222 research outputs found

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Decision Making in an Intracellular Genetic Classifier

    Get PDF
    A model for an intracellular genetic classifier is introduced and studied to investigate how cellular decision making will function under the stochastic conditions. In particular, this provides a basis to investigate whether a binary classification under the effects of intrinsic noise is still possible. More precisely, a mathematical model of a genetic classifier is derived using a standard approach using Hill functions and its dynamical properties are explored. Classification mechanism is studied considering the effects of low copy number of mRNA and proteins in terms of the degree of cooperativity, inputs and transcription rates. It is shown that the intrinsic noise blurs the separation line between the classification classes, but the influence of stochasticity is qualitatively different for the case of monostable or bistable dynamics. Finally, potential applications are discussed

    Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review

    Get PDF
    Brain activity derives from intrinsic dynamics (due to neurophysiology and anatomical connectivity) in concert with stochastic effects that arise from sensory fluctuations, brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems composed of both dynamic and random fluctuations can be studied with stochastic dynamic models (SDMs). This article, Part II of a two-part series, reviews applications of SDMs to large-scale neural systems in health and disease. Stochastic models have already elucidated a number of pathophysiological phenomena, such as epilepsy and hypoxic ischemic encephalopathy, although their use in biological psychiatry remains rather nascent. Emerging research in this field includes phenomenological models of mood fluctuations in bipolar disorder and biophysical models of functional imaging data in psychotic and affective disorders. Together with deeper theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational psychiatry, unifying empirical observations with models of perception and behavior

    Network resilience

    Full text link
    Many systems on our planet are known to shift abruptly and irreversibly from one state to another when they are forced across a "tipping point," such as mass extinctions in ecological networks, cascading failures in infrastructure systems, and social convention changes in human and animal networks. Such a regime shift demonstrates a system's resilience that characterizes the ability of a system to adjust its activity to retain its basic functionality in the face of internal disturbances or external environmental changes. In the past 50 years, attention was almost exclusively given to low dimensional systems and calibration of their resilience functions and indicators of early warning signals without considerations for the interactions between the components. Only in recent years, taking advantages of the network theory and lavish real data sets, network scientists have directed their interest to the real-world complex networked multidimensional systems and their resilience function and early warning indicators. This report is devoted to a comprehensive review of resilience function and regime shift of complex systems in different domains, such as ecology, biology, social systems and infrastructure. We cover the related research about empirical observations, experimental studies, mathematical modeling, and theoretical analysis. We also discuss some ambiguous definitions, such as robustness, resilience, and stability.Comment: Review chapter

    when channels cooperate or capacitance varies

    Get PDF
    Die elektrische Signalverarbeitung in Nervenzellen basiert auf deren erregbarer Zellmembran. Üblicherweise wird angenommen, dass die in der Membran eingebetteten leitfĂ€higen IonenkanĂ€le nicht auf direkte Art gekoppelt sind und dass die KapazitĂ€t des von der Membran gebildeten Kondensators konstant ist. Allerdings scheinen diese Annahmen nicht fĂŒr alle Nervenzellen zu gelten. Im Gegenteil, verschiedene IonenkanĂ€le “kooperieren” und auch die Vorstellung von einer konstanten spezifischen MembrankapazitĂ€t wurde kĂŒrzlich in Frage gestellt. Die Auswirkungen dieser Abweichungen auf die elektrischen Eigenschaften von Nervenzellen ist das Thema der folgenden kumulativen Dissertationsschrift. Im ersten Projekt wird gezeigt, auf welche Weise stark kooperative spannungsabhĂ€ngige IonenkanĂ€le eine Form von zellulĂ€rem Kurzzeitspeicher fĂŒr elektrische AktivitĂ€t bilden könnten. Solche kooperativen KanĂ€le treten in der Membran hĂ€ufig in kleinen rĂ€umlich getrennte Clustern auf. Basierend auf einem mathematischen Modell wird nachgewiesen, dass solche Kanalcluster als eine bistabile LeitfĂ€higkeit agieren. Die dadurch entstehende große SpeicherkapazitĂ€t eines Ensembles dieser Kanalcluster könnte von Nervenzellen fĂŒr stufenloses persistentes Feuern genutzt werden -- ein Feuerverhalten von Nutzen fĂŒr das KurzzeichgedĂ€chtnis. Im zweiten Projekt wird ein neues Dynamic Clamp Protokoll entwickelt, der Capacitance Clamp, das erlaubt, Änderungen der MembrankapazitĂ€t in biologischen Nervenzellen zu emulieren. Eine solche experimentelle Möglichkeit, um systematisch die Rolle der KapazitĂ€t zu untersuchen, gab es bisher nicht. Nach einer Reihe von Tests in Simulationen und Experimenten wurde die Technik mit Körnerzellen des *Gyrus dentatus* genutzt, um den Einfluss von KapazitĂ€t auf deren Feuerverhalten zu studieren. Die Kombination beider Projekte zeigt die Relevanz dieser oft vernachlĂ€ssigten Facetten von neuronalen Membranen fĂŒr die Signalverarbeitung in Nervenzellen.Electrical signaling in neurons is shaped by their specialized excitable cell membranes. Commonly, it is assumed that the ion channels embedded in the membrane gate independently and that the electrical capacitance of neurons is constant. However, not all excitable membranes appear to adhere to these assumptions. On the contrary, ion channels are observed to gate cooperatively in several circumstances and also the notion of one fixed value for the specific membrane capacitance (per unit area) across neuronal membranes has been challenged recently. How these deviations from the original form of conductance-based neuron models affect their electrical properties has not been extensively explored and is the focus of this cumulative thesis. In the first project, strongly cooperative voltage-gated ion channels are proposed to provide a membrane potential-based mechanism for cellular short-term memory. Based on a mathematical model of cooperative gating, it is shown that coupled channels assembled into small clusters act as an ensemble of bistable conductances. The correspondingly large memory capacity of such an ensemble yields an alternative explanation for graded forms of cell-autonomous persistent firing – an observed firing mode implicated in working memory. In the second project, a novel dynamic clamp protocol -- the capacitance clamp -- is developed to artificially modify capacitance in biological neurons. Experimental means to systematically investigate capacitance, a basic parameter shared by all excitable cells, had previously been missing. The technique, thoroughly tested in simulations and experiments, is used to monitor how capacitance affects temporal integration and energetic costs of spiking in dentate gyrus granule cells. Combined, the projects identify computationally relevant consequences of these often neglected facets of neuronal membranes and extend the modeling and experimental techniques to further study them

    Efficient parametric analysis of the chemical master equation through model order reduction

    Get PDF
    Background: Stochastic biochemical reaction networks are commonly modelled by the chemical master equation, and can be simulated as first order linear differential equations through a finite state projection. Due to the very high state space dimension of these equations, numerical simulations are computationally expensive. This is a particular problem for analysis tasks requiring repeated simulations for different parameter values. Such tasks are computationally expensive to the point of infeasibility with the chemical master equation. Results: In this article, we apply parametric model order reduction techniques in order to construct accurate low-dimensional parametric models of the chemical master equation. These surrogate models can be used in various parametric analysis task such as identifiability analysis, parameter estimation, or sensitivity analysis. As biological examples, we consider two models for gene regulation networks, a bistable switch and a network displaying stochastic oscillations. Conclusions: The results show that the parametric model reduction yields efficient models of stochastic biochemical reaction networks, and that these models can be useful for systems biology applications involving parametric analysis problems such as parameter exploration, optimization, estimation or sensitivity analysis.Comment: 23 pages, 8 figures, 2 table

    Multicellular Models Bridging Intracellular Signaling and Gene Transcription to Population Dynamics

    Get PDF
    Cell signaling and gene transcription occur at faster time scales compared to cellular death, division, and evolution. Bridging these multiscale events in a model is computationally challenging. We introduce a framework for the systematic development of multiscale cell population models. Using message passing interface (MPI) parallelism, the framework creates a population model from a single-cell biochemical network model. It launches parallel simulations on a single-cell model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and cell-to-environment communications in a server-client fashion. In the framework, model-specific higher level rules link the intracellular molecular events to cellular functions, such as death, division, or phenotype change. Cell death is implemented by terminating a parallel process, while cell division is carried out by creating a new process (daughter cell) from an existing one (mother cell). We first demonstrate these capabilities by creating two simple example models. In one model, we consider a relatively simple scenario where cells can evolve independently. In the other model, we consider interdependency among the cells, where cellular communication determines their collective behavior and evolution under a temporally evolving growth condition. We then demonstrate the framework\u27s capability by simulating a full-scale model of bacterial quorum sensing, where the dynamics of a population of bacterial cells is dictated by the intercellular communications in a time-evolving growth environment
    • 

    corecore