Z

’)\

111 e e S e S e e e e e e e o e e e o b%@@éﬁ

| ! ;
A A

&

DDS-BASED REAL-TIME QOS’S IMPLEMENTATION OVER

WSAN MIDDLEWARE

BY
Samer Khaled Rabah

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

Selfe 3 lote el e 9 el e el el e

{
22

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the

el el ot el e ool e 3

Requirements for the Degree of : ;

(o
MASTER OF SCIENCE e

.< (¢
MG In 84:
MGs COMPUTER NETWORKS O@
+ 2
3 December, 2016 R
4 S e e S e S S S S e SE S SE e e e S SEeE Wﬁ@i&w@%

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN- 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This thesis, written by Samer Khaled Rabah under the direction his thesis advisor and
approved by his thesis committee, has been presented and accepted by the Dean of

Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER

-

L
Dr. Basem Al-Madani
(Advisor)

OF SCIENCE IN COMPUTER NETWORKS.

/ v
Dr. Ahmad Al-Mulhem , .
Department Chairman Dr. Tarek Sheltami

(Member)
S
DN
(A &
&/
Dean of Graduste Soudh S D Ry
R GRANR i (Member)
x
5|2l

Date

©Samer Khaled Rabah

2016

il

Dedication

I dedicate this work to my parents, my siblings, my family and friends.
Thank you for supporting me along the way.

Without your praying and help, I could not have completed this work.

v

ACKNOWLEDGMENTS

All thanks and praises be to my lord (ALLAH), the Almighty, for giving me thorough

strength, patience and ability to complete this work.

I would like to thank my parents and my siblings for allowing me to realize my own
potential. All the prayers and support they have provided me over the years was the greatest

gift anyone has ever given me.

I would like to express my gratitude to my research supervisor, Dr. Basem Al-Madani, for
his guidance, which helped me to complete different phases of this thesis and its
acknowledgment. I would also like to thank my thesis committee i.e. Dr. Tarek Sheltami
and Dr. Hosam Rowaihy, for their valuable feedbacks which shaped the final picture of

this work.

I also need to thank Dr. Anas Alroubaiy and my friends everywhere for their prayers,

support and encouragement all the time.

Last but not the least I would like to thank lecturers and staff of King Fahd University of

Petroleum and Mineral for guiding me to accomplish my Master degree.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...cottiiiimtiiiismssrisssssrssssssssssssssssssssssssssssssssssesssnsssssssnssssessnnsssessnnsssanen \"
TABLE OF CONTENTScccctttiiimttriissnssrsssssnssssssssssssassnsssssssansssesssnsssssssnnsssessnnsssessnnsnsensnnes VI
LIST OF TABLES......ccoctttiittiiinesnissssssnsssssssssssssssssssssssssesssssssesssnss s sssssnsssesssnss s esssnnsssnnsnnes VIII
LIST OF FIGURES......cccccmeitrirrinsssssmsmsnrrressssssssssssssssesssssssssssssssessssssnssssssssensssssnnnnnnsssnensnssnnn IX
ABSTRAQ Tcoooiitiiissssmeeerrrrssssssssssssss s sessssssssssssss s sesssssssmssssss s sesssssssmmssssssesssssssnnmnnsssensssssnnn XIII
O e G XIV
CHAPTER 1 INTRODUCTION ...cccccceerrrrrmnsssssmmmserseremsssssssssssssssssssssssnsssssssssssssssnssssssssesssssnns 1
1.1 Background and Terminology:ccceeiiiiiiiiiiiieiececccccecsrsrr e e ee s e ss s s e e e s e e ssseeseeseseneeennes 6
1.1.1 Data Distribution SEIrVICE (DDS):....ccciiccurrrieeeeeeeiiiirreeeeeeeeiritrrreeeeeeessabraeeeeeeesssntrraeeeaessanntrreeeaaeens 6
1.1.2 DDS Quality of Service POliCieS (QOS'S): veeuvrrrerriieeerieiireeiiieeessieeeesstieeeesraeeesssteeessnsseeessreeeesnsneeess 8
1.2 Problem Statement& Contributions:cccciviiiiiiiiiiiiicccccccerrrrrr e e e e eeees 10
2.3 Thesis OrgaNizatioN:.......ccccecererrrrrrrrrrerrrssssssessssessssssssssss sssnssnsnnnnnnnn 11
CHAPTER2 LITERATURE REVIEWoiiiierrrssmeerrssssssssssssmsssessssssssssssmsssessssmsssnssnnes 12
2.1 Publish/subscribe (pub/sub) MoOdel:ccccceeriirreiiiirrreeieinrneeeecssneeeeesseeeessssseeessssssesssnns 16
2.1.1 PUD/SUD COMPONENTS: ...viiiiiiieiiiiiiiieee e eeeecitre e e e e e e e ee bbb eeeeeeeesseaaabaaeeeaeessaabbaaeeeaeeseasnstbaseeaeeesanses 16
2.1.2 PUD/SUD @S AMIAAIEWAIE: ..oeeeiveeeeeee ettt ettt e e e ettt e e e ettt eataeseee et eesasaesseeeeeessnnaeseeeeees 18
2.2 Publish/suUbSCribDe in WSANS:ccccerrrireeeteeeecessssnseeeeeesssssssssssseeeessssssssssssssesssssssssssnssssssnes 21
2.2. 1 PUD/SUD SOIUTIONS: ettt ettt ettt e ettt et e e e ettt eeb e e e e e e et aseaaasseseeeesarnaseeeseensnnasreeeeees 21
2.2.1 WSAN Pub/Sub Reference MOE!ueeuueeeeueeiiiiieiiiiieitii s 24
CHAPTER 3 THE METHODOLOGY& PROPOSED APPROACH.........cccoccmrrrvmmerrnsnnes 29
3.1 Broker-Less TINYDDS (BLTDDS):ucceeeeeeerereeeeseeresessesssnns 29
3.1.1 Messaging & data delIVEIY: e nan 29
R A S T I 1B L Vol 13 =T 0= 32
3.2 SiMUIAtioN TOOL: ..ciiiiiiiieccceniiteeireceertreeennesseeeesseeennnssssseessssennnsssssssssssesnnnssssssssssssnnnnssnns 33
3.3 Performance IMEtIICS: ..o iiiiiiiiieeniciiceeitieeenneeeeeetteeennsssssseesssesnnnsssssssssssennnnssssssssssssnnnnssnns 35

Vi

3.3.1 PaCKet DEIVEIY RAtiOr.....eiiiiiiiiee ettt ettt ettt ettt ettt e e st e e e ebb e e s eabbe e e s sabaeeesnbeeeas 35

CHAPTER 4 DDS REAL-TIME QUALITY OF SERVICE (QOS) POLICIES

IMPLEMENTATION....coiiiiittiiinssiiisnsssssssssssssssssssssssssnsssssssnssssessansssssssnssssassansssessannsssnssnnes 36
4.1 Time Based Filter QoS Implementation:cccoeiieeeerriieinirieennnrreieeeteeennnssseeeeeeeeeenssssssssenes 36
4.2 Deadline QO0S IMPlementation:cccveeeeeeerrieeeiieeeennneeeeenteeeennsssseseeeeesennnsssssssessssnnnsssssssees 41
CHAPTER 5 PERFORMANCE SIMULATION RESULTS AND ANALYSIS.......cccccvvmen 48
5.1 Simulation Setup and parameters:cccccrreriirriiirirrrrrrrrrrrrrr s s s 48
Lo 0 Y o o o= Y o T o IS ol =Y = o [48
5.2Results and Qnalysis:cccceeiiiiiiiiiiriirrrrrrsrrrsrs s s s 53
I - 1Y 1o = P UPPPPPN 53
5.2.2 Time Based Filter QOS POliCY reSUIS: ..c..iiiiiiiiieei ettt e e e e e s 61
5.2.3 Deadling QOS POlICY FESUILS: ...iiiiiiiiieeee ettt e e e e s s st e e e e e s s sabbbaeeeeeesssaees 72
5.2.4 TBF and Deadline Q0S’s tOgether reSUIS:uiiiiiiiiiiieec e 84
CHAPTER 6 CONCLUSION AND FUTURE WORK........coocrirrcmrrrnsecerrssssmessessssmssssssnnes 91
6.1 CONCIUSION:eeeeeeeeccccecrcrssssssssssssesssssssssssssssss s sssssssssssssssssnnsssnnsssnsssnnnsssnssnsnnssnnnnnnnnsnsnnn 91
6.2 FULUIE WOFK:eeeeeeeecrcccsressnsssssssssnssnssnnsnnsssnnnnnnnssssnssssssssssssssnns 92
REFERENCEScooi i ceeiirseminiisssssssssssssssssssmssssssssnsssessssssssssssnsssessansssssssnnsssassansssenssnnsnsnssnnns 93
0 96

vii

LIST OF TABLES

Table 2.1: Pub/Sub WSAN Solutions (where; D: Deadline; P: Priority; R: Reliability)

1250 PO PP PRRRRTP 26
Table 2.2: Pub/Sub WSAN Solutions Evolution and Features Summary [22]................. 27
Table 2.3:Simulators Used in Evaluating Pub/Sub Solutions for WSAN [22]................. 28
Table 5.1: simulation setup for the tested application scenarios.ccceeeeeevievrvveeeeeennn. 50

Table 5.2: offered deadline assignment for each publishers in different number of
J028 o] F T 1 1S SRR PPPPPPPRRIN 72

viii

LIST OF FIGURES

Figure 1.1: Traditional WSN architecture [22].......cccueieiriiiireiiiiiieeeeiiiee e e eeireee e 1
Figure 1.2: WSAN architecture with partially and fully automated interaction [22].......... 2
Figure 1.3: Middleware layer hides the complexity of underlying layers [22]................... 5
Figure 1.4: Distribution model for DDS [25]. ..ooiiiiiiieeeeeeee e 7
Figure 1.5: DDS pub/sub model..........cooooiiiiiiiiiiiiiieeee e 7
Figure 2.1: The core component of pub/sub model [22].ccovvviiiiiiiiieeiieiiieeeeeee, 16
Figure 2.2: The pub/sub Middleware components [22]..........ccceeveuiriiieeeeeeenieiinnireeeeeenn. 18
Figure 2.3: The generalmessage format [22].cccoveviiiiiiiiieeiieiiiiieeee e 19
Figure 2.4: Notification Service Operations[22].......ccccuvriireeeeeeiiiiiiiiiieeeeeeesiirieeeeeeeens 20
Figure 2.5: PS-QUASAR ArchiteCture[22].cvveeieeieciiiiiieee et eirveeeeee e 22
Figure 2.6: TinyDDS architecture over TinyOS and MicaZ platform [22]...................... 24
Figure 2.7: General Middleware reference model architecture [22]cccovevvviveeeennnn. 25
Figure 3.1: Discovery phase and Data Dissemination phase for Default TinyDDS

122K 3 USSP 31
Figure 3.2: Discovery phase and Data Dissemination phase for Broker-less

1137 D) D R T 1K 3 USSP 32
Figure 3.3:BLTDDS Architecture [23]......ccocuuiiiiiiiiiieeeiiiiee et 33
Figure 3.4: TOSSIM Architecture [31]. ..ooooiiiiiiiiiiiiieeeiiee et 34
Figure 4.1: SWItChING CONCEPL ...covuviiiiiiiiiiiiiiiiie et 38
Figure 4.2: TBF QoS implementation flowchart.ccoccooiiiiiiiiiiiieee 40
Figure 4.3 QoS’s policies in Data Reader sidecoocviiiiiiiiiiiiniiiiiieeiieeeeeeeeeee 43
Figure 4.4: Deadline QoS implementation flowchart............ccocceeiiiiniiinniinii, 46

X

Figure 4.5:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Deadline and TBF QoS’s implementation flowchart.cccecvvveeeennnnee.

publisher nodes distribution over the aria represented by blue color
cells, and the Base-station subscriber is represented by green color
cell. The cells with the white color represent the relay node used for

packets forwarding PUIPOSE.cceevuviiieeriiiiieeeiiieeeeeiieeeeereeeeeeireaee e

The basic application algorithmcccceeeeviiiiiiiiiiiiee e,

PDR behavior in different data rate (1p/s, 2p/s, and 4p/s)while changing

the number of publishers.ccccoviiiiiiiiiiiiee e,

latency behavior in different data rate (1p/s, 2p/s, and 4p/s) while

changing the number of publishers.ccccccviiiiiiiiiiiie,

delay behavior for the received packets related to the time in case of 16

PUDIISNETS. ... e e e e e e e e e

The Total Processing Energy consumption behavior in different data rate

(1p/s, 2p/s, and 4p/s), while changing the number of publishers...............

The Total Radio Energy consumption behavior in different data rate

(1p/s, 2p/s, and 4p/s), while changing the number of publishers................

PDR behavior in different TBF minimum separation (2 s, 3 s, and 4 s)

while changing the number of publishers in data rate of 1 p/s.

PDR behavior in different TBF minimum separation (2 s, 3 s, and 4 s)

while changing the number of publishers in data rate of 2 p/s.

Figure 5.10: System latency behavior in different TBF minimum separation (2 s,

3's, and 4 s) while changing the number of publishers in data rate

o) B U 0TSO UUR SRR

Figure 5.11: System latency behavior in different TBF minimum separation (2 s,

3's, and 4 s) while changing the number of publishers in data rate

O 2 PP/ S e e

Figure 5.12: Total consumed processing energy for different TBF minimum

separation (2 s, 3 s, and 4 s) while changing the number of publishers

1N data 1at€ OF 1T P/S cueiiiiiiiiiiie e

.47

.49

.54

.56

.57

.59

.60

.62

.63

.65

.66

Figure 5.13:

Figure 5.14:

Figure 5.15:

Figure 5.16:

Figure 5.17:

Figure 5.18:

Figure 5.19:

Figure 5.20:

Figure 5.21:

Figure 5.22:

Figure 5.23:

Figure 5.24:

Total consumed radio energy for different TBF minimum separation
(2's, 3 s, and 4 s) while changing the number of publishers in data rate
o) B B £ T PSSP UP PP 69

Total consumed processing energy for different TBF minimum
separation (2 s, 3 s, and 4 s) while changing the number of publishers
in data rate of 2 p/s

Total consumed radio energy for different TBF minimum separation
(2 s, 3 s, and 4 s) while changing the number of publishers in data rate
o) 2 oY TS PUP P 71

PDR behavior for different request deadline (1 s, 2 s, and 3 s)while
changing the number of publishers in data rate of 1 p/s.......cccoeeiieeinnnieen. 74

PDR behavior for different request deadline (1 s, 2 s, and 3 s)while
changing the number of publishers in data rate of 2 p/s.......cccoevieernnnieeen. 75

latency behavior for different request deadline (1 s, 2 s, and 3 s) while
changing the number of publishers in data rate of 1 p/s.......cccceeeeevennnnnnnenn. 77

latency behavior for different request deadline (1 s, 2 s, and 3 s) while
changing the number of publishers in data rate of 2 p/s........cceeeeeevvunnnnnnenn. 78

Total consumed energy behavior in processing for different requested
deadline (1 s, 2 s, and 3 s) while changing the number of publishers in
data 1at€ OF 1 P/S. coueeiiiiiiiie e 80

Total consumed energy behavior in radio for different requested
deadline (1 s, 2 s, and 3 s) while changing the number of publishers
in data rate of 1 p/s

Total consumed energy behavior in processing for different requested
deadline (1 s, 2 s, and 3 s) while changing the number of publishers in
data 1ate OF 2 P/S. weieiiiiiie e 82

Total consumed energy behavior in radio for different requested
deadline (1s, 2 s, and 3 s) while changing the number of publishers
1N data 1at€ OF 2 P/S. uriiiiiiiiiiie et 83

PDR behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =3 sand 1 p/sdatarate.ccceeeeviiiieiiiiiiieeeiieeeeee e 85

xi

Figure 5.25: PDR behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =4 sand 1 p/sdatarate.ccccceeeeuviiieeriiiieeeeiiee e 86

Figure 5.26: PDR behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =5 s and 1 p/s datarate.cccceeeeveiiiieeiiiiieeeeiieee e 87

Figure 5.27: latency behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =3 sand 1 p/sdatarate.......cccccecuiriiiiieiiininiiiiiiiieeeeeeeeeen, 88

Figure 5.28: latency behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =4 sand 1 p/s datarate.ceeeeuviiiiiiieiieiiiiieee e, 89

Figure 5.29: latency behavior when changing TBF minimum separation time (2 s,
and 3 s) while changing the number of publishers, and the requested
deadline =5 sand 1 p/s datarate.cceeeeuiriiiiiieeieeiiieeee e, 90

xii

ABSTRACT

Full Name : Samer Khaled Yousef Rabah

Thesis Title : DDS based Real-Time QoS’s implementation over WSAN Middleware

Major Field : Computer Networks

Date of Degree : December 2016

Wireless Sensor and Actor networks (WSANs) proposed itself to be an emerging
technology these days. They have been used in several critical fields such as military,
healthcare, environment, and industry. WSAN still suffers from well-known challenges
that affect its performance with respect to end-to-end delay, throughput, bandwidth and
other resources’ utilization. Computer and sensor lab researchers keep developing
WSANs to overcome most of these challenges, and other new models have been
applied such as a real-time publish/subscribe model for its well-suited characteristics.
This model interacts as a middleware software under application layer that guarantees
the quality of services (QoSs) and solves the heterogeneity problem with efficient use
of resources. State of the art solutions of Real-time pub/sub based middleware have
been developed, such as TinyDDS, which is a lightweight version of the Data
Distributive Services (DDS) standard of real-time pub/sub middleware. Although this
middleware (TinyDDS) supports DDS standard QoSs, it still lacks the implementation
of some of the policies such as Time Based Filter and Deadline QoSs. In this work,
these critical Real-time QoS policies were implemented over Broker-less TinyDDS
middleware, and then a comparison test and analysis have been done to check the

performance cost and improvements over WS ANS.

xiii

Al padla

CL}J [Y alla)ALu: rJalsd) @-HN\

Faall o cililall)5 alail alladl el b Aeniiual) 391 2a0al 325n 25 1Al o) gie
AL S jaal i) ClSed 8 ddag)

gy\ Cralal)l GlKuE 4waiay 1 Gamaddl)

2016 , e tdzalad) Ay Al gy)

o s S A1 U8 e S alaia) 53 da 5K Lt TSI S jaall 5 Hlafin) ClSed a0
A Sl clidatll J gia Jie A jall g dagal) colisdatll (e apaall 8 Laladin a3 Cua dllall Lialy)
o el JSLaeS degall JSLa 5 ciliaatll (ge Ao sana (e (Slad @l) L eI daelivall g duaall
) Aalall lad) ge Canm s Jai¥) ClSad G Jladll alazin¥) 5 Jaidy!

b el il il s i) ¢y sleal gy Y1 Canlally il <l it b sl 0V Y
e a3 calell JSLa o3 o alati i SIS jaally ladin¥) cilSad sk
Oall (A iy il sl Jle Lghadai g 4y el ALY (e de gena gl (sl cY s

AL Suil) (e p il 138 Jial dunliall Aladl) aailasl @l 5 idsl)

Il (B Amaal Gl 5 o gulad) il Jaadl Aass g Apne o A0S QU gl 3 gaill 128 Jeliny
O el aie Uik Jady Readll b 5ol Al Asma) o3 (305 Cam Y] qandal
hi 7yl A 5 SN IS a5 il jmitad) IS b Aaritaal Ans sl Clma) 038 (pe
O goohall el Jlxdll e Jame jlaals dddd dais a5 TinyDDS 4 s 1A%
il DDS (e Ains 435 aTinyDDS o cim b . DDS alai ey 53l s OMG 485
o3l arl oS o ey 3 i (e oilad 1 L L)) Al ASLS)) yeitd)

e sall e s gl a5 Al Jie ksl
e Wiad Y Al) TinyDDS A (8 deadd) 33 g dalal)l Glubal) sda aadai o5 Jaall 138 3

A ey Dlubid) oda Gudai ey g J8 Sl & e Jae a8 &5 ey 0 gl aly (S (adass g 0 jea)
Leie C.:u gl&\ clay! e.\:\sa B c_u_ul\ Jalss

X1V

CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSN) are composed of tens to hundreds of tiny devices which are
relatively low cost and limited in their capabilities. They are deployed to an area of interest for
monitoring a particular phenomenon behavior. Usually, using a sink node, the sensors collect the
data and its flow forwarded to the sink/base station which is connected to a monitoring application,
as shown in Figure 1.1. The deployed sensors sense and transmit the data to the sink node using

one-to-many communication pattern [1].

1 ®]
o S Sink
-
@]
o Monitored Monitoring
Application
o o« Sensors|

Figure 1.1: Traditional WSN architecture [22]

In Wireless Sensor and Actor Networks (WSANs), the sensors and actors/actuators perform the
occurrence of sensing and acting respectively. Some applications use integrated sensor/actor nodes
instead of actor nodes who have ability to sense and act, both, at the same time, like in distributed

robotic systems.

According to the automation of the WSAN’s applications, these applications can be classified into
two categories: A) Partially automated applications, where the network control is more centralized
at the sink or base station, and as a result, this delays the response to the processing results. B)
Fully automated applications, where the sensors are capable of sensing the data and directly
sending this data to the actuators for further processing, as needed, and acting accordingly. The
fully automated type reduces the overall response time and overhead, which is more suitable for

real-time applications [2]. Figure 1.2 shows the WSAN architecture for both types.

=~ ~
Monitored © \‘ o
Area ;

O Sensor
I:l Actuator

(a) Partially Automated (b) Fully Automated

Figure 1.2: WSAN architecture with partially and fully automated interaction [22]

The publish/subscribe scheme is a messaging-based communication model which is supported by
many industrial and research prototypes. In this model, with less information about the receiver
and its address, the publishers (senders) send their data to a logical space, called middleware.
Similarly, with less information about the sender and its address, the subscribers (receivers) receive
only the data in which they are interested. Since pub/sub scheme strength lies in the full decoupling
in time, space, and synchronization between publishers and subscribers, it is proposed as a suitable

solution for large-scale distributed real-time applications [4].

Enabling publish/subscribe model in WSAN would be a key solution to overcome many of its
problems. Moreover, it improves the WSAN's performance by providing great advantages such as
easy development of applications, portability, scalability, real-time properties and QoS support. A
suitability analysis that study the suitability of publish/subscribe scheme for WSAN is mentioned

in [22] as follows:

e Pub/sub model has scalability advantage in term of deployment and message delivery
in WSANSs that have a large number of sensors, actors, and sinks.

e Pub/sub model is an event-based scheme which is suitable for frequent data updates
in monitoring and control systems.

e Pub/sub model is suitable for a high degree of common interest in applications,
sensors, sinks and actors.

e Pub/sub model is suitable more than request/reply model for less user intervention
applications.

e Pub/sub model is a real-time model that guarantees an immediate data update and
delivery to the subscriber of the short deadline.

e Published/subscribed model is not suitable if clients rarely use published data.
3

The main characteristics and issues that introduce the publish/subscribe model as a suitable

solution for WSANSs are [22] summarized as follows:

1- Many-to-Many Interaction: Since WSANs of multiple base stations and sinks migrate
the applications from one-to-many to many-to-many communication model, the pub/sub
model is suitable in this case. The data is supposed to move in both directions from sensors
as publishers to sinks or base stations as subscribers, and vice versa; from the base stations
or sinks as publishers to the actuators as subscribers for some reaction.

2- Data-Centric: this is one of the WSAN’s key features that distinguishes them from other
wireless networks, where they are not interested in the nodes’ identity but in the data that
is being transmitted. As a result, this requirement is satisfied by using the data-centric
publisher/subscriber communication model, where the subscribers are interested in the
information received from the publishers but not from their addresses.

3- Network Dynamics: since the sensor nodes are joining and leaving the WSANSs in a
dynamic manner due to hardware failures or energy exhaustion, publish/subscribe
interactions model is the suitable solution where it hides the underlying details from
WSAN's applications in order to mitigate the continuous addressing change due to joining
to or leaving from the network.

4- Heterogeneity: a complex and expensive process is required to develop an operating
system that is capable to connect heterogeneous systems. The Pub/sub middleware, due
to intensive efforts by researchers and developers, comes to mitigate the problems of
connecting different nodes’ platforms. The pub/sub middleware as an intermediate layer

between the underlying platforms and the applications, facilitates the development,

portability, and interoperability. Figure 1.3 shows the effect of middleware to hide the
underlying layers complexity.
The pub/sub middleware is proposed to be a well-suited solution to develop the WSAN's
applications. Even so, several challenges would face the developers to adapt the pub/sub
middleware to meet the requirements of WSANs and QoSs needed. This issue attracts
researchers’ attention to propose a pub/sub middleware for WSANSs, some of the state of the
art solutions are Directed diffusion, Mires, TinyCOPS, MQTT-S, TinyDDS, UPSWSN-MM,

and PS-QUASAR.

Portable Application
Middleware
0s 0s
(e.g. Windows, Unix, Linux, (e.g. Windows, Unix, Linux,
Android, VxWork, Tiny05, ...) Android, VxWork, Tiny05, ...)
Transport Transport
(e.g. TCP, USP, DCCP, ...) (e.g. TCP, USP,DCCP, ...)
Different
Network platforms Network
(e.g. P4, IP6, ICMP, BGP, (e.g. IP4, IP6, ICMP, BGF,
RIP, DSR, ...) - > RIP, DSR, ...)
MAC MAC
{e.g. CDMA, TDMA, 5-MAC, {e.g. CDOMA, TDMA, S-MAC,
B-MAC, Zigbee, ...) B-MAC, Zigbee, ...)
Physical Physical
(e.g. Servers, PC, FDA, (e.g. Servers, PC, PDA,
Sensors, Actuators, ...) Sensors, Actuators, ...)

{E@ A ;vsical networktr((ﬁj) é

Figure 1.3: Middleware layer hides the complexity of underlying layers [22]

1.1 Background and Terminology

In this section, as a pub/sub middleware standard, Data Distribution Service standard and its quality

of services will be described briefly.

1.1.1 Data Distribution Service

Data Distribution Service (DDS) standard is a real-time middleware, developed by Object
Management Group (OMG) based on pub/sub model. Since OMG is an object-oriented developer
in software technology, it aims to add portability, interoperability, and reusability features to
highlight its object-based software to be applicable for distributed heterogeneous environments

[28].

DDS pub/sub model, used to be a powerful method of information dissemination that links
anonymous data publishers to data subscribers. One-to-many and many-to-many distribution
mechanisms are both available in DDS which allow distributing data between individual publishers
and subscribers or group of large numbers of both, this flexibility is free from publishers and

subscribers places and addresses information.

For writing and reading data in DDS two abstractions were provided: Data Reader (DR), and Data
Writer (DW) [19]. Figure 1.4 and Figure 1.5 show DDS Distribution model and pub/sub model

respectively:

DDs DOMAIN

Participant

<p

DataReader | DataReader

Participant

<p ¢

DataReader | DataWriter

VAVAVAA

Global Data Space

Q Topic #1 <> Topic #2

Figure 1.4: Distribution model for DDS [25].

Publisher 1 Subscriber 1

Publish/Subscribe

Publisher .. . Subscriber ..
Topic

Publisher N / \. Subscriber N

Figure 1.5: DDS pub/sub model

DDS was basically designed as a result of many types of research over the difficulties, the real-
time applications, may suffer such as immediate data sending from the source publishers to the

destination subscribers directly without the need of brokers (intermediate servers).

In DDS pub/sub application composed of participants which can be a publisher, subscriber, or

publisher/subscriber at the same time. Each of these is running on a separated different address

machines and simultaneously publish and subscribe to a Topic of data streams identified by unique

topic names which compromise the data type, and data associated QoS.

Since that scalability is one of the features of this model, some keys can be used within topics, this
allows to receive the data from hundreds of similar data streams with a single subscription. Also,
these keys are used by middleware engine for efficient processing of sorting and delivering [18]

[19].

Several implementations on DDS take place in research and industry which can be categorized into
free (open source) such as Open Splice and Open DDS, and commercial, such as CoreDX and RTI-

DDS [29].

1.1.2DDS Quality of Service Policies (QoS’s)

DDS had a great advantage over real-time Quality of Service (QoS) controlling. Since QoS is a set
of characteristics that drives the behavior of the service, DDS relies on the application requirements
to determine the QoS’s and each pair of (a publisher and a subscriber) participant can establish its

own QoS’s agreements.

Since the QoS parameters are implemented as a contract between the participants (Publisher
offers), (subscriber requests), and (levels of service), it becomes the middleware responsibility to
match the offers and requests, before establishing the connection or incompatibility error will be

shown.

Here are some examples of usual used QoS in DDS [18]:

e Reliability: This QoS determines the level of reliability requested by the subscriber or

offered by the publisher.

Durability: This QoS allows an application to send data even if there are no current
subscribers on the network.

Time Based Filter: States that the subscriber doesn't want to receive more than one value
each minimum separation of time from a subset of values, this would be critical in WSN
due to limited resources of data rate and processing time; therefore Time Based Filter
expresses the data rate threshold which the subscriber can handle.

Deadline: This QoS controls the maximum time to send and receive topic samples and it’s
the middleware responsibility to supervise the instances updating rate between both DW
and DR sides. For consistency, the deadline time period should be greater than Time
Based Filter.

Transport Priority: This QoS is to allow the application to take advantage of transports

capability of messages sending in different priority specifications.

1.2 Problem Statement& Contributions

Real-time WSAN's applications may encounter some challenging problems such as latency and
data loss that occur due to congestion, bandwidth limitations, and limited hardware recourses.
These serious issues will decrease the network overall throughput and shortage the lifetime of
nodes in term of power [1], therefore the researchers were motivated to find out suitable models to

address these challenges [3].

State-of-art solutions of Real-time WS AN’s pub/sub middleware were proposed such as TinyDDS,
and PS-QUASAR [23]. However, TinyDDS middleware is superior, since it is a lightweight
version based on the OMG standard DDS. It is still in the development stage and many of Real-
time DDS critical QoS’s suitable for WSAN’s such as Time based Filtering, and Deadline are not
yet implemented in the middleware [23], which will improve the sensor networks performance and

overcome the limited resources problem [26].

Since TinyDDS middleware lacks the implementations of Time based Filtering, and Deadline, in
this work these critical policies were added and implemented to upgrade the middleware, after that
its performance has been evaluated and tested in such a comparison before and after implementing

this quality of services policies.

10

2.3 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, a comprehensive study was provided
to several types of research found in the literature that addressing the problems and challenging
criteria in WSANSs, and some solutions proposed to solve these problems, also it presents the using
of pub/sub middlewares as a superior solution to overcome the challenges; specially TinyDDS
middleware. Next, the methodology is described in chapter 3. The implementation design of
Deadline and Time Based Filter quality of services are described in Chapter 4. In chapter 5, the
simulation setup, tools and network topologies were discussed in addition to the performance
evaluations that used for testing and comparison before and after implementing the QoS’s. In

chapter 6 the Conclusions and future directions for the work were presented.

11

CHAPTER2

LITERATURE REVIEW

Wireless sensor and actor networks (WSAN’s) introduce itself as an emerging revolutionary
technology that affects all aspects of our lives. Its great use in multiple applications such as
military, healthcare, biological, environmental, structural health and condition based monitoring,
forces the researchers in the field of embedded computer and sensor technology to develop it in
advance and overcome the critical issues and challenges there. Several studies are addressing most
of WSAN’s design influencing factors, take in concern its limited resources and quality of services,

to improve it in both level of hardware and software [1] [2] [3].

Since there are many publications in this field, in this section, I will mention the most related ones

to my work.

In [4] the pub/sub scheme is introduced, since it is an event-based interaction its strength lies in
the full decoupling, in time, space, and synchronization between publishers and subscribers, which

is required in large scale settings such as WSAN's.

In [5-12] [24-27] the publishers were focusing on QoS provisioning in WSAN's. These studies
may be classified into two approaches: pub/sub based and not- pub/sub based, both examining the
QoS's supported in WSAN's and its requirements, which differ depending on the application, also

the open research issues in QoS and its critical challenges were discussed.

12

In [13] a new operating system platform specifically designed for WSAN’s called TinyOS was
introduced, it is implemented in the NesC language, it combines the limited resources of flexible
components with a model execution to support complex concurrent operations, therefore it
facilitates the experience on WSAN’s, thus it had been used in several researches and

developments.

Sensors and actors in WSAN’s are different in terms of hardware platforms, which make it clearly
impossible to develop an Operating System (OS) that runs on all of them. Therefore, a need to
decouple the OS from the hardware platform becomes necessary using middleware which hides
the underlying platform differences, and facilitates scalability, interoperability, deployment, and

development of the applications [14].

Numerous works on middleware for handheld devices for different operating system have been
developed, and many surveys take place in literature to compare between these different

middlewares [14-19].

In [14] the publishers illustrate that a huge amount of work the middleware needs before it became
suitable for WSAN’s due to resource constraint unreliability QoS support and diversity in the
sensor/actor hardware, some features and challenges are presented in details and compared for
various middleware such as Impala, Mate, TinyDB, Agilla, TinyCubu and TinyLime. However
most of these middleware address some of these features, there are still some critical features like

security and QoS support which are ignored by most of the middleware.

In [15][16][17] publishers try to show the current state of studies and researches in WSAN’s
middleware domain. They discussed some features and compare between several middleware such

as Mate, Magnet, Cougar, SINA, DsWare, Impala, Milan and Envirotrack. Where these approaches

13

classified into four categories: virtual machine, database based, modular programming, and
application driven, most of these middlewares assume that sensor nodes are homogeneous,
however not all features and challenges are supported by these middlewares, and still a long way

for a perfect middleware for WSAN's.

Data Distribution Service (DDS) is a well-known standard middleware in research and industry
for supporting real-time distributed systems based on the real-time pub/sub model. The DDS
specification offers several QoS like Reliability, Durability, Resource Limits, Deadline, Time
Based Filter, and Transport Priority, also RTI connext DDS is an industrial platform for DDS
[18][19]. The DDS standard-based proposed solutions for WSAN's middleware are TinyDDS [20]
and uDDS [21], however, TinyDDS is more popular and cited by the majority of researchers in

the research community, and also it is an open source.

In [22] a comprehensive review and study for state of the art solutions of publish and subscribe
WSAN's middleware such as: Directed diffusion (2003), Mires (2005), Quad-PubSub (2007),
TinyCOPS (2008), MQTT-S (2008), TinyDDS (2009), MiSense (2009), PUB-2-SUB+ (2010),
TinyMQ (2011), UPSWSN-MM (2012) and PS-QUASAR (2013). A comparison had been done
between these solutions in terms of features, architectures limitations and QoS mechanisms they
supported related to Reliability, Priority, Deadline, and Energy-awareness. The reviewers
mentioned that there is still a need for more effort in design and implementation, in addition to that
these solutions lack efficient ways to deal with performance factors like churn and failure rates and
energy-aware dynamic load distribution on the network. TinyDDS and PS-QUASAR were

superior over other solutions.

14

However TinyDDS [20] and PS-QUASAR [12] propose themselves as super state of the art
solution for WSAN's middleware [23]. TinyDDS is a lightweight version of DDS standard for
embedded systems that is standardized by the Object Management Group (OMG) organization in
2003. It has several potential enhancements that can significantly reduce the overhead, such as
using broker less architecture, its integration with the enterprise networks becomes
straightforward, also supports QoS for WSAN's. Hence, that TinyDDS supports QoS's there is no

implementation of these QoS's yet.

In [22] the main methods of routing for both types of messages (subscription or data) are either
broker-based or broker-less. Since TinyDDS uses the broker-based methods in routing; this
centralized method is not suitable for WSANs functions and platforms, thus it causes a bottleneck
which consumes the node energy rapidly, so ends the network lifetime in short period. Therefore,
it's better to use Broker-Less TinyDDS (BLTDDS) which assumes that the middleware has a
previous knowledge about all the publishers in the networks since the time of deployment, so that
all subscribers broadcast subscription messages to all nodes in the network, then the matching

process will be in publisher side.

15

2.1 Pub/sub (pub/sub) Model

2.1.1Pub/sub Components

The pub/sub model was developed for the benefits of scalability, flexibility, and fast data delivery,
therefore it has been proposed as main solution for large-scale distributed systems [22]. Figure 2.1

explains the main components of pub\sub model and its basic model [22].

Global Data Space
Pubhsher /\ Subscnber
/ E2 i/

| 4 A
/s o SublEY \Pub(su\L

\
Subscriber \< Publish/subscribe < v
)~

|.. o b (83) Service

blE3 = ~Sub(F3)—_

Figure 2.1: The core component of pub/sub model [22].

The main component of pub/sub scheme is notification service (pub/sub service) which basically
provides and manages the storage service and subscriptions. As the figure above illustrates that the
global data space represents the real implementation of the distribution over brokers (servers) and

the end-nodes in the system [22].

The notification service playing the role of moderating and matching between publisher and

subscribers. The subscriber for specific events, i.e. E1, E3, using subscribing function sub (E) to

16

subscribe, then the notification service matches it to the right events of the publishers, and it
completes the data delivery to the subscriber. These processes in the system classified to Three
main operations: pub (E) function to publish the events, sub (E) function to subscribe to a specific
event, and the unsubscribe function. The participants are either a publisher or a subscriber or both

at the same time [22].

Since that notification service (pub/sub service) provides scalability and flexibility, this happened

in three dimension of decoupling between subscribers and publishers as follow [22]:

e Space: the publishers and subscribers don’t need to know each other’s to interact where
the main interest is the event itself regardless from where it comes or where it goes.
e Time: Especially for the high dynamic network which suffers a high rate of nodes fail or
disconnections, the publishers and the subscribers can interact independently at any time.
e Synchronization: asynchronous communication paradigm was used which means no
blocking on concurrent tasks of receiving and sending in both sides of subscribers and
publishers.
Distributed systems such as WSANs and mobile networks are naturally asynchronous, thus
removing dependencies leads to the faster decoupling between the participants and increases the

scalability of these systems.

17

2.1.2 Pub/sub as A Middleware

The Pub/Sub middleware basically consists of five components: end nodes (subscribers or
publishers or both), subscription or publishing messages, notification service, Application
Programming Interfaces (API) and programming abstraction, and QoS mechanisms that the

pub/sub applications support [22]. Figure 2.2 shows the main components of pub/sub middleware:

Pub/Sub Middleware
Components

Programming End nodes Messages Notification QoS
Abstractions Pub/Sub Event/Query Service Mechanisms

Figure 2.2: The pub/sub Middleware components [22].

Programming Abstractions:

Application Programming Interfaces (APIs) and its abstraction are improving the developing of
WSAN application and reduce its complexity. In pub/sub middleware, APIs are used to create,
publish, subscribe, and unsubscribe a certain event. This will make the application development
easy, and hide (underlying) the details and heterogeneous complexity under the network layers

from developers [22].

End-Nodes:

As much as communication systems, the end users in WASN pub/sub middleware nodes are called

publishers (senders) and the subscribers (receivers). The publisher creates the events and sends

18

them to the notification service which in turn delivers it to the interested subscriber. In case there
is no subscriber dedicated to that event it will be kept in the notification service until either a new
subscriber to that event or it reaches its expired time. The subscriber creates an event subscription,
then the notification service triggers a matching process if a matching published event is available.
If not, the subscription will be kept in the notification service until it matches a published event,

or it reaches its expired time [22].

Messages (Event/Query):

There are three different types of messaging in pub/sub middleware interaction paradigm: the
advertise message, the event (publication) message or data message, and the query (subscription)

message [22].

The advertise messages are used for an event advertisement before publication. These messages,

are created by the application, include two parts the header and payload.

The header main fields are identifier, issuer, and some fields dedicated to QoS’s parameters. Figure

2.3 illustrates the general message format used in pub/sub WSAN middleware [22].

Header Payload
2-4 bytes n bytes

Figure 2.3: The generalmessage format [22].

The query message is sent by subscribers to register all events or part of it, and it is supposed to be

important since it can be used to classify the most used Pub/Sub systems. Thus that the subscriber’s

19

ways of registering to the events are different because it depends on the implementation. Therefore

it affects the architecture used to implement the notification service.

Notification Service (NS):

Notification services are responsible for spreading and expanding the data in pub/sub systems. It
mediates between publishers and subscribers, thus it is the heart of the middleware. It has a specific
operations to interact with the publishers and subscribers that are illustrated in Figure 2.4, where
the publisher issues "publish ()" and "advertise ()", for publishing and advertising new topics; also
the subscriber issues "subscribe ()" and "unsubscribe ()" to subscribe and unsubscribe to a topic,
in addition "notify ()" can be used to notify the subscriber about matched topic. NS services also
include discovering the participants (the publishers and the subscribers), storing the publications
and subscriptions, match between them, events routing, filtering, and managing the pub/sub

Quality of Services (QoS's).

Pub(a)
Routing

Matching

Discovering

Storing

QoS management

Filtering

Pub(d) Unsub(a)

Notification Service

S: Subsecriber P: Publisher P/S: Publisher and Subscriber

Figure 2.4: Notification Service Operations[22].

20

Quality of Service Mechanisms (QoS’s):

Quality of Service (QoS) is considered as advanced features for any WSAN middleware. Since the
behavior in pub/sub systems is less deterministic because of decoupling principle, thus make it
neither simple nor an easy task to support QoS's, especially in resource-limit constraint systems.
Middleware is responsible for guaranteeing the QoS's after negotiation if the application layer

QoS's requirements cannot be satisfied by the network under layers [22].

2.2 Pub/sub in WSANs

In this section, some pub/sub based solutions in the past years for WSN/WSAN will be discussed
as a comparative study. Then pub/sub WSAN general middleware reference model will be

presented in the end.

2.2.1Pub/sub Solutions

Directed Diffusion:

Is considered the earliest pub/sub paradigm for WSANS. It is based on data-centric protocol. The
interests (subscriptions) are broadcasted over all network, in meanwhile the gradients should be
setup for later use of events drawing (data request). The matching process is done locally be each
node after interest examination. If it has the requested data, then the node sends the information to
the sink using the interest reverse path. Otherwise, the interest is just propagated throughout the
network. No need for brokers which avoids centralized processing disadvantages. However, it has
a memory overhead in communications and processing where all nodes do the same for each
interest. Cached data can be used in intermediate nodes, also data aggregation thus consumes less
energy and minimize the traffic. Data filtering can be achieved using the attribute value feature in

21

the data structure. For each received interest, it has its own gradient towards the node sending the
interest. A secured version was proposed recently that improves the integrity and data authenticity

with low overhead [22].

PS-QUASAR

It is a pub/sub middleware solution where all nodes in the network are publishers for each topic. It
provides high programming level and QoS support such as reliability and priority. It handles a
many-to-many messaging exchange by means of multicasting techniques. It consists of three
modules: API, routing module, and maintenance protocol, Figure 2.5 depicts the architecture and

the interconnection between modules are interconnected.

The maintenance protocol discovers the pub/sub terminals (publishers/subscribers) and creates the
links between neighbor nodes. Routing module collects the information from maintenance protocol
to be used in events routing. Since topic-based has less matching overhead than content-based, the

API module use it in developing WSANSs applications in this middleware.

Application layer

API

Maintenance

Neighbor status
module

PSQUASAR
|

Routing

QoS manager
module

MAC Layer

Figure 2.5: PS-QUASAR Architecture[22].

22

Tree routing protocol is used as an enhancement developed from Bellman-Ford algorithm. Despite
that PS-QUASAR is energy efficient, QoS’s aware, and using a robust routing protocol, it suffers
some critical issues such as memory space limitations, Also, the deterministic behavior of nodes

deployments in WSAN:S is just evaluated in term of performance [22].

TinyDDS:
It is an OMG DDS standard adopted for WSAN’s. It is a lightweight pub/sub middleware that
allows the applications to bypass over the boundary of WSAN’s and provides them an access to

the networks, regardless of their protocols, platforms and programming languages they use.

In addition to that, it allows the WSAN's applications to have a powerful control over nonfunctional
properties of the middleware level and the application level, and further specialized in their own
requirements flexibly. It can automatically address the dynamic network behaviors and conditions,
which according to that performs an adaptive event publication and balances its performance
regarding conflicting objectives using an evolutionary optimization mechanism of the multi-

objective.

TinyDDS main contributions for WSAN's are providing interoperability for accessing the
networks, also the flexibility of customizing nonfunctional properties such as event filtering, data
aggregation and routing [20]. TinyDDS despite of its great services for WSAN's, it still needs more
developmet since it lacks the energy-aware support and the QoS's features not yet implemented to
handle the limited resources of WSAN’s [23]. Figure 2.6 describes the TinyDDS architecture and

its main components for MicaZ platform.

23

1

Mica Z Sensor Node
(Applications

TinyDDS
DDS Interface

OERP DHT— Spanmng MONS
Layer —T1'ee
L5 Layer TlllyCDR TmYGIOP

L4 Layer{ TinyDDS L4 Adaptation Layer (L4AL)
L3 Layer(AODV) (OneHop)

[TinyOS)

Sensor Reading Comm. Control Y
—

Comm.
Hardware

Sensor Device

Sensors

Figure 2.6: TinyDDS architecture over TinyOS and MicaZ platform [22]

2.2.1: WSAN Pub/Sub Reference Model

This model is proposed as a reference model for pub/sub middleware for WSANSs. It had been
extracted by [22] after full survey for all available pub/sub solution’s architectures. The general

case for middleware layer is to be between the application and the operating systems layers.

The pub/sub middleware will be considered a complete solution if it consists of four main
components that mentioned before in middleware components in section 2.1.2, add to it the
messaging component. Different implementations may use different services and QoS’s. However,

in WSAN platforms it is very critical to add these feature due to their resource constraints.

24

Thus it’s a challenging issue for the middleware design where it significantly depends on the
application requirements in WSANs. TinyOS and Contiki are the most used platform operating

systems. Figure 2.7 shows the general Middleware reference model architecture.

N 7N
I\Pub /J Application Layer \\c’ulj/i

API — API —| APTI — API [API

Middleware Laver

Routing || Aggregation || Storing Filtering
Service Service Service Service

I 7T 7

v T L

QoS
Mechanisms

Publish/subscribe service

Operating System

Network Layer

MAC Layer

Sensors/Actuators ... CPU ... Radio

Figure 2.7: General Middleware reference model architecture [22]

Table 2.1 and Table 2.2 compares the proposed prototypes for pub/sub model and it summarizes
the implementation and evaluation issues of each proposed solution in literature. Table 2.3
summarizes the features and limitations to the mostly used simulators in the literature for

evaluating pub/sub solutions of WSN/WSAN.

25

Table 2.1: Pub/Sub WSAN Solutions (where; D: Deadline; P: Priority; R: Reliability)[22]

QoS
. Sub Overlay Multiple Actuator Energy -
luti e .. . Mobilit;
Solution Scheme Infrastructure Sinks Support Reliability | Priority | Deadline |Awareness obility
Topi
Directed opic/ N N N N Y Y
Diffusion content P2P Y
(2003) based
g"plg N N N N N N N
Mires (2005) ase p2pP
_ Content Y N N N N Y Y
TinyCOPS based Broker/P2P
(2008) roker
Topic N Y Y N N N N
MQTT-S based Brok
(2008) roker
) Topic/ Y N Y Y Y N N
TinyDDS
2009) Content P2P
(based
UPSWSN- gontgn‘ Y N Y N N N Y
ase
MM Broker
(012)
PS- E"pl; Y Y Y Y Y Y N
QUASAR ase P2P
(2013)

26

Table 2.2: Pub/Sub WSAN Solutions Evolution and Features Summary [22]

Solution Testapproach Testing tools Performancemeasurements Remarks
.o Dat tion, th
. . . . Avg.dissipatedEnergy/Avg. . alaaggrepation 'reversepa .
Directed analytical/simulation L . reinforcement,analyticalanalysis for
e NS2 delay/distinct-eventdelivery . o
Diffusion . datadeliverycost,distributed
ratio .
matchingprocess
CaseStudy Dataaggregation,Topic
Mires none None . A advertisement, focusedonfacilitating
Anenvironmentmonitoring
WSNappsdevelopment
Apps /nomeasurements
Quad-PubSub simulation JiST/SWANS Msgs overhead{event;Hopsvs Supportfor reso'urce—zflwa'reness and
subscribers; sharedeventsdisseminationpaths
Subscriptionsandnotifications Thema'l nproperties are tbe
. decouplingofcommunication
TinyCOPS Indoortestbed TWIST/TinyOS deliveryratio/activepublishers rotocols andtheadantivematchin
/PSLOC*/flashandR AMsize P oap &
point
MOQTT-S testbed TinyOS; Just SAmemoryfootprint Seamless integrationofthe WSNwith
- estbe ..
TmoteandMicaZ (12Bytes) traditional Networks (MQTTbased)
TinyOS, . . .
simulation/ TOSSIM, / PKTheaderoverhead;Memory Standard-basedsolution (OMGDDS);
TinyDDS testbed SunSPOT, Footprint; Processing;and seamless integrationwithaccess
Solarium powerconsumption. networks.
emulator.
No.oﬂlopspereven/query;No. Content/basedrouting;noneedfor
. . of replicas perquery; L. .
PUB-2-SUB* simulation . . . locationinformation;less overhead
Ownsimulator Notificationdelay;storage, . .
. thangossiprouting;
comm.,computationloads.
Comparisonwithpub-2-subin AddinginteroperabilitywithinWSN;
. . . hops/queryandnotification . . .
TinyMQ simulation OPNET . content-basedroutingwithoutlocation
delay;andrepaircost(number of . .
. information.
repairednodes)
HTCsmartphones .
with Supportinginternetusers toget
UPSWSN-MM Outdoortestbed AndroidOS:T dDe'lay;numb.ero.fdeliver}eld ; st?ntsing(iat\e:] g;ytﬁl-nfﬁon: efnngfalre;
mote sensors ata;communicationoverhea integrate ointernetviamobile
withContiki phones.
OS;Apacheser
PS-QUASAR Simulation Contiki(OS)Telos Energy.consumptlon;dehvery QoS sul.)portand.hlghlevel
B ratioofpackets;delay programming;multicastsupport
motes;Coojasimulat

27

Table 2.3: Simulators Used in Evaluating Pub/Sub Solutions for WSAN [22]

(0]
Simulator Language | GUI Generality Soz::e License Features Limitations
*Restricted forTinyOS.
*Lackdecent
*Apps porteddirectlyto HW documentations.
TOSSIM plaﬁf(’) rrf] v
nesC No WSN Yes Free *Add-ontosupporteneray
*Bit-levelsimulation consumption, Power Tossim
z[110]
*BestchoiceforContiki-
basedWSN *Supports alimitednumber
of
*Abletosimulatenon-Contiki
€O0JA nodes Simultaneousnodetypes.
Java/C Yes WSN Yes Free Ypes-
*easytouse andunderstand *Makingextensiveandtime
dependentsimulations
*Supportlarge-scaleprotocols difficult.
andalgorithms
*Lots ofprotocolmodels - .
Oty includingTCP/IP,ATM, xpensive
OPNET protocol | Comme- Ethernetctc. *quite difficulttomodify
G Yes General models rcial theprotocols
*SimpleGUItobuilddifficult P
sources . . .
scenariosandgetsimulation
results.
* Supportreal-time *Lackofanapplication
NS3 scheduling,multipleradio model.
: interfaces,andmultiple
++
¢ No General Yes Free channels. *Codenotportableto HW.
* Packet-levelsimulation. *Notscalablefor WSN.
*supports purelyforwireless
. networks protocols. *Less accurateinsensor
GloMoSim networks simulations.
C/Parsec Yes General Yes Free *Usingstandard APIs ’
bet imulationl .
elweensimulationiayers *Codenotportableto HW.
*parallelsimulationsupport
g
Castalia(nghlytunableMAC . | *Notasensorspecific
protocolandaflexible parametric
basedon hysicalprocess model platform.
OMNET++ CH++ Yes General Yes Free physica’p ’
*Notuseful forportabl
) *Applicationlevelsimulator oselutforportable
sensorcode.

PSLOC:Physical SourceLines OfCode

28

CHAPTER 33

THE METHODOLOGY& PROPOSED APPROACH

Since WSANSs function depends on wireless channels, the centralized method is not suitable to be
used in most of its applications. And since we argue that TinyDDS was proposed as the state of
the art middleware solution for WSANSs’ applications, it still uses a broker-based method to deliver
the middleware messages between subscribers and publishers. Therefore, in [23] they proposed an
improvement to the default TinyDDS and they presented an enhanced version called Broker-Less

TinyDDS (BLTDDS), where the usage of brokers is not applied anymore.

In this chapter, Broker-Less TinyDDS (BLTDDS) will be discussed in details in the first section.
After that, some of DDS-based real-time QoS policies, which will be implemented as a

contribution to improve BLTDDS, will be comprehensively discussed.

3.1 Broker-Less TinyDDS (BLTDDS)

3.1.1Messaging & data delivery

In any pub/sub system, there are two basic phases: the first one is the Discovery phase where any
node starts to send subscription or publication messages as soon as it joins the network, thus it can

be recognized as either subscriber or publisher. The second phase is the Data dissemination phase

29

where the middleware starts to deliver the interested data to the subscriber from the publishers

[23].

According to the routing method, which the middleware uses to deliver the data and messages
throughout the network, the middleware can be classified into either broker-based method or
broker-less method. The Default TinyDDS (DefTDDS) uses the broker-based routing method t/o

route pub/sub messages, where for each topic one broker node is assigned [23].

In Discovery phase, the publishers and subscribers use a hashing algorithm to obtain the broker
node address based on the topic identification and max topic numbers. This information is already
known to the end-nodes since the network deployment. Then the broker node retrieves all

subscription and publication messages from all end-nodes and store them in a list [23].

In Data Dissemination phase, since tiny devices such as sensor or actuator nodes are suffering from
memory limitations, the broker node has a volatile memory. Thereby, the published data in
dissemination phase is directly deleted from the broker node database list after delivering it to all
subscribers. Multicast messaging is used to deliver one publication data message to more than one

subscriber if exist. Figure 3.1 illustrates the two phases’ processes for DefTDDS [23].

30

Legend:

- Broker P: Publisher >

S: Subscriber

7

aseyd
AJanoasiq

—%
|
]
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
\
|
|
|
|
|
|
|
|
|
|
|
|
:
|
f
4

g

Y

=)

D

g. Eﬂata*

[s}]

= T T——Data

5 ““‘““==~=LhData T
) T

? | —Data

i Data \
l T

Figure 3.1: Discovery phase and Data Dissemination phase for Default TinyDDS [23]

In contrast, in Broker-less TinyDDS, the broker nodes are eliminated and the two main phases’
functionality (Discovery phase and Data Dissemination phase) is distributed by the middleware
over the end-nodes (publishers/subscribers). The subscription messages are broadcasted from the
subscriber to all publishers throughout the network in Discovery phase, and then the publishers
decide whether to send to that subscriber or not based on the output of the matching process for
the topic and QoS policies. When there is a match, the publishers begin to send the data to that
subscriber in the Data Dissemination phase. Figure 3.2 shows the diagram of Discovery phase and
Data Dissemination phase for BLTDDS [23].

31

Legend:
P: Publisher
S: Subscriber

/

0 WSS

/

Matching Time N

&——aseyd uoljeuiwassig 9190%3555'% Manoas;q%?
|
|
1

Figure 3.2: Discovery phase and Data Dissemination phase for Broker-less TinyDDS [23]

3.1.2 BLTDDS Architecture

Figure 3.3 depicts the architecture of BLTDDS middleware according to TinyDDS and the OMG
DDS standard. It consists of four basic entities as follows: Application Programming Interfaces
(APIs), the publisher, the subscriber, and the pub/sub service. The interface interact with every
topic in the network using two main components: the Data Writer (DR), in the publisher side, and
the Data Reader (DR), in the subscriber side. BLTDDS middleware intermediates between the

application and the platform details, such as Sensor/Actuator complexity and TinyOS protocols.

32

Since the application only interacts with the system by the API and DDS interface, the application

development becomes easier.

Sensor Node
(Application \
/ BLTDDS Middleware A

APls DD5 Interface

Publisher Subscriber
:;: (oR)

Pub/Sub Service
1\\ Storage, Matching, DHT Overly Routing

TinyQ5

SensorfActuator devices

Figure 3.3:BLTDDS Architecture [23]

3.2 Simulation Tool

BLTDDS is implemented over TinyOS code. TinyOS is a framework which is designed for
WSAN:Ss, and enable to build specific OS for each application. It’s a component-based model of
programming using Network Embedded Systems C (nesC) language. On another hand, TinyOS
SIMulator (TOSSIM) is an event-driven simulator, it's one of the most accurate and well-known

tools to simulate the behavior of wireless sensor and actuator networks [30] [31].

33

TinyOS as a component-based operating system, it consists of many components that are wired
using interfaces. For example in [32] an energy model was developed to overcome some of the
TOSSIM energy calculation limitations, and it has two main components: Radio and MCU

components.

Figure 3.6 illustrates the TOSSIM architecture, where it includes five parts: TinyOS compiling,
simulation infrastructure, a discrete event queue, some TinyOS hardware support components,

radio and ADC mechanisms, and communication services for external interaction [31].

TOSSIM generates discrete-event simulations based on TinyOS’s structure and runs the same code
used by sensor hardware. It translates the interruptions of the hardware into discrete events, then

discrete event queue delivers them as interruptions to TinyOS applications [31].

Event Queue

Communication
Services

TOSSIM
Implementations

Figure 3.4: TOSSIM Architecture [31].

34

3.3 Performance Metrics

In this section, we discussed the performance evaluation Metrics, which are used to evaluate the
behavior of the system application scenarios.

3.3.1 Packet Delivery Ratio

The PDR is calculated by dividing the total number of successfully received messages at the
subscriber side by the total sent messages from the publisher side. The larger the packets sent to
the network, the larger the congestion, and buffer overflow occurs. If PDR is less than one, this
means there is packet dropping in the system.

3.3.2 End-to-End Delay (EED)

The EED is measured from the moment of sending/publishing data on a publisher side until it is
successfully received on a subscriber side. This delay includes transmission delay and queuing
delay. It is expected that when the traffic load goes high then the queuing delay also goes high, as
a result, the end-to-end delay will be increased. The delay is calculated for all successfully received
messages by all subscribers and then the average is taken.

3.3.3 Energy Consumption

The power source of the sensors to work is batteries, for this reason, the power consumption is the
critical issue in WSN, so, this type of networks require that the communication and all processes
inside the systems work within minimum power consumption in order to maximize the lifetime of
the node. The energy consumption is calculated by taking the summation of energy consumption
of all the network nodes in milli-Joule. The radio and MCU are the only components that will be

considered in our evaluation.

35

CHAPTER 4

DDS REAL-TIME QUALITY OF SERVICE (QOS) POLICIES

IMPLEMENTATION

The DDS specification offers real-time policies to guarantee quality-of-service (QoS) in the
network. Since BLTDDS is an improved lightweight version of DDS middleware for WSAN
platforms, BLTDDS in the current form lacks the implementation support for DDS real Time QoS

policies.

This chapter provides a detailed description for the implementation of DDS QoSs, (1) Time Based
Filter, and (2) Deadline QoSs over BLTDDS. The new version of BLTDDS is called real-time

BLTDDS (RT-BLTDDS).

4.1Time Based Filter QoS Implementation

In this section, a description of Time Based Filter (TBF) QoS is introduced. We describe in detail

its implementation over pub/sub architecture, main components, and algorithms.

Time Based Filter (TBF) is a Quality of service policy which is not implemented in BLTDDS yet.
According to OMG DDS, this QoS policy can be used by the Data Reader (DR) of each subscriber
to reduce the amount of receiving data samples. This QoS is very useful, especially when the

publisher Data Writer (DW) may send data samples at a rate faster than the Data Reader can receive
36

due to resource limitation in sensor nodes. For example, in some applications the Data Reader is
operating in human GUI application, in such cases the subscriber cannot receive data updates at a

rate faster than the user can read the values and perceive the changes [18].

Data Writer can send data to different Data Readers with different capabilities, this means that
Data Writer may send in a very fast rate, where the faster Data Reader can receive in the a proper
way. The other Data Readers with slower receiving rates can still receive the updates with their
receiving rates. For example, some data reader can read data every 0.1 seconds, and other ones

may read data every 1 second, then the Data Writer should send each 0.1 second.

Using Time Based Filter QoS, different Data Readers can set their own Time based filter with the
value that fit their requirements without affecting the sending rate of the Data Writer or affecting
the receiving rates of other Data Readers. TBF can be applied for different instances separately,
where the Data Reader does not want to receive more than one update sample from each instance

per time separation.

In addition, TBF QoS policy allows for resource usage optimization (CPU, memory, network
traffic and network capacity), where only the required amount of updated samples is delivered to
each Data Reader. As a result, it can protect heterogeneous network application, where some nodes
can generate data much faster than others can receive. Consequently, in the case of multiple Data
Readers, the one with lowest separation time determines the Data Writer’s publish rate. The
minimum separation time the TBF provide, is the key rule for the application to work smoothly

and to optimize the resources.

TBF looks like a switch, where Toff = minimum separation time and Ton = sending time. Figure

4.1 shows the switching concept of TBF. In case of two or more subscribers, each subscriber can

37

request a distinct TBF QoS. When there are more than one instance updating one sample, TBF
minimum separation time is applied per instance. In this case, the subscribing application will

receive one sample from each instance per minimum separation time.

Ten Toff

Figure 4.1: switching concept

Algorithm 1 shows how the TBF QoS is designed and implemented in the Data Writer component
of the publisher and the requested TBF minimum separation time from Data Reader. Figure 4.2
shows the flowchart that describes the data sending and receiving behavior between Data Writer

and Data Reader after TBF QoS is applied.

38

Algorithm 1: TBF QoS

Input variables : TBF, data_rate, Sim_time

Start Boot: Data Reader request for TBF QoS during subscription
phase.

Set TBF QoS in Data Writer.
initiate App Timer
While (App_Timer<= Sim_time) do:
IF(is TBF set == true) Then:
initiate Timer;
While (Timer>0) do:

IF (Timer% TBF==0) Then:
SendData(data_rate);

Reset Timer;
Timer++;

Else:
SendData (data_rate);

App_Timer++;

39

input:
TBF,
data_rate
Sim_time

L 4
Boot and set TBF QoS
initiate App_Timer

App_Timer<=Sim_time

initiate Timer

A 4

Timer ++

v

Timer% TBF==0 Send Data (data_rate)

Send Data (data_rate)
reset timer

L 2

App_Timer ++ <

Figure 4.2: TBF QoS implementation flowchart.

40

4.2 Deadline QoS Implementation

In this section, a description of Deadline QoS is introduced. We describe in details its

implementation over pub/sub architecture, main components, and algorithms.

According to DDS standard specifications, if this QoS policy concerns the publisher side, it is the
connection contract that the application should meet to establish the connection. On the other hand,
if this QoS policy concerns the subscriber side, it represents the minimum allowed time the

publisher is expected to send the data values within [18].

Since that this QoS policy values determine if the connection will happen or not, the compatibility

match on both sides should be checked upon this relation:
Offered deadline (DW) <= requested deadline (DR) (1)

Where: DW: Data Writer, DR: Data Reader

If this relation is not satisfied, the communication will not occur. Assuming that the publisher and
subscriber have compatible settings, the fulfillment is monitored by proper component (listener)

to inform the application for any violations [18].

However, in some important cases that we should be aware of, when Deadline, publishing rate,
and the Time Based Filter minimum separation time are aligned, where missed deadlines accidents
are expected to happen. Then TBF minimum separation time values should be close to the
publishing rate, to avoid filtering more updated samples than the application require, then to send

the critical data within this time.

41

In contrast, to avoid deadline missing, the TBF minimum separation time values shouldn't be too
close to the requested Deadline. Otherwise, Deadline missing expected to happen. These
scenarios demonstrate the consistent phenomena between the values of TBF minimum separation
time and requested/offered Deadline QoS's policies. This phenomenon can be expressed with the

following relation:

DR Deadlln€>: DR TBF minimum Separa[ion + DWDeadlll’le (2)

Where: TBF: Time Based Filter, DW: Data Writer, DR: Data Reader

The default value for Deadline QoS policy is infinity; however, if it is set to a specific value which
is not infinity, it directly defines the maximum Inter-Arrival Time between data samples on the
subscriber side. For example, this offered Deadline QoS is very important for cases of real-time
monitoring applications, i.e. rocket tracking. Where the publishers should offer less deadline, at
which the data should be available within to be sent to the subscriber or base station. Also requested

Deadline should be set to a value that no critical data may lose.

Suppose that we have one subscriber and one publisher updates the topic instance, e.g. temperature.
Assume that the publishing rate is one sample per second and the Deadline QoS is set to be one
second, which means the Data Writer of the publisher must publish one sample of the instance per
one second. Then the Data Reader of the subscriber will receive one updated samples per one
second. If the Data Reader Deadline QoS set to be 4 seconds with neglecting the delay of
transmission, then we would have 2 cases where the Data Reader TBF QoS is set to be 5 seconds

in the first case, and 3 seconds in the second case.

In the first case, the DR TBF is equal to 5, if we are applying the relation number (2) then

summation of TBF and DW Deadline is equal 6 (1+5) which is not less than or equal to 4. In this
42

case, the consistency does not happen and the connection between the publisher and the subscriber

will not be established.

In the second case, the TBF is equal to 4, then after applying the relation the result is 4 (1+3) which
is equal to DR Deadline. In this case, the connection will happen and the data will be sent after

TBF minimum separation time.

New sample for New sample for instance will
instance is dropped be accepted
Time - - >
Minimum
Separation
- -
Deadline

Figure 4.3 QoS’s policies in Data Reader side

Algorithm 2 shows how the Deadline QoS is designed and implemented in the Data Writer
component in the publisher side. For TBF QoS, algorithm 3 shows how the Deadline and TBF
QoSs are designed and implemented together. Figure 4.4 and Figure 4.5 show the flowchart that
describes the data behavior after Deadline QoS is applied. However, in Figure 4.5 the consistency

issue between TBF and Deadline QoS policies are considered.

43

Algorithm 2:Deadline QoS

Input variables : deadline, Req deadline, data_rate, Sim_time

Start Boot: Data Reader request for deadline QoS during

subscription phase.
Set Req deadline QoS in Data Writer.
Set deadline (i)QoS in Data Writer for each publisher.
While (App_Timer <= Sim_time) do:
For (i=1, i <=Publishers, i++)do:
IF (deadline (i)<= Req deadline) Then:
SendData (data_rate);

App_Timer++;

44

Algorithm 3: Deadline and TBF QoS’s implementation

Input variables : deadline, Req deadline, TBF, data_rate, Sim_time

Start Boot: Data Reader request for TBF and Deadline QoS during subscription
phase.

Set 7BF QoS in Data Writer.

Set Req deadline QoS in Data Writer.

Set deadline (i) QoS in Data Writer for each publisher.
initiate App Timer

While (App_Timer <= Sim_time) do:

IF(is TBF set == true) Then:
For (i=1, i <= Publishers, i++)do:
IF (deadline (i)+ TBF<= Req deadline) Then:
initiate Timer;
While (Timer>0) do:
IF (Timer% TBF==0) Then:
SendData (data_rate);
Reset Timer;
Timer++;
Else:
For (i=1, i <= Publishers, i++)do:
IF (deadline (i) <= Req_deadline) Then:
SendData (data_rate);

App_Timer++;

45

start

h A

input:
data_rate
Sim_time
deadline
Req deadline

.

Boot
set Deadline QoS
initiate App_Timer

App_Timer<=Sim_time

ic<=Publishers

deadline (i)<=
Req_deadline

App_Timer++

Send Data (data_rate)

Figure 4.4: Deadline QoS implementation flowchart.

46

i<=Publishers

deadline (i)+ TBF <=
Req_deadline

initiate Timer

Timer%TBF==0

data_rate
Sim_time
deadline
Req_deadline

Boot
set TBF Qo$
Deadline QoS
initiate App_Timer

Send Data (data_rate)

Reset Timer

App_Timer<=Sim_time,

isTBF set == true

i<=Publishers

deadline (i)<=
Req_deadline

Send Data (data_rate)

App_Timer++

47

Figure 4.5: Deadline and TBF QoS’s implementation flowchart.

CHAPTER 5§

PERFORMANCE EVALUATION

In order to have an accurate comparison between our work and the previous work, we generated
base line results (the default BLTDDS before adding the QoSs) that is used to evaluate our

proposed work (BLDDS after adding QoSs).

In this chapter, we evaluate our work performance, and discuss the simulation setup, and the results

and analysis of our proposed work.

5.1 Simulation Setup and parameters

According to previous work, the grid topology for WSANs was used extensively to simulate the
behavior and the distribution for sensor and actuator nodes in practice. In this work, we use the
same scenarios of a grid topologies with different distributions for the publishers. However, we
use just one base station (subscriber) since it’s the usual and dominant situation for most of all

WSANSs applications.

5.1.1 Application Scenario

In this case, we considered one of the experimental scenarios done in this work, which is a grid
topology of 49 nodes distributed uniformly in an area of 100 x100 m?. In this network, we set one

node to be the subscriber (the Base Station), then the number of publishers is changed from 1, 2,

48

4, 8, 16, 32, 40, and 48 (full load) to evaluate the performance of the network and test the

scalability.

42 |43 |44 | 45 | 46 | 47 | 48 42 |43 |44 | 45 | 46 | 47 | 48
3536|3738 (39|40 |41 35136 (3738|3940 |41
28 129 |30 |31 32|33 |34 28 1291|3031 32|33 |34
2122|2324 |25 |26 |27 211222324 |25 |26 |27
14 | 15|16 |17 | 18 | 19 | 20 14 | 15|16 |17 | 18 | 19 | 20
8 9 10 | 11 | 12 | 13 7 8 9 10 | 11 | 12 | 13
O |1 |2 (3 |4 |5 |6 O |1 |2 (3 |4 |5 |6
A : 1 subscriber, 1 publisher B : 1subscriber, 2 publishers
42 | 43 |44 | 45 | 46 | 47 | 48 42 |43 |44 | 45 | 46 | 47 | 48
3536|3738 39|40 |41 35136 |37 |38 |39 |40 |41
2829|3031 32|33 |34 28 |29 130|31(32|33]|34
21|22 | 23|24 |25 |26 | 27 21 122 123 |24 | 25|26 | 27
14 |15 |16 |17 | 18 | 19 | 20 14 115 (16|17 |18 | 19 | 20
7 8 9 10 | 11 | 12 | 13 7 8 9 10 |11 |12 | 13
0] 1 2 |3 4 5 b 0 1 2 3 4 5 6
C : 1subscriber, 4 publishers D : 1 subscriber, 8 publishers
42 [43 [44|45 46|47 |48 42 143 | 44 |45 | 46 | 47 | 48
35 |36 |37 |38 [39 4041 3513637383940 41
28 2913031323334 28 (29 (30 |31 (32|33 |34
21 12212312425 |26 | 27 21 |22 | 23|24 |25 | 26 | 27
14115 |16 117 | 18 | 19 | 20 14 115 |16 | 17 |18 | 19 | 20
7 8 9 10011112113 7 8 9 10 | 11 | 12 | 13
0 1 2 3 4 5 6 0 1 2 3 4 5 6
E : 1subscriber, 16 publishers F : 1subscriber, 32 publishers

Figure 5.1: publisher nodes distribution over the area represented by blue color cells, and the
Base-station subscriber is represented by green color cell. The cells with the white color
represent the relay nodes used for packets forwarding purpose.

49

We use one topic to find out the effect of increasing the publisher nodes on the network
performance. Figure 5.1 shows the different distribution forms of the subscriber and the publishers
in the network. For example, in the first scenario, one node at the top right corner with id 48 is the
sender/publisher, and the remaining nodes are relay nodes. Thereby, the maximum number of hops
is nearly 10 hops, sometimes due to network congestions/failures the routing protocol selects
longer paths. The remaining nodes are relay nodes used for packets forwarding purpose. Table 5.1
describes the common parameter used to simulate this scenario before and after implementing the

QoSs.

Table5.1: simulation setup for the tested application scenarios.

Parameter Value
Topology Squared grid
Area 100 X 100 Meter?
Number of Nodes 49

Simulation time

500 seconds

Radio model Chipcon CC2420
Mote platform micaZ
Data rates 1, 2, and 4 packets /s
Number of publishers 1,2, 4, 8, 16, 32, 40, and 48
Sample size I packet
Packet size 20 bytes
Maximum hops 10
Runs per results’ data point 10

The application that is used in this scenario acts as a collector for some reading values from the
surrounding environment such as temperature, pressure, or humidity. This application is used in
four scenarios. The first scenario uses the default BLTDDS without adding any QoSs. In the second
scenario, we added only the Time Based Filter QoS Policy to BLTDDS, whereas in the third
scenario we added only the Deadline QoS policy to BLTDDS. Bothe QoS policies were added into
BLTDDS in the fourth scenario. The results from the first scenario will be used as Base line, and
all other scenarios’ results will be compared with it. Figure 5.2 shows the flow chart for the

application behavior.

51

BOOT

Timer 1= 200ms
Timer 2= IPI

Timer 1 = 200ms

Timer 1 ++

Reading samples
and collecting data

Timer 2 ++

Timer 2 = |PI

sending data to
Base Station

Figure 5.2: The basic application algorithm

52

5.2 Results and analysis

5.2.1 Base Line

The performance evaluation of BLTDDS is conducted using the three metrics, which are Packet
Delivery Ratio (PDR), Latency, Processing and Radio Energy Consumption. During this
evaluation the number of publishers is changed (i.e. 1, 2, 4, 8, 16, 32, 40 and 48 publishers (full

load)) and the data rate varies (i.e. 1P/s, 2P/s, and 4P/s).

Packet Delivery Ratio (PDR) Percentage

Figure 5.3 shows the effect of the network load on the PDR when changing the Data Rate. We
notice that the PDR is decreasing as the number of publishers is increasing. That is because in case
of one publisher there were no other publishers that may use the same path; in the other case, Figure
5.1(b), two publishers are close to each other, and may publish in different or in the same time.
Since they are close to each other, they may use the same path for packet forwarding toward the
subscriber and this may increase the packet dropping in the network which in turn decreases the
PDR. If the publishers start publishing in different times this will increase the PDR due to less

packet collisions and dropping in the network.

On the other hand, in case of four publishers, where they are away from each other and the
probability to use different paths is high so that the number of dropped packets will decrease and
PDR is increased. In case of 8, and 16 publishers, the network becomes denser and the dropping
increases which results in decreasing the PDR. In case of 32 publishers, the PDR increases slightly
since the number of received packets increases, however it decreases after that when the network
is fully loaded. In general, increasing the number of publishers will decrease the PDR percentage.

The results also show that increasing the data rate results in decreasing the PDR percentage; that
53

is because increasing the data rate will increase the network traffic, which increases the probability
for high packet dropping, also the difference between different data rate curves increases when the

number of publishers increases.

—&— Data Rate =1 P/s —@— Data Rate =2 P/s —#— Data Rate =4 P/s
70

60
50
40
30

20

PACKET DELIVERY RATIO %

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.3: PDR behavior in different data rate (1p/s, 2p/s, and 4p/s) while changing the number
of publishers.

54

Latency:

Figure 5.4 shows that the delay is almost the same for increasing the data rate and a slight difference
can be noticed in case of more than 16 publishers. As shown in the figure, the delay decreases
when the number of publishers increases, and this happens because in case of one and two
publishers the distance is maximum to the subscriber, which increases the number of hops needed

to forward the data and a lot of processing delay is added to the total delay.

However, increasing the number of publishers from 8 to 32 will decrease the delay. That is because
increasing the number of publishers will minimize the distance between the new publishers and
the subscriber (base station). In average, the distance from the publishers to the base station will
be decreased as we increase the number of publishers. In this case, the path is shorter and number
of hops are decreased which decreases the total delay for those close publishers to the subscriber.
In addition, it decreases the average delay as we see in the figure since more packets are received
from the publishers, which are close to the subscriber location in comparison to those that are

farther.

For more than 32 publishers, we see that the average latency is increasing because the network
load becomes full; the reason is that there is a lot of collisions and wireless interference that affects
the transmissions. Moreover, high number of packets will share the same path which add more

overhead to the nodes to forward them and more queuing and processing delay.

Figure 5.5 shows the changing of packets latencies for 16 publishers related to the time. From this
figure we conclude that the Mean = 25.77458 ms, Standard Deviation= 11.1938 ms, max= 62 ms,

and min = 3 ms. The statistical analysis shows that 99.04% of delivered packets arrived in less than

55

50 ms. 95.66% of delivered packets arrived in less than 45 ms. 89% of delivered packets arrived

in less than 40 ms, and 80% of delivered packets arrived in less than 35 ms.

—&—DataRate=1P/s —@—DataRate=2P/s =—#—DataRate=4P/s

B
w

S
o

w
]

w
o

N
(%]

LATENCY (ms)
= = N
(6] o w o

o

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.4: latency behavior with different data rates (1p/s, 2p/s, and 4p/s) and different number
of publishers.

56

70

60

o o
< ™

(sw) Adusieq

LEE9
Sv19
€969
1948
6959
LLES
S81S
€66V
108y
6097
LTVY
ra47
€EOV
T8¢
6v9¢
LSYE
§9¢e
€L0¢
188¢
689¢
VA9 74
S0€C
€TTC
Teet
6¢LT
LEST
SveET
€qTT
196

69L

LLS

S8¢

€61

Received packets

Figure 5.5: delay behavior for the received packets related to the time in case of 16 publishers.

57

Total Processing and Radio Energy Consumption:

Figure 5.6 shows the total energy consumed by all nodes in the network; this energy represents the
system CPU usage of all the network nodes. Since we use the same node platform, which is micaZ,
for all network nodes, this result shows a good scope to compare the results in case of increasing
the number of publishers. We noticed that the total processing energy consumed is in a scale of

micro joules.

When the number of publishers were increased the total consumed energy was increased, also
increasing the data rate increases the overall processing energy. Where the increasing is about
0.19% from 1 publisher to 48 publishers and the data rate is 1 p/s. Also, 0.21% increasing in total
processing energy when we change the number of publishers from 1 to 48 in data rate = 2 p/s.
Moreover, 0.22% increasing in energy usage by CPU of all nodes when we change the number of

publishers from 1 to 48 in data rate = 4 p/s.

In addition, the increasing in total nodes CPU energy consumption when we change the data rate

from 1 p/s to 2 p/s is about 0.0065 % in case of 1 publisher and 0.03 % in case of 48 publishers.

Figure 5.7 shows the total energy consumed in radio by all nodes in the network. From the results,
we see significant change in the energy consumption of radio transmission in both cases of
increasing the number of publishers or increasing the data rate. The scale of change is in mille-

joule.

When we increase the number of publishers from 1 to 48, the increasing in the total radio energy
consumption is 7645.014 mj and 12899.679 mj, in case of 1 p/s, 2 p/s, respectively. We conclude
that the most energy consumption is by radio transmission, and the energy consumed by CPU is

negligible in comparison.
58

4P/s

Data Rate

2P/s

Data Rate

1P/s

H Data Rate

ST €0 P
G007 €99 I

QA A e
EST'T99 I
v1°¢99 MMM

699799
8¢S'T99 MM

(M) NOILdINNSNOD ADYINT DNISSID0Yd
Tv1i0L

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.6: The Total Processing Energy consumption behavior in different data rates (1p/s, 2p/s,

and 4p/s), and with different number of publishers.

59

B Data Rate =4 P/s

2P/s

Data Rate

1P/s

H Data Rate

SV SVSOT

S€°¢8/9 MM

8998 [T T T
PTTI86 I
9€'99vS NI

6L'S006 s
6866V IR
¢T'699¢ MMM

S6'ELLS
T1S'00TE [EEEREER:
SS'E09T IO

6V'6T0V ErEEErs
TE'6E0C E==ER
88'6S0T MI

86'88/T EZ=
8G56C6 E=
876'60S [

650986 EZ
Trses B
98¥'v0E [

(MA) NOILdINNSNOD AD¥3INT 01dVY
V10l

48

40

32

16

NUMBER OF PUBLISHERS

Figure 5.7: The Total Radio Energy consumption behavior in different data rates (1p/s, 2p/s, and

4p/s), and with different number of publishers.

60

5.2.2 Time Based Filter QoS Policy results

In this section, we figure out the effects of adding the Time Based Filter QoS to the system and to
evaluate the performance afterwards. The results after simulating and testing is compared with the
previous results of the Base Line (default BLTDDS). We use the same metrics for comparison and

testing the behavior of the network as follows:

Packet Delivery Ratio (PDR) Percentage

From Figure 5.8 and 5.9, which show the network packet delivery ratio percentage when changing
the Time Based Filter (TBF) minimum separation time from 2, 3, to 4 and the results compared
with base line results in case of 1 p/s and 2 p/s data rates, and changing the number of publishers

from 1 to full load.

From the figure, we notice that the effect of TBF in case of 1, and 2 publishers are the same in
comparison with the base line, however it starts changing after 4 publishers. The results show that
the effect of Time Based Filter QoS is improving the Packet delivery ratio and it is clear in case of
more publishers that the PDR is increasing as much as the TBF minimum separation time values
are increased. That is because when we increase the time between successive sent packets to suite
the limited resources in the subscriber side, the publishers will not publish until TBF minimum
separation set by the subscriber is applied. When the value of minimum separation time is
increased, the available network bandwidth increases, because less packets will be delivered
compared to the case where the filter is not applied. Decreasing the published data will affect
directly the network behavior, where the performance of the network will be improved when less

data will be published. Since TBF QoS decreases the network load over the network nodes in

61

forwarding and delivering data, packet delivery ratio increases as a result. Also, we notice that in
case of 32 publishers, when TBF minimum separation time is 2 seconds and data arte is 1 p/s, the
system performance is improved by 8 %, and 15 % in case of 2 p/s data rate. When TBF is 3

seconds the system performance improved by 11.1 % in 1 p/s data rate, and 23% in 2 p/s data arte.

The improvement when the TBF minimum separation changes from 2 to 3 seconds is 3.1 % in case
of 1 p/s and 8 % in case of 2 p/s data rate. However, from 3 to 4 seconds is 2.89% in 1 p/s data rate
and 5.9 % in 2 p/s. The reason is that when TBF = 2 s applied, the decreasing in published data is
more than when TBF=3 s. Thus increasing TBF minimum separation time will not improve the
performance in the same rhythm but the improvement will be less. On the other hand, increasing

TBF will decrease the publish data which is not preferred.

—&—Base Line —@—TBF=25s TBF=3s ==3¢=TBF=45s

80

70

60

50

40

30

PACKET DELIVERY RATIO %

20
10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.8: PDR behavior in different TBF minimum separation (2 s, 3 s, and 4 s)while changing
the number of publishers in data rate of 1 p/s.

62

PACKET DELIVERY RATIO %

Figure 5.9:

=——4@—Base Line == TBF=2s ==te=—TBF=3s =3=TBF=4s
80

70
60
50
40
30
20
10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

PDR behavior in different TBF minimum separation (2 s, 3 s, and 4 s) while changing
the number of publishers in data rate of 2 p/s.

63

Latency:

Figures 5.10 and 5.11 show the latency result behavior after applying TBF QoS in different data
rates (1, 2 p/s). We notice that the latency is decreasing while increasing the number of publishers.
However, when the number of publishers is 32 and delay starts to increase since more publishers

will increase the effect of wireless interference and packet collisions.

TBF QoS implementation is improving the latency behavior as the results illustrate in Figures 5.10
and 5.11, where increasing TBF minimum separation time will decrease the average latency in the
network as we increase the number of publishers to 32 publishers. However, adding more
publishers will dense the network much more and the average latency will increase, since more

delay in queues and processing will be added to the network overall latency.

In case of 32 publishers, when TBF minimum separation time is 2 seconds, the latency
improvement is about 3.6% in case of 1 p/s and 3.9% in case of 2 p/s. When TBF = 3 s, the
improvement is about 5.6% in both data rate. When TBF=4 s the system latency is improved by
7%. This improvement is decreasing when increasing the TBF minimum separation time values.
The effect of TBF QoS over the system delay will decrease when the number of publishers is
increased more than 32. The system is scalable although the TBF QoS guarantee more system

performance in less dense network.

64

=—@—Base Line =ll=TBF=25s ==f=TBF=3s ==¢=TBF=45s

N w w Y
(%] o (5] o

LATENCY(ms)
N
)

15
10
5
0
1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.10: System latency behavior in different TBF minimum separation (2 s, 3 s, and 4 s)
while changing the number of publishers in data rate of 1 p/s.

65

—4&—Base Line =—@=TBF=2s ==A—TBF=3s ==¢=TBF=45

LATENCY (ms)
= = N N w w N N
o (6] o (6] o [0, o (9]

(6]

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.11: System latency behavior in different TBF minimum separation (2 s, 3 s, and 4 s)
while changing the number of publishers in data rate of 2 p/s.

66

Total Processing and Radio Energy Consumption:

Figure 5.12 and 5.13 show the results after applying TBF QoS over energy consumption in the
system and they compare it to the base line results for both energy type processing and radio in
case of 1 p/s data rate. In addition, Figures 5.14 and 5.15 show the effect of applying TBF QoS in

both types of energy when data rate is 2 p/s.

From Figures 5.12 and 5.14 we notice that the total processing energy consumed by all nodes in
the network are decreased in case of 2, 3 and 4 seconds of TBF minimum separation and this return
to the effect of decreasing the packet forwarding mechanism since the publishing from all
publishers is decreased. Added to that, the improvement in the total consumed processing energy
was significant when increasing the number of publishers. For example, when number of
publishers are 48, when TBF = 2 seconds the total processing energy consumed by all nodes
decreased by 0.11 % in 1 p/s and 0.1 % in 2 p/s. when TBF= 3 seconds the total processing energy

consumed by all nodes decreased by 0.12 % in 1 p/s and 0.115 % in 2 p/s.

In Figures 5.13 and 5.15 the results clarify that applying TBF QoS decreases the total radio energy
consumption significantly. The reason is that applying TBF QoS decreases the amount of traffic
in the network and this will lead to less transmission in wireless medium that affect directly the
radio energy for each node. The improvement is proportional to the number of publishers as we
see when number of publishers are 1 the total energy consumed by radio is decreased by 39 %
when TBF = 2 seconds and data rate =1 p/s. However when number of publishers are 48 the total
energy consumed by all nodes in radio is decreased by 46 % for the same data rate. For the same
TBF when data rate is 2 p/s, the total energy consumed by all node radio is decreased by 43 % for

1 publishers and 41.3 % for 48 publishers.

67

=4s

2s HETBF=3s HETBF

ETBF

HBase Line

9¢S'T199
9¢S'T199
LTS'T99 E

8¢S'T99

9¢S'T199
9¢S'T199
9¢S'T99
8¢S'T99

(A1) NOILdINNSNOD ADY¥3INT ONISSID0Yd
V101

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.12: Total consumed processing energy for different TBF minimum separation (2 s, 3 s,

and 4 s) while changing the number of publishers in data rate of 1 p/s

68

=4 s

=2s @TBF=3s ETBF

B TBF

B Base Line

SSSVYT AR
L9CT6T MEEEEWTE

T006L7 s
9€'997S IIIIIIIIIIMMIMIMIMITITITITITIIIIT

6TC 19/, FZez

€66'L96 =

LE'COVT EEEEERERRS
CC'699¢ MIMMIMITITITITIT

9LSVIV EZE
Sv6°'56S EE
S86'TE8 EEmmm
SS'€09T IOt

6/8'0cE =
S0L°0TY E=
T60°9LS E==S
88'650T mMmMmMT

97E98T E
r8'L1C @
987'98¢ =
876'60S X

88LVET E
9LV VST E
169987 B
987'70¢ I

(MN) NOILdINNSNOD ADY¥3INT Olavy
1ol

48

40

32

2

1

NUMBER OF PUBLISHERS

Figure 5.13: Total consumed radio energy for different TBF minimum separation (2 s, 3 s, and 4

s) while changing the number of publishers in data rate of 1 p/s.

69

=4 s

=2s [@TBF=3s HBETBF

B TBF

B Base Line

(M) NOILdINNSNOD ADY3NT DNISSID0Yd
101

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.14: Total consumed processing energy for different TBF minimum separation (2 s, 3 s,

and 4 s) while changing the number of publishers in data rate of 2 p/s

70

=4s

=2s ETBF=3s HETBF

ETBF

B Base Line

6T'199¢
Y9997 EEEEEEE N

T0°06LC [Frrrirrsas;
LSC69¢ EEEE NN

JACKAV AN =i

ST'808T EEEE

CT699C [EERRRRRTS
68'€66V MMM

G86'1€8 FEEZ
vr'c60T ==
GS'E09T Eoummss
T1S°00T€ ML

T609LS =
LOT'8EL =
88'6S0T E=ES:
T€'6€0¢ MIMMMT

987'98¢ E
€6TCLE [
876'60S EX
899'6¢6 I

T6S°S8T E
€C6'6CC &
98V’ V0E B
Ter'SeES m

(M) NOILdINNSNOD ADYINT Olavy
V101

32 40 48

16

NUMBER OF PUBLISHERS

2

1

Figure 5.15: Total consumed radio energy for different TBF minimum separation (2 s, 3 s, and 4

s) while changing the number of publishers in data rate of 2 p/s.

71

5.2.3 Deadline QoS Policy results

In this section the Deadline QoS will be tested and the results will be shown, since Deadline QoS
has two type which is offered Deadline, dedicated to the publisher, and Requested Deadline
dedicated to the subscriber, the implementation require that both of these Deadline QoS’s should
work together for testing. We have mentioned before that offered deadline is a contract that
application should meet and it defines the minimum time the application should prepare the data
within for publishing. In our test scenario we have different publishers in each case, and this require
to define different offered deadlines for each publisher. Table 5.1 show how offered deadline are

assigned to each publisher in our test simulation.

Table 5.2: offered deadline assignment for each publishers in different number of publishers.

Number of
publishers Offered deadline (seconds)
1 1
2 1,2
4 1,2,3,4
8 1,2,3,4,1,2,3,4
16 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4
32 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4
40 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4
48 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4

72

For requested Deadline the value is changed from (1, 2, and 3 seconds) and the results we got for

different metrics are as follow:

Packet Delivery Ratio (PDR) Percentage.

From Figures 5.16 and 5.17 which represent the results of implementing Deadline QoS compared
to the base Line results in different data rate (1 and 2 p/s). Since the requested Deadline is changed,
this parameter defines weather the connections between the subscriber and different publishers can
be established or not. We notice that in both figures when request deadline increases the PDR is
decreased since that increasing request deadline will establish more connection and more data will
be published to deliver to the subscriber and this will increase packet dropping and collisions and

PDR will be decreased.

On the other hand decreasing the requested deadline will decrease the number of publishers that
connects to the subscriber and this will lead to increase the PDR percentage. However we notice
also increasing the number of publishers will increase the PDR in general to specific point where

in full load, the increment will stop and more packet will not be delivered to the subscriber.

Deadline QoS implementation test shows improvement in system performance. For example, when
number of publishers are 32 and request deadline = 1 s, the improvement is about 32.8% for 1 p/s
data rate, and 40% for 2 p/s data rate. When request deadline = 2 s, the improvement is about

20.7% for 1 p/s data rate, and 20 % for 2 p/s data rate.

Deadline QoS improved the system performance, however decreasing the value of request
Deadline will decrease amount of data delivered to the subscriber and less connection will be
established and increasing the offered deadline will also decrease the amount of data to be

published to that subscriber.
73

—&—Base Line ——Req Deadline=1s =#&—Req. Deadline=2s =>=Req Deadline=3s

90
80

70

60

50

40

30

PACKET DELIVERY RATIO %

20

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.16: PDR behavior for different request deadline (1 s, 2 s, and 3 s)while changing the
number of publishers in data rate of 1 p/s.

74

—4—Base Line —f@=—Req. Deadline=ls =#&—Req. Deadline=2s ==¢=Req. deadline=3s

90
80
70
60
—
50

40

30

PACKET DELIVERY RATIO %

20

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.17: PDR behavior for different request deadline (1 s, 2 s, and 3 s)while changing the
number of publishers in data rate of 2 p/s.

75

Latency:

Figures 5.18 and 5.19 illustrate the latency behavior for the system after implementing Deadline
QoS for different data rate (1, 2 p/s). As we notice the latency of system is improved when
implementing Deadline QoS whereas when the value of Deadline is low the improvement will
increase, since less publishers will connect to the subscriber there will be less data traffic in the
network. On other hand while increasing requested deadline, the effect was decreased and the

improvement on the system was also decreased.

The results are also showing that the delay decreases as we increase number of publishers, however
in case of more publishers than 32 the delay stops decreasing and starts increasing. When request
Deadline = 1 s the delay improvement was maximum compared to others. However the
improvement starts decreasing as we increase number of publishers and the network is fully loaded.
For example, when number of publishers are 32 and request Deadline =1 s, the improvement in
the latency is about 11.4 % for 1 p/s data rate, and 8.4 % for 2 p/s. when request deadline =2 s, the

improvement is 6.8 % for 1 p/s and 6 % for 2 p/s.

76

—4&— Base Line —@— Req. Deadline=1s == Req. Deadline=2's == Req. Deadline=3s

40

LATENCY (ms)
[N N w w
[9,] o (9] o (9]

=
o

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.18: latency behavior for different request deadline (1 s, 2 s, and 3 s)while changing the
number of publishers in data rate of 1 p/s.

77

—&—Base Line —l—Req. Deadline=1s =& Req.Deadline=2s ==¢=Req. deadline=3s

45
40

35

LATENCY (ms)
i) N w
¢ o & o

=
o

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.19: latency behavior for different request deadline (1 s, 2 s, and 3 s)while changing the
number of publishers in data rate of 2 p/s.

78

Total Processing and Radio Energy Consumption:

Figure 5.20 and 5.21 show the results after applying Deadline QoS over energy consumption in
the system and they compare it to the base line results for both energy type processing and radio
in case of 1 p/s data rate. Also Figures 5.22 and 5.23 show the effect of applying TBF QoS in both

types of energy when data rate is 2 p/s.

From Figures 5.20 and 5.22 we notice that the total processing energy consumed by all nodes in
the network are decreased in case of 1, 2 and 3 seconds of request deadline and this returns to the
effect of decreasing the packet forwarding mechanism since the publishing from all publishers is
decreased. Added to that, the improvement in the total consumed processing energy was significant
when increasing the number of publishers. For example, when number of publishers are 48, when
request deadline = 1 seconds the total processing energy consumed by all nodes decreased by 0.04
% in 1 p/s and 0.13 % in 2 p/s. when request deadline = 2 seconds the total processing energy

consumed by all nodes decreased by 0.02 % in 1 p/s and 0.06 % in 2 p/s.

In Figures 5.21 and 5.23 the results clarify that Deadline QoS decreases the total radio energy
consumption significantly. The reason is that, applying Deadline QoS decreases the amount of
traffic in the network and this will lead to less transmission in wireless medium that affect directly
the radio energy for each node. The improvement is maximum when the value of request deadline
is 1 second. For example, when number of publishers are 48 the total energy consumed by radio is
decreased by 70% , when request deadline = 1 seconds and data rate =1 p/s and 67.5 % for the
same request deadline and 2 p/s data rate. For the same number of publishers when request
deadline =2 seconds and data rate is 1 p/s, the total energy consumed by all node radio is decreased

by 48 % and 44.5 % when data rate is 2 p/s

79

=3s

Req. Deadline

=2s

[Req. Deadline

=1s

B Req. Deadline

HBase Line

8¢S'T99 E
8¢S'T99
€VS'199
8¢S'T99

8¢S'T99
8¢S'T99
8¢S'T99
8¢S'T99

(MN)NOILANNSNOD ADYINT ONISSIO0Ud
Tv1i0L1

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.20: Total consumed energy behavior in processing for different requested deadline (1 s,

2 s, and 3 s) while changing the number of publishers in data rate of 1 p/s.

80

=3s

Reg. Deadline

=2s

Fl Req. Deadline

=1ls

Req. Deadline

HBase Line

€0LET E

GEE999¢ AR T TR e R R wwws
G8979607 s

C0'0L8¢ FErEwwwwwww
18'679T EEEEEEEmmas
9€'997S MIMMMMIMIITITTITITITIIIITIITT

990100 P
ITVerT ==
(8C'0S8 ===

¢T'699¢ IIIIIIIIIITIIIIIIT

ECLYTT s
€E9'ET8 ==
770'S0S EE==
SS'€09T NI

L6'SE8 R
618'L8S EXE
8VEEVE =
88'6S0T MIIIIIX

876605 EE=

98V’ V0t EZ
98V’ v0E m
98V’ v0E ER
987'v0€ M

(M) NOILdINNSNOD ADYINT Olavy
101

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.21: Total consumed energy behavior in radio for different requested deadline (1 s, 2 s,

and 3 s) while changing the number of publishers in data rate of 1 p/s

81

=3s

Req. Deadline

=2s

=1s EReq. Deadline

Req. Deadline

B Base Line

TLS'T99
TLS'T99
TLST99
TLST99

(MA) NOILAINNSNOD ADYINI ONISSID0Yd
10l

32 40 48

16

NUMBER OF PUBLISHERS

Total consumed energy behavior in processing for different requested deadline (1 s,

Figure 5.22

2 s, and 3 s) while changing the number of publishers in data rate of 2 p/s.

82

=3s

=2s Req. Deadline

I Req. Deadline

=1s

E Req. Deadline

B Base Line

SOV, TR R R R AN RN NN
SCTC9tY

99'8€ES (NN N NN W W W wW
8'6ETE [(EENERRRRRRRRS
PTCI86 MMM

99°€99¢ EEEEEE
L6691 EEERER
68'€667 MMM

[SYAVACL YA -
€8'99G9T m=ma
80/'868 EEm
1S'00TE MMM

TCI8ST EEmems
€€'S0TT mma
6L7'619 X
T€'6€0¢ MMM

8G95'6C6 EZ=
855°6C6 =N

LSOV =
855'6¢6 mm

TIV'Ses B2
Ter'ses m
TIV'SeES B
Ter'ses m

(M) NOILAINNSNOD AD¥INT OIavY
Tv1i0oL

32 40 48

16

NUMBER OF PUBLISHERS

Figure 5.23: Total consumed energy behavior in radio for different requested deadline (1 s, 2 s,

and 3 s) while changing the number of publishers in data rate of 2 p/s.

83

5.2.4 TBF and Deadline QoS’s together results

In this section we will discuss the results when applying both of TBF and Deadline QoS over the
system. We fixed the offered deadline parameter as in table 5.1. The requested deadline value in
each figure simulation was fixed on a value of (3, 4, and 5 seconds) and for each figure we changed

TBF minimum separations from (2 to 3 seconds).

We evaluated the system behavior for PDR and latency metrics and the results are as follow:

Packet Delivery Ratio (PDR) percentage

Figures 5.24, 5.25 and 5.26 show the system PDR percentage changes for different requested
deadlines and TBF values in 1 p/s data rate. From the figures we notice that applying both QoS’s
was improving the system performance. However, it decreases the mount of published data. From
figure 5.24 we notice the effect of consistency between TBF and Deadline whereas communication
does not occur between publishers and the subscriber since TBF = 2 s and the requested deadline
= 3. In figures 5.25 and 5.26 the consistency issue is passed successfully for all values of TBF
QoS. Although the results in all figures show that the performance will increase in case of
decreasing the requested deadline and this improvements is more than the one related to changing
TBF QoS minimum separation time values. It also decreases the amount of published data to the

base station.

84

REQ. DEADLINE=3 S
—&—Base Line =#—TBF=2s ===TBF=3s

90
80
70
60
50
40

30

PACKET DELIVERY RATIO %

20

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.24: PDR behavior when changing TBF minimum separation time (2 s, and 3 s) while
changing the number of publishers, and the requested deadline = 3 s and 1 p/s data rate.

85

REQ. DEADLINE=4S
—&—Base Line —M—TBF=2s —#&—TBF=3s

90
80
70
60
50
40

30

PACKET DELIVERY RATIO %

20

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.25: PDR behavior when changing TBF minimum separation time (2 s, and 3 s) while
changing the number of publishers, and the requested deadline =4 s and 1 p/s data rate.

86

REQ. DEADLINE=5S
—&—Base Line ——TBF=2s =—#&—TBF=35s

90
80
70
60
50
40

30

PACKET DELIVERY RATIO %

20

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.26: PDR behavior when changing TBF minimum separation time (2 s, and 3 s)while
changing the number of publishers, and the requested deadline = 5 s and 1 p/s data rate.

87

Latency:

Figures 5.27, 5.28 and 5.29 show the system latency changes for different requested deadlines and
TBF values in 1 p/s data rate. From the figures we notice that applying both QoSs is improving the
system performance in case of 1 to 32 publishers however the latency increased for more than 32
publishers. In Figure 5.27 due to consistency issue between the QoSs, the communication doesn’t

occur, in case of TBF =2s. However, the communication occurred for all values of TBF in other

figures.

REQ. DEADLINE=3 S

45

40

=—4@—Base Line TBF=2s ===TBF=35s

35

30

25

20

LATENCY (ms)

15

10

2
4

Figure 5.27: latency behavior when changing TBF minimum separation time (2 s, and 3 s) while
changing the number of publishers, and the requested deadline = 3 s and 1 p/s data rate.

4 8 16 32 40
NUMBER OF PUBLISHERS

88

48

REQ. DEADLINE=4S
=—4@—Base Line =—@=—TBF=2s ==A=—TBF=3s

45

40

w
%]

w
o

LATENCY (ms)
= [N N
o vl o (6,]
4
»

5]

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.28: latency behavior when changing TBF minimum separation time (2 s, and 3 s) while
changing the number of publishers, and the requested deadline =4 s and 1 p/s data rate.

&9

REQ. DEADLINE=5S
=—@—Base Line =l=—TBF=2s ==#=—TBF=35s

45
40
35

30

25 H—

20

LATENCY (ms)

15

10

1 2 4 8 16 32 40 48
NUMBER OF PUBLISHERS

Figure 5.29: latency behavior when changing TBF minimum separation time (2 s, and 3 s) while
changing the number of publishers, and the requested deadline = 5 s and 1 p/s data rate.

90

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

TinyDDS middleware is emerging as state of the art middleware for WSANS since it is based on
the OMG DDS standard. The improved version of TinyDDS, which is Broker-less TinyDDS, has
been used is this work since it does not depend on a broker to deliver the data between publishers
and subscribers. DDS real-time QoSs such as Time Based Filter and Deadline are supported but
not implemented in BLTDDS. In this work, the implementation of Time Based Filter and Deadline
has been done and tested and evaluated. Time Based Filter QoS provides minimum separation time
between data samples to cope with the subscriber Data reader’s limited resources, and it decreases
the traffic in the network and increases the available bandwidth and delivery ratio. In addition, it
improves the packet latency and support the scalability in the network. In addition, the Deadline
QoS is implemented to assure data availability within specific time in the publisher side and
determines the maximum inter arrival time for data samples in the subscriber side. Thus it is an
agreement for communication to occur between publishers and the subscriber. Deadline QoS also
improves the system performance and latency. However, both QoSs decrease the amount of
publish data in the system, so that it should be assigned in a way which is more related to the
application needs to avoid the consistency issue. Packet Delivery Ratio, Latency and Energy

Consumption are the metrics used to test and evaluate the implementation.

91

6.2 Future work

The future work improvements will look into the following aspects:

1-

Since Broker-Less TinyDDS middleware is proposed as the perfect middleware for
WSAN:s it still lacks the implementation of other DDS QoSs, such as Ownership, transport
priority, and others which will guarantee more quality of service in the network and
improve its performance.

To go ahead and do an experimental test for these middleware over sensor nodes and to
compare the result to the simulation ones.

To implement these QoSs for default TinyDDS and to compare the results with simulation
results of BLTDDS.

To increase the subscriber nodes in the network and evaluate the performance before and
after implement these and new QoSs.

To do comparisons between BLTDDS with real time QoS and other middleware
technologies that are also designed for WSANSs to compare the costs and performance.

To use different network topologies in the simulation and other simulation tools to validate
the results and feedback and to also add different heterogeneous network and check the
middleware performance.

To study more network performance measures such as memory footprint and jitter.
TinyDDS is an open source middleware that needs more improvements in term of routing

protocols and packet forwarding mechanisms [20].

92

References

[1]

2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

L. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks: a
survey," Computer networks, vol. 38, no. 4, pp. 393-422, 2002.

Akyildiz, 1. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research
challenges. Ad Hoc Networks, 2(4), 351-367.

Gupta, K., Sikka, V., “Design Issues and Challenges in Wireless Sensor Networks”
International Journal of Computer Applications, vol. 112, no. 4, February 2015.

Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M., “The many faces of pub/sub”.
ACM Computing Surveys v. 35 (2), pp.114-131, 2003

Hamdan D., Aktouf O., Parissis 1., Hassan B.E., Hijazi A. and Moslem B., "A Self-Monitoring,
Adaptive and Resource Efficient Approach for Improving QoS in Wireless Sensor
Networks," in 2012 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC).

Karimi. H., Kargahi. M. and Yazdani. N., "On the Handling Node Failure: Energy-Efficient
Job Allocation Algorithm for Real-Time Sensor Networks, " in 4th International Conference
on Embedded and Multimedia Computing, 2009. EM-Com, 2009.

T. S. Prakash, K. Raja, K. Venugopal, S. Lyengar and L. Patnaik, "Fault Tolerant QoS
Adaptive Clustering for Wireless Sensor Networks," in Proceedings of Ninth International
Conference on Wireless Communication and Sensor Networks, India 2014

Hoffert 1., Schmidt D., and Gokhale A, “DQML.:
a modeling language for configuring distributed pub/sub quality of service policies,” 7he
10th International Symposium on Distributed Objects, Middleware, and Applications, DOA 08,
Monterrey, Mexico, November 2008.

Hoffert J., Mack D., and Schmidt D., “Integrating machine learning techniques to adapt
protocols for QoS-enabled distributed real-time and embedded pub/sub middleware,”
International Journal of Network Protocols and Algorithms (NPA): Special Issue on Data
Dissemination for Large-scale Complex Critical Infrastructures, vol. 2, no. 3, 2010.

Hoffert J.,, and Schmidt D., “Adapting distributed real-time and embedded pub/sub
middleware for cloud-computing environments,” Proc. ACM/IFIP/USENIX 1lth
International Middleware Conference, Bangalore, India, November 2010.

93

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Chen, M. Diaz, B. Rubio and J. M. Troya, "PS-QUASAR: A pub/sub QoS aware
middleware for Wireless Sensor and Actor Networks," Journal of Systems and Software, vol.
86, no. 6, pp. 1650-1662, June 2013.

F. Xia, "QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks,"
Sensors, vol. 8, no. 2, pp. 1099-1110, 2008.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer and D. Culler, "TinyOS: An Operating System for Sensor Networks,"
Ambient Intelligence, pp. 115-148, 2005.

M. Molla and S. Ahamed, "A survey of middleware for sensor network and challenges," in
International Conference on Parallel Processing Workshops, ICPP 2006 Workshops, IEEE.,
2006.

S. Hadim and N. Mohamed, "Middleware for Wireless Sensor Networks: A Survey," in First
International Conference on Communication System Software and Middleware, IEEE
Comsware, 2006.

Henricksen, K., & Robinson, R. (2006) A survey of middleware for sensor networks: State-
of-the-art and future directions. /n Proceedings of the international workshop on Middleware
for sensor networks.

M.-M. Wang, J.-N. Cao, J. Liand S. K. Dasi, "Middleware for Wireless Sensor Networks: A
Survey, " Journal of Computer Science and Technology, vol. 23, no. 3, pp. 305-326, 2008.

Object Management Group, "Data Distribution Services (DDS)," V1.4, OMG specifications
2015. [Online]. Available: http://www.omg.org/spec/DDS/ [Accessed October 2016].

RTI connext DDS software for real-time systems, 2013. [Online]. Available:
http://www.rti.com/products/dds/index.html [Accessed October 2016].

P. Boonma and J. Suzuki, "TinyDDS: an interoperable and configurable pub/sub
middleware for wireless sensor networks," Handbook of Research on Advanced Distributed
Event-based Systems, 20009.

Gonzilez, A.; Mata, W.; Villasefor, L.; Aquino, R.; Sim6 Ten, JE.; Chavez, M.; Crespo Lorente,
A., “ uDDS: A Middleware for Real-time Wireless Embedded Systems”. Journal of
Intelligent and Robotic Systems, vol. 64, no. 3-4, pp. 489-503, 2011

94

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Sheltami, T. R., Al-Roubaiey, A. A., Mahmoud, A. S., “A survey on developing pub/sub
middleware over wireless sensor/actuator” Springer Science plus Business Media New York,
Wireless Netw, 2015.

Sheltami, T. R., Al-Roubaiey, A. A., Mahmoud, A. S., Shakshuki, E., “A Pub/sub Middleware
Cost in Wireless Sensor Networks, A review and case study”, Proceeding of the IEEE 28th
Canadian Conference on Electrical and Computer Engineering, May 3-6, 2015.

Kumar, V., Gupta, A. K., “Measuring Parameters of Quality of Service in Wireless Sensor
Networks”, International Journal of Advanced Research in Computer Engineering &
Technology (IJARCET), vol. 3, issue 11, November 2014

Pérez, H., Gutiérrez, J., J., “Modeling the QoS parameters of DDS for event-driven real-time
applications”, The Journal of Systems and Software, vol. 104, pp. 126-140, 2015.

Kaur, S., Mir, R., N., “Quality of Service in WSN-A Review”, International Journal of
Computer Applications, vol. 113, no. 18, March 2015

Bamatraf, A., Bin Abd latiff, M., S., Coulibaly, Y., Khasawneh, A., M., “Review of quality of
service in routing protocols for wireless sensor networks”, Journal of Theoretical and Applied
Information Technology, vol. 74, no.3, April 2015.

Schlesselman, J., M., PardoCastellote, G., and Farabaugh, B., "OMG data-distribution service
(DDS): architectural update." Military Communications Conference MILCOM IEEE. vol. 2.
2004.

Essers, M.S., Vanekera, T.H.J., “Evaluating a prototype approach to validating a DDS-based
system architecture for automated manufacturing environments’8th International
Conference on Digital Enterprise Technology - DET2014.

TOSSIM, "TinyOS Documentation Wiki," 2003. [Online].
Available: http://docs.tinyos.net/index.php/TOSSIM. [Accessed October 2016].

P. Levis, N. Lee, M. Welsh and D. Culler, "TOSSIM: accurate and scalable simulation of
entire TinyOS applications," in Proceedings of the 1st international conference on
Embedded networked sensor systems, SenSys'03, 2003

95

http://docs.tinyos.net/index.php/TOSSIM

Name

Nationality

Date of Birth

Email

Address

Academic Background

Vitae

: Samer Khaled Yousef Rabah

: Palestine

: 9/18/1989

: samer.rabahl @hotmail.com

: Hebron-Palestine

: Complete M.Sc. in Computer Networks from Computer

Engineering department at King Fahd University of
Petroleum and Minerals(KFUPM) at Dec 2016 , earned
the B.S. degree in Communication and Electronics
Engineering from Palestine Polytechnic University
Hebron-Palestine 2012. Research interests include
wireless sensor networks, routing protocols, data
distribution system, middlewares, heterogeneous
networks, also multi input multi output antenna,
orthogonal frequency division multiplexing, digital

communications and signal processing.

96

	combind thesis+ cover
	DocScan

	DocScan2
	combind thesis+ cover
	thesis reviewed final reviewed - anas clean (2)
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	ملخص الرسالة
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background and Terminology
	1.1.1 Data Distribution Service
	1.1.2DDS Quality of Service Policies (QoS’s)

	1.2 Problem Statement& Contributions
	2.3 Thesis organization

	CHAPTER2
	LITERATURE REVIEW
	2.1 Pub/sub (pub/sub) Model
	2.1.1Pub/sub Components
	2.1.2 Pub/sub as A Middleware

	2.2 Pub/sub in WSANs
	2.2.1Pub/sub Solutions
	2.2.1: WSAN Pub/Sub Reference Model

	CHAPTER 3
	THE METHODOLOGY& PROPOSED APPROACH
	3.1 Broker-Less TinyDDS (BLTDDS)
	3.1.1Messaging & data delivery
	3.1.2 BLTDDS Architecture

	3.2 Simulation Tool
	3.3 Performance Metrics
	3.3.1 Packet Delivery Ratio
	3.3.2 End-to-End Delay (EED)
	3.3.3 Energy Consumption

	CHAPTER 4
	DDS REAL-TIME QUALITY OF SERVICE (QOS) POLICIES IMPLEMENTATION
	4.1Time Based Filter QoS Implementation
	4.2 Deadline QoS Implementation

	CHAPTER 5
	PERFORMANCE EVALUATION
	5.1 Simulation Setup and parameters
	5.1.1 Application Scenario

	5.2 Results and analysis
	5.2.1 Base Line
	5.2.2 Time Based Filter QoS Policy results
	5.2.3 Deadline QoS Policy results
	5.2.4 TBF and Deadline QoS’s together results

	CHAPTER 6
	CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future work

	References
	Vitae

