MCU component

Table 9 The OEM and PTZ validation comparison

Simulation

Time (sec)
Radio (mJ) MCU(mJ)

 PTZ OEM Error % PTZ OEM Error %

5 17776.1 17727.92 -0.00271 4449 4454.685 0.00128

35 124084.6 124095.4 8.71E-05 31056.3 31076.92 0.00066

75 265907.2 265918.7 4.33E-05 66552.1 66574.06 0.00033

120 425459.3 425470 2.51E-05 106485.3 106508.5 0.00022

0

20

40

60

80

100

120

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

En
e

rg
y

 C
o

n
su

m
p

ti
o

n
 (

m
ill

i J
o

u
le

)

Th
o

u
sa

n
d

s

Simulation Time (Minutes)

McuOEM McuPTZ

90

6 CHAPTER 6

BROCKER-LESS TinyDDS

In this chapter we describe two alternative solutions that can be used to eliminate the

Rendezvous/Broker node in TinyDDS. These methods are called Broker-Less TinyDDS

(BLTDDS) and Hybrid TinyDDS (HyTDDS). The two methods are compared with the

original method of TinyDDS, which we call here Default TinyDDS (DefTDDS).

Throughout this chapter we will call the Rendezvous/Broker nodes as Rendezvous Node,

abbreviated as (RN).

6.1 Proposed Solutions

In any pub/sub system, the participant has two main phases: (1) Discovery phase and (2)

Data Dissemination phase. As soon as the node joins the network it starts the discovery

phase by sending subscription messages to the middleware until it is recognized and then

switch to the data dissemination phase, where the middleware starts sending the data of

interest to the joining node/subscriber. From the survey study we can see that the main

routing methods of the subscription messages or data (publications) are either broker-based

or broker-less (P2P). TinyDDS uses the broker-based methods in routing its subscription

and publication messages. We argue that this centralized method is not suitable for the

function of WSAN platforms, because it will form a bottleneck that will rapidly exhaust

the node energy, and eventually ends the network life time while the network still has

adequate residual energy. Therefore, in this chapter we study two alternative solutions: (1)

91

Broker-Less TinyDDS (BLTDDS); and (2) Hybrid TinyDDS (HyTDDS). The BLTDDS

has been used in several solutions [8] [19]. In this method, the subscriber broadcasts

subscription messages to all nodes in the network, where the matching process is conducted

at the publisher side. We propose a new hybrid method that can avoid the flooding

overhead of BLTDDS method and mitigate the bottleneck problem of Default TinyDDS

(DefTDDS). In this chapter the main assumption is that the middleware knows all the

publishers of the networks at the deployment time. In the following sections we elaborate

more on the pub/sub routing process for the three methods.

6.1.1 Default TinyDDS

In DefTDDS, one Rendezvous Node (RN) for each topic is assigned; where the publishers

and subscribers of that topic will meet. In Discovery phase, this node receives the related

publications and subscriptions. The RN address is obtained at the end nodes, i.e. publishers

and subscribers, using the hashing function in equation 6.1; where the Topic identification

and max Topic numbers are known before the network deployment, as they are part of the

middleware core’s parameters.

𝑅𝑁𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑇𝑜𝑝𝑖𝑐𝑖𝑑 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑀𝑎𝑥𝑇𝑜𝑝𝑖𝑐𝑠 (6.1)

In Data Dissemination phase, due to the memory limitation of the sensor/actuator devices,

the RN node uses volatile QoS, i.e. new publications are not saved in the RN memory, and

as soon as the new publication is received, it is forwarded to the all interested subscribers

that are registered in the RN database, and then it is deleted immediately, and so on. If there

is more than one subscriber for a single topic, the RN receives single publication and

multicast it to all interested subscribers. For Reliable QoS, which is proposed in chapter 4,

92

the RN receives the acknowledgment from all subscribers and then sends one ACK to the

corresponding publisher to release the next publication. Both the discovery and data

dissemination phases are depicted in Figure 39.

Pub Msg

Sub Msg

Data

Data

Data

P RN S

D
isco

very
Tim

e

D
isco

very
P

h
ase

D
ata D

issem
in

atio
n

 P
h

ase

Data

Data

Data

Legend:

P: Publisher

S: Subscriber

RN: Rendezvous Node

Figure 39 The sequence diagram of the discovery and data dissemination phases of DefTDDS

6.1.2 Broker-Less TinyDDS

In this method the RN node is totally eliminated, where the whole middleware functionality

is distributed over the publisher and subscriber nodes. As shown in Figure 40, in the

discovery phase, the subscriber broadcasts its subscription to all publishers. Thereafter,

every publisher will do the matching process to decide whether it would send its data to

this subscriber or not based on the matching process result. In case there is a match, the

data dissemination phase starts, where publishers who have the requested/interested topic

93

start sending data to the interested subscriber. By eliminating the RN node in this approach,

the single point of failure and bottleneck problems are solved. Moreover, this method

distributes the network load over the network’s nodes in more efficient way than the default

method. However, since it is a flooding based approach, the number of control messages,

i.e. subscription messages, highly increases. Consequently, high message dropping occurs

and discovery time would by quite high compared to DefTDDS.

Sub Msg

Data

Data

Data

P P S

D
isco

ve
ry Tim

e

Matching Time

D
isco

ve
ry P

h
ase

D
ata D

isse
m

in
atio

n
 P

h
ase

Sub Msg

Matching Time

Data

Data

Data

Data

Data

Legend:

P: Publisher

S: Subscriber

 Figure 40 The sequence diagram of the discovery and data dissemination phases of BLTDDS

6.1.3 Hybrid TinyDDS

To minimize the discovery overhead of the BLTDDS while mitigating the negative effect

of the bottleneck problem in DefTDDS, we propose a hybrid method that uses the RN in

94

the discovery phase and then totally eliminate it in the data dissemination phase. In this

method, the subscribers list (subscribers data base) will be distributed over the all

publishers; i.e. each publisher will maintain its all interested subscribers. Accordingly, in

the discovery phase, the RN function is only to forward the subscription messages to the

matched publishers, in this work we call the messages that is sent from the RN to the

corresponding publishers a notification message. These messages are counted as overhead

messages in the discovery process and calculated in our performance evaluation of this

method. The sequence diagram of this method is depicted in Figure 41, in this figure we

can see that after the discovery phase the data is directly sent to the interested subscribers.

P RN S

D
iscovery Tim

e

D
iscovery Phase

D
ata D

issem
ination

 Ph
ase

Legend:

P: Publisher

S: Subscriber

RN: Rendezvous Node

Figure 41 The sequence diagram of the discovery and data dissemination phases of HyTDDS

95

6.2 Performance Evaluation

6.2.1 Test Scenario and simulation setup

Since we are studying the sensor/actuator networks, this type of networks includes many

of both types: publishers and subscribers. In the common scenario used in WSAN

applications, each set of sensors has one actuator that does the response for sensor readings,

for example in heat monitoring systems, the sensors monitor the heat of the system and

sends the readings to the cooling valve (actuator); and accordingly the actuator opens or

closes the cooling valve. In this test we use small scale scenario, in terms of number of

publishers, that tries to simulate the real applications of WSAN. To the best of our

knowledge this is the first time TinyDDS is tested under multiple subscribers and topics.

The only difference between this scenario and the one used in reliability chapter is that

while the reliability scenario uses the traditional WSN, this scenario adds more subscribers

and topics to the network while the number of nodes remains the same. Figure 42 depicts

the tested scenario that is used in our simulations in this chapter; it includes five publishers,

and three subscribers that simulate two actuators and one common base station. The

96

actuators subscribe to different topics while the common base station subscribes to all the

network topics, which are three topics.

This scenario was inspired by recent pub/sub middleware research called PS-QUASAR

[19] which was described in the literature review chapter. The simulation setup parameters

are shown in Table 10.

Figure 42 The tested scenario with 5 publishers, 3 subscribers and 3 topics

97

Table 10 Simulation setup

6.2.2 Performance Metrics

Discovery Time

It is the time from the moment a subscriber join the network and send its subscription

message up to the time the joined subscriber is recognized by the middleware, i.e. inserted

into the middleware data base. In our test, since we have three subscribers the maximum

discovery time is taken. It is important to notice that we assume that the middleware already

knows all the publishers in the network.

 In Default TinyDDS (DefTDDS): it is the time from the moment the subscriber

sends its subscription message until this message is recognized by the Rendezvous

Node, since this node does the middleware core functions, e.g. matching and

routing subscriptions and publications.

Parameter Value

Topology Squared grid

Area 100 X 100 Meter2

Number of Nodes 49

Simulation time 1000 seconds

Radio model Chipcon CC2420 [123]

Mote platform micaZ

Data rates 30, 15, 10, 8, 5 Msg\Minute

Number of publishers 5

Number of subscribers 3

Number of topics 3

Message size 20 bytes

Runs per results’ data point 10

98

 In Broker-Less TinyDDS (BLTDDS): since there is no RN, the subscriber

broadcast its subscription throughout the entire network. Thus, the discover time is

calculated as the time from the moment the subscriber broadcast the subscription

message until this message is recognized by the last publisher who has the

interested subject.

 In Hybrid TinyDDS (HyTDDS): since the RN still exist in HyTDDS the

subscription messages is headed to the RN, and then the RN will distribute the

subscription message to all the corresponding publishers. Thus, the discovery time

is composed of two main hops: (1) from the subscriber to the RN; (2) from the RN

to the publisher. Since there is more than one publisher, we take the maximum

discovery time.

Discovery messages

The discovery messages are messages used in the discovery process. Specifically, the

subscription messages in case of DefTDDS and BLTDDS, also the subscription and

notification messages in case of HyTDDS. Notice that in case of BLTDDS, each node that

will rebroadcast the subscription message is also counted.

Packet Delivery Ratio (PDR)

The PDR is calculated by dividing the total number of successfully received messages at

the subscriber side by the total sent messages from the publisher side. In case of multiple

subscribers and topics, as in our test, we consider messages sent by all publishers as well

as all successfully received messages by all subscribers. If PDR is less than one, that means

there is packet dropping in the system.

99

End-to-End Delay (EED)

The EED is measured from the moment of sending/publishing data on a publisher side until

it is successfully received on a subscriber side. The delay is calculated for all successfully

received messages by all subscribers and then the average is taken.

Energy consumption

The energy consumption is calculated by taking the summation of energy consumption of

all the network nodes in milli-Joule. Energy consumption also gives a relative indication

of the network life time. As discussed in the OEM chapter, the radio and MCU are the only

components that will be considered in our evaluation.

6.2.3 Results and Analysis

One of the most important performance metrics of any pub/sub system is the discovery

time, specifically for real time systems, and discovery overhead, represented by the number

of discovery messages, i.e. subscriptions and notifications. In Figure 43, the discovery

overhead of the three methods is depicted. The discovery messages seem to have no effect

by the data rate, because we use the default approach in sending the subscriptions messages

in TinyDDS, in which this approach sends a constant number of messages, ten messages,

to assure the receiving of the subscription messages. Thus, mostly it will send the same

number regardless of the data rate or IPI. The BLTDDS shows the highest overhead

because it uses a flooding algorithm to distribute the subscription messages, while

DefTDDS has the lowest overhead because it does not use broadcast subscription messages

or notification messages, i.e. from the RN to the publishers in case of HyTDDS. The

100

HyTDDS method is the only one that has notification messages; therefore, its discovery

overhead is slightly more than the DefTDDS.

In Figure 44, the discovery time is depicted, and as show in the figure we can see that the

DefTDDS still the best in terms of discovery time, and that is because it has only one

overlay hop, i.e. from the subscriber to the RN, to be discovered by the middleware core

system. Whereas in HyTDDS, it needs two overlay hops, i.e. from the subscriber to the RN

and then from the RN to the corresponding publishers. That means, as the number of the

corresponding publishers increases the system incurs more delay; thus, HyTDDS is the

worst in terms of discovery delay. Although BLTDDS is the worst in terms of overhead, it

has small delay the broadcasting is very fast to reach all the corresponding publishers.

Intuitively, the discovery time should be less in case of low data rate, and vice versa, as

shown in case of DefTDDS and BLTDDS. However, this is not the case in HyTDDS, where

from the error bars, which represents the standard deviation of the repeated runs, it seems

not stable specifically in cases eight and ten IPI. That might be, as we mentioned earlier,

because it sends two overlay hops which increases the probability of collisions and thus

packet loss. At the end of the discover process analysis we can conclude that the default

TinyDDS (DefTDDS) still the best choice for real-time WSAN networks in terms of

discovery delay and overhead.

101

Figure 43 The number of discovery process messages vs. IPI

Figure 44 The average discovery time of new subscriber

Intuitively, the bottleneck problem of the DefTDDS will make it the worst case in data

dissemination. However, in low data rate it performs as effective as BLTDDS and

2 4 6 8 10

Def_R 81.28571429 79.375 79.85714286 79.71428571 81.625

BL_R 1177.8 1177.111111 1176.6 1178.625 1177.2

Hy_R 176.4285714 170.5 173.125 169.1666667 171

0

200

400

600

800

1000

1200

1400

D
is

co
v

e
ry

 M
e

ss
a

g
e

s

Inter-Packet Interval (sec)

Def_R BL_R Hy_R

2 4 6 8 10

Def_R 1160.857143 1198.625 962.7142857 1020.857143 1023.75

BL_R 1394.8 1323.444444 1276 1263.75 1063.8

Hy_R 8241.714286 8041.166667 6286 7122.5 8866.857143

0

2000

4000

6000

8000

10000

12000

D
is

co
v

e
ry

 T
im

e
 (

m
s)

Inter-Packet Interval (sec)

Def_R BL_R Hy_R

102

HyTDDS. In Figure 45, it is obvious that the BLTDDS and HyTDDS further improves the

Reliable TinyDDS, in which they completely eliminate the packet dropping in case of

heavy data load, i.e. IPI one second. This is due to the load distribution over the network

nodes rather than enforcing the data to go through a single point, i.e. the RN. The same

trend can be shown in case of using best effort QoS, as shown in Figure 46. Since the

BLTDDS and HyTDDS methods use the same method in data dissemination phase, results

are almost the same in both cases, i.e. reliable and best effort scenarios. In general, the PDR

is very low in case of best effort scenario compared to the results of RTDDS tests. That is

because of using 3 subscribers instead of one in RTDDS test. Unlike increasing the number

of the publishers, increasing the number of subscribers has a significant effect on the

network performance, since each subscriber needs to receive the data from most of the

publishers, especially if one topic is used in the network.

Figure 45 Packet delivery ratio of the reliable scenario

2 4 6 8 10

Def_R 0.601533781 0.898406375 0.988309096 0.989292013 0.986111111

BL_R 0.997892635 0.997393143 0.99906853 0.99537037 0.994389439

Hy_R 0.996799341 0.996827505 0.997837658 0.994855967 0.992456388

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ac

ke
t

D
e

liv
e

ry
 R

at
io

Inter-Packet Interval (sec)

Def_R BL_R Hy_R

103

Figure 46 Packet delivery ratio of the best-effort scenario

The results of the PDR can be reflected in the End-to-End Delay (EED) results. Both Figure

47 and Figure 48 are depicting the EED of the scenarios reliable and best effort

respectively. The improvement of the BLTDDS and HyTDDS is very clear, specifically in

the heavy load cases. The EED of the BLTDDS and HyTDDS is in the range of hundreds

of milliseconds. In reliable scenario, the delay decreases as the network load decreases, i.e.

IPI increases. In contrast, in the best effort scenario, we can observe that he effect of the

data load on the EED is not significant, that may be due to the fact that the publishers are

sending at the same time, exactly at the end of each interval; which makes the channel

contention and thus packet dropping almost the same in different IPIs. For this reason, we

used Interference Free Scheduling (IFS) in the reliability test in chapter 5.

1 2 3 4 5

Def_BE 0.5494345 0.552260111 0.556696286 0.556106625 0.555712714

BL_BE 0.569434165 0.57082663 0.56656633 0.57111989 0.572733333

Hy_BE 0.570065571 0.570884771 0.570441357 0.570708443 0.575928567

0.48

0.5

0.52

0.54

0.56

0.58

0.6

P
ac

ke
t

D
e

liv
e

ry
 R

at
io

Inter-Packet Interval (sec)

Def_BE BL_BE Hy_BE

104

Figure 47 End-to-End scenario of the reliable scenario

Figure 48 End-to-End delay of the best-effort scenario

2 4 6 8 10

Def_R 52368.77143 28647.5625 5889.177143 2104.414286 1171.16725

BL_R 1763.3621 427.3081111 413.5673 409.0455 407.4497

Hy_R 2032.566429 437.206 421.3945 418.0268333 419.1082857

0

10000

20000

30000

40000

50000

60000

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s)

Inter-Packet Interval (sec)

Def_R BL_R Hy_R

2 4 6 8 10

Def_BE 36.28738 36.30215556 36.36734286 36.32195 36.37144286

BL_BE 28.89768 28.9995 28.8625 28.82605 28.82773

Hy_BE 28.87944286 28.90655 29.05064286 28.63557143 29.18007143

0

5

10

15

20

25

30

35

40

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s)

Inter-Packet Interval (sec)

Def_BE BL_BE Hy_BE

105

Energy Consumption

In this section we discuss and analyze the energy consumption results of the three methods,

DefTDDS, BLTDDS and HyTDDS. The used energy model parameters are shown in Table

11.

Table 11 MicaZ Energy model parameters

MCU Radio

Mode Current Mode Current

Active 8 mA Receiving 19.7 mA

Idle 4 mA Transmitting 17.4 uA

Sleep 9 uA Sleep 1 uA

The energy consumption was tested under the reliable and best effort scenarios and

computed as total energy consumption of the radio and MCU components, as shown in

Figure 49 and Figure 50. The results show that the BLTDDS and HyTDDS outperform the

DefTDDS by nearly one third, in the reliable scenario. That is because in case of DefTDDS,

the network is instable, as shown from the PDR results in Figure 45, specifically with high

work load, e.g. IPI equals 2 and 4. This increases the number of retransmissions, which in

turn increases the energy consumption as well. In contrast, in case of best effort scenario,

as shown in Figure 50, the three methods nearly seem to have the same energy consumption

and that is because the total send and receive messages are almost the same, except that in

case of DefTDDS the messages may take longer paths due to the existence of the broker or

RN. The BLTDDS and HyTDDS results are almost the same except that there is a slight

increas in case of BLTDDS in both scenarios, i.e. reliable and best effort, and that is

106

because the flooding messages in the discovery phase. Therefore, HyTDDS seem to be the

more efficient protocol in terms of energy consumption, in both reliable and best effort.

This observation will be clearer from the next individual results of the three methods.

Figure 49 Total energy consumption in milli-Joule for reliable QoS

Figure 50 Total Energy Consumption in milli-Joule for Best Effort QOS

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
Jo

u
le

)

Inter-Packet-Interval (sec)

Def_R BL_R Hy_R

0

500

1000

1500

2000

2500

3000

2 4 6 8 10

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
Jo

u
le

)

Inter-Packet-Interval (sec)

Def_BE BL_BE Hy_BE

107

The previous results showed the total energy consumption, for both the Radio and MCU

components. In this part, each method is evaluated separately in terms of energy

consumption of both radio and MCU components, as shown in Figure 51 and Figure 52.

The BLTDDS and HyTDDS results are nearly the same; therefore, the results tables were

added to give the exact difference in their performance; specifically the effect of the

flooding approach on energy consumption. In general, the MCU energy consumption is

nearly one forth the consumption of the radio, which is very high compared to the new

sensor platforms, such as TelosB, iris and Zolertia, where the consumption of the MCU is

almost neglected when compared with the radio consumption. That is because the MCU

energy consumption in the new platforms is very small compared to MicaZ platform. For

example, in case of TelosB, the MCU active mode current consumption is 1.8 milli-Amp

whereas it is 8 in case of MicaZ; and the sleep mode current consumption of TelosB is 3

nano-Amp whereas it equals 9 micro-Joule in MicaZ. An important observation is that most

of the MCU time is in the idle or sleep mode, that may be the reason for having almost the

same MCU energy consumption while the network load increases.

108

Figure 51 Radio and MCU energy consumption of DefTDDS with Reliable QoS

Figure 52 Radio and MCU energy consumption of BLTDDS with Reliable QoS

2 4 6 8 10

DefMCU 1220.155686 1220.155986 1220.136376 1220.135404 1220.132466

DefRadio 10905.91134 8825.087845 6825.614826 5367.907036 4420.577738

0

2000

4000

6000

8000

10000

12000

14000

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
Jo

u
le

)

Inter-Packet-Interval (sec)

DefMCU DefRadio

2 4 6 8 10

MCU 1220.140598 1220.130326 1220.114059 1220.124417 1220.125233

Radio 7798.415103 4220.18595 3153.588652 2561.909984 2236.446228

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

To
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 (
m

Jo
u

le
)

Inter-Packet-Interval (sec)

MCU Radio

109

Figure 53 Radio and MCU energy consumption of HyTDDS with Reliable QoS

The main target of the following results is to explore the energy consumption distribution

of the three methods over the network nodes. In each figure, we pinpoint every subscriber,

publisher, relay, rendezvous nodes (brokers) and topic/data types. Table 12 describes the

symbols used in the energy consumption distribution figures (Figure 54, Figure 55 and

Figure 56). We selected the most heavy load network scenario to be depicted in this

evaluation, which is the reliable with two seconds IPI. For the sake of highlighting the

impact of the energy consumption distribution on the network life time, for each method

we compute the energy consumption of each node in the network relative to the maximum

energy consumption in the network. For example, if the maximum energy consumption

was in node B, equals 500 milli-Joule (mJ), then node B energy consumption equals 100%;

and for the remaining nodes in the network, the energy consumption for every node equals

the energy consumption of the node divided by node B energy consumption, as shown in

equation 6.2. Therefore, this evaluation does not show the total energy consumption of

each method, since this metric has been covered in the previous results. Also, each node in

2 4 6 8 10

MCU 1220.149399 1220.128271 1220.114588 1220.118048 1220.121286

Radio 7598.331308 4193.14025 3100.708869 2545.686275 2161.699

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

To
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 (
m

Jo
u

le
)

Inter-Packet-Interval (sec)

MCU Radio

110

the network is represented by a battery shape with accuracy of 5%, i.e. any change in the

energy consumption in the range of 5% will be reflected in the battery (node).

𝐸𝐶𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝐸𝐶𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

𝐸𝐶𝑀𝑎𝑥
 (6.2)

Table 12 Energy consumption figures' symbols

Key Meaning

Subscriber

Rendezvous Node

Publisher

Topics/data types

In Figure 54, the energy consumption distribution of the DefTDDS method is depicted. As

shown in the figure, only one node is considered as a dead node, which is the one having

the maximum energy consumption. Thus, if we define the network life time as the time

starting from the deployment moment until the first node is dead, the remaining energy

may be considered as a wasted energy. The remaining energy is depicted in the figure by

the remaining energy in the node batteries. Thereby, from the figure we can see how much

is the wasted energy in DefTDDS method, which is the worst case in this study. It is very

obvious that we really need an energy aware mechanism that can distribute the load of the

network based on the network energy consumption distribution, which will be introduced

in the next chapter. As discussed earlier, since we have three topics in this network then

the default TinyDDS middleware dedicates three RN nodes, one for each topic. These

nodes are shown in the figure, which can be exactly pinpointed using Table 12, and we can

see that the most exhausted nodes are those which transfer the date from RN nodes into the

111

base stations; this observation is because the whole data that comes from the all publishers

are transferred throughout these nodes. The middle RN node, the RN node of the circle

topic, is the only one from the RN that still away from about to die, that is because this RN

has only one publisher; whereas the other two RN nodes have two publishers each. About

23 from 49 nodes are still having full batteries while the network life time is over because

one of the RN is already dead and the other one is about to die; consequently, four

publishers are considered totally disconnected from the network. Notice that we are

discussing the effect of the middleware layer independent from the underlying network

protocols. Therefore, we do not discuss the effect of the underlying routing protocol on the

energy consumption distribution; however, it has a significant effect on the performance

regarding energy consumption.

Figure 54 DefTDDS energy consumption distribution over the network nodes

112

The other two methods, BLTDDS and HyTDDS, almost have no RN nodes; that means

they are totally dependent in the underlying routing protocol in distributing the energy

consumption over the network nodes. Figure 55 and Figure 56 depict the energy

consumption of BLTDDS and HyTDDS, respectively. The two results are nearly the same,

since they have the same method in data dissemination phase which is the dominant phase

in any pub/sub middleware. The slight difference is reflecting the difference between the

two methods in the discovery phase, where BLTDDS uses a flooding algorithm and

HyTDDS uses the RN nodes, as shown in Figure 56. Since these methods totally eliminate

the RN nodes in data dissemination, i.e. the bottleneck problem, the data dissemination

distribution over the network nodes is much better than in DefTDDS; which is reflected

into the energy consumption distribution. However, since we do not use an energy aware

routing protocol in the underlying layer, the network still have a lot of remaining energy (

wasted energy), as shown in the figure, 18 out of 49 nodes are still having full batteries.

Note also that the middle base station has almost exhausted its energy, because it subscribes

to the all topics in the network, e.g. data base server.

This chapter leads us to the next chapter, where we introduce the solution for the energy

consumption distribution problem in DefTDDS. Although the other two methods have

significantly improved the function of the default TinyDDS, specifically in the data

dissemination phase, still they are not an energy aware methods and are totally dependent

on the underlying layers in the energy consumption distribution.

113

Figure 55 BLTDDS energy consumption distribution over the network nodes

Figure 56 HyTDDS energy consumption distribution over the network nodes

114

7 CHAPTER 7

EATDDS

Energy is a very critical resource for sensor-based networks. Most of the sensors/actuators

use AA size batteries, and changing these batteries is costly and in some cases very

difficult, e.g. hazard or harsh regions monitoring. Therefore, minimizing energy

consumption and developing energy aware protocols in WSN is currently a hot area of

research. In this chapter, we continue TinyDDS enhancements by introducing the final

enhancement, in which a publish/subscribe energy aware protocol based on DDS is

presented and evaluated.

7.1 EATDDS Description

In this protocol we assume that the node location is known for all network nodes, e.g. using

GPS devices, or localization protocols. As in our scenario, a grid topology is used which

is the tested topology in the TinyDDS implementation test. EATDDS uses the location of

the nodes to minimize the distances between the publishers and interested subscribers, thus

minimizing the energy consumption. Since the energy consumption is directly proportional

to the square distance between the sender and receiver [128]. The OEM that is described

in chapter 5 is used in this work to monitor the energy consumption of the network nodes.

Each node will monitor its energy level and based on the common round used by all the

nodes, it will send its information periodically to the cluster RN node.

115

The EATDDS algorithm is inspired by the LEACH-C protocol [128], where our network

is considered as a cluster based network. As we have three topics, i.e. three RN nodes,

therefore, each RN node can form a separate cluster with all the publishers and subscribers

that are relevant to that RN node. Figure 57 shows how our network can be clustered into

three main clusters, each cluster represents a distinct topic. In EATDDS algorithm each

RN will be responsible for one cluster, which has the same topic of the RN node. The

network life time is divided into rounds, in each round the RN node selects new RN node

its cluster. The new RN node will be selected from the cluster nodes as the one having the

maximum remaining energy.

Figure 57 Cluster formation of EATDDS

Since all the nodes have registered the topic/data in the deployment phase, all nodes can

reach the main RN node, because, as discussed earlier, each topic is mapped to an RN node

 C (1) C (3)

C (2)

116

address. Thereby, it will be easy for those nodes to send their energy updates to the

corresponding RN node periodically. In case there is more than one topic, which means

more than RN nodes are exist, every node will send the energy updates to the all RN nodes

in the network.

7.2 Performance Evaluation

In this section, EATDDS is extensively evaluated and tested under different network loads,

represented by IPI. The main focus in this evaluation is on the energy consumption metric

and its related metrics, such as network life time and energy consumption per packet.

Unlike the previous tests, this test is not limited by simulation time, in which we run the

simulation until the first node dies, at this time the other measurements are taken.

7.2.1 Experiment setup

The simulation set up and network topology is the same as in the OEM chapter, the

topology can be shown in Figure 57. As mentioned above, the only difference is the

unlimited simulation time, whereas in OEM simulations it was 1000 seconds, and in

RTDDS it was 500 seconds, so it gradually increases. The new and most important

parameter in this simulation is the initial energy; where all the network nodes will start

with an initial energy, and once this energy is dissipated the node is considered dead. We

select the initial energy to be one joule, as in LEACH-C paper [128]. Moreover, the data

rate is constant, that means all the protocols are subjected to the same workload, which

makes the comparison more fair. EATDDS round time is 350 second, which means every

350 second a new round is initiated by the main RN to change the distributed RN nodes.

117

7.2.2 Performance metrics

The focus in this evaluation is on the cost of the middleware in terms of energy

consumption. In addition, the protocol performance is measured by how many successfully

received packets per joule.

Network life time (NLT)

The network life time is measured as the running time of the simulation until the first

node dies. This occurs when the node consumes its whole energy, where the initial

energy is one joule per node.

Packet per Joule (PPJ)

This metric is a good indicator for the protocol efficiency in terms of energy savings. It is

measured as the number of successfully received packets divided by the total energy

consumption during the whole network life time.

Total Energy Consumption (TEC)

The TEC is the summation of the energy consumption of all network nodes. All the

energy measurements are in milli-Joule.

Wasted Energy (WE)

This metric reflects the good distribution of energy consumption on the network nodes.

Therefore, a large amount of wasted energy reflected bad mechanism in terms of energy

savings. It is measured by taking the summation of the remaining energy of the network

nodes. Specifically, it is calculated by subtracting the total energy consumption from the

total initial energy.

118

7.2.3 Results and analysis

The total energy consumption in Figure 58, and wasted energy in Figure 59 are the opposite

of each other; the less energy consumption the more wasted energy. As shown in the two

figures, the default TinyDDS appears to be the worst case since it has the most wasted

energy while the network is over. Likewise, it has the largest total energy consumption,

that means less work has been done in this protocol. Both the broker-less and hybrid

protocols appears to be the most effective, and thus have the longest network time.

EATDDS protocol is getting better with the work load decreasing, that is obvious from the

difference of the TEC that is increasing with IPI increases.

Figure 58 The network Total Energy Consumption

0

5000

10000

15000

20000

25000

2 4 6To
ta

l E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

M
Jo

u
le

)

Inter-Packet Interval (sec)

Default EatDDS Bless Hybrid

119

Figure 59 Remaining energy at the end of network life time

As mentioned earlier, the Packet per Joule measurement is a perfect metric for energy

efficiency, the more packets per joule is the better. In Figure 60, EATDDS protocol seems

to be the best in case of less network load, while it appears the worst in case of the heavy

network load. Due to the random selection of the RN node, EATDDS may behave

inappropriate when subjected to heavy network load.

Figure 60 Packets per Joule vs. Inter-Packet Interval

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 6

W
as

te
d

 E
n

er
gy

 (
m

Jo
u

le
)

Inter-Packet Interval (sec)

Default EatDDS Bless Hybrid

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6

P
K

T/
Jo

u
le

Inte-Packet Interval (sec)

Default EatDDS BLess Hybrid

120

In network life time, the broker-less and hybrid protocols nearly perform the same in

different workloads, while EATDDS shows a significant improvement to the default

TinyDDS. The broker-les and Hybrid, are almost the same technique except the process of

the discovery phase, therefore, in long-term process the may converge to finally perform

the same, as shown in the Figure 61.

Figure 61 Network life time at the moment the first node dies

Prototyping

On one hand, the main advantage of TOSSIM simulator is that you are building a real

implementation, that needs very small modifications to upload to real sensors and work

normally. On the other hand, this is the same reason of the difficulty of this simulator, since

doing any modification is very complicated. In this part, we introduce our prototype and

how we tested the final version of EATDDS.

TelosB motes are used in this experiments, as shown in Figure 62. In this experiment we

tested the real energy consumption of TelosB platform when EATDDS is working on it

1200 1250
14001300

2000

2800

1900

3010

4200

2000

3200

4300

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 6

N
et

w
o

rk
 L

if
e

Ti
m

e
(s

ec
)

Inter-Packet Interval (sec)

Default EatDDS Bless Hybrid

121

with different scenarios. These scenarios are: with central broker (RN) and with distributed

brokers to the effect of the bottleneck on the real network performance. The TelosB motes

are used without the low power listing protocol, which means they are all the time in

receive mode unless there is a transmission. Energizer batteries are used, and new ones are

changed in every experiment.

Figure 62 TelosB mote platform

122

Figure 63 Experiment environment and testbed

The seven nodes are distributed indoor, i.e. inside the lab as depicted in Figure 63. There

in each side, two publishers and one RN node; and the base station is placed directly on the

USB port, as shown in Figure 64; however, also the base station were tested with new

batteries to see the energy consumption in the base station nodes.

Figure 64 The Base Station attached to the PC USB port

123

The measurements the were taken are the voltage versus the time, which represents the

network life time, the memory and the end to end delay, i.e. from the publisher until it

reaches the base station including passing the RN node. Table 13 shows the effect of the

centralized approaches in real scenarios, where the distributed scenario relaxed the network

more and thus minimizing the contention and consequently packet dropping and collisions.

Furthermore, the standard deviation may reflect the instability of the centralized approach,

since the all publishers of the network have to go through this central RN.

Table 13 Prototype end-to-end delay

delay AVG Max Min STD

Distributed RN 25.06838 34 1 5.07

Centralized RN 30.3836 221 1 15.82

Figure 65 Network life time using 7 motes with AA energizer batteries

In Figure 65, the network life time can be estimated for all types of nodes, e.g. RN1, RN2,

SRN (single RN node), BS (Base Station). The Minimum Volt is the minimum power of

the TelosB motes to work properly [129]. As shown in the figure, the base station and the

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2

1
0

8

1
1

4

1
2

0

1
2

6

1
3

2

1
3

8

V
o

lt
ag

e
 (

V
)

Time (hour)

RN1 RN2 SRN BS Min-Volt

124

single RN has the minimum network life time, which is around 120 hours, whereas the

distributed node RN1 and RN2 have longer network time and that is intuitive since the four

publishers are distributed over the two RNs, i.e. two publishers per each RN node. A very

important observation is that the results are nearly the same, in opposite to the expected,

since distributing the load would give nearly double the life time. The reason behind that,

we used the TeolsB with its default state, which means the sensors were all the time in the

receive mode, that makes the difference between the all sensors quite small.

Figure 66 ROM occupied space after uploading EATDDS

49%51%

ROM
used free

125

Figure 67 RAM occupied space after uploading EATDDS to TelosB mote

The memory is a very important measurement, specifically for the limited resources

devices, e.g. sensors. It gives a clear evidence of the applicability of the developed

technique. The memory measurements of EATDDS is shown in Figure 66 and Figure 67,

for ROM and RAM respectively. The results show that the memory in both ROM and

RAM still have free space around 51% and 72% for ROM and RAM respectively. In this

regard, one important notice for TinyDDS memory is that increasing the number of

subscribers increase the occupied memory significantly.

73%

27%

RAM
used free

126

8 CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

In this work we reviewed the publish/subscribe interaction paradigm in the context of

WSN/WSAN, we discussed its suitability, components, architectures, and variants. Also,

we surveyed the state-of-the-art solutions of pub/sub middleware in sensor-based

networks, and compared their architectures, features and limitations, supported by

comparative tables. As a reference model for any pub/sub middleware we propose a generic

architecture that can be used as a reference to build new pub/sub solutions for sensor

networks. Also, a comparative study for the most suitable simulators used for testing and

evaluating WSN pub/sub solutions is presented in this work.

From the surveyed solutions, we can conclude that pub/sub solutions for limited resources

networks still need more efforts in design, implementation, and testing phases. More

concern still needed to consider the tradeoff of the middleware generality and the degree

of application-specificity; this may lead to significant improvements in resources

consumption. The proposed solutions also lack the efficient mechanisms to deal with the

most impact factors on the performance of the pub/sub middleware such as churn rate,

publish/subscribe rates, and failure rate. Moreover, ready testing and evaluating tools for

pub/sub interaction models need to be taken in consideration in future research of modeling

and simulation. For example, most of the proposed solutions did not evaluate the energy

consumption, although, it is a very important measurement in evaluating sensor networks,

127

that is mostly due to the lack of the models and simulators in this area. This could be the

reason behind the lack of energy efficient mechanisms in those solutions.

Applying pub/sub interaction model to simplify the development and integration of

distributed systems will be at the expense of huge communication in the underlying layers.

Therefore, it is not easy task to adapt such solution for limited resources systems such as

WSN; to the best of our knowledge none of the proposed solutions have thoroughly

investigated the actual cost in terms of memory, computation, communication, and energy

consumption, we believe that this still needs considerable amount of effort to be dedicated.

A reliability protocol design and implementation for wireless sensor/actuator networks was

introduced in this work. This protocol was integrated with TinyDDS middleware, and

named as Reliable TinyDDS (RTDDS). The RTDDS design, implementation and

performance evaluation were detailed in order to form an academic basic infrastructure for

studying, testing, and improving reliability in WSN. RTDDS implementation prove that

reliability QoS is applicable in most sensor platforms nowadays, since it is integrated and

tested with middleware technology. As DDS is widely used nowadays, that makes RTDDS

easily integrated to enterprise networks and increase the range of supported applications

because of its flexibility in offering different reliability levels. The results show that

RTDDS can work perfectly with applications that have time-sensitivity less than 5 seconds

and half overloaded in terms of number of publishers. However, RTDDS still would be

considered as a real-time system if it works with few nodes, where the response time would

be in the range of few tens of milliseconds. Many research directions could improve

RTDDS performance, or test its suitability in different network topologies and conditions.

For example, RTDDS needs to be tested in random network topologies instead of grid

128

topology, mobile nodes, and secure environments. Moreover, instead of using fixed

retransmission timeout, an adaptive retransmission timeout could be used and tested.

While EATDDS appears to be a promising middleware for WSAN, there are still several

enhancements that may make the middleware more widely applicable. In the current

version of EATDDS, we assume sensors/publishers periodically transmit data to the base

station/subscribers, i.e. one transmission per sensing data process. To save energy, sensors

may work in the event-driven basis, where it only sends data when there is an event of

interest, and this may lead to one important issue which is to port another well-known

DDS-based QoS to the EATDDS, which is called Content-Based Filter (CBF). In this QoS,

the node will filter the data by doing in-network check, if the reading is above or below

certain threshold, then it is transmitted, otherwise keep monitoring. This QoS may

significantly improve the efficiency of EATDDS, in terms of energy consumption. Also,

if the data aggregation techniques are used, it may further minimize the total energy

dissipation and end-to-end delay.

The main reason of using grid topology in our evaluation is to compare with the default

TinyDDS, which uses 4 x 4 grid topology. Although the Grid topology are used in many

indoor and outdoor applications, evaluating EATDDS using probabilistic topologies may

raise new issues related to EATDDS performance and its implementation, for example

energy consumption distribution is extremely dependent on the underlying routing

protocols that is directly affected by the network topology. Therefore, one of the important

future works is to evaluate the performance of EATDDS over probabilistic topologies, e.g.

random, uniform, normal … etc.

129

Furthermore, many parameters and timers are significantly affect he EATDDS

performance such as round time, information gathering round, the synchronization between

both of these missions, cluster formation approach, selecting the new RN node, for example

could be not the maximum but above certain threshold. These parameters can be

individually studied and improved.

130

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor

networks: a survey," Computer networks, vol. 38, no. 4, pp. 393-422, 2002.

[2] M. Petrovic, V. Muthusamy and H.-A. Jacobsen, "Managing Automation Data

Flows in Sensor/Actuator Networks," MSRG, Toronto, November, 2007.

[3] L. Atzori, A. Lera and G. Morabito, "The internet of things: A survey," Computer

Networks, pp. 2787-2805, 2010.

[4] G. Jorge, E. Monterio and J. Sa Silva, "Security in the integration of low-power

Wireless Sensor Networks with the Internet: A survey," Ad Hoc Networks, pp. 264-

287, 2015.

[5] I. F. Akyildiz and I. H. Kasimoglu, "Wireless sensor and actor networks: research

challenges," Ad Hoc Networks, vol. 2, no. 4, pp. 351-367, October 2004.

[6] S. Oh, J.-H. Kim and F. Geoffrey, "Real-time performance analysis for

publish/subscribe systems," Future Generation Computer Systems, vol. 26, no. 3,

pp. 318-323, 2010.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui and A.-M. Kermarrec, "The many faces of

publish/subscribe," ACM Computing Surveys (CSUR), vol. 35, no. 2, pp. 114-131,

2003.

[8] E. Souto, G. Guimara˜es, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz and J.

Kelner, "Mires: a publish/subscribe middleware for sensor networks," Personal and

Ubiquitous Computing, vol. 10, no. 1, pp. 37-44, February 2006.

[9] G. Cugola and H.-A. Jacobsen, "Using publish/subscribe middleware for mobile

systems," ACM SIGMOBILE Mobile Computing and Communications Review, vol.

6, no. 4, pp. 25-33, October 2002.

[10] A.-H. Jallad and T. Vladimirova, "Data-Centricity in Wireless Sensor Networks,"

Computer Communications and Networks, pp. 183-204, 2009.

[11] U. Hunkeler, H. L. Truong and A. Stanford-Clark, "MQTT-S — A

publish/subscribe protocol for Wireless Sensor Networks," in 3rd International

131

Conference on Communication Systems Software and Middleware and Workshops

(COMSWARE 2008), 2008.

[12] S. Furrer, W. Schott, H.-L. Truong and B. Weiss, "The IBM wireless sensor

networking testbed," in 2nd International Conference on Testbeds and Research

Infrastructures for the Development of Networks and Communities, TRIDENTCOM

2006, 2006.

[13] V. Tsetsos, G. Alyfantis, T. Hasiotis, O. Sekkas and S. Hadjiefthymiades,

"Commercial wireless sensor networks: technical and business issues," in IEEE

Second Annual Conference on Wireless On-demand Network Systems and Services.

WONS 2005, 2005.

[14] S. Schneider, "What Is Real-Time SOA?," RTI, Real-Time Innovations, Inc., 2010.

[15] B. Krishnamachari, D. Estrin and S. Wicker, "Modelling data-centric routing in

wireless sensor networks," in IEEE infocom, 2002.

[16] D. A. Tran and L. H. Truong, "Enabling Publish/Subscribe Services in Sensor

Networks," Advances in Next Generation Services and Service Architectures, 2011.

[17] S. Taherian and B. Jean, "A publish/subscribe protocol for resource-awareness in

wireless sensor networks," in Proceeding of the international Workshop on

Localized Algorithms and Protocols for Wireless Sensor Networks

(LOCALGOS'07), 2007.

[18] X. Tong and E. C. Ngai, "A Ubiquitous Publish/Subscribe Platform for Wireless

Sensor Networks with Mobile Mules," in IEEE 8th International Conference on

Distributed Computing in Sensor Systems (DCOSS), 2012, 2012.

[19] J. Chen, M. Díaz, B. Rubio and J. M. Troya, "PS-QUASAR: A publish/subscribe

QoS aware middleware for Wireless Sensor and Actor Networks," Journal of

Systems and Software, vol. 86, no. 6, pp. 1650-1662, June 2013.

[20] J. Chen, M. Díaz, L. Llopis, B. Rubio and J. M. Troya, "A survey on quality of

service support in wireless sensor and actor networks: Requirements and challenges

in the context of critical infrastructure protection," Journal of Network and

Computer Applications, vol. 34, no. 4, pp. 1225-1239, July 2011.

132

[21] P. Boonma and J. Suzuki, "TinyDDS: an interoperable and configurable

publish/subscribe middleware for wireless sensor networks," Handbook of Research

on Advanced Distributed Event-based Systems, 2009.

[22] B. University, "Tinydds: Publish/Subscribe Middleware for Wireless Sensor

Networks," [Online]. Available: https://code.google.com/p/tinydds/. [Accessed 12

Feb. 2015].

[23] Y. Liu and B. Plale, "Survey of publish subscribe event systems," 2003.

[24] R. Baldoni, L. Querzoni and A. Virgillito, "Distributed event routing in

publish/subscribe communication systems: a survey," 2005.

[25] M. Berbineau, M. Jonsson, J.-M. Bonnin, S. Cherkaoui, M. Aguado, C. Rico-

Garcia, H. Ghannoum, R. Mehmood and A. Vinel, "Survey on Context-Aware

Publish/Subscribe Systems for VANET," in Communication Technologies for

Vehicles, vol. 7865, Springer Berlin Heidelberg, 2013, pp. 46-58.

[26] M.-M. Wang, J.-N. Cao, J. Li and S. K. Dasi, "Middleware for Wireless Sensor

Networks: A Survey," Journal of Computer Science and Technology, vol. 23, no. 3,

pp. 305-326, 2008.

[27] S. Hadim and N. Mohamed, "Middleware for Wireless Sensor Networks: A

Survey," in First International Conference on Communication System Software and

Middleware, IEEE Comsware 2006., 2006.

[28] M. Molla and S. Ahamed, "A survey of middleware for sensor network and

challenges," in International Conference on Parallel Processing Workshops, ICPP

2006 Workshops, IEEE., 2006.

[29] P. Boonma and J. Suzuki, "Middleware Support for Pluggable Non-Functional

Properties in Wireless Sensor Networks," in IEEE Congress on Services - Part I,

2008.

[30] P. Boonma and J. Suzuki, "Self-Configuring Publish/Subscribe Middleware for

Wireless Sensor Networks," in Consumer Communications and Networking

Conference. CCNC 2009. 6th IEEE, 2009.

[31] J. Heidemann, F. Silva and D. Estrin, "Matching data dissemination algorithms to

application requirements," in SenSys '03 Proceedings of the 1st international

conference on Embedded networked sensor systems, 2003.

133

[32] C. Esposito, D. Cotroneo and S. Russo, "On reliability in publish/subscribe

services," Computer Networks, vol. 47, 2013.

[33] Y. Huang and H. Garcia-Molina, "Publish/Subscribe in a Mobile Environment,"

Wireless Networks, pp. 643-652, 2004.

[34] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher and J. Stankovic, "Achieving

Repeatability of Asynchronous Events in Wireless Sensor Networks with

EnviroLog," in 25th IEEE International Conference on Computer Communications.

Proceedings INFOCOM 2006, 2006.

[35] M.-M. Wang, J.-N. Cao, J. Li and S. K. Das, "Middleware for wireless sensor

networks: A survey.," Journal of computer science and technology, vol. 23, no. 3,

pp. 305-326, 2008.

[36] P. Levis and D. Culler, "Mate : a tiny virtual machine for sensor networks," in

ASPLOS X Proceedings of the 10th international conference on Architectural

support for programming languages and operating systems, 2002.

[37] P. Levis, D. Gay and D. Culler, "Bridging the Gap: Programming sensor networks

with application specific virtual machines," in Proc. the 6th Symp. Operating

Systems Design and Implementation (OSDI 04), San Francisco, USA, 2004.

[38] R. Gummadi, O. Gnawali and R. Govindan, "Macro-programming wireless sensor

networks using kairos," Distributed Computing in Sensor Systems, pp. 126-140,

2005.

[39] M. Welsh and G. Mainland, "Programming sensor networks using abstract regions,"

in Proc. the 1st Usenix/ACM Symp. Networked Systems Design and Implementation

(NSDI 04), SanFrancisco, CA,March,, 2004.

[40] R. Lewis, Advanced Messageing Applications with MSMQ and MQSeries, Que,

1999.

[41] OMG, "Data Distribution Services (DDS)," 1 1 2007. [Online]. Available:

http://www.omg.org/spec/DDS/. [Accessed October 2013].

[42] A. S. Stanford-Clark and H. L. Truong, "MQTT for sensor networks (MQTT-S)

protocol specification," 2008.

[43] TIBCO, "TIBCO Rendezvous," Software Release 8.3.0, 2010.

134

[44] M. Sun, "Java™ Message Service," 9 November 1999. [Online]. Available:

http://docs.oracle.com/cd/E19957-01/816-5904-10/816-5904-10.pdf. [Accessed

October 2013].

[45] OMG, "CORBA notification service specification," 11 OCT. 2004. [Online].

Available: http://www.omg.org/spec/NOT/1.1/. [Accessed October 2013].

[46] OMG, "CORBA event service specification," 2004. [Online]. Available:

http://www.omg.org/spec/EVNT/1.2/. [Accessed October 2013].

[47] R. Bastide, O. Sy, D. Navarre and P. Palanque, "A formal specification of the

CORBA event service," in Fourth International Conference on Formal methods for

open object-based distributed systems, 2000.

[48] M. Castro, P. Druschel, A. Kermarrec and A. Rowston, "Scribe: A large-scale and

decentralized application-level multicast infrastructure," IEEE Journal on Selected

Areas in Communications, vol. 20, no. 8, pp. 1489-1499, October 2002.

[49] B. Oki, M. Pfluegl, A. Siegel and D. Skeen, "The Information Bus: an architecture

for extensible distributed systems," vol. 27, no. 5, pp. 58-68, Dec 1993.

[50] S. Baehni, P. T. Eugster and R. Guerraoui, "Data-aware multicast," in International

Conference on Dependable Systems and Networks, 2004.

[51] G. Pardo-Castellote, "OMG Data-Distribution Service: Architectural Overview," in

Proceedings of the 23 rd International Conference on Distributed Computing

Systems Workshops, 2003.

[52] RTI, "RTI Connext DDS," 2013. [Online]. Available:

http://www.rti.com/products/dds/index.html. [Accessed October 2013].

[53] M. Altherr, M. Erzberg and S. Maffeis, "iBus - a software bus middleware for the

java platform," in Proceedings of the International Workshop on Reliable

Middleware Systems, 1999.

[54] S. Deering, "Host Extentsions for IP Multicasting," 1989.

[55] S. E. Deering and D. R. Cheriton, "Multicast routing in datagram internetworks and

extended LANs," ACM Transactions on Computer Systems (TOCS), vol. 8, no. 2,

pp. 85 - 110, May 1990.

135

[56] S. Banerjee, B. Bhattacharjee and C. Kommareddy, "Scalable application layer

multicast," in SIGCOMM '02 Proceedings of the 2002 ACM conference on

Applications, technologies, architectures, and protocols for computer

communications, 2002.

[57] J. Jannotti, D. K. Gifford, K. L. Johnson and M. F. Kaashoek, "In Proceedings of

the 4th conference on Symposium on Operating System Design & Implementation,"

in Overcast: reliable multicasting with an overlay network, 2000.

[58] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Sturman and D. Sturman,

"Exploiting IP multicast in content-based publish-subscribe systems," in IFIP/ACM

International Conference on Distributed systems platforms, New York, 2000.

[59] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom and D. Sturman,

"An efficient multicast protocol for content-based publish-subscribe systems," in In

Proc. of the 19th International Conference on Distributed Computing Systems,

1999.

[60] A. Cheung and H.-A. Jacobsen, "Load Balancing Content-Based Publish/Subscribe

Systems," ACM Transactions on Computer Systems, vol. 28, no. 4, December 2010.

[61] A. Carzaniga, D. Rosenblum and A. Wolf, "Design and Evaluation of a Wide-Area

Notification Service," ACM Transactions on Computer Systems (TOCS), vol. 19,

no. 3, p. 332–383, Aug 2001.

[62] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross and D. Shasha, "Filtering

algorithms and implementation for very fast publish/subscribe systems," ACM

SIGMOD Record, vol. 30, no. 2, p. 115–126, 2001.

[63] A. Carzaniga and A. Wolf, "Forwarding in a content-based network," in SIGCOMM

'03 Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications, 2003.

[64] G. Li, Y. Wang and J. Feng, "Location-aware publish/subscribe," in Proceedings of

the 19th ACM SIGKDD international conference on Knowledge discovery and data

mining, New York, NY, USA, 2013.

[65] A. Margara and G. Cugola, "High Performance Publish-Subscribe Matching Using

Parallel Hardware," IEEE Transactions on Parallel and Distributed Systems, 2013.

136

[66] D. Tran and C. Pham, "DIBS: Efficient distributed information brokerage in large-

scale sensor networks," Ad Hoc Networks, vol. 11, no. 3, p. 735–746, 2013.

[67] A. González, W. Mata, L. Villaseñor, R. Aquino, J. Simo, M. Chávez and A. Crespo,

"μDDS: A Middleware for Real-time Wireless Embedded Systems," Journal of

Intelligent & Robotic Systems, vol. 64, no. 3-4, pp. 489-503, December 2011.

[68] C. P. Hall, A. Carzaniga, J. Rose and A. L. Wolf, "A Content-Based Networking

Protocol for Sensor Networks," 2004.

[69] K. Shi, Z. Deng and X. Qin, "TinyMQ: A content-based publish/subscribe

middleware for wireless sensor networks," in SENSORCOMM 2011, The Fifth

International Conference on Sensor Technologies and Applications, 2011.

[70] P. Eugester, "Type-based publish/subscribe: Concepts and experiences," ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 29, no. 1,

pp. 1-50, January 2007.

[71] P. Eugster, "TYPE-BASED PUBLISH/SUBSCRIBE," 2001.

[72] B. Wang, P. Liu, G. Wang and X. Zhao, "ELM based approximate dynamic cycle

matching for homogeneous symmetric Pub/Sub system," World Wide Web, June

2013.

[73] R. Baldoni, C. Marchetti, A. Virgillito and R. Vitenberg, "Content-Based Publish-

Subscribe over Structured Overlay Networks," in Proceedings. 25th IEEE

International Conference on Distributed Computing Systems (ICDCS 2005), 2005.

[74] X. Ma, Y. Wang, Q. Qiu, W. Sun and X. Pei, "Scalable and elastic event matching

for attribute-based publish/subscribe systems," Future Generation Computer

Systems, September 2013.

[75] W. Rjaibi, K. Dittrich and D. Jaepel, "Event matching in symmetric subscription

systems," in CASCON '02 Proceedings of the 2002 conference of the Centre for

Advanced Studies on Collaborative research, 2002.

[76] T. W. Yan and H. García-Molina, "Index structures for selective dissemination of

information under the boolean model," ACM Transactions on Database Systems

(TODS), vol. 19, no. 2, pp. 332-364, 1994.

[77] J. Pereira, F. Fabret, F. Llirbat and D. Shasha, "Efficient matching for web-based

publish/subscribe systems," Cooperative Information Systems, pp. 162-173, 2000.

137

[78] M. Aguilera, R. Strom, D. Sturman, M. Astley and T. Chandra, "Matching Events

in a Content-Based Subscription System," in Proceedings of The ACM Symposium

on Principles of Distributed Computing (PODC 1999), 1999.

[79] A. Campailla, S. Chaki, E. Clarke, S. Jha and H. Veith, "Efficient filtering in

publish-subscribe systems using binary decision diagrams Software Engineering,"

in Proceedings of the 23rd International Conference on, 2001.

[80] J.-H. Hauer, V. Handziski, A. Kopke, A. Willig and A. Wolisz, "A Component

Framework for Content-Based Publish/Subscribe in Sensor Networks," Wireless

Sensor Networks Lecture Notes in Computer Science , vol. 49, no. 13, pp. 369-385,

2008.

[81] P. Costa, G. Picco and S. Rossetto, "Publish-subscribe on sensor networks: a semi-

probabilistic approach," in IEEE International Conference on Mobile Adhoc and

Sensor Systems Conference, 2005.

[82] H. Alnuweiri, M. Rebai and R. Beraldi, "Network-coding based event diffusion for

wireless networks using semi-broadcasting," Ad Hoc Networks, vol. 10, no. 6, p.

871–885, 2012.

[83] A. Boukerche, X. Cheng and J. Linus, "A Performance Evaluation of a Novel

Energy-Aware Data-Centric Routing Algorithm in Wireless Sensor," Wireless

Networks, vol. 11, no. 5, pp. 619-635, 2005.

[84] K. Akkaya and M. Younis, "A survey on routing protocols for wireless sensor

networks," Ad Hoc Networks, vol. 3, no. 3, pp. 325-349, May 2005.

[85] A. Carzaniga, M. Rutherford and A. Wolf, "A routing scheme for content-based

networking," in INFOCOM 2004. Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies, 2004.

[86] J. Martins and S. Duarte, "Routing algorithms for content-based publish/subscribe

systems," Communications Surveys & Tutorials, IEEE, vol. 12, no. 1, pp. 39-58,

First Quarter 2010.

[87] A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovanni and A. Virgillito, "Quality of

service in publish/subscribe middleware," in Emerging Communication: Studies in

New Technologies and Practices in Communication, vol. 8, Global Data

Management, 2006, pp. 79-97.

138

[88] D. Chen and P. K. Varshney, "QoS Support in Wireless Sensor Networks: A

Survey," in International Conference on Wireless Networks, 2004.

[89] M. Sharifi, M. Taleghan and A. Taherkordi, "A Middleware Layer Mechanism for

QoS Support in Wireless Sensor Networks," in International Conference on

Networking, International Conference on Systems and International Conference on

Mobile Communications and Learning Technologies. ICN/ICONS/MCL 2006.,

2006.

[90] F. Xia, "QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks,"

Sensors, vol. 8, no. 2, pp. 1099-1110, 2008.

[91] T. Rault, A. Bouabdallah and Y. Challal, "Energy efficiency in wireless sensor

networks: A top-down survey," Computer Networks, vol. 67, no. 4, p. 104–122, July

2014.

[92] M. Anisi, A.-H. Abdullah and S. Razak, "Energy-efficient and reliable data delivery

in wireless sensor networks," Wireless Networks, vol. 19, no. 4, pp. 495-505, 2013,

Volume 19, Issue 4, pp 495-505 May 2013.

[93] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, "Directed

diffusion for wireless sensor networking," IEEE/ACM Transactions on Networking,

vol. 11, no. 1, pp. 2-16, 2003.

[94] E. Wang, Y. Ye and X. Xu, "Lightweight Secure Directed Diffusion for Wireless

Sensor Networks," International Journal of Distributed Sensor Networks, vol. 2014,

no. Article ID 415143, p. 12, 2014.

[95] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.

Hill, M. Welsh, E. Brewer and D. Culler, "TinyOS: An Operating System for Sensor

Networks," Ambient Intelligence, pp. 115-148, 2005.

[96] A. Stanford-Clark and U. Hunkeler, "MQ Telemetry Transport (MQTT)," 1999.

[Online]. Available: http://mqtt.org. [Accessed 22 9 2013].

[97] A. Stanford-Clark and H. L. Troung, "MQTT for sensor networks (MQTTs)

specifications," IBM, Oct. 2007. [Online]. Available: http://www.mqtt.org/MQTTs.

[Accessed 22 Sept. 2013].

139

[98] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis, "Collection tree

protocol," in Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems, 2009.

[99] A. S. Tanenbaum, Computer Networks, Boston: Prentice Hall PTR, 2011.

[100] D. A. Tran and C. Pham, "A content-guided publish/subscribe mechanism for sensor

networks without location information," Computer Communications, vol. 33, no.

13, pp. 1515-1523, 16 August 2010.

[101] D. A. Tran and C. Pham, "PUB-2-SUB: A Content-Based Publish/Subscribe

Framework for Cooperative P2P Networks," in NETWORKING '09 Proceedings of

the 8th International IFIP-TC 6 Networking Conference, 2009.

[102] P. Eugster and R. Guerraoui, "Probabilistic multicast," in Proceedings.

International Conference on Dependable Systems and Networks, DSN 2002, 2002.

[103] H. Sundani, H. Li, V. Devabhaktuni, M. Alam and P. Bhattacharya, "Wireless

Sensor Network Simulators A Survey and Comparisons," International Journal of

Computer Networks (IJCN), vol. 2, no. 5, pp. 249-265, 2011.

[104] X. Xian, W. Shi and H. Huang, "Comparison of OMNET++ and other simulator for

WSN simulation," in 3rd IEEE Conference on Industrial Electronics and

Applications. ICIEA 2008., 2008.

[105] M. Jevtić, N. Zogović and G. Dimić , "Evaluation of Wireless Sensor Network

Simulators," in 17th Telecommunications forum TELFOR 2009, Serbia, Belgrade,

2009.

[106] A. Dunkels, B. Gronvall and T. Voigt, "Contiki - a lightweight and flexible

operating system for tiny networked sensors," in 29th Annual IEEE International

Conference on Local Computer Networks, 2004, 2004.

[107] V. Handziski, A. Kopke, A. Willig and A. Wolisz, "TWIST: a scalable and

reconfigurable testbed for wireless indoor experiments with sensor networks," in

REALMAN '06 Proceedings of the 2nd international workshop on Multi-hop ad hoc

networks: from theory to reality, 2006.

[108] TOSSIM, "TinyOS Documentation Wiki," 2003. [Online]. Available:

http://docs.tinyos.net/index.php/TOSSIM. [Accessed 24 Nov. 2013].

140

[109] P. Levis, N. Lee, M. Welsh and D. Culler, "TOSSIM: accurate and scalable

simulation of entire TinyOS applications," in Proceedings of the 1st international

conference on Embedded networked sensor systems, SenSys'03, 2003.

[110] E. Perla, A. Cathain, R. Carbajo, M. Huggard and C. Goldrick, "PowerTOSSIM z:

realistic energy modelling for wireless sensor network environments," in

PM2HW2N '08 Proceedings of the 3nd ACM workshop on Performance monitoring

and measurement of heterogeneous wireless and wired networks, 2008.

[111] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne and T. Voigt, "Cross-Level Sensor

Network Simulation with COOJA," in Proceedings 2006 31st IEEE Conference on

Local Computer Networks, 2006.

[112] X. Chang, "Network simulations with OPNET," in Simulation Conference

Proceedings, 1999.

[113] NS2, "The Network Simulator- ns2," [Online]. Available:

http://www.isi.edu/nsnam/ns/. [Accessed 25 Nov. 2013].

[114] X. Zeng, R. Bagrodia and M. Gerla, "GloMoSim: a library for parallel simulation

of large-scale wireless networks," in Proceedings. Twelfth Workshop on Parallel

and Distributed Simulation, 1998. PADS 98, 1998.

[115] Castalia, "Wireless Sensor Network Simulator, Castalia," [Online]. Available:

http://castalia.research.nicta.com.au/index.php/en/. [Accessed 25 Nov. 2013].

[116] A. Boulis, "Castalia." A simulator for wireless sensor networks and body area

networks," 2011.

[117] I. Chakeres and C. Perkins, "Dynamic MANET on demand (DYMO) routing," in

Internet-Draft Version 17, IETF, 2006.

[118] P. Levis, N. Lee, M. Welsh and D. Culler, "TOSSIM: accurate and scalable

simulation of entire TinyOS applications," in SenSys '03 Proceedings of the 1st

international conference on Embedded networked sensor systems, 2003.

[119] E. Perla, A. Catháin, R. Carbajo, M. Huggard and C. Goldrick, "PowerTOSSIM z:

realistic energy modelling for wireless sensor network environments," in

PM2HW2N '08 Proceedings of the 3nd ACM workshop on Performance monitoring

and measurement of heterogeneous wireless and wired networks, 2008.

141

[120] G. Benelli and A. Garzelli, "New modified stop-and-wait ARQ protocols for mobile

communications," Wireless Personal Communications, vol. 1, no. 2, pp. 117-126,

1994.

[121] A. Stanford-Clark and H. L. Truong, "MQTT For Sensor Networks (MQTT-SN),"

IBM, 2013.

[122] memsic, "TELOSB," memsic, [Online]. Available:

http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

[Accessed 27 1 2015].

[123] T. INSTRUMENTS, "CHIPCON CC2420," TEXAS INSTRUMENTS, [Online].

Available: http://www.ti.com/product/cc2420. [Accessed 31 1 2015].

[124] J. Polastre, R. Szewczyk and D. Culler, "Telos: enabling ultra-low power wireless

research," in Fourth International Symposium on Information Processing in Sensor

Networks, 2005.

[125] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen and M. Welsh, "Simulating

the power consumption of large-scale sensor network applications," in SenSys '04

Proceedings of the 2nd international conference on Embedded networked sensor

systems, 2004.

[126] M. Memsic, "MICAz," [Online]. Available:

http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf.

[Accessed 23 4 2015].

[127] D. Gay, P. Levis, D. Culler and E. Brewer, "nesC 1.2 Language Reference Manual,"

TinyOS, 2005.

[128] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, "An Application-Specific

Protocol Architecture for Wireless Microsensor Networks," IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, vol. 1, no. 4, pp. 660-670, 2002.

[129] "TELOSB Crossbow," Crossbow, [Online]. Available:

http://www.willow.co.uk/TelosB_Datasheet.pdf. [Accessed 9 11 2014].

142

APPENDIX A

ID-Based Routing

This protocol is what we used as an underlying routing protocol in most of our

simulations and empirical studies.

Flooding routing protocols incur significant amount of routing overhead, which leads to

more resources consumption especially for constrained devices, e.g. sensors. Besides, there

are many applications that are based on deterministic deployment for network nodes, such

as indoor applications. For example, home, building, and factory automation and

monitoring applications. Therefore, in such applications the flooding routing overhead can

be avoided by using location-based routing. However, location-based routing also needs

hardware support, i.e. GPS devices, which increase the sensor price. In this work, we

propose an Id-based routing for Wireless Sensor Networks (WSN) based on nodes

identifications; It is specialized for grid topology based applications. This protocol

consumes almost zero memory footprint, where it does not need any memory space to save

routing tables or even individual routes. Furthermore, it does not also need to send routing

requests and replies for establishing routes, which consumes much energy due to radio

sending/receiving of the routing packets.

DESCRIPTION

ID-based routing protocol is intended for WSN M x N grid topology. Unlike tradition WSN

routing protocols, where the data is routed from the Base station to the sensor or vice versa,

ID-based is free addressing routing protocol. That means, the source and destination can

be any node in the network, as an example for such routing protocol is TYMO for WSN.

143

In ID-based protocol, there are several assumptions to work properly, these assumptions

are as follows:

1. The topology is grid with any size of M x N

2. The nodes have known identifications

3. The nodes are ordered, see figure 1.

4. All the node neighbors are in its transmission range, including the nodes in the

diagonal directions, e.g. node 5 neighbors are 0,1,2,4,6,8,9, and 10, as shown in

Figure 68.

3

15

7

14

10

2

11

6

13

9

1

5

12

8

0

4

+N

-1

+1

-N

Figure 68: Id-based Routing method

144

As shown in Figure 68, any node in the network can exactly know in which direction it

should go to reach its final destination. For example, suppose that the node number 5 is the

source, and it needs to go to node 15, the final destination. Then if it goes diagonally it can

reach the destination with two hops through node 10, which is the shortest path.

The protocol algorithm works as follows:

1. The sender examines the destination address to know its location, i.e. its row and

column within the grid; we refer to them as DR and DC respectively.

2. The DC is calculated by using modulus function as follows:

DC = dest mod N; where dest is the destination id,

3. The DR is calculated by using floor function as follows:

DR = floor (dest/N)

4. Using the obtained destination location (DR , DC), the sender or forwarder can

easily compute the next-hop as follows:

a. If (DC = SC) and (Did > Sid) then next-hop = Sid + N

b. If (DC = SC) and (Did < Sid) then next-hop = Sid - N

c. If (DR = SR) and (Did > Sid) then next-hop = Sid + 1

d. If (DR = SR) and (Did < Sid) then next-hop = Sid – 1

If none of the above is true then:

e. If (DC > SC) and (Did > Sid) then next-hop = Sid + N +1

f. If (DC > SC) and (Did < Sid) then next-hop = Sid – N + 1

g. If (DC < SC) and (Did > Sid) then next-hop = Sid + N -1

h. If (DC < SC) and (Did < Sid) then next-hop = Sid – N - 1

145

5. Step number 4 will be repeated until next-hop = dest

Notice that the sender and forwarder use the same algorithm to forward the packet to the

next hop. Furthermore, to ensure the shortest path, the route moves diagonally until it

reaches the destination row or column then it moves horizontally or vertically respectively.

The second module of Id-Routing protocol is the maintenance module. We make as simple

as the first module, where it also uses almost zero overhead. This module exploits the

promiscuous mode of the WSN, where in this mode the node can silently listen to the

transmission of its neighbor. Thereby, the node can listen to the transmission of its

neighbor, in case it is not a final destination, and then it can ensure that the packet has been

forwarded or not. In case of not forwarded the node resend the packet for maximum retrials

and then it changes the path be selecting the next shortest path.

146

APPENDIX B

Adaptive Reliability Protocol for Wireless Sensor Networks using Packet

Delivery Ratio Metric

This is another proposed reliability protocol for WSAN that may put the protocol overhead

on the subscriber node rather than publisher node. This is effective for sensor-based

networks since in practice the subscriber (base station) is often more powerful than the

ordinary sensor node.

Providing reliability Quality of Service (QoS) to Wireless Sensor Networks (WSN) has a

significant impact on the network performance and lifetime. That is because of two main

factors: 1) the limited resources in sensor networks, such as memory, CPU, bandwidth, and

energy. 2) the extreme overhead of operating a reliable QoS. Therefore, implementing

reliability on sensor networks needs an efficient design and implementation. Unlike the

strict reliable applications, such as military and healthcare applications, some of the sensor

applications required a minimum level of reliability to achieve a specific degree of

accuracy. Therefore, an adaptive reliability QoS is a potential solution in this case, where

an efficient switching between the best-effort and reliable services may lead to significant

savings in the WSN resources. In this work, we present an adaptive reliability protocol that

suites sensor networks requirements and provides an efficient adaptive reliability support

to the WSN applications.

Introduction

147

The Adaptive Reliability Quality of Service (ARQoS) protocol is designed to operate at

the middleware or application layer, independently from the underlying layers’ protocols.

This work aims to provide an ARQoS to the WSN. It gives the receiver the ability to do an

agreement with the sender to support a certain level of reliable QoS. For example, the

receiver can agree with the sender to do not go under 90% of Packet Delivery Ration

(PDR). In this work, we use the PDR performance metric as a reference to switch between

reliability modes. The PDR is defined as the total successfully received packets divided by

the total sent packets. The receiver side, e.g. base station, is responsible for calculating the

PDR at a predetermined time interval (T). Each received packet is distinguished by its

originator address and Packet Serial Number (PSN). The receiver uses these packet

information to count the dropped packets during T, and hence calculates the PDR of T

period. If the resulted PDR is less than the requested PDR percentage, then a switch

message is sent to the sender to switch to reliable mode. As soon as PDR returns to the

desired value, a switch message is send again to the sender to switch from reliable mode to

best effort mode, and so on. One bit in the message header is used to indicate the reliability

mode, which is either reliable or best effort.

The ARQoS policy has three supported levels, ranging from low to high reliability, viz.,

best effort, adaptive, and reliable. By using a special type of packet, the receiver can

request a specific reliability level from the sender by sending the reliability percentage

value at session initiation, or while it is running. This value is used to distinguish between

the supported three levels. The first level is the best effort level that usually suits the time-

sensitive applications and is represented by the zero reliability value (0%). In this level, no

acknowledgments are used and hence neither calculations are needed at the receiver side

148

nor buffering at the sender side. The second is the adaptive level that is represented by the

reliability percentage value which is less than 100% and more than zero%. This level is the

essence of this work and it uses the PDR metric to adapt a reliable QoS. The last level is

the reliable level, which suits the data-sensitive level and is represented by the reliability

percentage value of 100%. In this level, we use the NACK method to minimize the

reliability overhead. The requested level of reliability is application-specific, and most

likely depends on the tracked or monitored object’s changing rate. For example, monitoring

the weather is most likely to use the best effort reliability level because the weather

changing rate is very slow, and the sampling rate is usually in minuets or even hours. In

contrast, in military applications, tracking a rocket by defense systems needs the highest

reliability level, i.e. 100%, and sampling rate in the range of millisecond or even in

microseconds.

Algorithm Description

Since the base station typically has an infinite energy source, it is more appropriate to build

the loss and switching control in there. In this algorithm, we describe how adaptive

switching may be implemented to realize adaptive reliability. The only modification in the

packet header that is needed to implement this protocol is to add a mode bit. This bit is

used in the switching mechanism to switch between the system modes. At the receiver side,

during the operation time, there are periodic tests that monitor the system reliability by

measuring the packet delivery ratio (PDR). These periodic tests are referred to in this

document by rounds. In Figure 69, we show the round period and the time interval (TI) that

separates the rounds. Determining these times efficiently has a significant impact on the

overall application performance.

149

For simplicity, the algorithm is divided into two sub-algorithms, Viz. the round algorithm

and the switching algorithm. In Figure 70, we describe the round algorithm steps, and show

how it counts the number of successfully received packets and dropped packets by using

the PSN, and Last PSN (LPSN) values. In each round, the received and dropped packets

are counted and then submitted to the switching algorithm to calculate the PDR and make

a decision to whether to change the mode. The switching algorithm steps is depicted in

Figure 71. In this figure, the round processing step refers to the algorithm specified in Figure

70. In the switching algorithm, the PDR is calculated and checked against the requested

reliability level. If the current PDR is less than the requested reliability level and the mode

was in best-effort, then the protocol switches to reliable mode. Vice versa, if it is larger

than the requested reliability level, and the mode was in the reliable level, then it switches

to best-effort level, and so on.

Two main mechanisms are added to both of these algorithms to increase their efficiency.

The first one is the Assurance Time Interval (ATI), which is a period of time that is placed

just at the end of every round period, as shown in Figure 69.The purpose of the ATI is to

assure the reception of all sent packets that are relevant to the round packets, i.e. all the

packets with PSN less than the LPSN received at the end of the round. The second

mechanism is doubling the threshold mechanism that is used to minimize the switching

overhead as depicted in Figure 72. Double threshold is used to mitigate the switching

overhead due to the network instability. These thresholds are called upper and lower

thresholds, where the upper threshold is used to switch from reliable to best-effort mode;

and vice versa. The upper/lower threshold values can be determined statically during the

initial stage of the deployment phase. Alternatively; these values may be determined

150

dynamically during the application operation time; where in this case they vary based on

the dynamic network conditions. During the network life-time, the application is running

at one of the switching regions: the best-effort region, the switch region, or the reliable

region. The three regions are depicted in Figure 72 where the switching region is the region

that is bounded by the upper and lower thresholds.

Round Period
Time

Round Period Round PeriodTI TI A
T

I

A
T

I

A
T

I

 TI: Time Interval
 ATI: Assurance Time Interval

Figure 69 Rounds distribution over the network life time

151

Round Start

PSN =

LPSN + 1

PSN >

LPSN+1

No

Received ++

LPSN= PSN

Received = 0

Dropped = 0

Received ++

Dropped ++

LPSN= PSN

Received ++

Dropped - -

No

End RT ?

No

Yes

Round End

Receive PKT

Check PSN

Yes

ATI check

Yes

PKT: packet

PSN: Packet Serial Number

LPSN: Last PSN

RT: Round Time

ATI: Assurance Time Interval

Figure 70 Round algorithm flowchart

152

PDR = R/(R+D)

PDR < Lth

mode bit = BE

Round processing

start

Send message

switch mode

Next Scheduled

Round

Yes

Yes

PDR > Uth

Yes

No

No No

R: Received

D: Dropped

BE: Best-Effort

Uth: Upper Threshold

Lth: Lower Threshold

Figure 71 Adaptive reliability switching algorithm flowchart

153

Threshold

Time

Upper Threshold

Lower Threshold

Reliable mode

Best-Effort mode

Switching region

 Figure 72 Adaptive reliability regions

154

Vitae

Anas A. Hasan Al-Roubaiey - PhD in Computer Networks

Personal University

 Date of Birth: 22/May/1976

Nationality: Yemeni

Mobil:+9(665) 0562-4163

P.O.Box 1498, Dhahran, 31261,

Saudi Arabia

Academic Email:

roubaiey@kfupm.edu.sa

Personal Email:

saba717671@hotmail.com

 PhD In Computer Networks

Department of Computer Engineering

King Fahd University of Petroleum &

Minerals

Phone: +966 3 860-1423

Fax: +966 3 860-3059

Web:

https://www.researchgate.net/profile/

Anas_Al-

Roubaiey/contributions?ev=prf_act

155

Education

Defended

On May 3,

2015.

PHD IN COMPUTER SCIENCE AND ENGINEERING.

“ENERGY AWARE MIDDLEWARE FOR WIRELESS

SENSOR/ACTUATOR NETWORKS”

King Fahd University of Petroleum and Minerals (KFUPM),

Dhahran, Saudi Arabia

Supervisor: Dr. Tarek Sheltami, leading researcher in the area of

ad hoc and sensor networks.

The target of the study is to develop an energy aware middleware for

wireless sensor and actuator networks. Our work was based on the

DDS (Data Distribution Service) standard, we called our proposed

technique EATDDS (Energy Aware TinyDDS).

Experimental tests are being conducted to evaluate the exact overhead

of adding middleware to limited resources devices such as

sensors/actuators. TinyOS and TOSSIM simulator are used in this

study, where I build the scenarios and test them on the TOSSIM

simulator; then I download the code to real TelosB sensors to take

empirical results. In this work, several languages are being used such

as nesC, java, python, awk, MATLAB, and C++.

2005-2009

M.S IN COMPUTER NETWORKS. “INTRUSION

DETECTION IN MOBILE AD-HOC NETWORKS:

156

IMPLEMENTATION AND PERFORMANCE EVALUATION

OF ADAPTIVE ACKNOWLEDGMENT APPROACH”

King Fahd University of Petroleum and Minerals (KFUPM),

Dhahran, Saudi Arabia

Supervisor: Dr. Tarek Sheltami.

The target of the study was to develop a new intrusion detection

technique for mobile ad hoc networks based on TwoACK technique.

We enhanced this technique by adding end-to-end acknowledgment

and improving its detection precision. We called it AACK (Adaptive

ACKnowledgment). Recently, it has been improved by EAACK

technique that is published in IEEE Transactions on Industrial

Electronics journal. Based on google scholar our key paper yet gained

72 citation.

Extensive simulation tests were conducted to evaluate the performance

of AACK intrusion detection system. I used network simulator NS2 to

implement the AACK technique over DSR routing protocol. The

scenarios were a combination of different node speeds, data rates, and

network density.

1996-2000

B.S IN COMPUTER ENGINEERING.

Arab Academy for Science & Technology University, Alexandria,

Egypt

 I got my B.S degree based on grant from Ministry of Higher education in

Yemen as a result of my performance in High school.

 My graduation project involved design of an automated farm system. Where

I built a prototype that included some sensors, e.g. light, temperature,

157

humidity. The farm is automatically managed, where, as an example, it has

an automated cover that is closed when the temperature exceeded certain

degree. I used a C language for data acquisition and control.

The project grade was Distinction.

In my B.S Degree, I got the third honor out of 70 student (total number of

students in the College of Engineering)

Teaching and administrative experience

2005-2014
King Fahd University of Petroleum and Minerals (KFUPM),

Dhahran, Saudi Arabia

 Since I joined KFUPM in 2005, I have been involved in teaching

different kind of courses for both undergraduate and graduate levels.

In the teaching activates, the courses that I have helped in teaching

include:

1. Undergraduate level:
 Introduction to C++
 Embedded systems LAB (ARM)

2. Graduate level:
 NS2 Simulator for Ad-Hoc networks course
 Heterogeneous Computing LAB

In some of those courses (undergraduate and graduate level), I had to do

a grading work, help with projects and supervision, exam grading, and

one-to-one student support. In the graduate level course, the work was

more complicated and involved, in which I had to deeply support the

students in their advanced research projects.

158

 Lately, I have been assigned to be the Vice-President of the Graduate

Student Club (GSC) at KFUPM. The work included preparation of

many activities including academic and social activities.

2001-2004
Taiz University, Taiz, Yemen

 I was assigned as a lecturer assistant in Taiz University, Yemen in

2001. I was involved in teaching different kind of courses for undergrad

students including:

 Introduction to Computer.
 C++ language.
 Object Oriented Programming.
 Computer Programs for Engineers.

In some courses, I had to do lectures, labs, tutorials, and one-to-one

student support in the student’s coursework projects.

2002-2004
IT department of Ministry of Interior, Sana’a, Yemen

 I was involved in a big project as a team member (Vice-president of the

team) in design and implementation of Yemeni ports network. In this

project we built a full network that communicates the all ports in Yemen

to the IT center in Ministry of Interior.

During this project, I went to USA for training for two weeks. In this

training I took short course in Borders application and how to install

WAN networks.

RESEARCH

From my education section, my research interests are mainly in wireless

sensor and ad hoc networks, distributed systems, middleware, intrusion

detection systems, multimedia.

During my study in KFUPM I have involved in three funded project as

follows:

 KFUPM No. IN070377, Maximizing the Number of Hops in
Video Streaming over Mobile Ad Hoc Networks using Artificial
Intelligence, 2009. Member.

159

 NSTIP No. 09ELE04785, Wireless Stress Indicator sensor for
condition based Monitoring in e-maintenance, Member, 2011 –
2013.

 NSTIP. No. 12-ELE2381-04, Efficient Implementation of Non-
Intrusive Leak Detection System, member, 2013 – 2015.

Mainly I was working on simulations, prototyping and writing some of

the published papers. Recently, I have also prepared two NSTIP project

proposals and have been submitted to KFUPM NSTIP projects office.

Those proposals was about using DDS middleware in sensor networks

and using DDS middleware in Oil and Gas industry.

Now I am working also on KFUPM Internal fund project number

RG1319-1, my role is test and improve a time synchronization protocols

in sensor networks using TOSSIM simulator and TelosB platform.

Honors

 3rd position of Bachelor degree in Computer Engineering
 1st place in the university chess championship, Egypt, 2000
 Cisco Certifications CCSA1 and CCSA2 with honor letters
 Outstanding reviewer, in the top 10%, from AD HOC NETWORKS

journal IF= 1.9, 2014

CONFERENCES AND WORKSHOPS

 IEEE 3rd International Conference on Software Engineering and
Service Science (ICSESS), Beijing, China, 2012.

 2nd International Conference on Manufacture Engineering, Quality
and Production System (ICMEQP 2013), Hong Kong, China, 2013.

 The Sixth International Symposium on Applications of Ad hoc and
Sensor Networks (AASNET'14) in conjunction with the 4th
International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN-2014) in Halifax, Nova Scotia, Canada
on September 22-25, 2014.

 The IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC 2014) on August 4-8, Cyprus,
2014.

160

I attended those conferences in China as an author. I have presented two of

my researches that are listed in the publications list. The last symposium

(AASNET’14), I am participating as a publicity chair committee member,

and also as a presenter for my research.

TECHNICAL AND PROGRAMS KNOWLEDGE

 Linux OS.
 Java, C, C++, C#
 NS2 Simulator
 TOSSIM Simulator
 TinyOS and Contiki
 Sensors OS

 TelosB, Micaz,
Arduino

 Sensor platforms

 MATLAB 2012
 LabVIEW
 DDS Middleware

 RTI DDS Tools
 AWK (scripting

language)
 Python Language
 NesC Component based

programming language

LANGUAGES

 Arabic – native language

 English – speak fluently and read/write

MEMBERSHIPS

2012 - now IEEE student member

PUBLICATIONS AND PATENTS

Patents

1. Anas Al-Roubaiey, Uthman Baroudi, “Method for Determining Leak

Location in Pipelines”, submitted 2014. Patent Application Docket

37000.00- (KFUPM Ref: NSTIP 861).

2. Anas Al-Roubaiey, Tarek Sheltami, and Ashraf Mahmoud, “ARQoS:

Adaptive Reliability Protocol for Wireless Sensor Networks” submitted

2014, KFUPM Ref: COE 918, Oblon Ref: 446633US8.

3. Anas Al-Roubaiey, Tarek Sheltami, and Ashraf Mahmoud, “Id-based

Routing Protocol for Grid topology,” submitted 2014

161

Journal Papers

1. Anas Al-Roubaiey, Tarek R. Sheltami, Ashraf S. Mahmoud, “EATDDS: An

Energy Aware TinyDDS protocol for WSAN,” IEEE Transactions in Parallel and

Distributed Systems, to be submitted 2015; (ISI)

2. Tarek R. Sheltami, Anas Al-Roubaiey, Ashraf S. Mahmoud, “RTDDS: A

Reliability Implementation in Wireless Sensor Networks,” Sensors, submitted

2015; (ISI)

3. Tarek R. Sheltami, Anas Al-Roubaiey, Ashraf S. Mahmoud, “ A Survey on

Implementing Publish/Subscribe Middleware over Wireless Sensor/Actuator

Networks,” Wireless Networks, Accepted 2015; (ISI)

4. Basem Almadani, Mohammed Alsaeedi, and Anas Al-Roubaiey, “QoS-Aware

Scalable Video Streaming Using Data Distribution Service,” Multimedia Tools and

Applications, Accepted 2015. (ISI)

5. Uthman Baroudi, Anas Al-Roubaiey, Samir Mekid, Abdelhafid Bouhraoua, and

Yau Garba, “Smart Bolts Monitroing Using Wireless Sensor Networks:

Implementation and Performance Evaluation,” International Journal of Distributed

Sensor Networks, 2014. (ISI)

6. Uthman Baroudi, Anas Al-Roubaiey, Samir Mekid, Abdelhafid Bouhraoua,

“Delay characterization and performance evaluation of cluster-based WSN with

different deployment distributions,” Future Generation Computer Systems, 2014.

IF: 2.6 (ISI)

7. Basem Almadani, Anas Al-Roubaiey, and Zubair A. Baig, “Real-Time QoS-

Aware Video Streaming: A Comparative and Experimental Study,” Advances in

Multimedia, 2014.

8. Anas Al-Roubaiey, and M. AL-Rhman Alkhiaty, “QoS-Aware Middleware for

Ubiquitous Environment: A Review and Proposed Solution,” Journal of

Computational Engineering, 2014.

9. Basem Almadani, Anas Al-Roubaiey, and Rashad Ahmed, “Manufacturing

Systems Integration using Real Time QoS-Aware Middleware,” Advanced

Materials Research, 2013.

10. Basem Al-Madani, Anas Al-Roubaiey, Mohammad F. Al-Hammouri,

“Performance Enhancement of Limited-Bandwidth Industrial Control Systems,”

Advanced Materials Research, 2013.

11. Tarek R. Sheltami, Anas Al-Roubaiey, Elhadi Shakshuki, Ashraf S. Hasan

Mahmoud, “Video transmission enhancement in presence of misbehaving nodes in

MANETs,” Multimedia Systems, 2009; (ISI)

162

Conference Papers

1. Anas Al-Roubaiey, Tarek sheltami, Ashraf Mahmoud, "A Publish/Subscribe

Middleware Cost in Wireless Sensor Networks: a review and case study," to be

appear in the proceedings of 28th annual IEEE Canadian Conference on Electrical

and Computer Engineering (CCECE’2015).

2. Uthman Baroudi, Anas Al-Roubaiey, “Mobile Radio Frequency Charger for

Wireless Sensor Networks in the Smart Grid,” The IEEE International Wireless

Communications and Mobile Computing Conference (IWCMC 2014) on August

4-8, Cyprus, 2014.

3. Anas Al-Roubaiey, Basher Al-Gohi,“Coverage Optimization of Wireless Sensor

Networks with Normal Distribution,” Proceedings of the 18th IEEE International

Computer Science and Engineering Conference (ICSEC) , Thailand, July 30,

2014.

4. Basem Al-Madani, Mohammed Al-Saeedi, Anas Al-Roubaiey, “Scalable

Wireless Video Streaming over Real-Time Publish Subscribe Protocol (RTPS),”

IEEE/ACM 17th International Symposium on Distributed Simulation and Real

Time Applications (DS-RT), 2013, Delft, Netherlands, 2013.

5. Uthman Baroudi, Anas Al-Roubaiey, Samir Mekid, Abdelhafid Bouhraoua, “The

Impact of Sensor Node Distribution on Routing Protocols Performance: A

Comparative Study,” The 11th IEEE International Conference on Ubiquitous

Computing and Communications, 2012.

6. B. Al-madani, Anas Al-Roubaiey, T. Al-shehari, “Wireless video streaming over

Data Distribution Service middleware,” IEEE 3rd International Conference on

Software Engineering and Service Science (ICSESS), 2012.

7. A. Al-Roubaiey, T. Sheltami, A. Mahmoud, “Adaptive ACK: A Novel Intrusion

Detection System to Mitigate Intended Packet Dropping in MANETs,” The

International Arab Conference on Information Technology (ACIT), 2010.

8. A. Al-Roubaiey, T. Sheltami, A. Mahmoud, E. Shakshuki, H. Mouftah, “AACK:

Adaptive Acknowledgment Intrusion Detection for MANET with Node Detection

Enhancement,” 24th IEEE International Conference on Advanced Information

Networking and Applications (AINA), 2010.

163

REFERENCES

 Dr. Tarek Sheltami (supervisor)

Associate Professor

Computer Engineering Department

King Fahd University of Petroleum & Minerals

P.O. Box 89, Dhahran 31261, Saudi Arabia

Phone: +966-3-860-4678

Fax: +966-3-860-3059

Email: tarek@kfupm.edu.sa

Homepage: http://faculty.kfupm.edu.sa/coe/tarek/

Dr. Ashraf S. Hasan Mahmoud

Associate Professor

Computer Engineering Department

King Fahd University of Petroleum & Minerals

P.O. Box 1585, Dhahran 31261, Saudi Arabia

Phone: +966 3 860 1724

Fax: +966-3-860-3059

Email: ashraf@kfupm.edu.sa

Homepage: http://faculty.kfupm.edu.sa/coe/ashraf

Dr. Uthman Abdurrahman Baroudi

Associate Professor

Computer Engineering Department

King Fahd University of Petroleum & Minerals

P.O.Box 1350, Dhahran, 31261, Saudi Arabia

Phone: +966 3 860-4283

Fax: +966 3 860-3059

Email: ubaroudi@kfupm.edu.sa

Web: http://faculty.kfupm.edu.sa/coe/ubaroudi/

Dr. Basem Almadani

Assistant Professor

Computer Engineering Department

King Fahd University of Petroleum & Minerals

P.O.Box 1195, Dhahran, 31261, Saudi Arabia

Phone: +966 3 860-7424

Fax: +966 3 860-3059

Email: mbasem@kfupm.edu.sa

Web: http://faculty.kfupm.edu.sa/coe/mbasem/

