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Abstract

Electrical signaling in neurons is shaped by their specialized excitable cell
membranes. Commonly, it is assumed that the ion channels embedded in the
membrane gate independently and that the electrical capacitance of neurons
is constant. However, not all excitable membranes appear to adhere to these
assumptions. On the contrary, ion channels are observed to gate cooperatively
in several circumstances and also the notion of one fixed value for the specific
membrane capacitance (per unit area) across neuronal membranes has been
challenged recently. How these deviations from the original form of conductance-
based neuron models affect the electrical properties of nerve cells has not been
extensively explored and is the focus of this cumulative thesis.
In the first project, strongly cooperative voltage-gated ion channels are

proposed to provide a membrane potential-based mechanism for cellular short-
term memory. Based on a mathematical model of cooperative gating, it is
shown that coupled channels assembled into small clusters act as an ensemble of
bistable conductances. The correspondingly large memory capacity of such an
ensemble yields an alternative explanation for graded forms of cell-autonomous
persistent firing – a firing mode observed in several brain regions that could serve
to store transient information in the activity levels of single cells. Accordingly,
this mnemonic firing mode could be evoked in biological neurons by “injection”
of cooperative channels via the dynamic clamp. Cooperative gating might
hence present a form of cellular positive feedback that complements other
memory-serving feedback mechanisms on the network level.
In the second project, a novel dynamic clamp protocol – the capacitance

clamp – is developed to artificially modify capacitance in biological neurons.
Experimental means to systematically investigate capacitance, a basic parame-
ter shared by all excitable cells, had previously been missing. The technique,
thoroughly tested in simulations and experiments, is shown to alter the mem-
brane time constant and the cell impedance as expected for a capacitance
change. By monitoring how capacitance thereby affects temporal integration
and energetic costs of spiking in dentate gyrus granule cells, it is demonstrated
how the capacitance clamp will serve as a new tool to characterize a neuron’s
dynamical repertoire and to understand the adaptive function of exceptional
capacitance values.
Summarizing, this thesis predicts a new role for cooperative gating as an

efficient neuronal memory mechanism and provides a precise and robust method
to study capacitance variations in real neurons. Combined, the projects identify



computationally relevant consequences of these often neglected facets of neuronal
membranes and extend the modeling and experimental techniques to further
study them.
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Zusammenfassung

Die elektrische Signalverarbeitung in Nervenzellen basiert auf deren erregba-
rer Zellmembran. Üblicherweise wird angenommen, dass die in der Membran
eingebetteten leitfähigen Ionenkanäle nicht auf direkte Art gekoppelt sind und
dass die Kapazität des von der Membran gebildeten Kondensators konstant ist.
Allerdings scheinen diese Annahmen nicht für alle Nervenzellen zu gelten. Im
Gegenteil, verschiedene Ionenkanäle “kooperieren” (im Sinne einer gekoppelten
Steuerung) und auch die Vorstellung von der spezifischen Membrankapazität
als eine universale biologische Konstante wurde kürzlich in Frage gestellt. Wie
sich diese Abweichungen, die in der klassischen Version von Neuronenmodellen
nicht abgebildet werden, auf die elektrischen Eigenschaften von Nervenzellen
auswirken, ist die Ausgangsfrage der folgenden kumulativen Dissertationsschrift.
Im ersten Projekt wird gezeigt, auf welche Weise stark kooperative span-

nungsabhängige Ionenkanäle eine Form von zellulärem Kurzzeitspeicher für
elektrische Aktivität bilden könnten. Solche kooperativen Kanäle treten in der
Membran häufig in kleinen räumlich getrennte Clustern auf. Basierend auf
einem mathematischen Modell wird nachgewiesen, dass solche Kanalcluster
als eine bistabile Leitfähigkeit agieren. Die dadurch entstehende große Spei-
cherkapazität eines Ensembles dieser Kanalcluster könnte von Nervenzellen für
stufenloses persistentes Feuern (GPA von der englischen Bezeichnung “graded
persistent activity”) genutzt werden – ein Feuerverhalten, beobachtbar in ver-
schiedenen Hirnregionen, das dazu dienen könnte, Information kurzfristig in
dem Aktivitätsniveau einzelner Neuronen abzuspeichern. Entsprechend dieser
Hypothese konnte, GPA, dieser mnemonische Feuermodus, in modellierten und
biologischen Nervenzellen durch das Hinzufügen von kooperativen Kanälen
aktiviert werden, wobei für die experimentelle Demonstration die Kanäle über
die “Dynamic Clamp” Technik emuliert wurden. Kooperative Interaktionen zwi-
schen Kanälen könnten demnach einen positiven Rückkopplungsmechanismus
darstellen, der weitere Rückkopplungsschleifen für das Kurzzeitgedächtnis auf
der Netzwerkebene unterstützt.
Im zweiten Projekt wird ein neues Dynamic Clamp Protokoll entwickelt,

der Capacitance Clamp, das erlaubt, Änderungen der Membrankapazität in
biologischen Nervenzellen zu emulieren. Eine solche experimentelle Möglichkeit,
um systematisch die Rolle der Kapazität zu untersuchen, gab es bisher nicht.
Eine Reihe von Tests in Simulationen und Experimenten bestätigt, dass die
durch den Capacitance Clamp emulierten Kapazitätsänderungen das elektrische



Verhalten von Nervenzellen wie erwartet ändern, zum Beispiel deren Mem-
branzeitkonstante oder deren Impedanz. Die Technik wurde anschließend in
Experimenten mit Körnerzellen des Gyrus dentatus genutzt, um den Einfluss
von Kapazität auf die zeitliche Summierung von Signalen und die energetischen
Kosten von Spikes zu messen. Diese ersten Demonstrationen zeigen, wie der Ca-
pacitance Clamp in der Zukunft dazu beitragen kann, die elektrische Dynamik
von Nervenzellen eingehender zu charakterisieren und die adaptive Funktion
von Kapazitätsanpassungen zu verstehen.

Die zwei Hauptresultate dieser Doktorarbeit sind damit eine Hypothese
über die Funktion von kooperativen Ionenkanälen als zellbasierter effizienter
Gedächtnis-mechanismus und eine präzise Methode, um Kapazitätsänderungen
erstmals im Experiment zu untersuchen. Die Kombination beider Projekte zeigt
die Relevanz dieser oft vernachlässigten Facetten von neuronalen Membranen
für die Signalverarbeitung in Nervenzellen und erweitert die Modell-basierten
und experimentellen Techniken zu deren Untersuchung.
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1 Introduction

Human life starts with a single cell. At birth, after a dramatic expansion in
numbers and types, the human body consists of a staggering 30 trillion cells
(Sender, Fuchs, and Milo 2016), with on the order of 100 billion neurons among
them (Herculano-Houzel 2009). These specialized nerve cells are the main
signaling units in the brain, the organ which endows the newborn with the
ability to act, perceive, learn, think and feel.

A distinguishing property of neurons in human and other animal brains is
their ability to process fast electrical signals via excitable membranes and to
share these signals in networks with other neurons via plastic synapses. Among
neurons, however, electrical properties are again highly diverse and can be
linked to different signaling capabilities – a link often studied in mathematical
neuron models. In this realm, the cumulative thesis presented here explores
phenomena of neuronal membranes that require revising common assumptions
of neural modeling: cooperative ion channels and altered cell capacitance.

A priori, it is unclear which physiological properties of neurons, sometimes
dismissively deemed “biological details”, are crucial to understand brain dy-
namics and function. Neurons differ in many aspects, but major factors are the
specific combination of ion channels they express and the typical morphology
they are shaped in. Systematically mapping channels and the cell membrane
to equivalent electrical circuits, conductance-based neuron models can capture
these differences among neuron types and characterize the associated repertoire
of electrical dynamics. Models of this type reproduce a wide variety of exper-
imentally observed firing patterns and can be used to explore the processing
capabilities of neurons. A conductance-based model of a cortical pyramidal cell,
for example, shows that accurately capturing the input-output mapping of this
major neuron type by a net of drastically simplified “neuron units” requires
a “deep” multi-layered architecture (Gidon et al. 2020; Beniaguev, Segev, and
London 2021). Biological complexity of neurons hence appears as a compact
mean to increase their functional repertoire.

Despite the versatility of conductance-based neuron models, their standard
formulation still relies on simplifying assumptions about channel and membrane
biophysics that are rarely questioned. Motivated by experimentally observed
exceptions of these assumptions, this cumulative thesis explores their conse-

1



quences for electrical dynamics and their potential role in neuronal function in
two cases.

Publication COOPMEM is based on the observation that certain ion channels
cooperate (Pfeiffer et al. 2020). Direct physical feedback between them affects
how they control the flow of ions across the membrane, a form of gating excluded
in the standard formulation of channel dynamics by the independent gating
assumption. The main contribution of this work consists in a modeling-based
demonstration that small clusters of cooperative ion channels can mediate
neuronal firing suited to temporarily store past inputs. Cell-autonomous short-
term memory of this form has been observed in neurons from different brain
regions but is challenging to explain by independent channel gating alone. The
hypothesis of cooperative gating as a memory mechanism put forward here
demonstrates the potential for cooperativity to build local channel networks
with new dynamical and computational roles.

Publication CAPCLAMP shifts the focus from ion channels to the membrane
capacitance, often treated as a biological constant and rarely considered as a
determinant of neuronal dynamics (Pfeiffer et al. 2022). The central result of
this work is the capacitance clamp – a closed-loop intracellular recording mode
inspired by the dynamic clamp technique to emulate capacitance changes in
biological neurons. Built on firm theoretical grounds, the technique is tested
in simulations and demonstrated in experiments with rodent dentate gyrus
granule cells. In proof-of-principle applications, the capacitance clamp is used
to experimentally study how neuronal signaling and energy consumption is
affected when varying capacitance – questions on exceptional capacitance values
that previously could only be addressed via models and simulations.
Together, these two research articles propose how ion channel cooperativity

and alteration of cell capacitance, still perceived as exceptions to the biological
rule, can serve the versatile and efficient signaling of neurons and other excitable
cells. To prepare the explorations of these deviations, the following background
chapter first introduces standard conductance-based neuron models and the
dynamic clamp technique, the two main tools used in this thesis. It then reviews
evidence for neuronal membranes where channels cooperate and capacitance
varies and summarizes previous work on their dynamical and functional roles. In
a synthesis of these ideas, the subsequent chapter on research aims identifies and
motivates the concrete questions addressed in the presented publications. The
final discussion chapter critically examines the biological plausibility of cellular
cooperativity-based memory and its implications on the network level, assesses
future applications and limitations of the capacitance clamp technique, and
presents directions to further investigate these aspects of neuronal specialization.
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2 Background

2.1 Neuronal dynamics and computation

Brains flexibly control the complex behavior of animals. The major question of
neuroscience is how the networks of connected neurons in a brain achieve this
computationally demanding control. An additional challenge is to understand
how brains perform these functions in an energy-efficient manner. In a bottom-
up approach, the computations performed by a single neuron form a natural
starting point to approach this question.

Neurons compute by transforming the electrical signals they receive from
other cells to their own activity pattern. The main steps of this mapping,
synaptic transmission, dendritic integration and non-linear spike generation,
can be mathematically characterized in neuron models (Koch 1999; Brunel,
Hakim, and Richardson 2014). Still, it is not fully understood, which depth of
physiological details is required in a model to capture the essential dynamical
and computational repertoire of a biological neuron. The following background
sections prepare the ground for the exploration of two rarely questioned modeling
paradigms on neuronal physiology: independence of ion channel gating and
constancy of the membrane capacitance.

2.1.1 Firing patterns: dynamical repertoire of neurons

The electrical signal of a neuron is its membrane potential, the voltage difference
between in- and outside of the cell. Dynamics of the membrane potential are
extremely diverse among neurons; a zoo of electrophysiological phenotypes
revealed by an ever-growing body of studies on single neuron dynamics. The
Allen Cell Brain Atlas, for example, a large-scale recording effort, provides
open access to the electrical activity of thousands of human and mouse neurons
obtained in standardized stimulation protocols as illustrated in Figure 2.1 A
and B (Gouwens et al. 2019). A pattern shared across neurons is the action
potential, a brief millisecond-long rise of the membrane potential, which is
the signal communicated to other cells. Crucial for signaling is what makes
a neuron fire – its specific mapping of input into a temporal firing pattern of
action potentials.
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A B

Figure 2.1: Firing patterns of neurons: A, B Illustration of membrane potential traces (top)
and current stimulation (bottom) in recordings of a mouse (A) and a human (B) cell from the
openly available brain cell database by the Allen Institute (available at celltypes.brain-map.org
with IDs A: 321708130 and B: 567763632)1. The insights show an enlarged view of the
first action potential and a frequency-current (fI) curve for different stimulation strengths.
C Exemplary illustration of graded persistent activity obtained from principal cells in rat
entorhinal cortex layer V. Different from a typical neuron, these cells continue to fire (top)
after a transient current pulse (middle). Moreover, the frequency of this persistent firing is
graded and can be further increased by additional pulses (bottom), modified from Egorov et al.
2002 with permission.

Neuronal firing patterns are investigated with respect to their biophysical
origin (Hodgkin and Huxley 1952; Koch 1999), the mathematical principles
governing their dynamics, and their computational role (Izhikevich 2006; Brunel,
Hakim, and Richardson 2014).

A well-understood example in this regard is the experimental classification of
excitability into class 1 and class 2 firing (Hodgkin 1948). In response to current
stimulation, class 1 neurons begin to fire at arbitrarily low spiking frequencies

1While there are species-specific properties of neurons (Eyal et al. 2016; Hodge et al. 2019),
the distinct firing patterns shown here are rather a signature of different neuron types
present across species.
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and then continuously increase their firing for larger current amplitudes. In
contrast, class 2 neurons start to fire at a non-zero frequency which remains
relatively constant when currents are increased further. These two excitability
classes have been reproduced in biophysically grounded neuron models and have
been traced back to a difference in the corresponding dynamical (bifurcation)
types underlying the transition from silent rest to active spiking (Izhikevich
2006): class 1 excitability to the saddle-node-on-invariant cycle (SNIC) bifur-
cation and class 2 to the subcritical Hopf bifurcation (Izhikevich 2006; Hesse,
Schleimer, and Schreiber 2017).
Following from these differences in neural dynamics are differences in pro-

cessing. Class 1 SNIC-type neurons act as leaky integrators, summing input
until a threshold for firing is reached, whereas class 2 Hopf-type neurons act as
resonators, preferably responding to input with a specific frequency. Recently,
the computational implications of a third dynamical type of action potential
generation have received increased attention, the homoclinic orbit (HOM) bifur-
cation (Hesse, Schleimer, and Schreiber 2017; Hesse et al. 2022). Experimentally,
neurons of the HOM-type, however, remain more difficult to identify, because
they exhibit mixed characteristics of both “classical” excitability classes: their
fI curves are discontinuous class 2-like when increasing the input from rest
to spiking but become continuous class 1-like in the opposite direction when
decreasing currents from spiking to rest. Multiple other classes of firing patterns
and their dynamical underpinnings have been characterized in similar ways,
for example bursting (Izhikevich 2004). While this dynamical viewpoint is one
the factors motivating the development of the capacitance clamp technique in
Publication CAPCLAMP, the main focus in the following lies on the underlying
biophysics of neurons.

Surprisingly, the biophysical underpinning of neuronal firing patterns is often
still difficult to identify or even remains elusive. One challenge is degeneracy.
In the large set of ion channels governing the electrical activity of a neuron,
many channel types exhibit similar overlapping functions (Goaillard and Marder
2021). As a result there are many combinations of channels that produce
a specific firing pattern (Prinz, Bucher, and Marder 2004). The actual set
of channels, however, can be decisive to understand how a neuron responds
to perturbations like a change in temperature, potentially involving a switch
of its firing type (Ratliff et al. 2021). In contrast, some firing patterns are
difficult to explain at all. One intriguing example is graded persistent activity
(GPA) observed in principal cells from the entorhinal cortex and perirhinal
cortex (Egorov et al. 2002). These neurons continue to fire for multiple seconds
after a sufficiently strong stimulation and the frequency of this persistent firing
increases in a quasi-continuous manner after each stimulation (see Fig. 2.1
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C). Moreover, transient strong suppression of firing decreases the frequency
of persistent firing and if applied repeatedly returns the neuron to its original
silent rest state. Functionwise, such neurons are hypothesized to form electrical
analogue memories of previous inputs. The required multi-stability or continuous
attractor, however, are difficult to attain within the standard formulation of
neuron models (Fransén et al. 2006).

2.1.2 Conductance-based neuron models

Conductance-based neuron models capture the dynamics of the membrane
potential by mapping an excitable cell to an equivalent electrical circuit (Koch
1999). Such an equivalent circuit model provides a set of equations that describe
the temporal (and optionally spatial) evolution of the membrane potential, the
state of the ion channels and the corresponding ionic currents. Its canonical form
as proposed by Hodgkin and Huxley provided the first mechanistic explanation of
the action potential (Hodgkin and Huxley 1952). Once termed the “closest that
neurophysiologists have to Newton’s laws of motion” (Gutkin and Ermentrout
2006), the Hodgkin-Huxley formalism represents the theoretical framework to
understand the electrical dynamics of neurons and synapses. The following
introduction to this framework focuses on its underlying assumptions about
ion channels and the cellular membrane. From this re-examination, the section
motivates the variations of the original Hodgkin-Huxley model explored in this
thesis, namely the inclusion of cooperative interactions between channels and
an altered membrane capacitance .

The assumptions linking neuronal physiology and the Hodgkin-Huxley model
are best illustrated in the simple case of a point neuron, an idealized description
of a small spherical cell. The basic circuit elements of the equivalent circuit are
a capacitor representing the insulating double layer of lipids constituting the
membrane itself in parallel to a set of passive and active conductors representing
the ion channels embedded within (see Fig. 2.2). As the ion channels conduct
ionic species with different reversal potentials, each conductor is combined in
series with a corresponding battery. Additionally, a current source is added to
mimic stimulation and recording of the neuron via an intracellular electrode.

According to current conservation, the sum of the currents from the membrane
capacitor, the diverse ion channel conductances and the recording electrode has
to be zero

IC +
∑︂

Ig,i + Iel = 0.

The voltage-dependency of these membrane currents gives rise to the dynamics
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of the membrane potential as will become apparent next.

Figure 2.2: Conductance-based neuron models – standard assumptions and deviations explored
in this thesis A Schematic of an excitable membrane with embedded ion channels. B Equivalent
circuit model of the membrane with a capacitor and various ionic conductances (leak, potassium
and sodium shown here). C Assumptions on conductances: Commonly assumed to gate
independently, channels can cooperate, meaning that the transition between gating states,
e.g. open (O) and (C), depends on the state of coupled neighbors. D Assumptions on
capacitance: Despite biologically observed exceptions, the membrane properties determining
capacitance are usually assumed to be constant or as in the case of the the membrane area
are thought to be compensated by constant channel densities.

Assumptions on membrane capacitance The capacitative current IC reflects
the changes in the amount of charge QC stored on the capacitor that represents
the cell membrane (Koch 1999). The capacitance value C = QC

V determines
how much charge QC has to be stored to build up a voltage difference V ,
the membrane potential, across the capacitor. Consequently, the capacitative
current reads

IC = Q̇C = (CV )̇ = CV̇ + ĊV. (2.1)

A common simplification is that the capacitance of a biological membrane
is constant on the short timescales of electrical dynamics, that is ĊV ≈ 0. In
most cases, this simplification appears appropriate, because the determinants
of cell capacitance,

C = ϵϵ0
A

d
, (2.2)

namely membrane surface area A, thickness d and electric permittivity ϵϵ0, a
material property of the membrane forming bilipid layer, are not expected to
be rapidly changing (Koch 1999).
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How does capacitance shape the electrical dynamics of neurons? With the
above simplification, the current-balance equation becomes

CV̇ = −
∑︂

Ig,i − Iel, (2.3)

that is capacitance sets the rate at which the voltage changes in response to
the currents flowing across the membrane. In other words, the capacitance corre-
sponds to the “inertia” of the membrane potential; the smaller the capacitance,
the faster a current can change it.

In this way, membrane capacitance enters the basic time scale of electrical
dynamics, the membrane time constant : in a passive cell, with only a static
leak conductance, the membrane potential dynamics read

CV̇ = −gL(V − EL) + Iel,

with gL as the leak conductance (or R = g−1
L as the corresponding resistance)

and EL as the leak reversal potential. In response to a step current with
amplitude I0, the charging of the membrane potential has the form

V (t) = EL +∆V
(︂
1− e−

t
τm

)︂
(2.4)

with τm = C
gL

= RC as the membrane time constant and ∆V = I0
gL

= RI0 as
the response amplitude. Hence, capacitance has a special role among the passive
parameters of a cell, because it exclusively alters the temporal properties, that
is only τm, but not ∆V . In the presence of active conductances, capacitance
thus crucially influences signaling of neurons like their spiking frequency or the
speed of action potential propagation down an axon (Koch 1999).

The influence of capacitance is however rarely considered, because it is
commonly assumed that the capacitance per membrane area is a constant
parameter. Of course, this constancy assumption does not hold for the total
cell capacitance, which changes with the membrane surface area, for example in
development. Neural dynamics, however, are thought to be preserved despite
these capacitance changes, because area is assumed to equally scale the number
of channels and therefore the channel currents, so that it can be divided out
in the current-balance equation 2.3. The remaining capacitance per area, the
specific membrane capacitance Cm = C

A , has been termed a “biological constant”
based on measurements in membranes from a range of different cell types
that consistently found a value of ≈ 0.9 µF

cm2 (Gentet, Stuart, and Clements
2000). As a result, the question how capacitance shapes the firing patterns
and computations of a neuron has not been extensively explored, especially in
experimental neuroscience, where tools to control membrane capacitance are

8



lacking.

The “constant capacitance” paradigm is one of the two neuronal modeling
revisited in this thesis. As discussed in more detail in the following sections,
capacitance appears to be more variable than previously thought. Moreover,
perturbing neural dynamics via an altered capacitance has proved to be valu-
able tool in theoretical neurophysiology to characterize the dynamical reper-
toire of a neuron. This background motivated the development of the hybrid
computational-experimental capacitance clamp technique presented in Publica-
tion CAPCLAMP, the first tool to emulate and investigate capacitance changes
in biological neurons (Pfeiffer et al. 2022).

Assumptions on ion channel conductances The richness of neuronal firing
is provided by the diverse ion channels, proteins forming gated pores in the
membrane controlling the flow of ions across it. In the equivalent circuit model,
they are described by ohmic conductances with dynamic conductance values
that represent their voltage-dependent gating,

Ig,i = gīm
pi
i hqii (V − Ei), (2.5)

ẋ =
x∞(V )− x

τx(V )
;x ∈ {mi, hi} . (2.6)

Originally, these dynamic gating variables were introduced in an ad-hoc
fashion by Hodgkin and Huxley to capture the behavior of sodium and potassium
currents measured in the giant squid axon – providing an elegant explanation
for the generation and propagation of the action potential (Hodgkin and Huxley
1952; Koch 1999). Activation and inactivation variables, originally called
particles, mi and hi reflect the state of the conductances. Their activation
function x∞(V ) varies between 0 and 1. For activation particles, the function
is monotonically increasing with voltage so that the corresponding conductance
increases when the voltage rises, and vice versa for inactivation particles. How
fast a conductance settles to a new value is described the gating time τx(V ).

With the advent of techniques that could resolve the currents through single
ion channels and reveal their molecular structure, this phenomenological neuron
model could be related to the observed biophysics of ion channels (Koch 1999;
Hille 2001). The gating variables were found to correspond to actual physical
gates and the dynamics of the gating variables could be derived from the
collective behavior of a large number of single channels. The assumptions
underlying this derivation, their physiological plausibility and the implications
for neural dynamics, when they are violated, are discussed next.
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Single ion channels, different from the continuously varying global conduc-
tance, are discrete, stochastic, and mostly binary conductances (Hille 2001).
The macromolecule forming the ion channel can take different conformations, of
which some correspond to an open pore letting ions pass the membrane, whereas
others obstruct current flow. Transitions between different conformations are
induced by thermal noise and these molecular dynamics are quasi-instantaneous
on the time scale of electrical events. Charged sensing structures within the
channel make these transitions voltage-dependent, so that probability to find a
channel in the conductive state depends on the membrane potential.

To connect the stochastic single channel dynamics, forming a continuous-time
Markov process, to the above deterministic form for the macroscopic currents,
three assumptions have to be made

1) Channels act independently that is the transitions between states in
one channel are not directly altered by the states of neighboring channels.
As a consequence, the dynamics of a channel ensemble can be understood
by “summing” the dynamics of the single channel.

2) The pore of a single channel is controlled by independent voltage-
sensitive gates that all have to be simultaneously in the appropriate
open state to let the channel conduct current.

The typical kinetic scheme of a channel includes p identical activating (m-
type) and q identical inactivating gates (h-type), where each gate forms a two
state system

C/I
αx(V )

βx(V )
O

with C/I and O denoting the closed/inactivated and the corresponding open
states and αx(V ) and βx(V ) as the voltage-dependent opening and respec-
tively closing rates. Voltage-activated gates tend to be closed at low voltages
(αm(Vlow) ≪ βm(Vlow)), but this closed state becomes unstable when the volt-
age increases and the gate spends more time in the open state (αm(Vhigh) ≫
βm(Vhigh)), whereas inactivating gates behave in the opposite manner. The
probability to find a gate in the open state thus follows

ṗx,O = −αx(V )px,O + βx(V )(1− px,O).

The open gate probabilities of a channel thus correspond to the activation
and inactivation variables with x∞(V ) = αx(V )

α(V )+β(V ) as the steady-state open

10



probability and τx(V ) = 1
α(V )+β(V ) as the time scale of the gate. As the gates

are independent, the final probability to find the channel in the open state is
given by the product mphq.

3) The number of channels is sufficiently large, so that channel noise
due to the stochastic gating can be neglected. In this case, the single
channel open probability is equal to the ratio of open channels to all
channels. The conductance of the channel ensemble becomes g = Noγ =
Nγmphq with ḡ = Nγ as the peak conductance and γ as the single channel
conductance.

From an experimental point of view, all three of these assumptions have to
be seen as simplifications, because a subset of ion channels are observed to gate
cooperatively against assumption 1 (Dixon et al. 2022), to exhibit more complex
kinetics than independent molecular gates against assumption 2 (Aldrich, Corey,
and Stevens 1983; Tytgat and Hess 1992) and to produce physiologically relevant
current fluctuations in small structures against assumption 3 (White, Rubinstein,
and Kay 2000; van Rossum, O’Brien, and Smith 2003). The question from a
modeling perspective is then whether these deviations are relevant for neural
dynamics.

This thesis explores the consequences of revising the assumption of channel
independence. As reviewed in the following, experimental evidence of coop-
erative interactions has been accumulating and by now cases of cooperativity
are known in all major classes of voltage-dependent ion channels (Dixon et al.
2022). Still, whether the direct feedback between channels has a functional role,
potentially one that is difficult to fulfill with independent channels, remains an
open question. The contribution of Publication COOPMEM presented here is to
propose a previously neglected role of the positive feedback provided by channel
cooperativity, namely memory. It demonstrates that the addition of small
clusters of cooperative channels to a classic Hodgkin-Huxley type neuron model
leads to a graded form of persistent neuronal firing. Thereby, cooperativity
appears as an alternative mechanism for GPA, the experimentally observed
firing pattern hypothesized to mediate cell-autonomous short-term memory
shown in Figure 2.1 C that has been challenging to explain via independent
channels alone.

The Hodgkin-Huxley formalism as the basis of exploring neural dynamics
The equivalent circuit description based on the above membrane model is the
basic framework to include more of the known biology of neurons. An important
structural extension is for example to include neuronal morphology by resistively
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linking multiple compartments each modeled like the above point neuron (Koch
1999), the basis to study computations in the dendrites of neurons. Current
dynamics can be extended in multifold ways, such as including the dependence
of channel conductances on intracellular calcium (Koch 1999; Schutter and
Smolen 1999), the activity-dependent changes of ion concentrations controlling
the reversal potentials (Contreras et al. 2021), or even genetic mechanisms
that regulate the expression of ion channels (O’Leary et al. 2014). These
extended Hodgkin-Huxley neuron models demonstrate the relevance of this
various biological processes for neuronal function and computation (Sidiropoulou,
Pissadaki, and Poirazi 2006). This thesis follows the route of a model-driven
exploration into the role of neuronal complexity, but in the “opposite” direction,
taking a closer look at the basic assumptions on membrane biology.

To summarize, conductance-based neuron models can be derived from the
electrical functions of ion channels and biological membranes. In the majority
of neuron models, channels are assumed to gate independently and the cell
capacitance is assumed to be a constant despite experimental evidence for
deviations from these assumptions. Adapting neuron models to incorporate
and study such deviations, this thesis contributes to the question how neural
dynamics change when channels cooperate or capacitance varies. Before a more
in-depth background on channel cooperativity and membrane capacitance, the
experimental technique complementing the theoretical approach used in this
thesis is introduced: the dynamic clamp technique, a hybrid of computational
modeling and intracellular recordings.

2.1.3 Dynamic clamp

In the quest to understand the electrical activity of a neuron, conductance-
based models and standard intracellular recordings play complementary roles.
Intracellular recordings reveal the electrical phenotype of a neuron with all
its biophysical intricacies, but experimental control over cellular components
like ion channels or synapses is challenging. In conductance-based neuron
models, in contrast, each cellular parameter can be controlled and its role can
be investigated in detail via simulations or mathematical analysis, but these
simulated cells are necessarily simplified and incomplete in comparison to their
biological counterpart.

For conductances, this gap between full physiology accessible in experiment
and full control accessible in modeling has been bridged by a recording mode
termed the dynamic clamp (Sharp et al. 1993; Robinson 1994; Prinz, Abbott, and
Marder 2004). The dynamic clamp exploits that current injection in closed-loop
with voltage recording can emulate the presence of a modeled conductance in a
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biological neuron. In this way, experimenters have full control over the individual
parameters of a conductance, like its resistance and its gating kinetics, and can
investigate the role of these properties in the complex environment of a real cell.
In the following section, the dynamic clamp technique is explained to prepare its
application in studying cooperative ion channels in Publication COOPMEM. In
addition, the idea to extend the underlying closed-loop approach to parameters
beyond conductances is introduced which motivated the development of the
capacitance clamp in Publication CAPCLAMP.

Intracellular recordings: current and voltage clamp

Intracellular recordings from neurons and other excitable cells have been crucial
to understand neurophysiology and develop conductance-based models. A
recording electrode is inserted into a cell and allows an experimenter to measure
the membrane potential and inject currents. Whereas early electrodes were
actual metal wires and recordings could only be obtained from large cellular
structures like the giant squid axon (≈ 0.5 mm), modern electrodes consist
of glass pipettes with very fine tips (≈ 1 µm) filled with ionic solutions and
recordings guided by microscopy can be made from small structures in the
micrometer range like the soma of insect neurons (Murthy and Turner 2013)
and dendrites or synaptic terminals in mammalian neurons (Davie et al. 2006).

The two standard recording modes for intracellular recordings are current-
clamp and voltage-clamp. In current-clamp, the basic recording form, the
experimenter defines the current stimulus to be injected and observes the
voltage response. A typical current-clamp experiment is the injection of step
currents with increasing amplitudes to observe firing of action potentials (see
Fig. 2.1). In voltage-clamp, developed as a complementary mode for the current-
clamp, the experimenter instead defines a temporal form for the voltage, which
is enforced by a closed loop that counteracts voltage deviations from this
predefined form by the current through the electrode. In an ideal voltage clamp,
the experimenter can thus measure the dynamics of the intrinsic membrane
currents, because they are the inverted version injected current. Again, a typical
voltage-clamp experiment consists in stepping the voltage from for example a
low to a high value, while pharmacologically blocking all but one ion channel
type, to trigger conductance changes and study the channel kinetics (a simulated
voltage clamp experiment with cooperative channels is shown in Figures 1 and
2 of Publication COOPMEM). Taken together, the standard recording modes
offer either a global view of the whole membrane dynamics or a detailed view
of individual channel kinetics, but cannot observe both at the same time.

To understand the link of the individual channel kinetics to the combined
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membrane potential dynamics, data from both current- and voltage-clamp
can be combined to infer ion channel kinetics, peak conductances and other
cellular parameters for an in-silico conductance-based model of the recorded
cell (type). In a simulated cell, the contribution of each channel current as well
as the resulting membrane potential dynamics can be visualized simultaneously,
bridging the gap between the two experimental recording modes. Additionally,
the behavior of the modeled cell can be studied under controlled synaptic input
– the physiologically relevant neuronal input – which cannot be experimentally
mimicked by current-clamp stimulation alone due to the associated conductance
changes. Finally, in the model, the role of all cellular properties can be charac-
terized in detail, including those that are difficult or impossible to modify and
control experimentally like for example the half activation voltage of a channel.
However, even when carefully fitted, every neuron model is incomplete with
respect to its biological counterpart – it might for example neglect important
channel types or lack information about their spatial distribution – limiting the
conclusions that can be drawn from modeling alone.

Emulation of modeled conductances in biological neurons

To further narrow this gap between modeled and biological neurons, a third
recording mode, the dynamic clamp, has been developed. The dynamic clamp
allows experimenters to emulate the presence of a virtual conductance, simulated
and under full control, in a recorded neuron, biological and preserving its full
dynamics (Sharp et al. 1993; Robinson 1994). Like the voltage clamp, the
dynamic clamp relies on a fast closed loop between voltage measurement and
current injection, but with the difference that the mapping of voltage to current
is calculated online in real-time by a computer provisioned with a model of
an ionic conductance, a setup schematically shown in Figure 6 of Publication
COOPMEM.

Each sampling interval, the computer receives the present membrane potential,
uses it in combination with the conductance model to calculate the current that
flows through it and then sends a corresponding command to update the current
through the recording electrode. If the sampling frequency is high enough to
track the membrane potential and the kinetics of the modeled channel, the
current through the electrode accurately mimics the channel current. As a
result, the neuron displays voltage dynamics as if it had expressed this simulated
conductance in its physical membrane. In the words of the first review about
this technique, “the dynamic clamp uses biological neurons as simulators” to
reveal the effects of a modeled conductance the experimenters are interested in
(Sharp et al. 1993).
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“Conductance injection” via the dynamic clamp allows experimenters to
perturb and study neurons in a more physiological way than possible via the
current clamp. This can be illustrated by the basic case of an altered leak
current, IL = −∆gL(V −EL), a current controlled by various neuromodulators.
Mimicking the altered leak current by a fixed additional current in current clamp
is severely limited, because it ignores its voltage dependency. In a dynamic
setting, where the membrane potential changes, it thus fails to reproduce other
relevant consequences of an altered leak, like for example faster or slower charging
due to the modified membrane time constant τm = C

gL
and possible changes in the

firing type of a neuron (Kirst et al. 2015; Hesse, Schleimer, and Schreiber 2017;
Hesse et al. 2022). The same argument holds for mimicking any conductance
by a predefined waveform, be it a time-dependent synaptic conductance or an
active ion channel type with voltage-dependent gates. In contrast, the dynamic
clamp captures the full physiological effects of a conductance by the continuous
update of the conductance state and the injected current via the recorded
voltages.

Applications of the dynamic clamp

Applications of the dynamic clamp can address a broad range of questions
from mechanisms of cell-intrinsic excitability to synaptic interactions between
neurons and the surrounding network, often in ways that are difficult or even
impossible to achieve with other experimental tools2.

In the realm of cell-intrinsic dynamics, the dynamic clamp can be seen as a
virtual and flexible form of a genetic knock-in experiment which adds an ion
channel of interest to a cell to observe its impact on the electrical dynamics
(Dorval, Christini, and White 2001). Such a virtual “knock-in” has been used
for example to add potassium conductances with long gating time constants to
neurons from the stomatogastric ganglion of crabs, which confirmed that they
can support cellular short-term memory as suggested by previous modeling
studies in simplified cell models (Turrigiano, Marder, and Abbott 1996).

In principle, the dynamic clamp can also “knock-out” an existing conductance
by reversing the sign of the injected current. In practice, this is difficult, because
any mismatch between the modeled and the actual channel kinetics leaves
behind a “negative” conductance that can destabilize the membrane potential.
Still, virtual “knock-out”s have been successfully used to study channels where
pharmacological tools to selectively block it were missing, e.g., persistent sodium

2For a comprehensive overview of applications of the dynamic clamp, see the edited collection
in Dynamic-Clamp (Bal and Destexhe 2009).
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currents and their role for action potential generation (Vervaeke et al. 2006; Bal
and Destexhe 2009).

The other class of conductances studied via the dynamic clamp are synaptic
conductances. In a basic setting, artificial synapses offer a more physiological
way to excite or inhibit a neuron than the widespread practice of current
pulse injection. But artificial synapses further allow experimenters to “control”
the network a neuron is embedded in. In small networks, artificial synapses
can connect previously unconnected neurons, replace blocked synapses in a
controlled fashion3(Morozova, Newstein, and Marder 2022) or link simulated
neurons to the biological ones (Prinz, Abbott, and Marder 2004). In larger
networks, the dynamic clamp can recreate in-vivo network activity resembling
the one in a brain of an alive awake animal in a neuron recorded in-vitro
from an extracted brain slice where many connections are severed and network
activity is reduced (Destexhe, Rudolph, and Paré 2003). The possibility to
mimic a physiological in-vivo like network state in the experimentally much
simpler setting of a brain slice recording is an important contribution of the
dynamic clamp, which demonstrates that neurons embedded in an active network
operate very differently from those in isolation (Chance, Abbott, and Reyes
2002; Prescott et al. 2008).

Limitations and requirements on hard- and software

Although a powerful experimental tool, the mimicry of a conductance modifica-
tion via the dynamic clamp is technically challenging and limited in comparison
to its full physiological implications. To decide whether the dynamic clamp
is suited for a research question, thus requires awareness of both hard- and
software requirements as well as the limitations inherent to the technique.

A basic demand for dynamic clamp is a well-timed and sufficiently fast closed-
loop between voltage measurement and current injection. The loop interval
should be considerably shorter than the fastest voltage changes in the recorded
cell as well as the shortest gating time constant of the modeled conductance.
Whether a loop interval is sufficient can first be evaluated in simulations
(Bettencourt et al. 2008) and then in the best case is experimentally verified
by increasing the sampling frequency and ensuring that measured properties
like the shape of a spike remain unchanged (Robinson 1994). In addition, the
computer or dedicated chip simulating the channel has to provide the updated
conductance and current in hard real-time (that is at the times defined by the
sampling and injection process). The main obstacle in a modern computer is not

3Both applications require simultaneous recordings from two or more neurons.
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the time to compute the updates, but rather the guaranteed time of executing
the update, which is why dedicated real-time operating systems should be used
(Patel et al. 2017).

The other prerequisite are accurate voltage measurements. From random
recording noise to systematic electrode artifacts, multiple sources can distort the
sampled voltage value from the actual membrane potential (Brette and Destexhe
2012). In the classic open loop setting of the current clamp, such measurement
errors “only” affect the recorded, but not the actual dynamics of the cell. In
the closed-loop setting of the dynamic clamp, however, where erroneous voltage
values are fed back to the cell, they can alter the dynamical course of the cell and
potentially destabilize it (Bal and Destexhe 2009). An important error source is
the recording electrode itself, which forms an electrical device with a distributed
capacitance and resistance (often non-linear), so that the electrode voltage
is a filtered version of the membrane potential. Amplifiers provide different
mechanisms to “compensate” an electrode and minimize these artifacts, but
the majority relies on the assumption that the electrode acts like a linear RC
circuit. A recent promising technique to further reduce electrode artifacts and
improve dynamic clamp experiments is active electrode compensation (AEC),
which estimates a model for the currently used electrode by a test protocol and
can then infer the actual membrane potential (Brette et al. 2008).

Putting aside technical requirements, even a perfectly operated dynamic
clamp is constraint in emulating biological conductances (Sharp et al. 1993).
Spatially, the modeled conductance is located at the recording site, typically
the soma of a neuron – a constraint known as space clamp inherent to all
clamping techniques. For site-specific channel injection, the space clamp can
be overcome by corresponding dendritic or axonal recordings, but for any
distributed conductance like synaptic input it implies that the dynamic clamp
can only approximate its effects. Another dimension of biological ion channels
challenging for the dynamic clamp is their selectivity for one or multiple ion
types. For calcium-selective channels, for example, dynamic clamp via an
electrode with the typical potassium-based recording solution cannot emulate
changes of the intracellular calcium concentration. Therefore secondary effects
of calcium channels like blocking other channels or altering gene expression are
not captured by the dynamic clamp (Prinz, Abbott, and Marder 2004).

Beyond conductances: dynamic clamp for other virtual cellular components

The wide range of dynamic clamp applications shows that its challenges can be
met and that the control over virtual conductances in biological neurons has
become an important tool to investigate the role of ion channels and synapses.
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Given the advantages of this hybrid computational-experimental approach,
one could ask whether the same technique can also be used to to study other de-
terminants of neural dynamics beyond conductances like membrane capacitance,
neuronal morphology, ion channel pumps or changes of the cellular environment,
e.g., dynamic ionic concentrations. Components affecting the electrical behavior
of a cell eventually express themselves via modified currents, so that it appears
reasonable to elucidate whether they can be emulated via the same dynamic
clamp principle of a closed-loop control of current injection used for artificial
conductances. In other words, can one establish a practical dynamic clamp
protocol to virtually lower the reversal potential of potassium or artificially
increase membrane capacitance?

Before further examining the membrane capacitance parameter and preparing
tackling this question in Publication CAPCLAMP, the next section focuses
on cooperative channels, an aspect neglected in most conductance models,
including those used in hybrid dynamic clamp simulations.

2.2 Cooperative ion channels

A central, but repeatedly questioned tenet of conductance-based neuron models
is the assumption that voltage-gated ion channels gate independently. Indepen-
dent gating implies that channels cannot directly alter the physical state of other
channels, but only interact indirectly via the current-induced changes of the
membrane potential. Independent gating is a theoretically convenient assump-
tion, because it simplifies the link of the microscopic single channel activity to
the macroscopic behavior of a large ensemble. However, it appears at odds with
the interactive nature of channel proteins which provide specialized structures
to sense a wide variety of physical modalities (pressure, light, neurochemicals,
etc.). Correspondingly, since the advent of methods to observe channels in
small ensembles, experimental evidence has accumulated for cooperative gating,
including for certain types of voltage-gated sodium, potassium and calcium
channels present in neurons and heart cells (Dixon et al. 2022).

Despite growing evidence for ion channel cooperativity, its impact on electrical
signaling remains poorly understood. Theoretical attempts to incorporate
channels that violate the independent gating assumption into neuron models and
to study their functional role are rare. In Publication COOPMEM of this thesis,
a neuron model with both independent action-potential generating channels and
clusters of cooperative channels is introduced to study whether channel coupling
can support bistable firing patterns and thereby cell-intrinsic memory. In the
following section, as a background to this investigation, experimental methods
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to detect cooperative gating are reviewed, as well as biophysical mechanisms
that could mediate channel coupling. Current hypotheses on the role of such a
direct inter-channel feedback are formulated and models of cooperative gating
are introduced to study this mechanism.

2.2.1 Experimental evidence of cooperative gating

Cooperativity between voltage-gated ion channels is still perceived as a rather
rare and inconsequential mode of gating. The by now extensive body of experi-
mental work on such interactions suggests that on the contrary cooperativity
might be widespread and critical to understand various aspects of electrical
excitability (Dixon et al. 2022). Cases of cooperativity have been reported for
the central families of voltage-gated sodium- (Iwasa et al. 1986; Clatot et al.
2017), potassium- (Kim et al. 2014) and calcium-selective channels (Navedo
et al. 2010; Moreno et al. 2016) that are expressed both in heart (Navedo et al.
2010; Clatot et al. 2017) and brain tissue (Moreno et al. 2016), including human
cells (Kim et al. 2014).

Moreover, cooperative gating is not constrained to voltage-gated ion channels.
It is also observed in various ligand-binding channels like acteylcholine-activated
receptors in muscle (Keleshian et al. 2000) and even in mechanosensitive potas-
sium channels of bacteria (Grage et al. 2011). The essential prerequisites for
cooperativity, namely close spatial arrangement of channels and physical in-
teractions, might hence be general properties of the larger class of membrane
pore-forming proteins.

Methods to detect cooperative gating

Experimental methods to detect ion channel cooperativity rely on measuring
channel currents and screening the current dynamics for deviations from the
predictions of independent gating. Channel currents are measured via voltage
clamp (see Section 2.1.3) and can either be monitored in a small membrane
patch with a few channels or in a whole cell with a large ensemble of channels
(typically > 1000). In a small membrane patch, the opening and closing of single
channels can be directly observed as step-like jumps in the current trace. This
pattern constitutes a stochastic process that can be compared to the dynamics
expected from a collection of independently-gating channels. For a whole cell,
the large number of stochastic channels results in a macroscopic current, whose
fluctuations can be analyzed to search for fingerprints of cooperativity.
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Small membrane patches: channel-state distribution, dwell-time analysis
and full state space models

Channel state distribution The simplest scenario to detect cooperativity
is a membrane patch with two channels - a case first analyzed in pairs of
toxin-modified sodium channels (Iwasa et al. 1986). If the two channels gate
independently and identically with one open and one closed conformation,
occurring with probability p and 1− p respectively, the time spent in a state
with zero, one, or two open channels is distributed binomially

P (0) = (1− p)2, P (1) = 2p(1− p), P (2) = p2.

Significant deviations from a binomial distribution thus signal either the
presence of coupled gating or differences among the channels. If differences
among channels can be excluded through further experiments, the deviations
also reveal the nature of the coupled gating. Positive cooperativity is indicated
by an increased prevalence of simultaneously open channels: after one channel
switches to the open configuration, the positive coupling increases the chance
of its neighbor opening as well and once both channels are open they mutually
stabilize each other. Whereas positively cooperating channels tend to be in the
same state, both closed or both open, negatively cooperating channels compete
by mutual inhibiting each other, indicated by a state distribution with a higher
peak for the state with one open channel.

Detection of cooperative interactions by the stationary channel state dis-
tribution alone is limited and has been extended in different ways. A minor
extension is to the case of inactivating channels. Such channels, like for example
the sodium channel NaV1.5, transiently open in response to an increase of
the membrane potential, but then inactivate to a second, more stable closed
configuration. In the stationary regime, inactivating channels are hence non-
conductive, which prevents to sample the state distribution. Instead, repeated
runs are used to determine the time-dependent channel state distribution
P(t) = (P0(t), P1(t), P2(t)), which can again be screened for non-binomial fea-
tures (Clatot et al. 2017; Hichri, Selimi, and Kucera 2020). It is important to
note that the presence of the inactivating state does not affect the derivation of
the binomial distribution, because each channel still has only two observable
states, open and shut (combining closed and inactivated).

Dwell-time analysis Dwell-time describes the time period during which an
ensemble of channels occupies a certain state. In the channel state distribution,
this time domain information is discarded such as the duration of transitions
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between states, e.g., how long it takes until a channel opens. Conditional
dwell-time analysis compares the timing of such transitions conditioned on the
number of already open channels to screen for signs of coupled gating (Keleshian
et al. 1994). When channels gate independently, the conditional dwell times in
a given channel state are identical, because the transition rates are independent
of the state of other channels. Deviations, in contrast, indicate that the channel
cooperate. In membrane patches with two ATP-sensitive potassium channels,
for example, the mean dwell time in the closed state was shown to be shorter
when the neighboring channel was closed than when it was open. In other words,
the opening of one channel stabilized the close configuration of its neighbor, a
case of negative cooperativity (Choi and Licht 2012).

State space models The statistical measures to detect cooperativity, re-
viewed so far, are model-independent. This makes them generally applicable,
but limits their insight into more specific questions about the coupling of chan-
nels like which gating transitions are affected. Such questions can be answered
via formulating channel models (for more details see the following section on
“Models of cooperative gating”): if the state space of a channel type is known,
i.e., its (potential multiple) closed and open conformations, this determines the
state space model for a collection of two or more channels. For independent
gating, the transition rates in the multi-channel model follow directly from
those in the single channel model. Consequently, deviations from this expected
transition rates in the experimentally observed channel traces can be used to
detect cooperativity. In addition, such an analysis can pinpoint which exact
transition rates are affected and by how much. Such an approach has, for exam-
ple, been used to demonstrate that cooperative interactions between nicotinic
receptors can increase both the binding affinity of a closed channel to the ligand,
but also its transition rate to the open conducting state (Keleshian et al. 2000).

In addition to providing more information, state space descriptions of cooper-
ative channels have the further advantage that they can be incorporated into
conductance-based neuron models. In this way, the role of their coupled gating
for the global voltage dynamics of a cell can be characterized (Naundorf, Wolf,
and Volgushev 2006; Zarubin, Zhuchkova, and Schreiber 2012).

Macroscopic fingerprints of cooperative channels “Fingerprints” of coopera-
tive gating can also be detected on the macroscopic level with currents recorded
in a whole-cell configuration containing thousands of channels. One of the
first indications for cooperative gating stems from the analysis of the current
fluctuations in a membrane patch with thousands of sodium channels (Neumcke
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and Stämpfli 1983). When N identical channels gate independently, the mean I
and variance σ2

I of the macroscopic current are sums of the mean single channel
current pi (where p is the open probability and i the unitary channel current)
and respectively its variance p(1 − p)i2. The variance and the mean of the
macroscopic current hence follow a parabolic relationship (Sigworth 1980)

σ2
I = I(i− I

N
).

For an ensemble of independent channels, measuring this mean-variance re-
lationship thus provides information about microscopic properties including
their number and their conductance. When channels cooperate, however, this
relationship is altered (Liu and Dilger 1993; Choi 2014). How exactly mean and
variance are linked in the case of coupled gating depends on the form of their
interaction. In general, positively cooperative channels increase the variance,
because they prefer similar states corresponding to an effective reduction of
the number of independent units. Vice-versa, when channels are negatively
cooperative, the variance is expected to be reduced.

An interesting case of macroscopic evidence for cooperative gating is negative
dominance. This phenomenon is observed with the sodium channel NaV1.5 and
thought to contribute to severe heart diseases (Keller et al. 2005). When the
wild-type (WT) version of this channel is expressed at equal levels with a genetic
variant known to exhibit reduced activity, the resulting currents are reduced
by about 75% with respect to a cell with only WT channels – an apparent
dominance of the less active variant. The additional observation that these
channels form dimers (pairs) in the membrane led to the hypothesis that the
negative dominance is mediated by cooperative interactions in heterodimers,
pairs containing both a WT and a variant channel (Clatot et al. 2017). Indeed,
microscopic state space models of such interacting pairs show that the altered
gating scheme of the variant channel can significantly reduce the time of its WT
neighbor spent in the open conductive state (Hichri, Selimi, and Kucera 2020).

Biophysical mechanisms of cooperative gating

Despite the growing evidence for cooperative gating from the statistical analysis
of channel currents, there is relatively little known about the underlying bio-
physical mechanisms mediating the interaction. One essential requirement for
any coupling mechanism is spatial clustering of channels, which is observed in
multiple channel types and has been proposed to rely on stochastic self-assembly
where channels transported to the membrane preferentially locate close to other
channels (Sato et al. 2019). Potential coupling mechanisms then fall into two
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categories: allosteric coupling mediated by mechanic links between channels
and local forms of indirect coupling mediated by an intermediate process.
Allosterically coupled channels might either form direct links or require

additional proteins as bridging units. For direct links, subunits of two different
channels have to be able to connect. For example, nicotinic acetylcholine
receptors have been observed to form dimers and even oligomers, pairs or larger
groups of channels whose δ subunits connect via disulfide or other non-identified
covalent bonds (Schindler, Spillecke, and Neumann 1984; Yeramian, Trautmann,
and Claverie 1986). In other cases, the channels require an additional bridging
protein, like calmodulin connecting intracellular termini of CaV1.3 channels
(Moreno et al. 2016) or 14-3-3 in sodium NaV1.5 channels (Hichri, Selimi, and
Kucera 2020). The tight structural association of two or multiple channels also
couples them functionally – the opening of one channel exerts forces onto its its
neighbor(s) that can prime or suppress conformational changes. Although a
detailed understanding of the relevant forces is still missing, the functional role
of the structural links has been confirmed by experimentally modifying them.
For example, CaV1.3 gate independently in the absence of the bridge protein
calmodulin, but replacing this bridge by an artificial link restores cooperativity
(Moreno et al. 2016).

In the case of indirect coupling, the conformational change of one channel
affects the neighbor despite the lack of a direct structural link, for example
through a secondary process triggered by the ionic currents. In this case,
channels in principle gate independently, but appear to cooperate because
their gating modifies each others immediate environment – a localized version
of the concerted gating directed by the membrane potential. Hypotheses in
this direction comprise a local modification of the membrane potential by
altered surface charges (electrically charged parts of a channel protein) after
a conformational switch (Keleshian et al. 2000), ephaptic coupling mediated
by the electric field that the ionic current through an open channel generates
(Hichri, Selimi, and Kucera 2020), or mechanical forces induced via stretching
the membrane (Ursell et al. 2007).
The nature of the coupling mechanism constraints how many channels can

interact and gate cooperatively. In the case of allosteric coupling, the number
of interaction sites restricts the number of partner channels. For one interaction
point, channels can only form dimers, whereas for two or more interaction
sites they could assemble into oligomers, small networks of channels forming
a macrochannel. Indirect coupling mechanisms, in contrast, might mediate
a broader interaction, a form of all-to-all coupling within a cluster. Indirect
coupling is likely heterogeneous, because interaction strength is expected to
decrease sharply with inter-channel distance. Both coupling mechanisms could
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also be at play at the same time, as proposed for the previously considered
example of CaV1.3 channels (Moreno et al. 2016). These channels appear in
spatial clusters of around ten channels, but the allosteric binding sites for the
bridge protein calmodulin are unique to each channel, restricting the resulting
positive cooperativity to dimers. To enable bridging, calmodulin, however,
has to be activated by binding of two calcium ions, implying a further form
of indirect coupling: open channels in the cluster increase the local calcium
concentration, which allows channels to dimerize and thereby activate faster.

2.2.2 Implications of cooperative gating for electrical activity

The functional implications of cooperatively-gating channels are only starting to
be understood. As cooperativity influences the basic properties of ion channels,
e.g., shifting activity to another range of membrane potentials, it is expected to
affect, at least quantitatively, the electrical signaling of neurons. An intriguing
question is whether there are consequences of cooperative gating that extend the
computational repertoire of a neuron beyond what is efficient or even possible
with independent channels.

Sensitivity

Cooperative gating constitutes a direct feedback loop between channel proteins,
a motif common to many cellular processes. Among these processes, one role of
positive feedback to increase sensitivity as illustrated by the classic example of
allosteric binding of oxygen to the four binding sites of the transporting protein
hemoglobin (Pauling 1935). The signal-response curve of oxygen concentra-
tion versus bound oxygen is steeper than expected for independent binding,
because one bound oxygen molecule facilitates the binding of further oxygen
molecules. Correspondingly, for positively cooperating voltage-gated channels,
the activation curve of voltage versus open probability is predicted to get steeper
and shifted to lower voltages (Liu and Dilger 1993; Zarubin, Zhuchkova, and
Schreiber 2012), which has been confirmed experimentally (Kim et al. 2014;
Moreno et al. 2016). Coupling of calcium channels, for example, is observed
to strengthen ionic currents present in the heart (Navedo et al. 2010) and
the brain (Moreno et al. 2016). Aberrant cooperativity in turn can lead to a
pathological sensitivity and excessive channel activity; a condition implicated
in heart arrhythmia (Sato et al. 2018) as well as epilepsy (Kim et al. 2014).

Increased sensitivity of cooperative channels to voltage changes might also
be beneficial for the signaling capabilities of neurons. When a cell approaches
its spiking threshold, modeling suggests that strongly coupled sodium channels
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open in a highly synchronous fashion. This synchronous opening could underlie
the fast onset of action potentials observed in cortical neurons (Gutkin and
Ermentrout 2006; Naundorf, Wolf, and Volgushev 2006; Öz, Huang, and Wolf
2015) and extend the range of high stimulus frequencies these cells can encode
in their spike trains (Huang, Volgushev, and Wolf 2012). This idea remains
controversial. A contrary proposal, in agreement with independent gating,
explains the observed fast spike onset of an AP recorded at the soma by
backpropagation from an axon initial segment equipped with uncoupled sodium
channels (McCormick, Shu, and Yu 2007). However, in contrast to cooperative
channels, this morphological effect cannot increase the encoding capabilities of
a neuron, because those rely on the actual spike generating mechanism (Öz,
Huang, and Wolf 2015) (but see (Brette 2013) for more complex morphological
effects). Concluding, the proposed role of sodium channel cooperativity in
spike generation, although awaiting further experimental tests, illustrates the
potential for channel interactions to alter neuronal information processing.

Memory/bistability

A central role of positive feedback, so far neglected for cooperative channels,
is memory. Persistent switches in gene expression (Burrill and Silver 2010)
and long-term modification of synaptic strengths (Crick 1984; Lisman 1985)
rely on positive feedback loops that make these molecular systems bi- or multi-
stable. Similarly, network models of short-term or working memory exploit
positive feedback via synaptic reverberation between neurons (Zylberberg and
Strowbridge 2017). In a strongly recurrently connected ensemble of excitatory
cells, activity triggered by a short external stimulus persists because spikes
“loop” through the network keeping it in the active state until a inhibitory pulse
switches them back to the silent state. Such delay activity is indeed observed
when animals perform working memory tasks (Goldman-Rakic 1995; Lundqvist,
Herman, and Miller 2018), but whether it relies solely on a network mechanism
is an open question (Major and Tank 2004).

Interestingly, persistent spiking can also be evoked in single neurons that are
synaptically isolated (Egorov et al. 2002). As mutual excitation of neurons is
excluded in these cases, the underlying feedback loops behind such bistable
firing patterns have to be cell-intrinsic. One candidate is the indirect feedback
between calcium channels and calcium-activated channels. Feedback of this
form can form a self-sustaining cycle where calcium inflow during one spike
activates depolarizing channels to trigger the next spike (Debanne, Inglebert,
and Russier 2019). This poses the question whether cooperative channels can
similarly self-sustain neuronal activity to serve cell-intrinsic memory.
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To summarize, the direct feedback mechanisms between cooperative channels
are relevant to understand excitable cell physiology. Relevance for neuronal
computations, while suggested by the common functions of feedback loops
like increased sensitivity or eventually bistability, remains hypothetical at this
point. As cooperativity is hard to detect and even more difficult to control
experimentally, modeling of coupled channels is crucial to identify dynamics
where their direct feedback plays a role.

2.2.3 Models of cooperative gating

To model cooperativity among ion channels, the natural starting point is the
description of a single channel. In the state space description of a channel,
cooperative interactions are incorporated by transition rates that depend on
the state of neighboring channels. This inter-dependence means that – different
from the treatment in the standard Hodgkin-Huxley neuron – the dynamics
of an ensemble of channels cannot longer be derived directly from the single
channel level. In the following, the voltage-shift model of cooperative gating is
introduced (Naundorf, Wolf, and Volgushev 2006), which is used in Publication
COOPMEM to study the emergent dynamics in clusters of interacting channels.
To connect the heuristic voltage-shift model with the biophysical level of channel
gating, the cooperative alteration of transition rates is first explained for the
simple case of a cluster of two channels following the treatment in (Hichri,
Selimi, and Kucera 2020).

State space model of two cooperatively-gating channels

The state space of a channel pair consists of the combinatorial set of single
channel states. This simple combination implicitly assumes that the channel
interaction only affects transitions between existent states and does neither
create new stable configurations nor destroys existing ones. For a two state
channel with an open state O and a closed state C, the dimer state space is
therefore {CC, OC, CO, OO}.

In the case of independently-gating channels, the transition rates of the single
channel

C
α(V )

β(V )
O

determine the corresponding rates in the dimer state space
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When channels gate cooperatively, the transition rates change, but not in
an arbitrary fashion. The altered transition rates have to correspond to the
altered energy landscape of the dimer, where the channel interactions can affect
both the energy of the combined states and/or the energetic barriers between
them. This correspondence is described by the Arrhenius law, which relates the
transition rate from a state i to a state j with the height of the energy barrier
∆ij measured from the point of view of the states energy level,

rij = κ
kT

h
e−∆ij/kT ,

where T is the temperature, k is the Boltzmann constant, h is the Planck
constant and κ is a molecule dependent transmission coeffcient. Consequently,
cooperativity has concerted effects on the transition rates of the channel pair:

1. If cooperative/channel interactions alter the energy of a state i by an
amount δE, the height of the energetic barrier to leave the state changes
by the same amount and all “exit” rates from this state are scaled as
r′ij = eδE/kT rij .

2. If cooperative/channel interactions alter the energetic barrier between two
states i and j by an amount δ∆, then both forward and backward rates
are scaled as

r′ij
rij

=
r′ji
rji

= e−δ∆/kT .

As an illustration, consider the effects of channel interactions in a dimer with
raised energy of the OC and CO state. In comparison to two independently-
gating channels, such a dimer is expected to spend less time in the OC/CO
state because its higher energy makes it less stable. Exemplary, the channel
state distribution is derived for an energy increase by δE = kT and equal
opening and closing rates α = β = 1 ms−1 for the single channel. In isolation,
the channel is thus expected to have an open probability of pO = 0.5 With
the correspondingly increased transition rates from the OC and CO state, the
dimer state space scheme then reads
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Lumping the states OC and CO with one open channel together because
they cannot be distinguished from each other, the dynamics of the dimer state
distribution are

dpCC

dt
= −2 · 1ms−1pCC + e · 1ms−1pOC,

dpOC

dt
= 1ms−1pCC − 2e · 1ms−1pOC + 1ms−1pOO,

dpOO

dt
= e · 1ms−1pOC − 1ms−1pOO.

The stationary distribution ṗ0
!
= 0 is

p0 =

⎛⎝pCC,0

pOC,0

pOO,0

⎞⎠ =
1

2(1 + e)

⎛⎝e
2
e

⎞⎠ ≈

⎛⎝0.37
0.26
0.37

⎞⎠
confirming the reduced occurrence of the OC state and the resulting deviation
from the binomial distribution pindp. = (0.25, 0.5, 0.25). The increased tendency
of the interacting channels to be in the same state technically implies positive
cooperativity. Still, channels coupled in this way exhibit no increased activity,
because they have the same individual open probability pO = pOO+0.5pOC = 0.5
as an isolated channel.

Modeling coupled gating by a virtual membrane potential change

Detailed state space models are a good choice to investigate cooperative gating
between two channels in the controlled setting of a voltage clamp experiment,
but they are less suited to study the behavior of larger channel ensembles in
the dynamic setting of an evolving membrane potential. When the number of
channels in an ensemble increases, the number of ensemble states grows rapidly
as well as the transitions between them. This growth of the state space poses
two challenges. First, experimentally inferring the large number of (voltage-
dependent) transition rates becomes difficult. Second, numerical simulations
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quickly get computationally expensive. Consequently, questions about the role
of cooperative gating on spike generation in neurons (Naundorf, Wolf, and
Volgushev 2006; Zarubin, Zhuchkova, and Schreiber 2012) or rhythmic activity
in heart cells (Sato et al. 2018) have instead relied on simpler heuristic models.

Next, the voltage-shift model, a cooperative gating model originally developed
for sodium channels introduced by Naundorf et al. (Naundorf, Wolf, and
Volgushev 2006), is reviewed. As explained earlier, Naundorf et al. were
interested in the question of whether cooperative interactions could synchronize
the opening of sodium channels and create sharper spike onsets (see previous
section on “Implications of cooperative gating for electrical activity”).

To introduce coupled gating, they allowed the voltage-dependent transition
rates to also vary with the state of other coupled channels by adding an “effective”
voltage shift for each open connected neighbor. Specifically, starting from an
established sodium channel model, they modified the opening α(V ) and closing
rates β(V ) between the open O and closed C state, which for the ith channel
in a cluster of N then read

αi(V, {σk}k ̸=i) = α

⎛⎝V + j
∑︂
k ̸=i

σk

⎞⎠ , βi(V, {σk}k ̸=i) = β

⎛⎝V + j
∑︂
k ̸=i

σk

⎞⎠ ,

(2.7)

The important parameter controlling cooperativity is the coupling strength j
which determines the “virtual” voltage shift that occurs when a neighboring
channel switches from the closed (σ = 0) to the open state (σ = 1)4. Crucially,
when the coupling is positive j > 0 mV and the channel is voltage-activated
like in the case of sodium channels, the rates at the shifted voltage result in
an increased opening and a decreased closing rate. Therefore, a closed channel
in the presence of an open neighbor has a higher activation and is also biased
to the open configuration (see Fig. 1 of Publication COOPMEM). This bias
increases with each open channel, so that the gating of channels coupled in this
way indeed becomes more synchronized as expected for positive cooperativity.

From a theoretical point of view, the voltage-shift model is attractive because
it is flexible enough to reproduce different aspects of cooperative gating while it

4Here, a homogeneous coupling strength is assumed, but generally, it could vary for different
channel pairs, e.g., because the interaction is distance-dependent. In this case, the uniform
coupling strength j in Equation 2.7 is replaced by individual coupling strengths jik for each
coupled channel pair. Most interaction types are symmetric, i.e., jik = jki (e.g. ephaptic
coupling, coupling via membrane stretches or allosteric coupling between identical channels
with identical bindings sites), but in principle asymmetric coupling jik ̸= jki could occur,
for example between different channel types.
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remains amenable to analysis. Reversing the sign of the coupling (j < 0 mV),
for example, leads to negative cooperativity, where the opening of one channel
suppresses the tendency of other channels to open as well, overall reducing their
activity – a scenario that has been studied for potassium and calcium channels in
a simple neuron model (Zarubin, Zhuchkova, and Schreiber 2012). Furthermore,
the voltage-shift model can also be applied to inactivating channels, i.e., those
with an activation function decreasing with voltage. Due to the reversed
activation function, the effect of the sign of the coupling parameter is opposite
in this case: for a positive coupling coefficient, opening of one channel stabilizes
the closed state of adjacent channels.

The simple functional form of the voltage-shift model is suited to include
cooperative channels into simulations of neurons with multiple conductances.
Previous studies considered the case of a large ensemble containing thousands
of identical all-to-all coupled channels (Naundorf, Wolf, and Volgushev 2006;
Zarubin, Zhuchkova, and Schreiber 2012). As the classical form of the macro-
scopic gating dynamics from the Hodgkin-Huxley model is no longer valid in
this case due to the interdependence of cooperative channels, other approaches
have to be used. One way to simulate the conductance of the cooperative
ensemble is to directly use the stochastic dynamics of the microscopic state
description, which can be combined with the otherwise deterministic dynamics
of the membrane potential and the independent channel populations (Zarubin,
Zhuchkova, and Schreiber 2012; Anderson, Ermentrout, and Thomas 2015).
Alternatively, macroscopic dynamics can be derived using a mean field ansatz,
where the exact number of open neighboring channels No is replaced by its
expected mean (Naundorf, Wolf, and Volgushev 2006; Zarubin, Zhuchkova, and
Schreiber 2012). The expected ensemble activation, the mean open probability,
then follows recursive dynamics in the form

dm

dt
=

m(V +mJ)−m

τm(V +mJ)

where J = (N−1)j is the maximal voltage shift that a channel can experience
and m(V ) and τm(V ) are the activation function and respectively gating time
scale of the single channel. As expected, the steady-state activation of the
ensemble mcoop(V ) then differs from the one of the single channel, it can for
example become steeper reflecting the increased activity of positively cooperating
channels (see Fig. 1 of Publication COOPMEM).

An important aspect missing in previous work using the voltage-shift model is
the experimentally observed spatial clustering. Clustering suggests that coupled
gating is constrained to small groups of channels. Publication COOPMEM
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combines modeling such channel clusters with the question of cooperativity as
a cellular memory function, suggesting that such memory is not only possible
in small clusters, but that clustering eventually increases memory capacity.

After the current section prepared the ground for this exploration of deviations
from the assumption of independent channel gating, the following examines the
assumption of membrane capacitance as a constant cell parameter.

2.3 Membrane capacitance

A basic parameter of cellular excitability, often overseen in comparison to
the diverse and dynamic ion channels, is membrane capacitance. Splitting
the world of a cell in an in- and outside, a membrane creates the spatial
structure required for the maintenance of life, including the membrane potential
underlying neuronal signaling. Acting as a capacitor, the membrane controls
the rate of change in the membrane potential in response to a current. As
the membrane potential in turn orchestrates the opening and closing of ion
channels, capacitance has broad and significant implications for signaling and
processing properties of neurons (Koch 1999).

Still, capacitance is rarely studied. The observation of similar specific mem-
brane capacitance values, the capacitance per area, across different neuron
types lead to a seldomly questioned assumption of capacitance as a universal
biological constant. Natural variations of capacitance with cell size are thought
to be inconsequential, because they are assumed to be compensated by changes
in ionic conductances. Critically reviewing these assumptions, the following
section motivates why studying capacitance in experiment or theory might
yield interesting insights into neuronal dynamics. Finally, the challenge to
control capacitance in biological neurons leads to the idea of the capacitance
clamp, the dynamic clamp extension to virtual capacitance changes developed
in Publication CAPCLAMP.

2.3.1 How capacitance shapes electrical dynamics of neurons

Capacitance, as shown in the section on “Conductance-based neuron models”,
sets the membrane time constant, the central time scale for the membrane
potential dynamics. In this role as a general clock, capacitance affects both
single neurons as well as networks by determining the response time to incoming
signals and the velocity of action potentials traveling down an axon. Such
effects correspond to the expectation of capacitance as a “neuronal metronome”
(e.g. action potentials propagate faster at smaller capacitances). The combined
non-linear dynamics of membrane potential and active ion channels, however,
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are predicted to result in seemingly paradoxical behavior like a sudden dou-
bling of spiking frequency when capacitance is increased (and the dynamics
would actually be expected to become slower). Identification of such “critical”
capacitance values is of particular interest, because the underlying dynamical
transitions are expected to mark switches in a neurons computational abilities.

A very brief history of capacitance and time (constants)

Timing is essential in neuronal signaling. How fast can a neuron respond to a
change in its input? What is the minimum time interval that a neuron requires
to discriminate two successive inputs? How long can a neuron keep a record
of past input? The electrical activity of single neurons is known to exhibit a
large dynamic range spanning the sub-millisecond regime up to seconds, further
expanded by recurrent network connections into minutes and more. While
active ionic mechanisms are a major factor, the temporal properties also depend
on the passive membrane properties, namely on the membrane time constant
and thereby on capacitance.

The membrane time constant τm is highly variable among neurons from
<1 ms up to 100 ms5] reflecting different signaling needs (Tripathy et al.
2014). In addition, heterogeneity of time constants in a network appears to be
advantageous for processing of temporal stimuli like speech (Perez-Nieves et al.
2021). Neurons can adapt τm = RC via altering either membrane resistance R or
capacitance C. A major difference is that membrane resistance determines both
the amplitude and the timing of a voltage response to a current, whereas the
membrane capacitance solely determines the timing (see Eq. 2.4). Investigating
the effects of the membrane time constant in an isolated fashion hence requires
a mean to control capacitance – a simple task in computational modeling, but
a challenging one in experiment.

It is important to note that response times of neurons are generally not
limited by the membrane time constant, but rather by capacitance itself (Koch,
Rapp, and Segev 1996). In a morphologically extended neuron, the response
to a step current consists of an infinite sum of exponentials with timescales of
which only the slowest is the membrane time constant. But all the time scales
are proportional to the specific membrane capacitance. As a result the rise
time of a post-synaptic potential in the dendritic tree can be significantly faster
than the membrane time constant, but still remains limited by the capacitance.

5See the electrophysiology properties collected by NeuroElectro at https://neuroelectro.
org/ephys_prop/4/
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Concerted action of ion channels

Although a passive electrical component, capacitance determines the active
behavior of a neuron: the propagation speed of an action potential in an
unmyelinated axon is proportional to the inverse of the specific membrane
capacitance 1/Cm (Koch 1999) and the same scaling applies to the frequency
of repetitive spiking, at least for class 1 SNIC-type neurons with fast channel
dynamics (Izhikevich 2006). In these examples, the relatively simple dependence
on capacitance stems from a quasi-separation of between regimes of active and
passive dynamics. In the case of repetitive firing (and in the absence of slow ion
channels), ion channels open and close rapidly during the spike, determining
its short duration. But these fast channels are in an almost stationary regime
during the comparatively long recharging until the next spike, which hence
mainly depends on capacitance.

In general, however, more complex scenarios are possible, where the influence
of capacitance on the spike shape and the underlying currents, ignored in
the above argument, can become decisive and qualitatively switch the firing
behavior of a neuron. For example, changing capacitance can turn one class of
bursting neuron models (firing bouts of spikes with intermittent long breaks)
into regularly firing ones (Franci, Drion, and Sepulchre 2018). Such a switch
demonstrates that a change of capacitance can perturb the dynamic balance of
ionic currents: when the membrane potential changes more slowly or rapidly
in response to a current from one conductance, the relative timing of voltage-
dependent activation of another conductance might change and as a result the
complete course of the membrane potential takes another shape.

Capacitance as a bifurcation parameter Importantly, in this way capacitance
can significantly affect how neurons transition from rest to regular spiking – a
transition called “spike onset” type whose nature is known to determine basic
signaling properties. One possible switch is a change between the two classical
excitability classes briefly introduced in Section 2.1.1. This transition from class
1 to class 2 excitability is associated to the Bogdanov-Takens bifurcation which
induces the aforementioned change from an integration to a resonating mode
(Izhikevich 2006). Another interesting switch of this kind, termed saddle-node-
loop bifurcation, consists in a transition from a SNIC-type to a HOM-type.
The SNL bifurcation underlies the above mentioned counterintuitive doubling
of spiking frequency as a result of increasing capacitance which is usually
expected to slow down membrane potential dynamics (Hesse, Schleimer, and
Schreiber 2017). Neurons in the HOM regime further exhibit a bistability
between a silent rest and an active firing state as well as an increased tendency

33



to synchronize. Taken together, the effects of capacitance changes can extend
beyond mere slowing or acceleration of voltage dynamics to switching between
computationally distinct types of spiking.

Probing capacitance in this regard is especially informative for understanding
effects of other variables that similarly affect the relative ratio of timescales of
the membrane potential and the ion channels (Hesse, Schleimer, and Schreiber
2017). For example, the effects of a larger capacitance, which increases the
membrane time constant, share aspects with the effects of a higher temperature,
which primarily decreases the gating time constants of ion channels. Accordingly,
higher temperatures have already observed to induce a switch to the HOM
regime of spiking in hippocampal CA1 neurons (Hesse et al. 2022).
One might ask why theoreticians consider capacitance when studying bifur-

cations in neuronal dynamics despite the prevailing view that it is constant.
The answer lies in the fact that capacitance together with leak conductance
and input current are universal parameters of neural dynamics, present in every
excitable cell (Kirst et al. 2015). Observing how firing patterns change when
varying capacitance hence provides a canonical dimension of characterizing a
neuron’s dynamics and the specific set of present ion channels.

2.3.2 Capacitance – constant or variable?

The broad implications of capacitance suggest that its value is an important de-
terminant of neural function. Whereas there is general agreement that neurons
specialize for their respective function through cell-specific and adaptive expres-
sion of ion channels, there is less certainty about how capacitance varies among
and within cells and which biophysical mechanisms underlie the regulation of
membrane properties determining capacitance.

Measuring membrane capacitance Capacitance characterization, required
to answer these questions, is a standard step in electrophysiology and an
important prerequisite for neuronal modeling (Golowasch et al. 2009). Typically,
experimenters are interested in the total membrane capacitance C and use either
current-clamp and voltage-clamp protocols to estimate it. If in addition, a
morphological reconstruction of the neuron is used to measure its surface area A,
the specific membrane capacitance Cm = C

A can be inferred. In current-clamp,
a step current of amplitude I0 is injected and capacitance can be estimated by
extracting the response amplitude ∆V and membrane time constant τm from
the exponential charging curve of the membrane potential (see Eq. 2.4)

C =
τm
R

=
τm
R

= τm
I0
∆V

.
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In voltage-clamp, a voltage step of amplitude V0 is used and capacitance is
estimated by using the transient part of the clamping current IC(t) to calculate
how much charge ∆Q accumulated on the membrane

C =
∆Q

V0
=

∫︁
IC(t)dt

V0
.

Still, accurate capacitance measurements are difficult. The above methods
are only valid in a compact isopotential cell, whereas most neurons have
extensive dendritic trees and correspondingly a large distributed electronic
structure. In voltage clamp, compartments further away from the clamped
one exhibit smaller voltage changes, resulting in reduced capacitance estimates
(Golowasch et al. 2009; Taylor 2012). In current-clamp, the total membrane
capacitance can still be estimated, but this requires careful exponential “peeling”:
the voltage response becomes a sum of exponentials and only the slowest
timescale corresponds to the membrane time constant (as explained in more
detail in Publication CAPCLAMP17). An alternative is to directly reproduce
the observed voltage response by optimizing the specific membrane capacitance
and other passive membrane parameters in a multicompartment simulation
of the reconstructed morphology (Nörenberg et al. 2010; Eyal et al. 2016).
Here, challenges are the reconstruction of small structures like spines in the
dendrites and choosing assumptions on the heterogeneity of parameters across
the morphology. In addition to the difficulty of a non-compact morphology,
another factor is that capacitance measurements rely on the assumption of a
passive membrane. The activation of voltage-gated ion channels can thus affect
capacitance estimates and should be minimized or controlled for (White and
Hooper 2013).

Given these difficulties, it is still an open question how variable capacitance
is among neurons and whether this variability has functional implications. As
indicated in the review of the assumptions underlying neuronal modeling in
the section “Conductance-based neuron models”, the predominant view is that
unavoidable variations due to surface area are compensated by ionic conduc-
tances and that the specific membrane capacitance is uniform among biological
membranes. However, this view is challenged by a number of reported excep-
tions, which are reviewed in the following based on the membrane properties
determining capacitance, namely surface area, thickness and lipid composition
(see Eq. 2.2 and Fig. 1 of Publication CAPCLAMP).

Capacitance changes with the size of a neuron The dependence of capaci-
tance on area implies that capacitance naturally varies between neurons with
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different morphologies and within a cell during development. For example,
studying developmental trajectories of neurons in the rat brain, capacitance
was observed to increase by a factor of ≈ 2 during the first two postnatal weeks
(Dufour et al. 2014). This increase of capacitance was however accompanied
by a decrease of membrane resistance, so that the membrane time constant
τm = RC remained relatively constant. Based on such measurements, it is
usually assumed that capacitance increases due to changes in surface area are
naturally compensated by increased channel numbers.

Still, the area dependence of capacitance might play a role in cases where
a compensation by ion channels is too slow, complex or costly. An example
of changes in area and capacitance that are appears too fast to be countered
by channel expression is swelling of neurons due to activity-dependent changes
of ionic concentrations, for example, during seizures (Amzica and Neckelmann
1999). Moreover, the simple argument that neural dynamics are preserved by
a simultaneous increase of membrane capacitance and conductances cannot
hold for dendritic growth, because dendrites tend to have a different channel
densities in comparison to the soma (Nusser 2012). The regulation of firing
in the presence of additional dendritic capacitative load therefore posits more
elaborate mechanisms linking capacitance and conductances than merely a
constant channel density, e.g., processes that set cellular excitability by activity-
dependent channel expression (Gorur-Shandilya, Marder, and O’Leary 2020).
Finally, even when neural dynamics can be preserved, it is to be expected that
the increased capacitance in larger cells leads to a rise in ionic currents and
therefore higher energetic costs of spiking (Hasenstaub et al. 2010; Sengupta
et al. 2010; Stemmler et al. 2011).

Specific capacitance depends on membrane thickness and composition -
constant or adaptive? Whereas membrane area is an extrinsic determinant of
capacitance, true intrinsic adaptations would be expected to affect the specific
membrane capacitance, the capacitance per area. Whether biological membranes
with their multifold functions are flexible enough to differ in thickness or
composition in ways that significantly change the specific membrane capacitance
is an open question.

As the specific membrane capacitance is required to formulate neuronal
models, considerable experimental efforts have been made to measure it. Early
measurements combined electrophysiology and microscopy to determine both
cell capacitance and surface area of a whole cell and found a range of values
from 0.6 to 3 µF

cm2 (Koch 1999). These measurements, however, yielded large
uncertainties and as a global measure could not resolve potential differences in
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specific membrane capacitance between neuronal compartments. More accuracy
and spatial resolution can be achieved by estimating the specific membrane
capacitance of a nucleated patch “pulled” from the membrane of a neuron. The
nucleated patch technique has been applied in an influential study by Gentet,
Stuart, and Clements which found a value of 0.9 µF

cm2 in three different cell types.
Based on these findings, the authors suggested that the specific membrane
capacitance, “is, to a first approximation, a ‘biological constant’ ”(Gentet,
Stuart, and Clements 2000, p.320). In modeling, this value, conveniently
simplified to 1.0 µF

cm2 , is correspondingly treated as a universal constant and
capacitance variations have rarely been considered.

When Eyal et al. explored the electrophysiological properties of pyramidal cells
from human neocortex, it was hence especially surprising that one unique feature
in these neurons was a reduced specific membrane capacitance of 0.5 µF

cm2 (Eyal et
al. 2016). This value was first discovered in the process of estimating parameters
for a conductance-based models of these cells and then corroborated by the
above mentioned nucleated patch technique. Based on simulations, the authors
proposed that this reduction of capacitance could be a compensatory measure for
the large size of human cells, for example to facilitate the integration of synaptic
inputs. The finding is not without controversy: a similar characterization of
pyramidal cells from a different layer in human neocortex, layer 5 instead of
layer 2/3, yielded specific capacitance estimates of 0.9 µF

cm2 , the same value as
in mouse and rat cells. Concluding, more research is needed to characterize
neuronal membranes in different animals and brain regions before accepting the
paradigm of a universally constant specific membrane capacitance.

Mechanisms of altered capacitance

Support for possible alterations of specific capacitance also comes from new
hypothesis on how its determinants – membrane thickness and composition –
could be altered. A prominent known case of increasing the effective thickness of
membranes is myelination: repeated wrapping of axons in sheaths of membrane
by Schwann cells (Hartline and Colman 2007; Castelfranco and Hartline 2015;
Cohen et al. 2020). The correspondingly reduced capacitance, as well as
the high resistance, is a prerequisite for the “saltatory” conduction mode of
myelinated axons, yielding a multifold increase of propagation speed compared to
unmyelinated axons of the same diameter (Swadlow and Waxman 2012; Cohen et
al. 2020). Myelination has only been observed in axons, but increases of effective
membrane thickness could be a more general mechanism to reduce capacitance.
In particular, perineuronal nets (PNNs) – structures in the extracellular space
surrounding neurons – have been observed to decrease the (total) capacitance
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of inhibitory interneurons, potentially by “thickening” the membrane via tight
association. The actual thickness of membranes, in contrast, appears to be
relatively constant; for example mice and human neurons both have 5-6 nm
thick membranes (Eyal et al. 2016). The reduction of the specific capacitance
in human cells thus hints at a reduced electric permittivity due to differences
in the lipids and proteins composing these membranes (Niles, Levis, and Cohen
1988; Eyal et al. 2016).

2.3.3 Experimental modification of capacitance

In modeling, capacitance modification is simple, allowing theoreticians both
to explore the consequences of exceptional capacitance values as well as to
exploit changing capacitance as a tool to better characterize neuronal dynamics.
Ideally, these predictions could also be tested in biological neurons by a tool to
experimentally modify capacitance in a controlled fashion. In today’s repertoire
of electrophysiology, however, such a tool is missing.

Experimental means to physically interact with biological membranes are ac-
tively researched and might eventually provide access to membrane capacitance.
For example, focused ultrasound is an interesting candidate for non-invasive
stimulation of neurons and its excitatory effects are hypothesized to be mediated
via fast changes of membrane capacitance caused by rapidly expanding and
contracting membrane thickness (Plaksin, Shoham, and Kimmel 2014). Alter-
natively, persistent capacitance changes could be achieved by merging biological
membranes with artificial components, for example electroactive polymers that
alter the native dielectric properties and/or the thickness of a membrane (Liu
et al. 2020). However, such techniques are still under investigation and might
affect ionic conductances.
In the case of ionic conductances, pharmacological and genetic techniques

to modify ion channels are complemented by the insertion of virtual channels
via the dynamic clamp technique (see Section “Dynamic Clamp”). Similarly
precise control as offered by the dynamic clamp for these virtual channels would
also be desirable for the membrane capacitance. The idea of a virtual change
of membrane capacitance via the dynamic clamp is the goal of Publication
CAPCLAMP.
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3 Research aims

The overarching question behind the work presented in this thesis is how
aspects of the biophysics of a single neuron affect its dynamical and signaling
repertoire. As introduced in the background section, it approaches this question
by exploring two assumptions on the biophysics of biological membranes, the
independent channel assumption and the notion of membrane capacitance as
a biological constant. In this context, this cumulative thesis addresses the
following specific questions:

1) How does positive feedback inherent to cooperative interactions among
ion channels in small clusters alter their collective dynamics? And, given
the often observed role of positive feedback for memory, whether such
clusters can mediate multi-stable firing patterns suited for cell-intrinsic
memory functions?

2) How can the dynamic clamp technique, originally developed to inject
artificial conductances in biological neurons, be extended to modify the
capacitance of a cell? And which new ways such a capacitance clamp
opens to to study neuronal dynamics?

Publication COOPMEM: Dynamics of small clusters of cooperative ion
channels

The first question of this thesis, which dynamics emerge in a small cluster of
cooperative ion channels, is motivated by the fact that despite solid experimental
evidence for coupled gating in various channel types, the functional role of such
interactions remains unclear. The hypothesis that a small cluster of cooperative
channels can act as a bistable macrochannel is based on the analogy to a
magnet. In a magnet (“the cluster”), the magnetic fields of individual atoms
(“conductance states of the channels”) can be directed by a transient external
field (“membrane potential”), but then keep this direction (“multistability”)
by mutually aligning to the direction of the neighbors (“cooperative gating”).
Regarding function, bistable clusters of cooperative channels could then serve as
a basic cellular memory unit – just like magnets in a hard drive. More precisely,
they could conduct currents that reflect previous activity levels of a cell. This
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might explain firing patterns of cell-intrinsic memory like graded persistent
firing that have been difficult to understand so far.

Experimentally, detecting ion channel cooperativity remains challenging, not
to mention controlled modulation of the underlying channel interactions. Here, a
computational approach is taken. To this end, the project builds on the voltage-
shift model for cooperative gating proposed in earlier computational studies
(Naundorf, Wolf, and Volgushev 2006; Zarubin, Zhuchkova, and Schreiber 2012)
but adds an important biophysical constraint, namely the spatial clustering of
channels, where cooperative interactions are restricted within a cluster. The
resulting cluster model is used to investigate various aspects of cluster dynamics,
especially bistability and the related cell-intrinsic memory hypothesis:

• How do the emergent dynamics of a cluster depend on the kinetics (ac-
tivation function, gating time constant) of its constituent channels and
the degree of cooperativity? Given that bistability is expected to require
strong interactions, can the necessary coupling strengths be derived from
the channel parameters?

• What is the role of channel noise? As experimentally observed clusters
only contain a small number of channels (≈ 10), the stochastic nature
of gating – spontaneous transitions between channel states – cannot be
neglected. In particular, channel noise could mean that clusters must
have a minimum size to act as reliable memory elements.

• How do the firing patterns of a neuron equipped with the basic channel
repertoire required for the generation of action potentials (independently-
gating sodium and potassium channels) change when an ensemble of
clusters of cooperative channels is added to its membrane? In particular,
could such a neuron exhibit bi- or multistable firing patterns like graded
persistent activity in the absence of synaptic network interactions?

Approaches to these questions presented in the second article of this thesis
use a mean-field analysis and detailed stochastic simulations to characterize
the cluster dynamics. To demonstrate the potential memory function, the
conditions for the emergence of graded persistent activity are first explored in
simulations of a conductance-based neuron model equipped with clusters of
cooperative channels. This demonstration is validated in biological neurons
making use of the “classic” dynamic clamp technique to add virtual cooperative
channels to rodent pyramidal cells.
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Publication CAPCLAMP: A dynamic clamp protocol to modify membrane
capacitance

The second part of this thesis addresses the question whether it is possible to
extend the dynamic clamp to artificial capacitance modification. This idea of a
capacitance clamp (CapClamp) is motivated by the success of this technique
in its “classic” form. The ability to study hybrids of biological neurons and
artificial computer-controlled conductances has enabled electrophysiologists and
modelers to study neuronal dynamics in ways that were otherwise impossible
as demonstrated by the dynamic clamp experiments reviewed in the previous
section. It appears natural to ask whether the flexibility of the closed-loop
between voltage sampling, a custom computer program, and current injection
underlying the dynamic clamp can also be used to artificially alter membrane
capacitance.

Membrane capacitance is interesting, because it is a basic parameter shared
by all excitable cells that is still rarely considered. Commonly assumed to be
constant in mature neurons, the role of exceptional capacitance values remains
little understood. Capacitance is the only neuronal parameter that exclusively
changes the membrane time constant – a property that has been exploited in
theoretical studies to investigate computationally-relevant switches between
excitability classes. Importantly, while theory suggests that capacitance is an
interesting parameter to study, experimental tools to alter it in a controlled
fashion have been missing.
The simple effect of an altered capacitance, namely to change the rate of

change in the membrane potential in response to a current, makes a capacitance
clamp in principle conceivable: it would require clamping currents calculated
such that the membrane potential changes either faster (targeting an increase of
capacitance) or slower (targeting a decrease) than with the cell’s original physical
capacitance. This thesis intends to mathematically derive these clamping
currents from the form of the membrane potential dynamics in conductance-
based neuron models and thereby clarify questions decisive for turning the
capacitance clamp into a practical tool applicable in experiments.

• Which knowledge about the recorded cell does the experimenter need
to clamp its capacitance? As discussed in the previous section, adding
artificial conductances by the “classic” dynamic clamp is possible without
prior knowledge, but knocking out existent ones – while theoretically
possible, requires a very accurate model of its gating dynamics often not
available in practice.

• What are the hardware requirements to clamp a cell’s capacitance? Again,
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in the case of virtual conductances, one prerequisite is that the dynamic
clamp loop interval has to be shorter than the channel gating time con-
stants, which can be challenging for fast channel types e.g Na+.

• Are there limitations to the range of capacitances a cell can be clamped
at? And how accurately does a clamped cell, given that its physical
capacitance will not be altered, mimic the behavior of a cell undergoing
a real capacitance change? In particular, does the combined system of
a biological cell and the capacitance clamp behave as expected close to
critical capacitance values where transitions are expected, potentially
involving fast dynamics?

• Are there constraints on the cell types to which the capacitance clamp
can be applied? Most biological neurons have elaborate morphologies
with branching axons and extended dendritic trees, so that membrane
capacitance is a spatially distributed quantity. Can the capacitance clamp
act locally in such cells or is it constrained to small, electronically compact
cells where the spatial dimension is negligible?

To answer these questions, Publication CAPCLAMP takes various approaches
to test and validate the capacitance clamp both in simulations and experiments.
Simulations of conductance-based neuron models, including both spatially
simple one-compartment and biologically more realistic multi-compartment
ones, have the advantage that the actual dynamics of a neuron clamped at
a given capacitance can be simply contrasted with the expected ones (that
is those of the same model with an altered capacitance parameter). While a
similar approach is impossible for a biological neuron, basic expectations on
measurable quantities can be formulated to examine the capacitance clamp
experimentally, e.g., on the dependence of the membrane time constant(s) on
capacitance. Finally, once having established the capacitance clamp in this way,
this thesis aims to illustrate proof-of-concept applications demonstrating its
value as a new tool for electrophysiology.
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4 Publications

4.1 COOPMEM – Clusters of cooperative ion channels
enable a membrane-potential-based mechanism for
short-term memory

Paul Pfeiffer, Alexei V. Egorov, Franziska Lorenz, Jan-Hendrik Schleimer,
Andreas Draguhn, and Susanne Schreiber (Feb. 2020). “Clusters of Cooperative
Ion Channels Enable a Membrane-Potential-Based Mechanism for Short-Term
Memory”. In: eLife 9, e49974. issn: 2050-084X. doi: 10.7554/eLife.49974

Supplementary figure(s) follow directly after the main article.
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Clusters of cooperative ion channels
enable a membrane-potential-based
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Abstract Across biological systems, cooperativity between proteins enables fast actions, supra-

linear responses, and long-lasting molecular switches. In the nervous system, however, the function

of cooperative interactions between voltage-dependent ionic channels remains largely unknown.

Based on mathematical modeling, we here demonstrate that clusters of strongly cooperative ion

channels can plausibly form bistable conductances. Consequently, clusters are permanently

switched on by neuronal spiking, switched off by strong hyperpolarization, and remain in their state

for seconds after stimulation. The resulting short-term memory of the membrane potential allows

to generate persistent firing when clusters of cooperative channels are present together with non-

cooperative spike-generating conductances. Dynamic clamp experiments in rodent cortical neurons

confirm that channel cooperativity can robustly induce graded persistent activity – a single-cell

based, multistable mnemonic firing mode experimentally observed in several brain regions. We

therefore propose that ion channel cooperativity constitutes an efficient cell-intrinsic

implementation for short-term memories at the voltage level.

Introduction
Cooperative molecular interactions are ubiquitous in biology and guide cellular processes from sens-

ing to memory formation (Bray et al., 1998; Burrill and Silver, 2010). They are found not only in

the simplest organisms like bacteria, but also in higher organisms including mammals (Stefan and Le

Novère, 2013). Evidence increases that also ion channels of excitable membranes in the heart and

the nervous system, including the mammalian brain, can exhibit cooperative properties (Choi, 2014;

Molina et al., 2006; Grage et al., 2011; Kim et al., 2014; Gianoli et al., 2017; Navedo et al.,

2010; Dixon et al., 2015; Moreno et al., 2016; Clatot et al., 2017; Vivas et al., 2017). Neverthe-

less, the majority of neuron models relies on the independent gating assumption: channels commu-

nicate indirectly via the common membrane potential, but do not directly influence each other.

Thus, it is an open question how cooperative channels affect the electrical dynamics - and therefore

the computations - of a neuron.

Experimentally, ion channel cooperativity has been studied in various channel types with key roles

in the nervous system such as potassium (Molina et al., 2006; Kim et al., 2014), sodium

(Iwasa et al., 1986; Undrovinas et al., 1992; Clatot et al., 2017), HCN (Dekker and Yellen, 2006)

and calcium channels (Dixon et al., 2015; Moreno et al., 2016). However, most studies have

focused on the demonstration of cooperative gating in small ensembles of channels and avoided the

complex dynamics of the neuron as a whole. An exception is the study of cooperative calcium chan-

nels in rodent hippocampal neurons, where optical control of channel coupling has revealed that the
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spontaneous firing rate rises when channels cooperate (Moreno et al., 2016). With such control of

channel interactions, future experiments have the means to test hypothesis on the function of

cooperativity.

So far, a few computational studies predict effects of cooperativity. Along these lines, coopera-

tive sodium channels have been suggested to underlie the rapid initiation and low variability of spik-

ing onset in cortical neurons (Naundorf et al., 2006; Huang et al., 2012; for an alternative

mechanism see Yu et al., 2008) and mild cooperative interactions in potassium and calcium channels

have been shown to modify the steepness of a channel’s activation curve and modulate neural excit-

ability (Zarubin et al., 2012). Furthermore, cardiac alternans, a pathological condition of unstable

heart contractions, has been linked to strong degrees of coupling among cooperative calcium chan-

nels (Sato et al., 2018). These studies demonstrate that cooperative channels can significantly alter

cellular firing properties with a range of effects from advantageous to pathological depending on

the interplay with other currents in the cell.

Here, we show in simulations and mathematical analysis that small clusters of cooperative chan-

nels with simple and generic activation dynamics can induce a multistability of the membrane poten-

tial and demonstrate that this multistability enables a form of cellular memory. Our central

observation is that the mutually enhancing nature of cooperative gating favors joint opening and

closing of channels, and, more importantly, results in a hysteresis of their gating behavior. We dem-

onstrate that such cooperative channels - when arranged in clusters and located in membranes with

‘normal’ independent conductances that mediate spiking - can induce graded persistent neural

activity: spiking that persists after transient suprathreshold depolarization and represents successive

inputs with increasing persistent firing rates. Taken together, we propose that cooperativity of a few

ion channels is an elegant way to implement a cell-intrinsic memory directly reflected in a cell’s firing.

In principle, ion channel cooperativity could thus efficiently complement network-based mechanisms

of persistent activation and thereby contribute to decision making (accumulation of evidence) and

working memory. Overall, the emergence of memory in a cluster of coupled, yet in isolation memo-

ryless channels suggests a more general design principle: cooperativity serves to dynamically build

functionally rich macrochannels from simpler channels.

In the following, we first dissect the mechanism and compare the gating of independent versus

cooperative ion channel clusters. We then add clusters of cooperative channels to a simple neuron

model with non-cooperative, spike-generating sodium and potassium channels, proving the ability

of ion channel cooperativity to mediate graded persistent activity. Finally, we use the dynamic clamp

technique to experimentally endow perirhinal cortex neurons with ‘virtual’ cooperative ion channels

and show that stable persistent activity can be robustly induced, rendering ion channel cooperativity

an efficient and plausible mechanism for cellular voltage memory.

Results
Although the mechanisms of cooperative interactions among ion channels are still not fully under-

stood on the molecular level, it can be assumed that ion channels need to be in spatial proximity to

directly interact and gate in a cooperative manner (Gutkin and Ermentrout, 2006). Matching this

assumption, cooperativity is often found in channels that form small clusters (Molina et al., 2006;

Choi, 2014; Navedo et al., 2010; Moreno et al., 2016). For our study, we therefore assume that

the cooperative channels are distributed in multiple clusters and limit cooperative interactions to

channels within the same cluster. In this regard, we deviate from previous theoretical studies, where

all-to-all interactions between channels in a membrane have been investigated (Naundorf et al.,

2006; Zarubin et al., 2012; Huang et al., 2012). To understand the underlying principles, we begin

with a comparison of gating properties in a cluster of cooperative versus non-cooperative ion

channels.

Gating of a cluster of cooperative channels
A cluster is assumed to comprise S voltage-gated channels of the same type, whose individual acti-

vation curve is a monotonically increasing, yet saturating function of voltage. To ensure the general-

ity of the analysis, we make no further assumptions on other channel properties like their ionic

nature and therefore simply refer to them as ‘channels’. Cooperative interactions are chosen to be

enhancing, that is the opening of a channel in the cluster increases the opening probabilities of all
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other S� 1 channels. This increase in opening probability is implemented phenomenologically by

shifting the channels’ activation curves to lower voltages for each new opening of a neighbor. The

size of the shift j induced by one new opening is a measure of the coupling between channels in the

cluster (Naundorf et al., 2006; Zarubin et al., 2012; Huang et al., 2012). An important determinant

for the cluster dynamics is the maximal shift J ¼ ðS� 1Þj, which a channel experiences, when all

neighbors are in the open state (Figure 1A). Variation of this interaction strength from independent

(J = 0 mV) to strongly cooperative (J = 70 mV) yields the activation curve of a cluster of S channels.

Clearly, an isolated channel and channels in an independent ensemble have the same activation

curve. Mild cooperative interactions, however, increase the channel activity and make the activation

curve steeper. Beyond a critical coupling, the activation curve ‘bends over’, which characterizes the

regime of strong cooperativity (Figure 1B).

Simulating a simple voltage clamp experiment in a membrane patch containing a cluster of six

channels demonstrates fundamental differences between the gating of independent and coopera-

tive clusters: The conductance dynamics of a cluster of independent channels is identical to the sum

of its individual, independent components. Therefore, the single channel opening probability dic-

tates the most probable cluster state (defined by the channel activation curve and the voltage) and

the cluster conductance fluctuates around this state following a binomial distribution (Figure 1C,

top). At the half-activation voltage, the cluster average is at half of its total conductance. Fluctua-

tions in the total cluster conductance are relatively fast (due to channel gating time constants of » 1

ms).

Figure 1. Gating of a cluster of cooperative channels. (A) Model of cooperative gating: the activation of a channel in a cluster depends on the state of

the surrounding channels. Opening of a neighboring channel leads to a shift of the activation curve by the coupling strength j. When all neighbors are

closed, the activation coincides with the one of an isolated channel, whereas when all neighbors are open, the activation undergoes the maximal shift J.

(B) Cluster activation: cooperative interactions inside a cluster increase the channel activity, so that the activation curve becomes steeper (weak coop.).

Above a critical coupling strength, the activation starts to ‘bend over’ (strong coop.); whether a channel is open or closed is determined mostly by the

state of its surrounding channels. Activation curve based on a self-consistency relation, for details see Materials and methods. (C) Top: Simulation of a

voltage clamp experiment with an isolated two-state channel shows fast, random switching between the conducting (black) and non-conducting (white)

state. Operated at the half-activation potential V0:5, the channel spends about half of the time in the open state. Middle: In a cluster of independent

channels, their asynchronous gating results in a fluctuation of the cluster conductance around half of the total conductance. Bottom: Cooperative

channels have a strong preference for the state of the surrounding channels. In a cluster, they open and close in synchrony acting like a macrochannel.

Its slow switching frequency demonstrates the stability of the open and closed cluster state. As the cooperative channels are more active compared to

the independent ones, they are clamped at more hyperpolarized voltages: �1 mV (independent) and 36 mV (cooperative). The details of the jump

process simulation are given in the section Materials and methods and parameters are summarized in Table 1.
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The picture changes when ion channel cooperativity is introduced. Assuming strong interactions,

all channels in a cluster gate open and close quasi-simultaneously (at a voltage level within the

regime where the activation curve ‘bends over’). Intuitively, this coordination within a cluster can be

easily understood: the opening of ion channels strongly enhances the probability of their neighbors

to open. Similarly, the closing of channels reduces the probability of their neighbors to remain open,

so that gating dynamics largely synchronize. The distribution of total cluster conductance now devi-

ates from the unimodal, binomial distribution of clusters with independent channels: it becomes

bimodal reflecting the alternation between a fully closed and a fully open cluster state (Figure 1C,

bottom). Note that the bistability is accompanied by a novel slow time scale; the cluster switches

between the all-open or all-closed states at a drastically reduced rate (6 Hz) compared to its consti-

tuting channels when independent (1000 Hz). Effectively, the bistability and the slow switching let

the cluster of cooperative channels appear as one slow macrochannel (Blunck et al., 1998).

Hysteresis and bistable gating
The new, slow timescale also changes the response of the cluster to a pulsatile stimulation protocol.

During a sufficiently strong depolarizing pulse, all channels in both the cooperative and independent

cluster open. Once the pulse is over and voltage returns to baseline, the cluster of independent

channels follows and channels swiftly return to the closed state. In the case of the cooperative clus-

ter, however, channels in the cluster remain open, despite the return of the clamped voltage value

to its original value before the pulse onset. The strong channel interactions introduce what we would

like to term ‘stickiness’: the cluster ‘sticks’ to its new open state (even when voltage levels are back

to ‘normal’) and can only be released from this state by a sufficiently strong hyperpolarization

(Figure 2A). In other words, cooperative gating induces hysteresis and hence allows channels in a

cluster, which are fast switching in isolation, to represent (i.e. ‘remember’) voltage values that

occurred multiple hundred milliseconds ago.

The hysteresis in gating arises from the bistability of the cluster. Before the depolarizing pulse,

the channels in the cluster are closed, which is a stable cluster state, because the single channel is

not activated at this membrane potential and there is no facilitation between closed channels. Dur-

ing the pulse, channels open, and this open cluster configuration is stable at the baseline voltage,

because the strong coupling allows the channels to secure each other in the open state. Only when

the voltage is lowered further, it overcomes the mutual facilitation and the channels close again.

The bistability reflects those effective cluster activation curves that ‘bend over’ (Figure 2B). Con-

sequently, cluster size, channel coupling and the shape of the isolated channel’s activation curve

determine the voltage range of bistability. Both an increase in channel coupling j and cluster size S

can lead to a stronger overall cooperativity strength J, which is the product of the two. Bistability

arises from a critical overall cooperativity strength Jcrit, which depends on the shape of the single

channel activation. With increasing J, the bistable range broadens and extends to more hyperpolar-

ized voltages (Figure 2C). Correspondingly, for a cluster with more channels and/or strong coupling,

which both result in a larger J, the voltage pulse to close the cluster has to be stronger in order to

leave the bistable range.

Due to their self-excitatory effect, channels in a cooperative cluster can be compared to neurons

in a recurrently connected network: if the external input is low, the neurons are silent, but during a

short stimulation they switch to a very active state, which they sustain after the stimulation by recur-

rent self-excitation. Such networks have been proposed to underlie the short-term storage of stimuli

in working memory (Durstewitz et al., 2000). This poses the question, whether in a similar way, a

cluster of cooperative channels can act as a memory unit for a single neuron. In order to address this

question, we first need to better understand the emerging slow timescale of switches between clus-

ter states in the cooperative regime.

Prolonged lifetimes of the open and closed cluster state
As we have seen, hysteresis allows clusters to act as a voltage memory. After high voltages, they

remain open and after low voltages, they remain closed. Eventually, however, a cluster spontane-

ously switches its state - in a quasi-synchronous fashion all channels open or close (Figure 3A). These

switches originate in channel noise, stochastic gating of individual channels. If multiple channels coin-

cide in their spontaneous gating, their neighbors quickly follow. Both opening and closing of
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channels spread by cooperative coupling; in a spiral of facilitation build-up or, reversely, in a spiral of

facilitation loss (Figure 3—figure supplement 1). These gating avalanches, however, cannot be trig-

gered by single or few channels, so that the life times of a cluster can be orders of magnitude longer

than those of the single channel.

Figure 3 shows the lifetimes of the open and closed states - exemplary in a cluster with five chan-

nels - as a function of voltage. These lifetimes are defined as the time tO!C it takes, once all channels

are open until all channels are closed again, and vice versa for tC!O. In the center of the bistable

range, both open and closed cluster state are very robust against channel fluctuations with mean res-

idence times in the range of seconds (Figure 3A). However, at the verges of the bistable range,

channel noise corrupts the stability. At low voltages, an open cluster switches back to the closed

state within » 10 ms, whereas at high voltages, within in the same time, a closed cluster spontane-

ously opens. Thus, for a persistent representation of recent voltage history, the middle voltage range

offers the longest memory lifetimes: here both the probability to lose an open cluster state and to

lose a closed cluster state are low - a prerequisite for encoding of previous voltages in a persisting

cluster state (Figure 3A). The lifetimes in this voltage range define the memory timescale tmax of the

cluster, that is the time during which a cluster of cooperative ion channels can act as a reliable mem-

ory device. For completeness, Figure 3B shows the numerically derived center of the bistable range

Vmax and the memory timescale tmax for clusters of different sizes and with different channel-channel

coupling j. We find that both, larger cluster size and stronger channel coupling, favor bistability.

Although quantitative data on cooperative interactions is scarce, we note that for a cluster of eight

channels coupled with strength j = 17 mV, the mid-voltage of the bistable range decreases to �60

Figure 2. Hysteresis and bistability of a cluster of cooperative channels. (A) Probing an initially closed cluster (time point 0), both independent (blue)

and cooperative (red) channels open in response to a depolarizing voltage pulse (1). However, returning to the base line voltage (2), independent

channels rapidly close again, whereas a cluster of cooperative channels ‘sticks’ to the open configuration. Only a strong hyperpolarizing pulse (3) can

close the cooperative channels and restore the initial condition (4). Tracking membrane potential versus conductance during the pulse protocol (right

panels), the hysteresis in gating for the cooperative channels becomes apparent; whether the cluster is open or closed at baseline voltage depends on

the previous voltage pulse. The transparent lines correspond to 20 repetitions of the pulse protocol and the solid lines are the respective means. (B)

Strong coupling among channels changes the activation in a cluster (red) with respect to an isolated channel (black) and induces a voltage regime of

bistability (red shaded). (C) Clusters only become bistable beyond a critical coupling strength (black dashed) and for increasing coupling, the bistable

range extends to lower voltages. Cluster and channel parameters are summarized in Table 1.
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mV and the average lifetime of the open and closed state exceeds hundreds of seconds, rending

this paradigm suitable for persistent activation in the context of short-term memory.

In general, our analysis shows that, as expected, larger and more strongly coupled clusters have a

more hyperpolarized operation voltage and longer life times. Even for clusters with the same maxi-

mal shift J (that is hyperboles in Figure 3B), we observe a pronounced increase in lifetime with clus-

ter size. In other words, large clusters of weakly coupled channels tend to be more stable than small

clusters of strongly coupled ones. This observation is explained by a reduction of effective channel

noise when more channels are added to a cluster.

Clusters as cellular memory units can mediate persistent spiking
The analysis so far showed that clusters of cooperative ion channels can implement a memory of

recent voltage levels in their opening state. Next, we demonstrate how this property - when exhib-

ited by small clusters of channels not even directly involved in the generation of spikes - can lead to

persistent neuronal activity that does not require further network input. Interestingly, we find that

clusters of cooperative channels can even solve the computationally harder problem required for a

graded form of persistent activity. In this graded form, the neuron can signal previous input strength

and input duration in the frequency of long-term stable firing. Hence, we propose that ion channel

cooperativity offers a generic mechanism for cellular memory.

Neural signaling events lead to controllable, persistent cluster switches
To this end, we extend a Hodgkin-Huxley type neuron model including (independent) sodium and

potassium channels by a set of 100 small clusters of cooperative channels with the generic activation

kinetics described above (for details on the neuron model, see Materials and methods). On the ionic

nature of the latter, we assume for the moment that they conduct a depolarizing current like for

Figure 3. Prolonged life times of cluster states in the bistable regime. (A) Top: Voltage-clamped in the bistable regime, a cluster of five cooperative

channels can stay in the open or closed state for multiple seconds until it spontaneously switches. The noise source are spontaneous single channel

gating events, visible as the fast fluctuations around the stable states. Bottom: Entering the bistable regime, the residence times in the open and

closed state increase over multiple orders of magnitude. The point of maximal stability ðVmax; tmaxÞ is located at the center; here, a cluster is expected to

stay open or closed for seconds, exceeding by far the single channel time constant tðVÞ (black line). Mean life times are derived from a first passage

analysis, see Materials and methods. (B) Stability of the open and closed cluster configuration depend on the cluster size and the intra channel coupling

j. Larger clusters with stronger intra-channel coupling can be stable for multiple seconds and their bistable range moves to more hyperpolarized

voltages. Note that small clusters with weak coupling are not bistable (white region). Cluster and channel parameters are summarized in Table 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Channel noise can open and close a cluster.
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example calcium channels, which are a potential candidate (Moreno et al., 2016). For the small

number of cooperative channels, we simulate their stochastic gating, whereas for the other ionic cur-

rents, we use a deterministic simulation.

Stimulating the model cell with transient input pulses elicits spiking at a rate that increases with

the stimulus amplitude (Figure 4). Correspondingly, the stimulation amplitude determines the

response of the cooperative channels: At low input amplitudes (and consequently low ensuing firing

rates), few channels in the clusters open transiently, but close again rapidly (Figure 4A, top trace).

When the pulse is over, the cell falls silent and does not generate spikes. In contrast, if the firing rate

during the pulse is large enough, in a subset of clusters all channels open. Moreover, in agreement

with our above observations, these clusters now remain open when the input pulse is over

(Figure 4A, middle and bottom traces). This additional depolarizing conductance suffices to keep

the cell in a firing modus and the model neuron exhibits firing activity that persists beyond the pre-

sentation of the stimulus pulse.

Furthermore, the larger the amplitude of the stimulating pulse, the larger the persistent firing

rate following the pulse (owing to the persistent opening of more clusters). As every cluster of coop-

erative channels has a stable open and closed configuration, the population conductance across all

clusters allows for a quasi-continuous range of persistent currents. When all cluster are open, the

maximal current is reached and the persistent firing rate saturates ( » 15 Hz). According to the gat-

ing properties of cooperative channel clusters, sufficiently hyperpolarizing pulses should be able to

close clusters and hence ‘reset’ the memory of the previous pulse by annihilation of the persistent

activity. Indeed, Figure 4B shows that a hyperpolarizing pulse cancels persistent activity.

In order to ensure maximal stability when there are no inputs to the neuron, the center of the

cluster bistability (�70 mV) coincides with the resting potential (�67 mV). The limited extent of the

bistable range from around �90 mV to �50 mV allows the clusters to react to spikes or strong inhibi-

tion. For the occurrence of graded levels of persistent activity, we choose channels that do not open

instantaneously during a spike. Otherwise, a single spike would open all clusters at once. In contrast,

for slower channels with a time constant exceeding the width of a single action potential (>10 ms),

only a small ratio of the closed channels opens per spike, so that the conductance gradually

increases. The channels considered here are even more inert ( » 100 ms), comparable to slow adap-

tation currents that require multiple spikes to fully develop (Benda and Herz, 2003). Similarly, clus-

ters of inert channels require multiple spikes in fast succession to switch to the open state (minimum

of » 20 Hz, see Figure 4C). In this way, persistent activity at low frequencies cannot open further

clusters and remains stable. Similarly, we find that the slow channels make the clusters robust against

fluctuation-driven firing (Schreiber et al., 2009) - action potentials triggered by noise in the mem-

brane potential (see Figure 4—figure supplement 2). Finally, the cell is slightly depolarized, so that

it spikes in the absence of a stimulus when several clusters are open (see Figure 4C). Even when

there are too few open clusters to induce spiking, they still increase the membrane potential and

leave a form of ‘silent’ memory (not shown).

Interestingly, the bistable clusters also support an ‘inverse’ form of neuronal memory - persistent

activity activated by hyperpolarization and silenced by strong depolarization. For this other form, the

cooperative channel dynamics are the same, but they are required to conduct a hyperpolarizing cur-

rent like for example potassium channels. Then, open clusters act as an additional standing leak cur-

rent and prevent the cell from firing. Permanently closing the clusters by a hyperpolarizing pulse

relieves the cell from this additional leak and allows persistent firing. However, when the cell is stim-

ulated to spike strongly, the clusters return to the open state, restore the standing leak and again

silence the cell (see Figure 4—figure supplement 1). Similarly to depolarization-activated persistent

activity, the memory relies on the cooperative dynamics of the channels, but how the neuron makes

use of this memory changes with their ionic nature.

Cooperative channels mediate graded persistent activity
Graded persistent activity is an intriguing, cell-intrinsic feature of some neurons that has been

reported in vitro under carbachol in the entorhinal cortex, the perirhinal cortex and the amygdala

(Egorov et al., 2002; Navaroli et al., 2012; Egorov et al., 2006). These neurons fire at high fre-

quency in response to depolarizing current pulses and continue to fire stably when the stimulus is

over. The persistent firing rate is lower than the one during the pulse and increases with each new
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pulse presented. Hyperpolarizing pulses lead to graded decreases in firing rate and finally end the

persistent activity, seemingly resetting the cell. While other mechanisms reproducing this firing

mode have been suggested in the literature (Loewenstein and Sompolinsky, 2003; Fransén et al.,

2006), we here add a novel candidate and show that cooperative clusters allow to capture essential

properties of graded persistent activity.

In analogy to the experimental paradigm used by Egorov et al. (2002), our neuron model was

subjected to a series of depolarizing current pulses. Figure 5A shows the persistent firing after the

first pulse as well as the increase of the frequency after each pulse. The persistent frequency was sta-

ble for at least one minute (data not shown). The role of the clusters as the underlying memory vari-

able becomes apparent in the step-like evolution of their conductance, which increases during the

pulses and stays constant in between. In this simulation, we observe four distinct stable persistent

frequencies (from about 3 Hz to 10 Hz). At 10 Hz, further depolarizing pulses fail to increase the fre-

quency of persistent firing. This saturation is reached, when all clusters have been switched to the

open state. In addition, we confirmed that persistent firing can be gradually turned off by hyperpola-

rizing pulses (Figure 5B).

We further investigated which other channel properties - next to strong cooperativity - are essen-

tial for the graded nature of persistent activity (Figure 5—figure supplement 1). We concentrated

on the time constant and the conductance of the channels. Fast channels, as discussed in the previ-

ous section, are less suited than slow channels. The slow channels ensure that clusters gradually

open during stimulated fast spiking and halt during slow spiking, so that the persistent firing remains

stable. The conductance of the channels has to be at an appropriate intermediate level: sufficient to

drive the neuron over threshold, but limited to provide persistent firing frequencies of maximal 10–

15 Hz. Otherwise, faster spiking can open further clusters and the persistent activity increases, so

that it is no longer stable.

Concluding, a small set of cooperative clusters of ion channels - when combined with ‘normal’,

non-cooperative potassium and sodium channels (responsible for the generation of action potentials)

- can reproduce the computationally relevant feature of graded persistent activity.

Cooperative channels induce a switch to mnenomic firing in perirhinal
cortex neurons
Last but not least, we test the cooperativity mechanism experimentally. Our simulations indicate that

clusters of cooperative ion channels can enable the mnemonic firing mode of graded persistent

activity in a simple point neuron. In biological neurons, however, other ionic currents, morphological

effects or noise could interfere with the action of the cooperative channels and undermine their role

as memory units. Thus, we employed the dynamic clamp technique (Sharp et al., 1993; Prinz et al.,

2004) to equip perirhinal cortex (PR) neurons in-vitro with the same cooperative clusters used in our

models, acting as ‘virtual channels’ in real cells (Figure 6). PR neurons have been shown to exhibit

graded persistent activity under activation of muscarinic acetylcholine receptors (Navaroli et al.,

2012). Consequently, we applied no carbachol, so that any form of persistent activity observed in

the recorded PR neurons stems from the clusters of cooperative channels introduced via dynamic

clamp. Accordingly, all recordings were performed in the presence of a synaptic blocker to exclude

network contributions. For details of experiments, see Materials and methods.

The dynamic clamp technique allowed us to control the cluster size, channel interactions and

channel kinetics of the artificial conductances during the experiment. Like in the model neuron simu-

lations, we adapted the cluster parameters so that the bistability range fitted to the properties of

the recorded cell.The resting potential determined the center of the bistable range, whereas the

spike shape set boundaries for the bistable range. Voltage values during afterhyperpolarization lied

above the lower boundary (to prevent reset by a spike’s afterhyperpolarization), but the upstroke of

the action potential exceeded the upper boundary of the bistable range.

Stable recordings with cooperative channel dynamics added via dynamic clamp were obtained

for three PR neurons. Under cooperative conditions, all cells exhibited persistent activity in response

to current stimulation with pulses (Figure 6C). Persisting activity following pulses was graded, that is

the persistent firing rate increased with each presented pulse. As in the mathematical model, hyper-

polarizing pulses lowered the rate of persistent activity and when applied multiple times, silenced it
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Figure 4. Clusters of cooperative channels mediate persistent activity at different levels in a model neuron. (A) Current stimulation with different

amplitudes to test the response of clusters to different firing rates. Left: Voltage traces demonstrating stimulated firing at increasing frequencies.

Whereas the neuron returns to rest after a low amplitude stimulation, after a stronger drive the neuron continues to spike at a stable frequency fPA,

which increases with the frequency of the stimulated firing fdrive. Right: Persistent activity is mediated by the conductance of the clusters, which builds up

during high-frequency spiking and remains stable during low-frequency spiking and at rest. (B) A strong hyperpolarizing step closes the clusters and

stops persistent firing. (C) Left: The cooperative clusters track the input strength; more clusters open when the cell fires at higher frequencies. Firing

below 20 Hz, however, does not open clusters. The number of open clusters can differ across trials (black dots) because of stochastic channel gating.

Right: Persistent activity increases with the number of open clusters, thereby allowing the neuron to represent the input strength after the stimulus has

ended, for example 3 Hz after 29 Hz firing and 9 Hz after 51 Hz firing. Big dots denote the mean for each stimulation strength, small dots the individual

trials. The simulation procedure is described in Materials and methods and parameters are summarized in Table 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Depending on their reversal potential, clusters of cooperative channels can mediate de- or hyperpolarization-activated

persistent activity.

Figure supplement 2. Clusters are robust against noise in the membrane potential.
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(Figure 6D). In the control conditions (identical, yet non-cooperative channel clusters), no persistent

firing could be evoked (Figure 6—figure supplement 1).

Periods of stimulation were followed by a slow afterhyperpolarization (sAHP) in both control and

cooperative conditions, which for paradigms with cooperative gating generated a 3–4 s lasting

refractory period between the stimulation and the self-sustained firing. Interestingly (and in agree-

ment with mathematical modelling), the persistent activity ‘unfolded’ despite these intrinsically gen-

erated dynamics. We note that such sAHP were not expected in the original recordings of

carbachol-induced persistent activity (Egorov et al., 2002), as carbachol blocks sAHPs.

Taken together, the experimental data support the hypothesis that cooperative ion channels can

mediate cellular persistent activity. The persistent dynamics are very robust and could be easily

evoked without further knowledge of the intrinsic properties of the recorded cells, such as the multi-

tude of other ionic currents, complex cell morphology, and the presence of channel noise.

Discussion
Despite a large body of evidence for cooperative interactions between channels pivotal to the ner-

vous system (Iwasa et al., 1986; Dekker and Yellen, 2006; Kim et al., 2014; Choi, 2014;

Dixon et al., 2015; Moreno et al., 2016; Clatot et al., 2017), it is unknown which function coupled

channels have for neural dynamics and computation. Based on a mathematical analysis, we show in

this study that a cluster of cooperative channels can gate with hysteresis and find, in both simulations

and experiments, that multiple such clusters embedded in the membrane of a neuron mediate mne-

monic firing like persistent activity. Therefore, we suggest that ion channel cooperativity might serve

as a cell-intrinsic memory mechanism at the voltage level.

From synaptic learning, adaption of the immune system to epigenetics, many biological memory

systems are founded on strong positive autofeedback (Lisman, 1985; Burrill and Silver, 2010).

Feedback loops are ubiquitous in biology (Thomas and D’Ari, 1990); they amplify signals as in cal-

cium-induced calcium release and enhance sensitivity in controlling protein function by multisite

phosphorylation. In particular, strong feedback enables bistability and memory as in networks of

recurrently connected neurons (Amit, 1990; Durstewitz et al., 2000). Here, we exploit the same

principles for voltage-gated ion channels, where cooperativity can act as a strong auto-feedback and

enables clusters of channels to act as bistable macrochannels with a memory of previous voltage

levels.

Bistability and memory of a cooperative channel cluster
Our gating analysis shows that clusters only become bistable, when channels cooperate strongly.

We suggest two criteria to detect this strong coupling regime: a bimodal distribution of cluster con-

ductance states and a hysteresis in gating. Along these lines, experimental evidence for the strong

coupling regime comes from cooperative calcium channels in the heart (Navedo et al., 2010).

Although these channels couple weakly for the majority of clusters, a few clusters are bistable,

switching between the all open and the all closed state, which implies the presence of strong

coupling.

Our study of channel noise confirms that also small clusters exhibit a robust hysteresis and can be

used for neuronal memory. Cooperativity is inherently local - only close-by channels can interact -

and is therefore restricted to small assemblies of channels (Gutkin and Ermentrout, 2006). In these

small clusters, spontaneous channel fluctuations become a prominent source of noise, a phenome-

non occluded by the assumption of all-to-all coupling in previous studies (Naundorf et al., 2006;

Zarubin et al., 2012). In contrast, the clustered model here captures channel noise and therefore

predicts that the lifetime of the open and closed cluster state decreases in smaller clusters. However,

we find that experimentally observed cluster sizes of about 10 channels (Moreno et al., 2016) - each

gating in the millisecond range - suffice for memory on the timescale of seconds. Consequently, also

small clusters offer a robust memory and, in contrast to one large cluster with only two states, the

ensemble of small clusters yields a more versatile response and has a larger memory capacity.

Ion channel cooperativity as a mechanism for graded persistent activity
Neurons can exploit these hysteretic cluster macrochannels as a short-term, analogue memory of

recent voltage history - spikes open clusters and strong hyperpolarization closes them. In particular,
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the ensemble of clusters can differentiate stimulation strength - very strong or prolonged firing

opens more clusters - so that the level of persistent firing depends on the stimulation history. In this

way, the collection of cooperative clusters offers the memory capacity required for forms of graded

persistent activity previously observed in neurons from entorhinal (Egorov et al., 2002), perirhinal

(Navaroli et al., 2012) and prefrontal cortices (Winograd et al., 2008), as well as the amygdala

(Egorov et al., 2006).

Figure 5. Clusters of strongly cooperative ion channels mediate graded persistent activity in a simple neuron model. (A) Repeated stimulation drives

fast spiking in the neuron, which is followed by self-sustained, stable low-frequency activity at increasing rates (top). With each pulse, the driven, fast

spiking switches more clusters to the open state and adds further stable conductances (bottom). The built-up conductance allows a persistent current

to flow and sustains activity beyond stimulation. (B) In the same manner, strong hyperpolarization closes the clusters and allows to reduce the frequency

of persistent activity until finally the cells stops firing. The simulation procedure is described in Materials and methods and parameters are summarized

in Table 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Memory dynamics with different properties of cooperative channels.
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Our analysis predicts the following prerequisites for persistent activity. First, the cooperative

channels should have a bistable range which comprises the resting membrane potential and whose

borders set the voltage activity needed to switch the persistent activity on and off (see Figure 3 and

Figure 4). In this way, as our dynamic clamp experiments in the perirhinal cortex showed, the mem-

ory is robust for multiple seconds and can be reliably controlled via neural activity. Second, for

graded persistent activity, the channels should have a slow time constant, on the order 50–100 ms

matching the maximal persistent firing frequency. Slow cooperative channels enable a gradual open-

ing of individual clusters during stimulation, prevent progressing excitation during the persistent

period and make the clusters more robust against fluctuation-driven spikes. If the time constant was

too fast, all clusters would open with the voltage elevation of the first action potential and, conse-

quently, only one persistent response state (i.e. all clusters open) would be possible.

The type of ion conducted by cooperative channels, however, is less constrained. In principle,

persistent activity can be mediated by both depolarizing and hyperpolarizing cooperative channels

like calcium or potassium channels, respectively (see Figure 4—figure supplement 1). If clusters

consist of depolarizing calcium channels, persistent activity starts after strong spiking as observed by

Egorov in the entorhinal cortex (Egorov et al., 2002). If on the other hand, clusters consist of hyper-

polarizing potassium channels, persistent activity starts after strong hyperpolarization - similar to

hyperpolarization-activated GPA as reported by Winograd in prefrontal cortices (Winograd et al.,

2008). Independent of the ion type, we expect that the cooperative channels are separate from the

action potential-generating sodium and potassium channels, or at least form only a small subgroup

therein. This separation would prevent memory from interfering with the action potential, the first

based on persistent currents and the latter on regenerative, memoryless currents.

Experimental evidence and comparison to other model of persistent
activity
To date, it is not known, whether neurons exhibiting graded persistent activity express cooperative

ion channels. However, in mammalian cells from the hippocampus, a cooperative variant of CaV1.3,

a calcium channel wide spread in the brain, has been demonstrated to provide persistent depolariz-

ing currents and increase the firing rates of hippocampal neurons (Moreno et al., 2016). Other can-

didates implicated in persistent activity, the transient receptor potential cation (TRPC) channels

(Zhang et al., 2011), are known to cluster and therefore provide the spatial proximity required for

cooperativity (Nilius and Owsianik, 2011). However, a recent study showed that graded persistent

activity in the entorhinal cortex of mice does not require TRPC channels (Egorov et al., 2019). Gen-

erally, the channels required for persistent activity are still under debate. As our work demonstrates,

only a small fraction of channels has to be cooperative to produce persistent activity, so that they

might be easily overlooked, especially if cooperativity depends on other intracellular regulators like

calmodulin (Moreno et al., 2016).

As a model of persistent activity, cooperativity shares positive feedback as the core principle with

other hypothesis like calcium modulated conductances, but differs in several aspects. The central dif-

ference is that coupled channels have an inherent, direct feedback mechanism - one channel open-

ing facilitates another - whereas independent channels require an indirect interaction. Accordingly,

previous studies suggested a feedback cycle of spiking, calcium inflow and a calcium modulated

conductance as the basis of persistent spiking (Rodriguez et al., 2018). A direct consequence is that

memory in the case of calcium modulated channels requires spiking, whereas cooperative clusters

could also implement a silent memory - a long lasting change of excitability after stimulation. How-

ever, silent memories are also possible in extended models of calcium modulation, where a rise in

calcium triggers persistent conductance changes through intracellular signaling (Fransén et al.,

2006; Winograd et al., 2008). Another difference is that models based on calcium modulation natu-

rally address the finding that blocking calcium channels or strong calcium buffering prevents persis-

tent activity (Egorov et al., 2002; Cui and Strowbridge, 2018). For the cooperativity hypothesis,

this central role of calcium could imply a calcium regulated coupling, like in the case of calcified cal-

modulin mediated channel interactions (Moreno et al., 2016).

As mediators of graded persistent activity, clusters of cooperative channels could be the compu-

tational substrate of important cognitive processes such as short term memory and evidence accu-

mulation (Zylberberg and Strowbridge, 2017). Beyond graded persistent activity, the cluster
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bistability may serve other plasticity mechanism of intrinsic excitability such as dendritic attenuation

or boosting of synaptic inputs (Marder et al., 1996; Debanne et al., 2019).

Cooperativity dynamically regulates the computational repertoire of
ion channels
An attractive feature of cooperative channels is the computational flexibility. For a cell-intrinsic mem-

ory on demand, biophysical modulators could turn on and off the cluster bistability. Bistability only

emerges, when the channels are coupled strongly and the cluster consists of a sufficient number of

Figure 6. Dynamic clamp experiment. (A) Intracellular recording of a perirhinal cortex neuron in dynamic clamp mode. The computer simulates the

state of clusters of cooperative channels given the measured membrane potentials and emulates the effect of their conductance to the neuron’s activity

by inserting a corresponding current. (B) Neurolucida drawing of the recorded neuron. (C) Graded persistent activity of the recorded neuron mediated

by the multi stable conductance of the clusters of cooperative channels. (D) Hyperpolarization brings the cell back to rest via intermediate levels of

persistent firing. In control recordings with identical, yet- independent channels, no persistent firing was observed (Figure 6—figure supplement 1).

Slice preparation, electrophysiological setup and the dynamic clamp emulation of the clusters are described in Material and methods. Cluster

parameters are summarized in Table 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Cooperative interactions are necessary to mediate graded persistent activity.
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channels. Thus, one regulatory mechanism could be to change the coupling as in the case of calcium

regulated cooperativity (Moreno et al., 2016). Another regulatory mechanism could be to control

clustering of channels, which is subject to factors like neural activity (Misonou et al., 2004), extracel-

lular pH (Sumino et al., 2014), ionic concentrations (Eisenach et al., 2014) and lipid signaling

(Hilgemann et al., 2018). As a composite of multiple channels, a cluster macrochannel is a more

flexible conductance than its ‘hard-coded’ parts.

The emergence of memory in a cluster of cooperative, but memoryless channels suggests a gen-

eral role of ion channel cooperativity. Cooperative interactions guide the formation of novel macro-

channels with a gating repertoire absent at the single channel level. At the level of the neuron, the

common membrane potential orchestrates sodium and potassium channel gating to generate the

spike. In the same way, cooperativity could orchestrate gating in small channel assemblies to enrich

neural dynamics. Correspondingly, it has been suggested that different TRP channels from hetero-

multimeres to create a wide variety of functions (Nilius and Owsianik, 2011). Another example of a

heterogenous cluster is the assembly of BK and CaV, 1.3 channels (Berkefeld et al., 2006;

Vivas et al., 2017). A quantitative understanding of these channel complexes requires detailed

experimental characterization of the channel couplings like in Sato et al. (2018). Still, simple cou-

pling models like the one presented here already reveal the potential of cooperativity to provide

emergent gating functions.

In summary, clusters of cooperative channels broaden the computational repertoire of neurons.

Extrapolating from the current study on cell-intrinsic memory, ion channel cooperativity can mediate

direct feedback loops between channels and therefore could allow to form macrochannels with

novel gating dynamics. If, additionally, neuromodulation can control cooperative interactions, ion

channel cooperativity provides an extremely versatile cell-intrinsic mechanism to enrich and regulate

neural activity.

Materials and methods

Neuron and channel model
Isolated ion channel model
We assume that the cooperative channels have a single activation gate and model their gating

dynamics in isolation according to the calcium channel dynamics from the Morris-Lecar model

(Morris and Lecar, 1981).

The activation kinetics are

dm

dt
¼mðVÞ�m

tðVÞ (1)

where the steady state activation is

mðVÞ ¼ 1

2
1þ tanh

V �V1=2

k

� �� �
; (2)

and the activation time constant reads

tðVÞ ¼ tcosh�1
V �Vm

s

� �
: (3)

Correspondingly, the channel has two states, open (O) and closed (C) and their kinetics reads

C
bðvÞ
��*)��
aðvÞ

O;

with opening rate

aðVÞ ¼mðVÞ
tðVÞ ;

and closing rate
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bðVÞ ¼ 1�mðVÞ
tðVÞ :

The channels have a single channel conductance gcoop and reversal potential Ecoop. Original param-

eters are Ecoop ¼ 100mV, V1=2 ¼�1mV, k¼ 15mV, t¼ 0:05ms, Vm ¼�1mV and s¼ 30mV, see

Zarubin et al. (2012). Unless reported otherwise, we choose a single channel conductance of

gcoop ¼ 2:5pS as reported for calcium channels (Church and Stanley, 1996). Modifications of these

parameters are summarized in Table 1.

Cooperativity model
In order to capture cooperative interactions among channels, we model the activation of a channel

as dependent on both the membrane potential and the state of near-by channels (Naundorf et al.,

2006). Specifically, we assume that the activation em of a channel among o open neighbours has the

form

emðV ;oÞ ¼mðV þ ojÞ: (4)

where j is the coupling strength between two channels. Therefore, if the coupling is positive j>0,

opening of a neighbouring channel shifts the activation curve towards lower membrane potentials.

As a result, a channel with open neighbours has itself an increased open probability, see Figure 1A.

For the time constant, we posit that the same shift applies,

etðV ;oÞ ¼ tðV þ ojÞ: (5)

Cluster model
Next, we introduce the experimentally observed clustering of the channels. We presume that only

channels in the same cluster are close enough to cooperate, so that channels in different clusters

gate independently. For a cluster, a characteristic measure of cooperativity is the maximal shift J,

which corresponds to the shift of the activation curve when all neighbours of a channel are open.

Under the simplifying assumption of constant coupling strength j among all channels, the maximal

shift in a cluster of size S amounts to J ¼ ðS� 1Þj.
A note on comparing coupling strengths with previous studies: We choose J for the maximal shift

in accordance with the notation of Zarubin et al. (2012). In contrast, Naundorf et al used J to

denote the coupling strength between two channels, which in the work presented here is

j (Naundorf et al., 2006).

In a cluster of size S with o open channels, all S� o closed channels open with rate

eaðV ;oÞ ¼ aðV þ ojÞ

and all o open channels, having only o� 1 open neighbours, close with rate

ebðV ;o� 1Þ ¼ bðV þðo� 1ÞjÞ:

Instead of tracking the cluster state in terms of each constituting channel, we can also view the

cluster as a macrochannel. For S two-state channels, this macrochannel has Sþ 1 conductance states,

from all channels closed to all channels open. In a small time interval, at most one channel opens or

closes, so that transitions are restricted to adjacent cluster states with a difference of one open

channel,

o
boþ1;oðvÞ
��*)��
ao;oþ1ðvÞ

oþ 1:

The macrochannel rates result from the number of channels that are possible candidates for the

transition and the single channel transition rate. Therefore, in a cluster with o open channels, the

opening of one of the other S� o closed channels happens with rate

ao;oþ1ðVÞ ¼ ðS� oÞaðV þ ojÞ: (6)
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Correspondingly, from a state with oþ 1 open channels, the closing of one of the open channels

each having o open neighbours reads

boþ1;oðVÞ ¼ ðoþ 1ÞbðV þ ojÞ: (7)

Figure 1C shows simulated traces of clusters and demonstrates their behaviour as

macrochannels.

Neuron model
We used a conductance-based neuron model with a single isopotential compartment,

C
dV

dt
¼ Iapp� Icluster � IV ; (8)

where Icluster is the current through the clusters of cooperative channels, IV summarizes the other

channel currents, Iapp is a stimulus current and C is the capacitance of the membrane.

Cluster current
We model the cooperative channels arranged in N clusters, each composed of S identical channels.

Then, the current through all clusters is determined by the total number of open channels Ocoop

among all clusters,

Icluster ¼ gcoopOcoopðV �EcoopÞ; (9)

where Ecoop denotes the reversal potential of the considered ions. For most of the article, we

assume that the cooperative channels conduct a depolarising current with Ecoop ¼ 100mV (e.g. Ca2+

or Na+). In Figure 4—figure supplement 1, we then consider the case of a hyperpolarising current

with Ecoop ¼�100mV (e.g. K+).

In a description, where each channels is tracked, Ocoop simply counts the number of channels in

the open state. In the alternative macrochannel description of the clusters, the total number of open

channels is obtained from the number of macrochannels in the different conductance states, so

Ocoop ¼
XS

o¼0

goo;

where go is the number of clusters with o open channels. This occupancy vector g can also be

used to capture the distribution of conductance states of a single cluster over time (Figure 1C).

As opposed to the other ionic conductances, the dynamics of the clusters is modeled on the level

of the underlying jump process generated by the single-channel gating events. Such a detailed

description is necessary to account for the fact that cooperative interactions reduce the number of

independent stochastic units and therefore increase fluctuations (1=
ffiffiffiffi
N

p
as opposed to

1=
ffiffiffiffiffiffi
SN

p
White et al., 2000). Effectively, the N clusters represent the independent units, so that with

around 100 clusters, a jump process description is adequate to account for the discrete nature of

the fluctuations.

Leak and action potential mediating currents
We choose a type 1 neuron model to account for the continuous low-frequency firing range as

observed in graded persistent activity (Egorov et al., 2002). The model presented is a version of

the Traub-Miles model (Benda, 2002), which comprises action potential generating potassium and

sodium currents and a leak current,

IV ¼ AðINaþ IK þ ILÞ:

The original model is formulated with conductance densities and is independent of the neuron

surface area A. In the present model, the cluster conductance is defined in absolute terms, because

it stems from a concrete number of channels with a fixed conductance. Correspondingly, we turn

the remaining currents and the capacitance into absolute quantities by choosing a surface area, for

details see Choosing a neuron surface. The capacitance density is �C¼ 1�F=cm2.
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In the following, all gating variables have first order kinetics of the form

_x¼ axðVÞð1� xÞ�bxðVÞx: (10)

Sodium current

INa ¼ �gNam
3hðV �ENaÞ

with �gNa ¼ 100
mS
cm2, ENa ¼ 48mV and gating variables m and h with rates

amðVÞ ¼ 0:32kHzðV=mVþ 54Þ=ð1� expð�0:25ðV=mVþ 54ÞÞÞ;

bmðVÞ ¼ 0:28kHzðV=mVþ 27Þ=ðexpð0:2ðV=mVþ 27ÞÞ� 1Þ;

ahðVÞ ¼ 0:128kHzexpð�ðV=mVþ 50Þ=18Þ;

bhðVÞ ¼ 4:0kHz=ðexpð�0:2ðV=mVþ 27ÞÞþ 1Þ:

Potassium current

IK ¼ �gKn
4ðV �EKÞ

with �gK ¼ 200
mS
cm2, EK ¼�82mV and gating variable n with rates

anðVÞ ¼ 0:032kHzðV=mVþ 52Þ=ð1� expð�0:2ðV=mVþ 52ÞÞÞ;

bnðVÞ ¼ 0:5kHzexpð�ðV=mVþ 57Þ=40Þ:

Leak current

IL ¼ �gLðV �ELÞ

with �gL ¼ 0:1 mS
cm2 and EL ¼�67mV.

Choosing a neuron surface
When we fix the peak conductances of the other ionic currents, the contribution of the cluster cur-

rent for a fixed number of cooperative channels depend on the neuron area A. For example, for a

small neuron area, the cluster conductance becomes relatively larger and could drive faster persis-

tent spiking than for a large neuron area. In choosing a neuron area, we try to meet two characteris-

tics of graded persistent activity, namely its low-frequency range and its quasi-continuous nature.

Specifically, the frequency of persistent firing is usually located in the low-frequency range below

15 Hz, which sets a limit to the conductance of the clusters. In terms of conductance densities, we

find that close to rheobase Iapp ¼ 0:105�A=cm2 and with a reversal potential Ecoop ¼ 100mV common

for Ca2+ channels, a cooperative channel conductance density of about �gcoop » 0:0004
mS
cm2 is sufficient

to drive spiking at about 10 Hz.

Furthermore, the levels of persistent firing are assumed to be quasi-continuous, which requires a

large number of clusters with a small conductance. In all simulations, we assumed about 100 clusters,

which in principle allow 100 levels of persistent firing. In a frequency range of up to 10 Hz, this would

correspond roughly to a frequency resolution of 0.1 Hz, which lies below the experimentally

observed grading of about 0.5 Hz (Fransén et al., 2006). Furthermore, the clusters have to be of a

certain size to be bistable on the timescales of seconds, as shown in Figure 3. Hence, for a high

number of clusters N = 100 with size S = 8 and a typical single channel conductance g ¼ 2:5pS, the

total cooperative channel conductance is gcoop ¼ 2�S.

Therefore, we arrive at a required surface area of,

A¼ gcoop

�gcoop
¼ 0:005cm2;
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which is a large neuron area compared to typical neuron surface areas as reported in literature

(e.g. Ambros-Ingerson and Holmes, 2005). This large membrane area also explains the rather high

currents that are needed to excite and hyperpolarise the neuron. In principle, a smaller neuron area

could be reached by smaller cluster numbers, smaller cluster sizes, a lower reversal potential or an

increase of the firing range.

Stimulation with a white noise current
We investigate how robust the clusters are against noise in the membrane potential

(Schreiber et al., 2009). In particular, we mimic fluctuating synaptic input to the neuron, a major

noise source, by injecting a white noise current with standard deviation sI and time resolution dtnoise,

InoiseðtÞ ¼
X

k

ik Hðt� k dtnoiseÞ�Hðt�ðkþ 1ÞdtnoiseÞð Þ; ikfromNð0;s2

I Þ;

where HðxÞ is the Heaviside step function and Nð0;s2

I Þ denotes a normal distribution with zero

mean and variance s2

I .

We choose a time resolution of dtnoise ¼ 0:5ms, oriented at the temporal width of synaptic cur-

rents, and then vary the noise intensity (see Figure 4—figure supplement 2). Note that the simula-

tion step size is much smaller than the temporal resolution of the noise (see Simulation of the neuron

model).

Overview of cluster and cooperative channel parameters.

Simulation and analysis of cluster dynamics
Mean channel activation in a cluster
In a large cluster of cooperative channels, the number of open channels is expected to coincide with

its mean �o ¼ mcoopðVÞS, where mcoopðVÞ is the average activation of the channels in the cooperative

ensemble. Moreover, the average activation reflects how much the open neighbours shift the activa-

tion curve,

mcoopðVÞ ¼mðV þ �ojÞ;

where we use Equation 4 for the cooperativity altered activation and mðVÞ is the single channel

activation function. A rewrite of the shift term �oj¼mcoopðVÞSj»mcoopðVÞJ results in a self-consistency

relation (Naundorf et al., 2006, Supplementary Notes 2),

mcoopðVÞ ¼mðV þmcoopðVÞJÞ: (11)

We numerically solve Equation 11 for a range of membrane potentials to obtain the activation

curves mcoopðVÞ for different couplings J. As discussed in the results on cluster dynamics, the activa-

tion becomes bistable for sufficiently strong coupling J>Jcrit (Figure 1).

The critical coupling strength depends on the form of the single channel activation mðVÞ. For the
activation curve in Equation 4, it reads (derivation below)

Jcrit ¼ 2k:

Hence, the critical coupling Jcrit coincides with the width of the activation curve. Put differently,

bistability emerges, when cooperative facilitation by the neighbouring open channels can keep a

channel open despite a low membrane potential at which the channel would usually be closed. Thus,

when all neighbours are open, the shift has to exceed the width of a channel’s activation curve

(Figure 1A).

Derivation of the critical coupling strength
For the derivation of the critical coupling strength, we follow the argument of Huang et al. (2012),

(Equations 4-10). They consider cooperative sodium channels and are interested in the coupling

strength, where the channel activation becomes a step function. This coupling strength in principle

also induces bistability; the steps in the activation curve occur at the edges of the bistable range.

However, sodium channels transit to the inactivated state when they are open and thus they cannot

be bistable.
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If a bistable range exists, the number of solutions of the self-consistency Equation 11 has to

change from one to three (bistable) and back to one again, when the voltage is increased. From this

observation, we can deduce a condition in the coupling strength J. Namely, each solution mc corre-

sponds to an intersection of the left and right hand of Equation 11,

mc ¼mðV þmcJÞ

and for the voltages where the number of solutions change, these intersections have to be tan-

gential, that is

d

dmc

mc ¼
d

dmc

mðV þmcJÞ

) 1¼ J

2k
1� 2mðV þmcJÞ� 1ð Þ2

� �
:

Here, we use that dmðVÞ
dV

¼ 1

2k
1�ð2mðVÞ� 1Þ2

� �
. Again using the self-consistency relation

mc ¼mðV þmcJÞ, we observe that the solution has to obey

J

k
m2

c �
J

k
mc þ

1

2
¼ 0:

Finally, as the solution has to be real, bistability sets the following condition on

J : J
k

� �2�2
J
K
� 0) J � 2k¼ Jcrit:

Mean first passage times between cluster states
In order to study the stability of the open and closed cluster state, we calculate the mean first pas-

sage times between these two states. We employ the macrochannel description, where for a cluster

of size S the dynamics form a continuous-time Markov process with transition matrix

QijðVÞ ¼ di;jþ1ai�1;iðVÞþ di;j�1biþ1;iðVÞ; 0� i; j� S:

QijðVÞ denotes the voltage-dependent transition rate from cluster state j to i and summarizes the

opening and closing rates from Equation 6 and 7.

Over a small time interval, the transition rates become transition probabilities and the continuous

Markov chain can be discretized. That is, choosing a small time interval Dt, such that for all i; j it holds

QijDt � 1, the transition probabilities are Pij ¼ QijDt for i 6¼ j and Pii ¼ 1�P
j 6¼i Pji. For a discrete Mar-

kov chain, the mean first passage steps K (with Kij denoting the mean number of steps required to

reach state i from state j) ) can be obtained by solving the system of equations given by Allen (2010),

see p.69)

K ¼ EþðK� diagðKÞÞP;

where E is a ðSþ 1Þ� ðSþ 1Þ matrix of ones. Multiplication with the time interval recovers the

mean first passage times M ¼KDt.

For the stability of a bistable cluster, the mean first passage times between the open and closed

state are of particular interest: the average time �tO!C it takes until a cluster spontaneously switches

from the state with all channels open to the one with all channels closed or vice versa �tC!O. In terms

of M, they read �tO!C ¼ M0;S and �tC!O ¼ MS;0. Figure 3A depicts the mean residence times as a func-

tion of the membrane voltage.

Numerical simulation of cluster dynamics
For the simulation of the cluster dynamics at a constant membrane potential, we use both a fixed

time step method and the Gillespie algorithm (Gillespie, 1977).

In the fixed time step method, we track the state of each channel in the cluster. For each time

step, we look up the number of open channels, evaluate the corresponding opening and closing

rates and obtain the transition probabilites by multiplying the rates with the time step. Finally, a
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random number generator is used to update the state of the channels according to the transition

probabilities. This method is used for the cluster simulations in Figure 1 and Figure 2.

For the application of the Gillespie algorithm (Gillespie, 1977), we switch to the macrochannel

description, where the states only specify the number of open channels, but ignore the configuration

of the individual channels. Specifically, for clusters of size S, the Sþ 1 conductance states represent

the species in the Gillespie algorithm, whereas the 2S transitions between adjacent cluster states

with their respective rates form the reactions.

Simulation of the neuron model
In the neuron model, the coupled dynamics of the continuous variables, voltage (Equation 8) and

gating variables (Equation 10), and the jump process of the cooperative channels form a hybrid sto-

chastic system (Anderson et al., 2015). For the simulation of spiking activity, we use brute, a custom

written fixed time step algorithm.

BRUTE algorithm
The brute algorithm tracks the state of each channel and uses a fixed time method to update their

states. In order to take into account the cooperative interactions among channels in one cluster, it

considers each cluster separately and calculates the opening and closing rate of the channels

therein. For N clusters of size S, the channel states can be cast into a matrix C 2 f0; 1gN�S, which the

algorithm updates in each time step.

In the following, the membrane potential and the continuous gating variables are summarized in

x and the current time is t. Channel states are encoded as 0 (closed) or 1 (open). Then, in pseudo

code, the update algorithm with time step Dt is

1. Initialize: set t ¼ t0, set the initial membrane potential and gating variables x0 and set the initial

channel states C 2 f0; 1gN�S

Table 1. Cluster and cooperative channel parameters.

N: number of clusters, S: cluster size, J: overall coupling, j: channel-channel coupling, V0:5: half activation, k: width of the channel activa-

tion, t: time constant of the channel with maximum at attained at Vm and width s, gcoop: single channel conductance and Ecoop: reversal

potential.

Figure N S J j V0:5 k t Vm s gcoop Ecoop

mV mV mV mV ms mV mV pS mV

Figure 1 (independent) 1 6 0 0 �1 15 0.5 �1 30 - -

Figure 1 (weak coop.) 1 6 22.5 4.5 �1 15 0.5 �1 30 - -

Figure 1 (strong coop.) 1 6 70 14 �1 15 0.5 �1 30 - -

Figure 2 (independent) 1 6 0 0 �1 15 0.5 �1 30 - -

Figure 2 (cooperative) 1 6 100 20 �1 15 0.5 �1 30 - -

Figure 3 1 5 100 25 �1 15 0.5 �1 30 - -

Figure 4 100 8 80 11.4 �30 10 120 �30 20 2.5 100

Figure 5 100 8 80 11.4 �30 10 120 �30 20 2.5 100

Figure 6c 90 8 101.5 14.5 �10 15 100 �10 30 1 100

Figure 3—figure supplement 1 1 5 100 25 �1 15 0.5 �1 30 - -

Figure 4—figure supplement 1A 100 8 80 11.4 �30 10 120 �30 20 2.5 100

Figure 4—figure supplement 1B 100 8 80 11.4 �30 10 120 �30 20 10 �100

Figure 4—figure supplement 2 100 8 80 11.4 �30 10 120 �30 20 2.5 100

Figure 5—figure supplement 1A,B 100 8 80 11.4 �30 10 10–240 �30 20 2.5 100

Figure 5—figure supplement 1C,D 100 8 80 11.4 �30 10 120 �30 20 0.5–10 100

Figure 6—figure supplement 1 (independent channels, red) 90 8 0 0 �10 15 100 �10 30 1 100

Figure 6—figure supplement 1 (cooperative channels, black) 90 8 101.5 14.5 �10 15 100 �10 30 1 100
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2. Generate an array of random numbers r 2 ½0; 1�N�S

3. Numerically integrate voltage and gating variables dynamics (Equation 8; 10) until t þ Dt

4. Update each cluster, that is each row i of C as follows

1. calculate the number of open channels oi ¼
P

j Cij

2. update each channel Cij

. if Cij ¼ 1 and rij<bðV ; oi � 1ÞDt then Cij ¼ 0

. else if Cij ¼ 0 and rij<aðV ; oÞDt then Cij ¼ 1

5. Increment t by Dt and check if simulation is finished, otherwise continue with step 2

In all simulations, we chose a time step Dt ¼ 0:25us. At this small time resolution, we observed a

convergence of the cluster dynamics. A python implementation of the algorithm with a simple exam-

ple is available at https://itbgit.biologie.hu-berlin.de/cooperativity/brutelib.git (copy archived at

https://github.com/elifesciences-publications/49974-brutelib).

Dynamic clamp experiment
Preparations of mouse brain slices
Dynamic clamp experiments were conducted with horizontal mouse brain slices (300–450 mm thick)

containing the hippocampus, entorhinal and perirhinal cortices. Brain slices were obtained from male

C57BL/6N mice (4–8 weeks old, 20–25 g) using standard proceedings (Roth et al., 2016). Mice were

purchased from Charles River Laboratories (Sulzfeld, Germany, Strain Code: 027) and were taken

care of in the Interfaculty Biomedical Research Facility in Heidelberg. Housing was provided in Mak-

rolon II cages with a maximum of three animals and tissue nesting material made of cellulose. Ani-

mals had ad libitum access to food and water. All experimental protocols were conducted in

compliance with German law and with the approval of the state government of Baden-Württemberg

(Project T100/15).

In order to minimize the stress of euthanasia, mice were sedated by exposure to CO2 in a rising

concentration (20–30 l/h sourced from a compressed gas cylinder) until the animal fell unconscious.

Mice were subsequently killed by decapitation and the brain was quickly removed and transferred to

4˚C cold, carbogen buffered (95% O2, 5% CO2 at pH 7.4) artificial cerebrospinal fluid (ACSF) contain-

ing the following (in mM): 124 NaCl, 3 KCl, 1.8 MgSO4, 1.6 CaCl2, 10 glucose, 1.25 NaH2PO4, 26

NaH2CO3. Brain slices were cut using a vibratome (Leica VT1200S, Nussloch, Germany). Then, slices

were transferred to a Haas-type interface chamber (Haas et al., 1979), perfused with ACSF at a rate

of 1.2–1.4 ml/min at 34 ±1˚C. Slices rested for at least 2 hr before electrophysiological recordings.

Electrophysiological recordings
Single-cell recordings were obtained from principal neurons of the perirhinal cortex layer II. These

neurons show graded persistent firing under activation of muscarinic cholinergic receptors

(Navaroli et al., 2012).

The recordings were obtained with sharp microelectrodes (tip resistance 100–130 MW) pulled

from 1.0 mm borosilicate glass capillaries (Harvard Apparatus, Cambridge, UK, Cat. No. 30–0019)

on a DMZ Universal Electrode Puller (Zeitz, Martinsried, Germany) and filled with 2 M K-acetate that

in some cases contained 1% biocytin.

Recorded signals were low-pass filtered at 10 kHz, amplified x10 using an SEC-05X amplifier (npi

electronic, Tamm, Germany) and digitized at 20 kHz with an analog to digital converter (MICRO

1401 mkII ADC, CED, Cambridge, UK). Signals were visualized and saved using Spike2 software

(CED, Cambridge, UK). All intracellular recordings were conducted in bridge mode and bridge bal-

ance was monitored and adjusted during experiments.

Positive and negative current pulses (duration and amplitudes controlled by Spike2 Software and

SEC-05X amplifier) were applied via the recording electrode to determine input resistance and firing

properties. Input resistance was estimated during the experiment and later calculated off-line using

Matlab software (The Mathworks, Natick, MA). Resting membrane potential was calculated by sub-

tracting the potential offset after withdrawal from the cell at the end of the recording.

All cells selected for measurements had an input resistance above 20 MW, a stable membrane

potential throughout the recording and exhibited firing properties of principal neurons. Membrane

potential of neurons was controlled by manually adjustable DC current injection through the
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recording electrode to determine the current needed for intended firing frequencies and depolarisa-

tion near threshold.

To prevent spontaneous network activity in slices, all experiments were performed in the pres-

ence of ionotropic glutamate receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 30

mM, Cat. No. 1045) and DL-2-amino-5-phosphonovaleric acid (APV, 10 mM, Cat. No. 0105) obtained

from Tocris (Bristol, UK). Drugs were bath applied by continuous perfusion. Biocytin (Cat. No.

B4261) was obtained from Sigma-Aldrich (Taufkirchen, Germany).

Biocytin staining
After recordings the slice was fixed in 4% PFA in phosphate buffer (PB) at 4˚C for 90 min and then

stored in phosphate buffered saline (PBS) at 4˚C until further processing. It was washed 3 � 15 min

to remove excess PFA and incubated with Avidin - Alexa Fluor 488 conjugate (1:1000; Life Technolo-

gies, Carlsbad, CA) diluted in PBS containing 5% normal goat serum and 0.2% Triton X at room tem-

perature under light protection for 2 hr. The slice was then washed in PBS for 15 min, incubated with

4,6-diamidino-2-phenylindole (DAPI; 1:10,000; Carl Roth, Germany) in H2O for 3 min, washed again

in PBS (15 min) all at room temperature and afterwards embedded in Mowiol 4–88 (Sigma-Aldrich,

Taufkichen, Germany).

Fluorescence images were acquired with a Nikon A1+ Confocal Microscope (Nikon, Düsseldorf,

Germany) and reconstruction of the neuron was obtained from z-stack confocal images using Neuro-

lucida tracing software (MBF Bioscience, Williston, VT).

Dynamic clamp
Data acquisition and dynamic clamp loop were controlled by RELACS, V0.9.8, RRID:SCR_017280.

The feedback loop run at a frequency of 20 kHz and consisted of sampling the membrane potential,

updating the state of the clusters of cooperative channels and injection of the corresponding current

(Equation 9). The software allowed online adjustments of the following model parameters:

. the channel to channel coupling strength j

. cluster number N and cluster size S

. single channel conductance gcoop and reversal potential Ecoop

. parameters of the channel kinetics, namely maximum of the time constant t and the half-acti-
vation voltage V1=2

Real time cluster update in the dynamic clamp loop
In order to meet the real time requirement imposed by dynamic clamp, we employ the macrochan-

nel description of the clusters (see Cluster model). In each time step, the macrochannel description

updates the cluster population in the Sþ 1 conductance states of a cluster by evaluating the 2S pos-

sible transitions. This provides a huge reduction of transitions, when compared to the N � S state

update required to each channel.

In pseudo code, the update algorithm works as follows:

1. Initialize: set initial cluster population g0 2 f0; :::;NgSþ1

2. Get currently measured membrane potential V

3. Generate two arrays of random numbers ropen 2 ½0; 1�S and rclose 2 ½0; 1�S for the 2S opening and
closing reactions

4. Calculate propensities of the 2S reactions via the macrochannel transition rates in Equation 6
and Equation 7.
. lopeno ¼ goao;oþ1ðVÞ for o 2 f0; S� 1g
. lcloseo ¼ goþ1boþ1;oðVÞ for o 2 f0; S� 1g

5. Update cluster populations

. S opening reactions: if ropeno <lopeno Dt then increase goþ1 by one and decrease go by 1

. S closing reactions: if rcloseo <lcloseo Dt then increase go by one and decrease goþ1 by 1
6. Wait until the time interval Dt has passed and continue at step 2

The successive update of the cluster populations can lead to a problem for states, which have a

population of one and where both the opening and the closing reaction happen. In our solution, we
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chose to assure a positive population for all states and reject the closing reaction in such a case. In

an offline comparison with the exact Gillespie algorithm, we tested that our update algorithm accu-

rately captured the evolution of the clusters despite this slight bias toward opening reactions.

The algorithm with instructions how to use it in the recording software RELACS is available at

https://itbgit.biologie.hu-berlin.de/cooperativity/dynamic_clamp_model (copy archived at https://

github.com/elifesciences-publications/49974-dynamic_clamp_model).

Experimental protocol
In all recordings, we first measured the f-I curve of the neuron and determined the resting potential

and the form of the action potentials. With these neuron properties at hand, we chose the model

parameters for the dynamic clamp experiment. First, we aimed at a total conductance of the cooper-

ative channels, that allowed a current to flow sufficient for about 10 Hz persistent firing. Correspond-

ingly, we chose the number of cooperative channels, given that channel conductance and reversal

potential were orientated at values from calcium channels. Second, we split the channels into clus-

ters such that we obtained both a large number of clusters and a sufficient cluster size for long-term

stability. Third, we adjusted the bistable regime of the clusters such that its center coincided with

the resting potential and its borders remain far below the spike peak. To this end, we selected the

appropriate coupling strength and half-activation voltage of the channels.

We used the stimulation protocol of consecutive pulses, either depolarising or hyperpolarising, to

test for graded persistent activity. Pulses had a length of 4–6 s with a period of about 25 s. Often,

we saw channels opening persistently during the depolarising pulses, but no persistent activity. In

these cases, we would increase the baseline current to bring the neurons closer to threshold. Addi-

tionally, we run control protocols with zero coupling to test whether the cell displayed no persistent

activity in the absence of cooperativity (Figure 6—figure supplement 1).

Analysis
First, we categorised the recordings according to the amplitude and the number of pulses,

for example UP-4 for a series of four depolarising pulses or DOWN-1 for one hyperpolarising pulse.

Then, the inter spike intervals were analysed during and after the pulses as well as before and after

the pulse protocol. For the inter spike intervals, we excluded the first 1000 ms of each interval to

account for transient currents. Next, we defined a simple success criteria for a protocol: during an

UP (DOWN) protocol, the frequency of persistent firing increases (decreases) with each pulse. During

increase or decrease successive periods of silence were allowed to include runs where the persistent

firing would only start after for example the second pulse. From the three recorded cells, we got

successful runs of every protocol: DOWN-1 (two successful/3 total), DOWN-3 (2/2), DOWN-4 (6/8).

UP-1 (7/15), UP-3 (1/1), UP-4 (4/7). An overview of all protocols is available at https://gin.g-node.

org/ppfeiffer/cooperative_channels_in_biological_neurons_via_dynamic_clamp, together with the

raw data and python scripts for analysis.

For the presented recordings, the model parameters are summarized in Table 1.
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Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.49974.sa1

Author response https://doi.org/10.7554/eLife.49974.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

The model for the cooperative ion channels and the neuron are described in the manuscript. Soft-

ware for simulation of the cooperative channels is provided in git repositories linked in the manu-

script (https://itbgit.biologie.hu-berlin.de/cooperativity/brutelib; copy archived athttps://github.

com/elifesciences-publications/49974-brutelib; and https://itbgit.biologie.hu-berlin.de/cooperativity/

dynamic_clamp_model; copy archived at https://github.com/elifesciences-publications/49974-

dynamic_clamp_model). The recordings and analysis obtained in the dynamic clamp experiments are

explained in the manuscript and are publicly available at https://gin.g-node.org/doi/cooperative_

channels_in_biological_neurons_via_dynamic_clamp.
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Figure 3—figure supplement 1. Channel noise can open and close a cluster. (A) Clamped at a fixed voltage in

the bistable regime, a cluster of cooperative channels slowly switches between the open and closed state. In both

cases, when a cluster opens (black dot) or closes (white dot), this quasi-synchronous gating of all channels is

triggered by channel noise and amplified by cooperativity. (B) Zoom on the exemplary opening (left) and closing

(right) events in A. The cooperative interactions spread single channel switches by changing the rates for the next

opening (solid) or closing (dashed) event. Either channels open and facilitate further openings or channels close

and decrease the facilitation of their neighbors. Note that the cluster is stable against single channel gating

events; when only one channel opens, the increased opening rate (0.03 kHz to 0.38 kHz) is still ten-fold smaller

than the closing rate (5.48 kHz). Cluster parameters are summarized in Table 1.
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Figure 4—figure supplement 1. Depending on their reversal potential, clusters of cooperative channels can mediate de- or hyperpolarization-

activated persistent activity. (A) Depolarization-activated persistent activity. After stimulated spiking, the neuron continues to spike, because of the

depolarizing current (Ecoop=100 mV) through the persistently open clusters (bottom trace). (B) Hyperpolarization-activated persistent activity. A very

distinct mnemonic firing behavior is possible with clusters of cooperative channels that have the same dynamics as the ones in A, but conduct a

hyperpolarizing current (Ecoop=-100mV). When such clusters are open initially, they provide a standing leak current that prevents the neuron from firing

(bottom trace). A strong hyperpolarizing pulse persistently closes the clusters and thereby activates low-frequency spiking. Strong stimulated spiking

reopens the clusters and hence silences the neuron. For a summary of cluster parameters, see Table 1.
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Figure 4—figure supplement 2. Clusters are robust against noise in the membrane potential. (A) A neuron is stimulated for 2 s with a white noise

current (middle) to induce membrane potential fluctuations and spontaneous spikes (top). Despite the noisy membrane potential, the clusters remain in

their closed state (bottom). Even spontaneous spikes only open a few channels transiently in each cluster and cannot switch a whole cluster persistently

to the open state (B) The clusters remain closed after exposure to 5 s of noise stimulation. Only an unphysiologically high noise level leads to the

opening a few clusters by spontaneous firing at around 10 Hz (see indicated firing frequencies). For details on the white noise stimulation see Materials

and methods. There are 100 clusters of eight cooperative channels each. Further parameters are summarized in Table 1.
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Figure 5—figure supplement 1. Memory dynamics with different properties of cooperative channels. The channel’s time constant and their

conductance change the memory dynamics of the neuron probed with the multi-pulse protocol for graded persistent activity. (A) Variation of the time

constant: When channels are fast (left, t = 10 ms), the neuron is already maximally active after the first pulse - a few spikes suffice to open all clusters

and there is only one level of persistent activity. Slower channels allow for a graded opening of channels and intermediate levels of persistent activity

(middle, t = 120 ms). If the channels are too slow and too few clusters open during the first pulse, the neuron remains silent (right, t = 240 ms). (B)

Frequency of persistent activity after each pulse for different time constants. (C) Variation of the channel conductance: When channels are low

conducting, the persistent current remains subthreshold and is thus insufficient to drive persistent activity (left). At an intermediate conductance, the

clusters mediate low frequency persistent activity (middle). When the provided conductance is too large, the high frequency persistent activity can open

further clusters and is no longer stable. (D) Frequency of persistent activity after each pulse for different channel conductances. Other cluster

parameters are summarized in Table 1.
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Figure 6—figure supplement 1. Cooperative interactions are necessary to mediate graded persistent activity. Control experiment to demonstrate the

requirement of cooperative channel interactions for graded persistent activity in a perirhinal cortex neuron. Top: When the channels gated

independently (red, J=0 mV), the neuron only fired during the stimulating pulses and otherwise remained silent. When, in contrast, the channels

cooperate strongly (black, J=101.5 mV), the cell produced graded persistent activity (this trace is the full trace of the extract shown in Figure 6).

Bottom: The independent channels reacted to spiking activity only in a transient way and remained closed after the stimulus. In contrast, cooperative

channels opened and facilitated their neighbors to open as well. In this way, spiking could open whole clusters, which remained open after the stimulus

and drove persistent activity. A detailed description of the dynamic clamp experiment is given in Material and methods. Cluster parameters are

summarized in Table 1.

Pfeiffer et al. eLife 2020;9:e49974. DOI: https://doi.org/10.7554/eLife.49974 12 of 12

Research article Neuroscience



4.2 CAPCLAMP – A dynamic clamp protocol to
artificially modify cell capacitance
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Abstract Dynamics of excitable cells and networks depend on the membrane time constant, set 
by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of 
ionic conductances of excitable membranes are routine in electrophysiology, experimental control 
over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows 
electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional 
application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively 
modulate capacitance in a mathematical neuron model and then confirm the functionality of capac-
itance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold 
virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe 
and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental 
electrophysiology.

Editor's evaluation
The manuscript introduces a new enhancement to the dynamic clamp technique, CapClamp that, 
analogous to the artificial conductances of standard Dynamic Clamp, allows the experimenter to 
adjust the somatic time constant by setting a new membrane artificial capacitance independent of 
any change in input resistance. The technique is shown to have application for studying temporal 
integration, energetic costs of spiking and bifurcations. The technique is rigorously tested in model 
and physiological application and is robust when sampling frequency of the feedback (clamp) loop 
is fast compared to the fastest electrical event in a neuron (usually action potentials), and for verte-
brate neurons it should be 20KHz or faster and yet faster for fast spiking neurons.

Introduction
Membrane capacitance is a major biophysical parameter in neurons and other excitable cells, 
which determines how fast the membrane potential changes in response to a current (Golowasch 
et al., 2009; White and Hooper, 2013). How capacitance impacts electrical signaling and neuronal 
processing, however, can rarely be observed experimentally, because besides reduced values in 
myelinated axons (Hartline and Colman, 2007) most membranes appear to have a specific membrane 
capacitance in the range of 0.7–1.0 μF/cm2 (Gentet et al., 2000). The effects of capacitance changes 
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can, therefore, so far only be compared via mathematical simulations, where capacitance is simple to 
control. Such modeling, for example, suggests that the reduced membrane capacitance observed in 
human pyramidal cells can serve to increase synaptic efficacy or propagation speed of action poten-
tials (Eyal et al., 2016, but see Beaulieu- Laroche et al., 2018). In contrast, experimental manipula-
tion of capacitance remains challenging; in particular because changes in membrane area, thickness 
and lipid composition that affect capacitance might influence other membrane functions, such as the 
embedding of ion channels, with potentially unintended and uncontrolled consequences for electrical 
behavior. Here, we address this technical challenge by introducing capacitance clamp (CapClamp): an 
intracellular recording mode based on the dynamic clamp that emulates altered capacitance values 
in biological neurons (Robinson, 1994; Sharp et  al., 1993). Via CapClamp, the voltage dynamics 
governed by the actual biophysics of a cell – active ion channels and synaptic inputs – can thus be 
flexibly probed under multiple ‘virtual’ capacitance conditions, which provides precise experimental 
control over this hitherto inaccessible parameter.

In addition to the analysis of biological capacitance adaptations, control over capacitance offers a 
distinct way to probe cellular electrical dynamics. Capacitance has a unique temporal role, because its 
direct effects are restricted to the membrane time constant whilst leaving the steady state I- V function 
unaltered. In this way, capacitance differs from leak conductance, the other determinant of the time 
constant, as the latter also alters steady- state response amplitudes. For this reason, theoretical studies 
preferentially vary capacitance to investigate ion channel dynamics (Jaffe and Brenner, 2018; Franci 
et al., 2018) and qualitative switches (bifurcations) in neural excitability (Kirst et al., 2015; Hesse 
et al., 2017). Furthermore, effects of an altered capacitance can be informative about more complex, 
time scale- related parameters like temperature or ion concentrations (Contreras et al., 2020). Such 
computational predictions, however, often rely on simplified neuron models, so a similar experimental 
control over capacitance would be desirable to test them in biological cells.

The proposed CapClamp alters capacitance in a virtual manner, combining the simplicity of compu-
tational control with the complex biophysics of a real neuron. It is inspired by the dynamic clamp 
technique, which has originally been developed to simulate the presence of additional conductances 
in a biological neuron relying on a fast feedback loop between intracellular recording and a compu-
tational model (Robinson, 1994; Sharp et  al., 1993; Prinz et  al., 2004; Economo et  al., 2010). 
The precise control over these virtual conductances enables electrophysiological experiments that 
are more difficult or even impossible with traditional pharmacological or genetic means (Turrigiano 
et al., 1996; Svirskis et al., 2004; Prescott et al., 2008b; Hasenstaub et al., 2010; Szűcs et al., 
2017; Pfeiffer et  al., 2020). Here, we demonstrate how the dynamic clamp can be extended to 
enable manipulations of the apparent membrane capacitance by currents designed to speed up or 
slow down dynamics of the membrane potential. We derive a simple expression for these CapClamp 
currents, which can be applied in all excitable cells and only requires the experimenter to specify the 
original cell and the desired target capacitance. In an experiment based on a hardware- implemented 
RC circuit, we verify that the CapClamp indeed correctly modifies the time constant. Via numerical 
simulations, we confirm that a clamped model neuron exhibits the same pronounced changes of firing 
and spike shape as a control cell with an altered capacitance. For an experimental demonstration, we 
clamp the near- somatic capacitance of rat dentate gyrus granule cells and analyze how the induced 
local capacitance change affects their spiking behavior. Finally, we illustrate how the CapClamp can 
be used to probe signal integration and energy consumption of excitable cells in ways that so far were 
experimentally inaccessible.

Results
Capacitance clamp: A dynamic clamp protocol to mimic capacitance 
changes
Dynamic clamp relies on a fast feedback loop between an intracellular recording of a neuron and a 
computer that simulates virtual cellular or circuit components online. Originally, the dynamic clamp 
has been developed to study how a membrane conductance alters the neuron’s voltage dynamics 
(Sharp et al., 1993; Robinson, 1994). In each sampling interval (i.e. time interval between two voltage 
samplings), a digital model of the conductance receives the sampled membrane potential, updates 
the conductance state and sends the corresponding current value back to the amplifier. Given a 



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  3 of 32

sufficiently high update rate fdyn (often ≥10  kHz), this current injected via the recording electrode 
makes the dynamics of the neuron appear as if the virtual channels represented by the conductance 
model were physically present in the membrane.

Whereas conductances gate ionic currents across the membrane, the capacitance determines 
how fast these currents can change the membrane potential. Every altered membrane property 
that results in a modified capacitance value, such as membrane area, thickness or lipid composition, 
affects this rate of change of the membrane potential (Figure 1A). To artificially mimic a modified 
capacitance, we therefore first asked whether a dynamic clamp protocol with its fast feedback loop 
between voltage sampling and current injection could adjust the ‘speed’ of a cell’s membrane poten-
tial (Figure 1B). Using the current balance equation, the basic mathematical description of membrane 
voltage dynamics, we derived a capacitance clamp (CapClamp) scheme with a simple expression for 
the clamping current  Idyn  (see "Derivation of the CapClamp current" in Methods),

 
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−1

)
,
  (1)

B

C

DA

Figure 1. Adding or removing artificial capacitance via the CapClamp. (A) Physically, membrane capacitance varies with surface area, thickness and 
lipid composition (B) Virtual capacitance modification via the CapClamp is a form of dynamic clamp, a fast feedback loop between intracellular voltage 
sampling and computer- controlled current injection: given the measured cell capacitance  Cc , the target capacitance  Ct , recorded membrane potentials 
and the sampling interval  ∆t , the computer calculates clamping currents required to mimic the desired change of capacitance (see Equation 1). (C) 
Clamping a hardware- implemented model cell (RC circuit) at a decreased (left) or increased (right) capacitance leads to faster respectively slower 
charging of the ‘membrane potential’  V   to the same steady- state voltage response (top row, black: recordings, dashed red and blue: exponential fits 

 
∆V

(
1 − e−

t
τ

)
 
, gray: recording at original  Cc ) in response to a step current  Iext  (2nd row) due to the clamping currents  Idyn  (3rd row). As a result, the 

current through the resistance  IR = −V
R   (4th row) has a different profile and the apparently deposited charge  ∆Q(R, ext) =

´

dtIR + Iext  (bottom row, 
black) by the ‘cellular’ transmembrane currents decreases, respectively, increases as expected for a capacitance change. The real deposited charge 

 ∆Qtotal  (bottom row, gray), taking into account the clamping currents, has the same steady- state amplitude in all three cases, because the physical 
capacitance did not change. (D) Measured time constant  τ  , voltage responses  ∆V  , resistance  R , deposited charge  ∆Q  (apparent and total) and 
capacitance  C  versus target capacitances.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Impedance analysis of an RC circuit coupled to the capacitance clamp.
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which only requires the experimenter to measure the cell capacitance  Cc  in order to set a new 
target capacitance  Ct . In every sampling interval  ∆t = fdyn

−1
 , the CapClamp uses the measured cell 

capacitance value  Cc  and the voltage derivative  
Vi−Vi−1

∆t   to estimate the present membrane current 
and then increases ( Ct < Cc ) or decreases ( Cc < Ct ) the net current by insertion of a correction current 
in the next time bin. In this way, despite a physically unaltered capacitance, the membrane potential 
changes faster or, respectively, slower – as if the clamped cell actually had the different capacitance  Ct  
selected by the experimenter. In the following, we will demonstrate the CapClamp in simulated and 
experimental scenarios with increasing complexity ranging from a passive RC circuit up to biological 
neurons with a spatially extended morphology.

Clamping capacitance in a passive cell
The simplest scenario to apply the CapClamp is a single compartment passive cell, equivalent to an 
RC circuit. In the absence of active conductances, the effects of a capacitance change can be precisely 
formulated: the capacitance  C  sets the membrane time constant  τ = RC , determining how fast the 
membrane potential changes in response to a current. Note that, in contrast to the resistance  R , the 
change in capacitance leaves the voltage amplitude of the steady- state response unaltered. To quanti-
tatively confirm the effects of clamping capacitance and the ability of an exclusively temporal control, 
we measured time constant and capacitance of a clamped RC circuit in experiment and analyzed the 
temporal filtering properties of a modeled clamped circuit using mathematical analysis.

To experimentally characterize a clamped passive cell, we implemented the CapClamp scheme 
in a dynamic clamp setup (see "Dynamic clamp setup" in Methods) and recorded voltage responses 
to current pulses from the simplest possible model cell, that is, a hardware implemented RC circuit, 
while clamping it at a range of target capacitances (Figure 1C). As expected for an RC circuit, the 
charging curve of the unclamped model cell was fit well by a single exponential, whose time constant 
( τ   = 11.1ms) and voltage amplitude ( ∆V   = −9.9 mV) allowed us to determine the circuit’s resistance 
 R =99.4 MΩ and capacitance  C =112.3 pF. This capacitance value was then used as the cell capacitance 
 Cc  input for the CapClamp. Clamped at a decreased capacitance, the time constant shortened ( Ct  = 
67.4 pF:  τ  =6.6ms) and at an increased capacitance, it lengthened ( Ct  = 336.9 pF:  τ  =33.0ms), but in 
both cases the steady state voltage amplitude remained the same. Accordingly, the measured capaci-
tance of the clamped circuit confirmed the chosen target capacitance for the whole tested range from 
a 0.6- up to a 3- fold change with respect to the original capacitance (e.g.  Ct =67.4 pF:  C =67.5 pF; 
 Ct =336.9 pF:  C =338.1 pF), whereas the measured resistance remained constant (Figure 1D).

As a consequence of the correctly transformed voltage response, the leak current in the clamped 
RC circuit also behaved as if the capacitance had changed. When the circuit was clamped, the leak 
current through the resistance,  IR = V

R  , exhibited a shorter ( Ct < Cc ) or longer ( Ct > Cc ) transient until 
reaching steady state. Further, the charge  ∆Q(IR, Iext)  deposited on the capacitance by the apparent 
‘transmembrane’ current, the sum of leak and external stimulus current, reduced ( Ct < Cc ) or increased 
( Ct > Cc ) to the extent expected for an altered capacitance (Figure 1C). In contrast, the overall depos-
ited charge  ∆Q(IR, Iext, Idyn) , including the clamping current, attained the same steady- state amplitude 
in the clamped and the original circuit, reflecting that the physical capacitance did not change. For 
the simple RC circuit considered here, the distinction between the clamping current and the intrinsic 
‘cellular’ currents might appear artificial, because all currents use the same charge carrier. In a biolog-
ical neuron, however, this distinction becomes relevant, because the clamping currents through the 
recording electrode might rely on other charge carriers (depending on the used intracellular solution) 
than the cellular currents governed by multiple ion selective channel types.

For more complex stimuli than a simple current pulse, the temporal filtering properties of a clamped 
membrane determine how well the CapClamp mimics the chosen capacitance change. To generally 
assess these filtering properties, we analytically derived the frequency- dependent impedance of a 
modeled clamped RC circuit using linear control theory (Figure 1—figure supplement 1b A, see 
"Impedance of a capacitance- clamped RC circuit" in Appendix 1). The derived impedance profiles 
confirmed the experimentally observed altered time constants. For example, an RC circuit clamped at 
an increased capacitance further attenuated non- zero frequencies reflecting its longer time constant. 
Overall, impedance amplitudes of a clamped RC and the corresponding target circuit fit well up to 
a tenth of the dynamic clamp frequency fdyn, that is up to ≈2 kHz for a 20 kHz dynamic clamp system 
as used here (Figure 1—figure supplement 1B and C ). As high frequencies are heavily attenuated 
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by the low pass filter of a cell’s membrane, these differences lead to relatively small deviations in the 
voltage responses. The mathematical analysis thus suggests that for a fast dynamic clamp system ( 
> 20 kHz), the CapClamp is expected to work well for most stimuli with time scales in the physiological 
range.

Simulation of the capclamp in a biophysical neuron model
In neurons with active spike- generating conductances, capacitance changes impact neuronal firing via 
the interplay of the altered membrane time constant and the gating kinetics of the channels involved. 
As gating dynamics can be in the sub- millisecond range, for example for transient sodium channels, 
the CapClamp is expected to require a sufficiently high dynamic clamp frequency to accurately repro-
duce changes of spike shape or firing rate. To understand these requirements and lay the ground for 
investigations of capacitance changes in biological neurons, we simulated the CapClamp in a neuron 
model with biophysical channel dynamics and a single- compartment morphology (see "Biophysical 
neuron model" in Methods). The simulation allowed us to compare the firing of the clamped neuron 
to the expected firing at this modified capacitance.

Specifically, we inspected the spiking responses to a depolarizing current for the original 150 pF, 
a decreased 90 pF and an increased 210 pF capacitance, for the latter two comparing clamped and 
expected dynamics (Figure  2A). Capacitance changes exerted a notable influence on both firing 
frequency and spike shape, which was mostly well- captured by the simulated CapClamp (Table 1). 
When the capacitance was decreased to 90 pF, spiking became faster and action potentials had a 
larger peak amplitude, a decreased duration and an increased afterhyperpolarization (AHP). When 
the capacitance was increased to 210 pF, the effects were opposite: spiking became slower and action 
potentials had a smaller peak amplitude, an increased duration and a reduced AHP. At decreased 
capacitances, spike amplitudes of the clamped neuron were larger than in the respective control 
simulation, a consequence of the limited tracking of the fast sodium current at the dynamic clamp 
frequency used (Figure 2B and C). Except for this brief overshoot, the CapClamp overall forced the 
membrane potential on the expected trajectory and correctly adjusted the resulting ionic currents and 
the gating variable dynamics of the active conductances. For example, at a reduced capacitance of 
90 pF, sodium channels inactivated less during the fast rise of the AP and therefore the sodium current 
exhibited a second peak during AP repolarization (see the sodium inactivation variable  h  at AP peak 
time in Figure 2B).

A subsequent comparison of simulated spiking for the whole range of tested target capacitances 
from 75 pF to 225 pF confirmed that the CapClamp reliably reproduced the main effects of a modified 
capacitance on spike shape (Figure 2D) and firing frequency (Figure 2E). Furthermore, the obtained 
frequency- current curves fit well with the theoretically expected reduction of excitability at higher 
capacitance: a decrease of gain proportional to  

1
C  and a constant rheobase current (see "Analytically 

expected effect of capacitance on the form of the f- I curve" in Methods). A crucial factor for the 
CapClamp, especially for a good quantitative fit of the spike shape, is the dynamic clamp frequency – 
observable differences at a 20 kHz sampling frequency were strongly reduced for a sampling frequency 
of 100  kHz (Figure  2C and D). In this regard, the chosen neuron model is especially demanding 
because its rapid gating dynamics are fit to a fast spiking interneuron (Wang and Buzsáki, 1996). 
Taken together, our simulations show that capacitance impacts neuronal spiking from firing frequency 
to action potential shape and that the CapClamp is well- suited to study these effects.

Experimental demonstration of the CapClamp in rat dentate gyrus 
granule cells
Biological neurons differ from the simple ‘cells’ considered so far, that is RC circuit and single compart-
ment neuron model, in one major aspect: they can have complex morphologies, where the membrane 
potential varies between different compartments and membrane capacitance is distributed across 
the neuronal structure. As the CapClamp in contrast operates locally through the recording elec-
trode, the emulated capacitance change is expected to be localized to the recorded compartment 
instead of affecting all compartments. To demonstrate such localized capacitance changes and study 
their effects on neuronal spiking, we applied the CapClamp in in vitro patch- clamp recordings of rat 
dentate gyrus granule cells (DGGCs). Among morphologically complex cells, DGGCs appear well- 
suited to test the CapClamp, because their morphological structure, consisting of a central soma and 
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one to four primary apical dendrites as shown in Figure 3A (Rihn and Claiborne, 1990), translates to 
a relatively compact electrotonic structure (Schmidt- Hieber et al., 2007; Wybo et al., 2019).

Measurement of local near-somatic capacitance
Most capacitance measurements aim to provide an accurate estimate of the global capacitance of a 
neuron (Golowasch et al., 2009; White and Hooper, 2013). To correctly infer the transmembrane and 
axial current, however, the CapClamp requires the local capacitance value of the compartment where 
the electrode is placed at. For the somatic DGGC recordings, we exploit that the current clamp step 
method – fitting charging curves via a sum of exponential terms – can also provide local capacitance 

ED

A

C

B

Figure 2. Simulation of the capacitance clamp in a conductance based neuron model. (A) Neurons coupled to the CapClamp are compared with 
control neurons with an altered capacitance (depicted as a difference in membrane area). (B) Spiking at 0.6- fold decreased (90 pF), original (150 pF) 
and 1.4- fold increased capacitance (210 pF) with from top to bottom: spike shape, dynamic clamp current, ionic currents (Na+, K+) and gating states (h: 
sodium inactivation gate, n: potassium activation gate). Clamped and original traces in black or color, control in gray. All currents are shown with the 
sign they appear with in the current- balance equation (Equation 2). (C) Comparison of spike shapes in the V- 

dV
dt  - plane (black: original, red and blue: 

clamped, gray: control). (D) Comparison of spike amplitude  hAP  (top left), spike width  wAP  (top right), after hyperpolarization amplitude  AHP  (lower 
left) and timing  tAHP  (lower right) across different capacitances with two dynamic clamp frequencies (solid: 20 kHz, dotted: 100 kHz, gray:control). (E) 
Top: Comparison of f- I curves for capacitances in B. Bottom: Gain and rheobase current of the f- I curves across capacitances (solid: 20 kHz, dotted: 
100 kHz, gray: control) compared with the theoretical predictions (orange, dashed) of a decreasing  gain(C) = α

C ;α = gain(Cc)Cc  and a constant 
rheobase (see "Analytically expected effect of capacitance on the form of the f- I curve" in Methods).
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information (Golowasch et al., 2009). DGGC charging curves consisted of a slow ( τ0 : 15.1 ± 4.8 ms, 
R0: 127 ± 45 MΩ) and a fast ( τ1 : 0.77 ± 0.24 ms, R1: 35 ± 15 MΩ) component. Such a response can be 
understood in terms of a two compartment circuit consisting of a near compartment, comprising the 
patched soma and its surrounding, coupled to a far, mostly dendritic, compartment as depicted in 
Figure 3A (for details on the mapping, see "Capacitance measurements" in Methods). Importantly, 
the slow and fast components can be mapped to the corresponding five circuit parameters: near 
capacitance  Cn  (21.0 ± 9.4 pF), near resistance  Rn  (854 ± 394 MΩ), coupling resistance  Ra  (53 ± 20 MΩ),  
far capacitance  Cf   (106 ± 33 pF), and far resistance  Rf   (156 ± 60 MΩ) (Figure 3C). Accordingly, this 
near- somatic capacitance  Cn  represents the summed capacitance of the membrane area that is elec-
trotonically close to the recording site and thus is the value that the CapClamp requires as input and 
should be able to modify.

Altered near-somatic capacitance in DGGCs
To confirm the localized effect of the CapClamp, we repeated the above capacitance measurement 
while clamping DGGCs at values ranging from 0.6 to 3 times the original near capacitance. Figure 3B 
depicts how the charging of the membrane potential in an exemplary cell changed its shape in reac-
tion to the clamp. Both slow and fast time constant lengthened with capacitances, whereas the associ-
ated resistances increased and decreased, respectively, such that their sum, the total input resistance 
(which is expected to be independent of capacitance), remained constant. These measured time 
constants and amplitudes matched the predicted ones for a two compartment circuit with a near 
capacitance at the chosen target values and all other circuit parameters at their original values. In a 
multicompartment simulation of a morphologically reconstructed DGGC, we could reproduce both 
the two compartment structure of DGGCs and the isolated modification of the near capacitance, 
further confirming the local control via the CapClamp.

Across 18 recorded cells, the CapClamp robustly altered DGGC charging curves and modified their 
charging time constants. Within the tested capacitance range, the slow time constant  τ0  decreased by 
–0.8 (- 1.0 to -0.6) ms, median and interquartile range in parentheses, and increased up to 3.0 (2.4 to 
3.9) ms, whereas the fast time constant  τ1  changes ranged from –0.24 (- 0.29 to -0.20) ms up to 0.60 
(0.36 to 0.86) ms (Figure 3D). To quantify how well these changes reflected an altered near capac-
itance, we evaluated the goodness of fit between the observed and expected time constants and 
resistances. In the majority of cells, R- squared values were close to 1, indicating that the CapClamp 
induced the expected changes ( τ0 : 0.87 (0.76 to 0.92), R0: 0.77 (0.56 to 0.89),  τ1 : 0.76 (0.32 to 0.97), 
R1: 0.85 (0.75 to 0.91)). The largest mismatches occurred for the fast time constant, especially at high 
capacitances, where the measured time constant was often shorter than predicted (Figure 3D). A small 
bias toward a shorter fast component is to be expected and also present in the multicompartment 
simulation, because this time constant was only about ten times longer than the sampling interval of 
50 µs limiting its slowing- down by the CapClamp currents. Larger deviations of  τ1  however could not 
be reproduced in numerical simulations and likely result from other error sources, such as the difficulty 
of fitting this small and short time constant in the presence of noise or imprecise estimates of the 
original near capacitance (see "Online measurement of capacitance" in Methods). Overall, in terms of 
circuit parameters, the capacitance measurements confirmed the targeted near capacitance change 
for 12 out of 18 cells within an average error of 10% (Figure 3E). In summary, the CapClamp achieved 
an isolated change of the near- somatic capacitance in DGGCs and thereby allows to control the time 
constants of their passive voltage dynamics.

Table 1. Spike shape and firing frequency in a biophysical neuron model at 60 pA as well as f- I curve gain and local gain reduction for 
a decreased, the original and an increased capacitance, comparing simulations of an actually altered capacitance with the CapClamp.
Values are shown as actual(clamped).

C (pF) f (Hz)  hAP (mV)  wAP (ms) AHP (mV) Gain (Hz/ 
√

pA )

Δ
Gain (Hz/ 

√
pA  per 

10 pF)

decreased 90 34.9 (34.3) 45.7 (55.0) 0.30 (0.30) –77.8 (- 79.7) 6.5 (6.5) –0.67 (- 0.67)

original 150 22.1 33.9 0.39 –71.5 3.8 –0.22

increased 210 17.8 (18.9) 21.4 (20.1) 0.48 (0.48) –66.0 (- 64.7) 2.9 (2.9) –0.11 (- 0.10)
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Figure 3. Clamping capacitance in rat dentate gyrus granule cells (DGGCs). (A) Morphology of a DGGC (left) and response to a hyperpolarizing 
current injected at the soma, fit via a sum of exponential terms with a slow  τ0 , v0 and a fast component  τ1 , v1 (middle), which can be mapped to two 
resistively coupled RC- circuits (right) with a near (somatic) compartment  Cn  and  Rn , resistive coupling  Ra  and a far (dendritic) compartment  Cf   and  Rf  . 
(B) Left: Voltage responses of a recorded (top) and a simulated morphologically- reconstructed (bottom) DGGC to a current pulse (exp: –27 pA, sim: 
–50 pA) clamped at 0.6- to 3- fold the cell’s near capacitance (black: original near capacitance, color: target near capacitances). Middle: Slow and fast 
components versus target capacitance. Right: Circuit parameters versus target capacitance. ◀, ▶: before and after clamping, blue square: clamped, 
dashed line: expected values. (C) Measured near  Cn  and far  Cf   capacitances for 18 DGGCs (gray dotted: mean). Inset: histogram of near capacitances. 
(D) Changes of slow and fast components in all recorded cells versus relative targeted change of near capacitance (squares: mean, horizontal line: 
median, vertical line: std, shaded area: std of expected changes). (E) Relative changes of circuit parameters versus relative targeted change of near 
capacitance. Legend same as in D and individual cells shown with transparent blue lines.
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Near-somatic capacitance governs action potential shape and firing 
frequency in dentate gyrus granule cells
In neurons such as the recorded DGGCs, where the axon directly emerges from the soma, the 
ability to clamp the near- somatic capacitance provides control over the major capacitive load for the 
action potential generating site in the axon initial segment. Consequently, the CapClamp, although 
acting locally, is expected to impact action potential (AP) dynamics and excitability of a morpho-
logically complex DGGC as demonstrated earlier for the simplified single- compartment neuron 
model (Figure 2). To illustrate how the CapClamp can be applied to characterize neuronal firing, we 
compared spiking responses and f- I curves across near capacitances ranging from 0.6 to 3 times the 
original value, corresponding to a range from 10 pF to 60 pF for the near and from 110 pF to 160 pF 
for the total (near and far) capacitance.

Clamping the near- somatic capacitance in DGGCs, we observed pronounced changes in the spiking 
response to depolarizing current step, clearly visible in the raw voltage traces (Figure 4A). The most 
apparent change was an altered AP shape (Figure 4B) – a continuous reduction of AP peak amplitude 
(from 60 ± 10 mV at 0.6  Cn  to 22 ± 17 mV at 3  Cn  for 9 DGGCs) and a simultaneous broadening of AP 
width (from 0.78 ± 0.15 ms at 0.6  Cn  to 1.33 ± 0.48 ms at 3  Cn ) with increasing capacitance (Figure 4C 
and D). In addition, fast afterhyperpolarization (fAHP) was diminished and disappeared in the majority 
of cells after increasing capacitance (fAHP in 8/9 cells at 0.6  Cn  and 2/9 at 3  Cn ). Importantly, the 
observed disappearance of fAHP cannot be explained by increased capacitive filtering alone, as an 
increased capacitance would reduce the fAHP amplitude, but not abolish it. Thus, our data suggests 
that the somatic capacitive load in DGGCs is able to influence the AP generating currents.

To illustrate the interplay of capacitance and the AP generating currents, we compared the observed 
spikes with hypothetical ones obtained by assuming unaltered currents with respect to those at the 
original capacitance (see "Protocol 2: Analysis of f- I curves and spike shapes" in Methods). Recorded 
and hypothetical spike shapes exhibited marked differences (Figure 4B). At 0.6- fold decreased capac-
itances, for example, the recorded AP amplitude was significantly smaller than the hypothetical one 
(rec.: 60 ± 10 mV, hyp.: 94 ± 19 mV, one- sided Wilcoxon signed- rank  Z  =0, p<0.001), presumably 
reflecting a reduction of the driving force for the sodium current when the AP peak approaches 
the reversal potential of sodium. Furthermore, at threefold increased capacitance, as noted above 
the recorded spikes exhibited no fAHP in most cells while the hypothetical ones still did (fAHP rec: 
2/9, hyp: 8/9) – potentially a result of a reduced activation of potassium channels due to lower AP 
amplitudes and/or earlier closing during the slowed AP repolarization. In contrast to driving force 
and gating dynamics, the channel kinetics, for example their activation curves, cannot be altered by 
capacitance. Correspondingly, the spike threshold, which reflects the voltage where sodium channels 
start to massively open, was not significantly correlated with near capacitance (Pearson correlation r = 
0.10, p = 0.42). Taken together, our analysis indicates that an altered somatic capacitance affects both 
sodium and potassium currents underlying APs in DGGCs.

Near- somatic capacitance also impacted DGGC excitability. With increasing capacitance, DGGCs 
became less excitable and firing frequencies significantly decreased (Figure 4D and F). From 0.6- 
to 3- fold of the original near capacitance, the decrease was modest for low firing rates close to 
threshold (from 9.7 ±3.2 Hz to 7.8 ±3.9 Hz, Wilcoxon signed- rank  Z  =45, p=0.002) and became more 
pronounced for high firing rates at the largest injected currents (from 23.3 ±6.4 Hz to 18,6 ±4.8 Hz, 
 Z  =45, p=0.002). In terms of the firing rate- current (f- I) curves, the gain of the DGGCs significantly 
decreased with capacitance (from 1.82 ± 0.40 Hz/ 

√
pA  at 0.6  Cn  to 1.48 ± 0.34 Hz/ 

√
pA  at 3  Cn ,  Z  =45, 

p=0.002), whereas the rheobase current remained relatively constant (from 185 ±82 pA at 0.6  Cn  to 
184 ±77 pA at 3  Cn , two- sided,  Z  =12, p=0.25). Across cells, the gain reduction obtained by linear 
regression was –0.10 (- 0.13 to -0.06) Hz/ 

√
pA  per 10 pF near capacitance (median and interquartile 

range, significant slope in 8/9 cells, p < 0.1). Compared to the simulated neuron with a gain reduc-
tion of –0.22 Hz/ 

√
pA  per 10 pF over the same capacitance range as in the DGGC experiments (see 

Figure 2D), DGGCs thus exhibit a weaker gain dependence on near capacitance. A biological factor 
for this reduced effect in the DGGCs is their overall smaller gain – reflecting the different set of ionic 
conductances compared to the Wang- Buzsáki model designed to mimic a fast- spiking cortical inter-
neuron. Assuming a scaling of gain with 1/C (as predicted theoretically for neurons with a continuous 
f- I curve, see "Analytically expected effect of capacitance on the form of the f- I curve" in Methods), 
the gain reduction is expected to be -gain( Cc )/ Cc , which is approximately twice as high for the model 
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Figure 4. Repetitive spiking and action potential shapes in DGGCs clamped at different capacitances. (A) Spiking at decreased 0.6- fold (left), original 
(middle) and increased 3- fold (right) near capacitance  Cn . (B) Spike shapes (top) and capacitance clamp currents (bottom) for increasing capacitances 
from 0.6 to 3- fold of the original near capacitance (black: mean, light gray: single spikes, orange: expected spike shape for unaltered intrinsic currents 
as described in protocol- 2- analysis- of- f- i- curves- and- spike- shapesMethods, dotted: spike shape at original capacitance). (C) Comparison of spike 
shape (left) and temporal structure (right) across tested near capacitances. (D) Measured f- I curve at 0.6-, 1- and 3- fold near capacitance with fit 

 f = gain
√

I − Irheo   (dashed lines). Extracted gain and rheobase for all tested near capacitances (dotted line: values at original capacitance 13.7 pF, solid 
line: linear regression with slope value reported if significantly different from zero p<0.1). (E) Effect of near capacitance changes on spike shape (left) and 
temporal structure (right) for all recorded DGGCs (solid: mean, shaded: std). To compare different cells, the capacitance is shown relative to the original 
near capacitance and spikes were compared at 1.2- fold of the cell’s rheobase. (F) Effect of near capacitance changes on firing frequency, low firing (blue) 
at 1.2 fold rheobase and high firing (red) at 2.0- fold rheobase (left), gain (middle) and rheobase (right) for all recorded DGGCs (solid: mean, shaded: std).
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( ≈ −
3.8 Hz√

pA
150pF = −0.25  Hz/ 

√
pA  per 10 pF) compared to the average DGGC ( ≈ −

1.8 Hz√
pA

127pF = −0.14  Hz/ 
√

pA  
per 10 pF). A further technical factor for a weaker effect in the DGGCs is the local nature of the 
capacitance modification. Depending on the particular location and geometry of the axon initial 
segment, the influence of the clamped somatic compartment on AIS excitability can differ (Goethals 
and Brette, 2020). The altered excitability in the majority of DGGCs, however, demonstrates that 
clamping their near capacitance was sufficient to affect the capacitive load of their AIS. We conclude 
that a somatic capacitance clamp, altering perisomatic capacitance alone, is able to modify the input- 
output relationship of a real neuron.

Applications of the CapClamp
The CapClamp lends itself to either test hypotheses on the impact of capacitance or to exploit the 
control over the membrane time constant in order to to alter neuronal dynamics in informative ways. 
In the following, we briefly illustrate applications of the CapClamp from these two fields, applying the 

Energe cs of spiking
C D E

F

Temporal integra on
A B

Figure 5. Applying the capacitance clamp to study neuronal signaling and physiology. Temporal integration: (A) 
Brief current pulses of 3ms length with interstimulus intervals of 5ms and 50ms (top) and voltage responses of an 
exemplary DGGC at a decreased (12 pF) and an increased (62 pF) near capacitance (voltage scale adapted to first 
response height). (B) Ratio of fifth and first response as a measure of temporal integration for a 0.6- fold decreased 
capacitance in comparison to a threefold increased one at 5ms and 50ms ISI. Energetics of spiking: (C) Spike shape 
(top), sodium, potassium and total ionic current (middle, shown with the sign they appear with in the current- 
balance equation, see Equation 2) and deposited sodium  QNa+  as well as depolarizing  Q+  charge (bottom) in the 
Wang- Buzsáki neuron model for a 90 pF and a 210 pF capacitance. (D) Sodium  QNa+  and depolarizing  Q+  charge 
per action potential versus capacitance (dot and triangle: clamped from an original capacitance of 150 pF, gray: 
control). (E) Spike shape and depolarizing charge for a dentate gyrus granule cell clamped at decreased 10 pF and 
increased 52 pF near capacitance. (F) Deposited depolarizing charge versus relative change of near capacitance in 
recorded DGGCs (black: mean, gray: individual cells).
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technique to experimentally explore effects of capacitance on temporal integration and energetic 
costs of spiking.

Temporal integration
A basic processing step in neuronal computation is temporal integration, the summation of time- 
separated synaptic inputs (Krueppel et al., 2011; Athilingam et al., 2017). An upper limit for temporal 
integration, at least in the absence of dedicated active channels, is set by the membrane time constant 
 τ = RC , which is directly proportional to the cell’s capacitance. Hence, increasing the capacitance of a 
cell should make it a better integrator: if two brief inputs arrive separated by less than the membrane 
time constant, the cell will summate the responses so that the membrane potential after the second 
is higher than after the first one. Indeed, when we compared the responses of DGGCs clamped at 
decreased and increased near- somatic capacitances to current pulse trains, increasing the capacitance 
allowed the cell to better “sum” 3ms pulses at an inter stimulus interval (ISI) of 5 ms as apparent by 
the stair- like voltage response with a higher ratio of last to first pulse response. (Figure 5A and B). At 
an ISI of 50ms, in contrast, neither capacitance was sufficient for temporal integration. The biological 
relevance of tailoring capacitance to temporal processing can, for example, be observed in auditory 
cells of the barn- owl, which have no dendrites to reduce capacitive and resistive load and hence 
shorten their time constant such that they can perform sub- millisecond coincidence detection (Ashida 
et al., 2007).

Energy consumption during spiking
Action potentials are energetically expensive, because the contributing sodium and potassium ions 
need to be pumped back using ATP (Laughlin et al., 1998; Hasenstaub et al., 2010). The minimal 
amount of ionic charge required for an action potential is dictated by the capacitance as  Q = C∆VAP , 
suggesting that a smaller capacitance is energetically favorable. In order to gauge how capacitance 
affects charge accumulation and energy consumption, we reexamined spike shapes for a fixed 
current input at different capacitances both in the simulated neuron and in the recorded DGGCs 
(Figure 5C and E). We found that despite a reduced amplitude at larger capacitances, these smaller 
spikes still required more depolarizing charge  Q+ = C∆VAP  (Figure 5D and F). In the model, we 
tested whether this depolarizing charge provided a reliable indication of the sodium charge  QNa+ , 
which finally determines pump activity and energy consumption (Figure 5D). Due to the overlap of 
sodium and potassium currents, the sodium charge exceeded the net depolarizing charge, but as 
this overlap remained roughly constant, both charge measures increased by the same amount with 
capacitance. Taken together, in the tested model and the recorded DGGCs, energy consumption 
per action potential appears to be reduced at smaller capacitances. In line with this observation, 
it has been reported that perineuronal nets could decrease membrane capacitance of fast- spiking 
interneurons, thereby facilitating high- frequency firing, while keeping energetic costs at bay (Tewari 
et al., 2018).

Discussion
The dynamic clamp is a valuable tool in intracellular recordings to examine the diverse roles of ionic 
conductances in excitable cells (Sharp et al., 1993; Prinz et al., 2004; Wilders, 2006; Economo et al., 
2010). In this study, we introduced the capacitance clamp (CapClamp), an application of the dynamic 
clamp that allows electrophysiologists to mimic a modified membrane capacitance in a biological 
neuron. Via simulations of a biophysical neuron model, we confirmed that the CapClamp correctly 
captures how capacitance affects spike shapes and firing frequency. In recordings of rat dentate gyrus 
granule cells, we further verified that the CapClamp could accurately control the capacitance of the 
recorded somatic compartments. Moreover, we clamped this near- somatic capacitance of DGGCs 
during spiking and found that, as predicted by our simulations, capacitance can modify the fI curve 
and alter the course of the spike generating currents. CapClamp can serve as a new probe to neuronal 
signaling and physiology. In the following, we highlight requirements for the CapClamp and discuss 
how this experimental control over capacitance can benefit the study of cellular electrical behavior.
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Precise, flexible and local control over capacitance in all excitable cells
To our knowledge, the CapClamp is the first tool to experimentally study capacitance changes in a 
precise and flexible manner. The CapClamp owes its precision and flexibility to the virtual nature of 
the altered capacitance. In contrast, methods to physically modify the capacitance are affected by 
various undesired side effects. Dendritic pinching, decoupling dendrites from the soma, for instance 
greatly reduces membrane area and thereby capacitance, but also removes all dendritic conduc-
tances (Bekkers and Häusser, 2007). Capacitance alterations have also been reported after appli-
cation of mefloquine, a drug binding to membrane phospholipids, but it also blocks gap junctions 
(Szoboszlay et al., 2016). A notable exception is the recent demonstration of engineered polymer 
synthesis in neuronal cell membranes, which alters their capacitance, but not their input resistance (Liu 
et al., 2020). In comparison, however, the CapClamp provides more accurate and dynamic control by 
allowing experimenters to test multiple selected capacitance values in a single cell (Figures 3 and 4), 
while being significantly simpler to implement.

The CapClamp can be applied in every excitable cell. Here, we focused on neurons, but the 
proposed clamping currents can also be used to study capacitance changes in other cells, including 
for example heart cells (Wilders, 2006; de Oliveira et al., 2015). In particular, no prior knowledge 
about the ionic or external currents in the clamped cell is required, so that the capacitance can be 
clamped during any experimental protocol (step current, ramp current, etc.) or during synaptic input. 
Furthermore, capacitance can be clamped in both electrotonically compact cells like oocytes (Ori 
et al., 2020) and non- compact cells like most neurons (Wybo et al., 2019), although in the latter case 
the CapClamp is limited locally to the capacitance of the recorded compartment (Figure 3). Conse-
quently, the effects of clamping capacitance depend on the cell’s morphology and the recording 
site. The soma, for example, represents the major capacitive load for spike generation in vertebrate 
neurons, where the axon predominantly emerges close to the soma (Figure 4), but it is expected to 
exert less influence in neurons, where the axon comes out of the dendritic tree, a common feature 
of invertebrate neurons (Hesse and Schreiber, 2015), but also seen in mammalian neurons (Martina 
et al., 2000; Thome et al., 2014).

The major prerequisite to apply the CapClamp is a reliable capacitance measurement of the 
clamped compartment, which can be challenging, especially for electrotonically complex cells 
(Golowasch et al., 2009; White and Hooper, 2013). An imprecise capacitance estimate leads to erro-
neous clamping currents, which increase high- frequency noise for small errors and might even induce 
instabilities for larger errors. The measurement method presented for the recorded DGGCs, that is 
mapping the charging response to a two compartment circuit, could in principle be extended to cells 
with a larger number of compartments e.g. pyramidal cells (Edwards and Mulloney, 1984; Wybo 
et  al., 2021). Yet, accurate multi- exponential fitting is demanding and the assumption of uniform 
membrane properties underlying the mapping is a simplification, shown to be violated in some cells, 
such as GABAergic interneurons (Nörenberg et al., 2010). As an alternative, measurement protocols 
could be exploited that inherently yield local capacitance estimates, including fast voltage ramps 
(Golowasch et al., 2009) or sampling of voltage responses to fast fluctuating currents (Badel et al., 
2008). Reliable capacitance measurements can further be used to compare measured and target 
capacitance of the clamped cell, which can serve as a first simple test to ensure the quality of the 
CapClamp.

A CapClamp on every rig
As a novel application of the established dynamic clamp technique, the CapClamp is an accessible 
and low- cost extension of a standard electrophysiology stack (Prinz et al., 2004; Economo et al., 
2010). For an existing dynamic clamp setup, the sole requirement is to implement the calculation of 
the clamping currents (see Equation 5). Otherwise, multiple open source frameworks exist that only 
require a dedicated computer with a data acquisition card to enable the dynamic clamp in a conven-
tional electrophysiology setup (Dorval et al., 2001; Benda et al., 2007; Kemenes et al., 2011; Linaro 
et al., 2015; Patel et al., 2017; Desai et al., 2017; Amaducci et al., 2019). To facilitate the usage of 
the technique, we provide code for the CapClamp scheme in the RELACS and RTXI frameworks (see 
"Data and software availability" in Appendix 1).

In CapClamp recordings, as in all dynamic clamp applications, a high sampling frequency and 
accurate voltage monitoring are key (Bettencourt et al., 2008). Whether a sampling frequency is 
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sufficiently high can be tested by assuring that the observed voltage dynamics for example the spike 
amplitudes are invariant when the sampling frequency is decreased from the maximal possible value 
(Robinson, 1994). For the simulated fast- spiking interneuron, we found a satisfactory clamp at a 
frequency of 20 kHz, which we expect to also be sufficient for most excitatory neurons, because they 
tend to have slower voltage dynamics (Hasenstaub et al., 2010). In our single electrode recordings, 
we focused on careful electrode compensation to avoid electrode artifacts in the recorded voltages 
which would lead to incorrectly estimated membrane currents and eventually instabilities. To improve 
voltage monitoring, future applications could either apply active electrode compensation (Brette 
et al., 2008; Bal and Destexhe, 2009) or resort to two electrode recordings, where current injection 
and voltage recordings are separated.

Modifying capacitance as a probe for cellular electrical dynamics
Via the CapClamp, experimenters can ask a question that was previously accessible only in theoretical 
work: What if capacitance was different? In contrast to the theoretical approach, the answers to this 
question do not have to rely on models of channel dynamics or other membrane properties, because 
the latter are provided by the biological cell itself (Sharp et al., 1993). Modifying capacitance with the 
CapClamp can serve either to investigate changes in this biophysical parameter or, more broadly, to 
alter the membrane time constant of a cell as a way to characterize its electrical dynamics.

Understanding the role of capacitance
The virtual capacitance changes induced by the CapClamp could serve to address two crucial ques-
tions about actual membrane biophysics: why capacitance appears to be biologically mostly constant 
(Gentet et al., 2000) and how exceptions to this rule can facilitate or deter neuronal function (Amzica 
and Neckelmann, 1999; Hartline and Colman, 2007; Eyal et al., 2016; Tewari et al., 2018). Capac-
itance is for example rarely tested for optimality - a common question in ion channel kinetics, which 
appear optimized for function and energy expenditure (Hasenstaub et al., 2010; Sengupta et al., 
2010). Regarding energy consumption, our CapClamp experiments in DGGCs indicate that action 
potentials become energetically cheaper at lower capacitances (Figure  5E and F). Interestingly, 
reports of exceptional capacitance values mostly find reductions e.g. for myelinated axons ( Cm ≈  0.05 
uF/cm2 for a 10- fold wrapped myelin sheath, see Castelfranco and Hartline, 2015) or human pyra-
midal cells ( Cm ≈  0.5 uF/cm2, see Eyal et al., 2016) suggesting that indeed the metabolic cost of AP 
generation could have been a contributing factor to capacitance adaptations. In addition, the recent 
hypothesis that perineuronal nets can reduce capacitance of interneurons in a similar way as myelin-
ation of axons suggests that capacitance adaptation could be more widespread in the brain than 
often assumed (Tewari et al., 2018). Moreover, understanding the role of capacitance can contribute 
to an improved understanding of infrared (Shapiro et al., 2017; Carvalho- de- Souza et al., 2018) and 
ultrasonic (Krasovitski et al., 2011; Plaksin et al., 2014) stimulation of neural activity, whose effects 
are assumed to rely on rapid alteration of the capacitance.

Another application of the CapClamp might be to investigate changes of excitability associated 
with neuronal growth. During development, cell size can increase considerably, necessarily accompa-
nied by a larger membrane capacitance (McComb et al., 2003). To maintain neural function, neurons 
need to compensate for this altered capacitance via a corresponding regulation of ionic conductances 
– a homeostatic process that is hypothesized to involve activity- dependent channel expression (Gorur- 
Shandilya et al., 2020). To disentangle the contributions of capacitance in this concurrent alteration 
with ionic conductances, the CapClamp could be combined with the ‘classic’ dynamic clamp, for 
example parallel changes of both capacitance and a leak conductance.

Altering the membrane time constant
A key contribution of the CapClamp is the isolated experimental control of the membrane time 
constant via changes in capacitance while leaving the ion channel conductances unaffected. In neuron 
models, monitoring response properties when changing the membrane time constant has been used 
to characterize a cell’s dynamical repertoire (Kirst et al., 2015; Hesse et al., 2017; Franci et al., 
2018). As an experimental analogue, the CapClamp introduces this option for the characterization of 
biological neurons.
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To optimally support neural processing, nerve cells exhibit qualitatively different response prop-
erties, which in some cases can be flexibly adapted to context. For example, neurons with class 2 
excitability (marked by a jump of the f- I curve to non- zero frequencies when exceeding threshold) can 
be switched to class 1 excitability (marked by a smooth transition with arbitrarily low frequencies) via 
neuromodulation (Stiefel et al., 2008; Stiefel et al., 2009), transforming them from resonators to inte-
grators. These qualitative differences in response and processing properties can be characterized by 
bifurcation analysis (Izhikevich, 2006; Prescott et al., 2008a; Kirst et al., 2015; Hesse et al., 2017). 
Capacitance as a canonical parameter can induce transitions between excitability classes and the 
underlying bifurcation types, including the switch of neuronal dynamics from class 1 excitability (with 
regularly spiking neurons) to dynamics that include bistable firing with stochastic switches between 
spiking and rest (Hesse et al., 2017). Because computational properties can be expected to change 
with such qualitative switches in dynamics, it may be of interest to determine how close the dynamics 
of a given cell is to a transition. An estimate of this proximity to switches that can be obtained via the 
CapClamp by monitoring firing properties and qualitative changes thereof as a function of membrane 
capacitance. Dynamics in the vicinity of capacitance- induced switches are likely to be also susceptible 
to switches induced by other parameters with similar temporal effects, such changes in temperature 
(Hesse et al., 2017) or ionic concentrations (Contreras et al., 2020). As such switches can involve 
regimes of exceptionally fast dynamics, for such measurements extra care should be given to ensure 
that the temporal resolution of the dynamic clamp is sufficiently high.

In addition to such qualitative changes of dynamics, the broad impact of the time constant (and 
therefore the capacitance) on firing frequency and spike shape could be applied for more quantita-
tive studies of neuronal activity. On the one hand, observations of neural activity at different capac-
itances could for example be used to further constrain and improve fitting of conductance- based 
neuron models (Podlaski et al., 2017; Gouwens et al., 2018; Franci et al., 2018). On the other 
hand, it could serve to examine activity- dependent physiological processes such as ion concentration 
dynamics (Contreras et al., 2020) or calcium controlled channel homeostasis (O’Leary et al., 2014; 
Temporal et al., 2014; Santin and Schulz, 2019).

Conclusion
Taken together, the presented CapClamp enables an accurate and flexible control over capacitance 
in biological neurons, a basic determinant of cellular excitability, that so far has been inaccessible in 
experiment. We expect that the CapClamp will, therefore, broaden and enrich the electrophysiolog-
ical study of neurons and other excitable cells. With expanding techniques to sense and manipulate 
neural activity, the combination of modeling and targeted closed- loop feedback that underlies the 
CapClamp (and more generally the dynamic clamp Chamorro et al., 2012) will further unlock exper-
imental control over other previously inaccessible aspects of single neuron (Ullah and Schiff, 2009; 
Rivera et al., 2015; Harrigan et al., 2018) and network dynamics (Newman et al., 2015; Hocker 
and Park, 2019).

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Rattus norvegicus, male and 
female) Wistar Rat (wild type)

Wistar Institute of 
Philadelphia, Pennsylvania

Peptide, recombinant protein
Avidin conjugated 
AlexaFluor- 647 Thermo Fisher Scientific RRID:AB_2336066

Software, algorithm
Fiji distribution of ImageJ 
software imagej.net RRID:SCR_003070

Software, algorithm Neutube neutracing.com https://doi.org/10.1523/ENEURO.0049-14.2014

Software, algorithm RELACS

relacs.  
 
sourceforge.net RRID:SCR_017280
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm RELACS CapClamp This paper https://doi.org/10.5281/zenodo.6322768

Capacitance clamp code 
for RELACS, see "Data and 
software availability" in 
Appendix 1

Software, algorithm RTXI rtxi.org https://doi.org/10.1371/journal.pcbi.1005430

Software, algorithm RTXI CapClamp This paper https://doi.org/10.5281/zenodo.5553946

Capacitance clamp code for 
RTXI, see "Data and software 
availability" in Appendix 1

Software, algorithm Brian 2

brian-team/  
 
brian2 https://doi.org/10.7554/eLife.47314

 Continued

Derivation of the capclamp current
In order to derive a dynamic clamp feedback scheme for the CapClamp, we compare the actual 
membrane potential dynamics at the original capacitance  Cc  with the target dynamics at the chosen 
capacitance  Ct . The actual dynamics of the cell, which for the moment is assumed to be isopotential, 
is given by the current- balance equation of a single compartment

 
dV
dt = I(V,t)+Idyn(t)

Cc
,  (2)

with capacitance  Cc , membrane currents  I(V, t)  (comprising all ionic and synaptic currents, as well 
as external stimuli) and the dynamic clamp current  Idyn(t) . Note that ionic and synaptic contributions 
to the membrane currents  I(V, t)  are voltage- dependent, both with respect to driving force and gating 
dynamics, so that a voltage trajectory governed by a different capacitance also leads to a modified 
shape of the membrane currents. In the target dynamics, the dynamic clamp current is absent and the 
capacitance is modified to the desired value

 
dV
dt = I(V,t)

Ct
.  (3)

Both membrane potential trajectories would coincide, if we chose a dynamic clamp current such 
that the right- hand sides of actual (Equation 2) and target dynamics (Equation 3) become identical,

 Idyn(t) = Cc−Ct
Ct

I(V, t).  

Generally, an exact model for the membrane currents  I(V, t)  will not be available, as it would require 
knowledge about all active conductances and incoming synaptic inputs. Instead, the membrane 
current can be estimated from the stream of incoming voltage data using the discrete version of 
Equation 2

 I(Vi−1, ti−1) ≈ Cc
Vi−Vi−1

∆t − Idyn,i−1  (4)

where  ∆t  is the sampling interval. A prerequisite is the measurement of the cell capacitance  Cc . 
Furthermore, for the estimation to be accurate, the samplin ginterval needs to be shorter than the 
fastest time scales of changes in the membrane currents for example sodium gating time constants. 
With this estimated membrane current, the complete expression for the CapClampcurrent reads

 
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−1

)
.
  (5)

The above derivation assumes that the cell is isopotential. In the case of an electrotonically non- 
compact cell, the steps are identical, but the cell capacitance  Cc  has to be replaced by the capacitance 
of the compartment where the recording electrode is located. Consequently, in a non- isopotential 
neuron, the mimicked capacitance modification is restricted to the compartment at the tip of the 
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recording electrode - a constraint known as the space clamp that is shared by all clamping techniques 
(Prinz et al., 2004; Bar- Yehuda and Korngreen, 2008).

The indexing above assumes a voltage sampling  Vi = V(i∆t)  and a quasi- immediate current injection 

 Idyn,i = Idyn(i∆t)  . However, sampling can take a non- negligible amount of time, so that depending on 
the sampling system the currently available voltage actually represents the voltage from the previous 
cycle  Vi = V((i − 1)∆t)  . In this case, for a correct estimation of the membrane currents, the dynamic 

clamp current index has to be shifted correspondingly to 
 
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−2

)
 
.

Capacitance measurements
To apply the CapClamp, a prerequisite is to measure the capacitance of the recorded local compart-
ment. Here, we use the current clamp protocol, which estimates the capacitance from the voltage 
response to a current step with amplitude  Iext ,

 
V(t) =

∑
i vi

(
1 − e−

t
τi

)
= Iext

∑
i Ri

(
1 − e−

t
τi

)
,
  (6)

where an ordering in terms of these time scales is assumed i.e.  τ0 > τ1 > . . . . Depending on the 
morphology, this sum can have a large number of components (Major et al., 1993), but in practice 
often only two or three components can be reliably extracted. As described in Golowasch et al., 
2009, the slowest component  τ0  is the membrane time constant and allows to infer the total capaci-
tance of a neuron by  C = τ0

R0
= τ0

v0
Iext . In the case of an isopotential cell, the membrane time constant 

is the only component in the charging curve and the total capacitance can be used for the CapClamp.

Measurement of near capacitance
For the case of two components  τ0, R0  and  τ1, R1  in the charging curve (Equation 6), an equivalent 
two compartment circuit can be identified comprising a near compartment with capacitance  Cn  and 
resistance  Rn  connected via a coupling resistance  Ra  to a far compartment with capacitance  Cf   and 
resistance  Rf   (Golowasch et al., 2009). With the additional assumption of a uniform membrane time 
constant  τm = RnCn = RfCf  , the fitted two components can be mapped to the values of these five 
circuit parameters, which in particular provides the near capacitance  Cn  required for the CapClamp

 
Cn = τ0τ1

τ1R0 + τ0R1
.
  

(7)

When the capacitance is subsequently clamped to a k- fold different value,  Ct = kCn , the uniformity 
assumption has to be correspondingly adjusted to  RnCn = kRfCf   (see "Mapping between a charging 
curve with two components and a two compartment circuit" in Appendix 1).

CapClamp in dentate gyrus granule cells
Electrophysiology
Acute brain slices were produced as described earlier (Booker et al., 2014). Briefly, rats were anes-
thetized (3% Isoflurane, Abbott, Wiesbaden, Germany) and then decapitated. Brains were removed 
quickly and transferred to carbogenated (95% O2 / 5% CO2) ice- cold sucrose- ACSF containing (in  mM ): 
87 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 glucose, 75 sucrose, 7 MgCl2, 0.5 CaCl2, 1 Na- pyru-
vate, 1 ascorbic acid. Horizontal brain slices of 300 µm thickness were cut using a Vibratome (VT1200 
S, Leica, Wetzlar, Germany). Hippocampal tissue slices, were collected and placed in a submerged 
holding chamber filled with carbogenated sucrose ACSF at 32- 34 °C for 30 min and then at room 
temperature for 15 min before recording. Experiments were alternated between left and right hemi-
sphere slices to prevent bias due to slice condition.

For recording, slices were transferred to a submerged chamber and superfused with pre- warmed, 
carbogenated ACSF containing (in  mM ): 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 glucose, 
1 MgCl2, 2 CaCl2, 1 Na- pyruvate, 1 ascorbic acid. The bath temperature was set to 32- 34 °C with 
a perfusion rate of 12- 13 ml/min. Slices were visualized using an upright microscope (AxioScope; 
Zeiss) equipped with infrared differential inference contrast optics and a digital camera (Retiga EX 
QImaging CCD, Teledyne Photometrics, AZ, USA). Granule cells from the DG were chosen based on 
their anatomical location within the cell body layer as well as their morphological appearance.
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Whole- cell patch- clamp electrodes were 
produced from borosilicate glass capillaries 
(outer diameter , inner diameter 1 mm, Hilgen-
berg, Germany) using a horizontal puller (P- 97, 
Sutter Instruments, CA, USA) and filled with 
an intracellular solution consisting of (in  mM ): 
K- gluconate 130, KCl 10, HEPES 10, EGTA 10, 
MgCl2 2, Na2ATP 2, Na2GTP 0.3, Na2Creatine 1 
and 0.1% biocytin (adjusted to pH 7.3 and 315 
mOsm), giving a series resistance of 2.5- 4 MΩ. 
All recordings were performed with a SEC LX10 
amplifier (npi electronic, Germany), filtered 
online at 20 kHz with the built- in Bessel filter, and 
digitized at 20 kHz (National Instruments, UK). 
Following breakthrough into whole- cell configu-
ration, we adjusted the bridge and capacitance 
compensation before switching to the dynamic 
clamp mode for recording. Cells were excluded 
if resting membrane potential was more depolar-
ized than -45 mV. The liquid junction potential was 
not corrected.

Neuronal visualization and 
immunohistochemistry
Following recording, selected cells were immer-
sion fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB, pH 7.4) at 4 °C for 24–48 hr, 
slices were then transferred to fresh PB. Prior to immunohistochemical processing, slices were rinsed 
in PB, followed by PB buffered saline (PBS, 0.9% NaCl). Slices were then rinsed in PBS and incubated 
in a fluorescent- conjugated streptavidin (Alexa Fluor- 647, 1:1000, Invitrogen, UK) in PBS solution 
containing 3% NGS, 0.1% TritonX- 100 and 0.05% NaN3 for 24 hr at 4 °C. Slices were rinsed in PBS 
and then desalted in PB before being mounted (Fluoromount- G, Southern Biotech) on 300-µm- thick 
metal spacers, cover- slipped, sealed, and stored at 4 °C prior to imaging.

Confocal imaging and reconstruction
DGGCs were imaged on a laser scanning confocal microscope (FV1000, Olympus, Japan). First, a 
low magnification (4 x, Olympus, Japan) overview image was taken to confirm the cellular type and 
localization to the DG, then high resolution z- stacks were obtained with a 30x silicone oil immersion 
objective (N.A. 1.05, UPlanSApo, Olympus) over the whole extent of the cell (1 µm axial steps). Image 
stacks were stitched offline using the FIJI software package (https://imagej.net/software/fiji/imagej. 
net), then the cells were reconstructed and volume filled using Neutube (https://www.neutracing. 
com/neutracing.com) (Feng et al., 2015).

Dynamic clamp setup
Data acquisition and dynamic clamp loop were controlled by RELACS, V0.9.8, RRID:SCR_017280 
using a dedicated computer with a Linux- based real time operating system (https://www.rtai.org/rtai. 
org). The sampling frequency was set to 20 kHz and the recordings were performed in discontinuous 
current clamp with a duty cycle of 16.5 µs. We implemented a CapClamp procedure for RELACS that 
allows the user to online specify the measured capacitance  Cc  and the desired target capacitance  Ct  
(for documentation and installation instruction, see "Data and software availability" in Appendix 1).

Online measurement of capacitance
For the online measurement of the local capacitance, DGGCs were subjected to twenty hyperpolar-
izing pulses of  200 ms  length with  400 ms  pauses and an amplitude chosen to produce a response of 
 −5 mV  in order to minimize interference from active ionic currents. Responses were averaged and the 
resulting mean trajectory was fit with a sum of exponentials using the Levenberg- Marquardt method 

Table 2. Multi- exponential fit and corresponding 
circuit parameters in the recorded dentate gyrus 
granule cells (N = 18) and a multicompartment 
model based on a reconstructed DGGC 
morphology (see "Multicompartment model of a 
dentate gyrus granule cell" in Methods).

DGGCs (mean ± std) Multicomp. model

Exp. fit

 τ0 15.1±4.8 ms 15.1 ms

R0 127.1±44.6 MΩ 119.2 MΩ

 τ1 0.77±0.24 ms 0.18 ms

R1 34.5±14.7 MΩ 12.3 MΩ

Circuit

 Cn 21.0±9.4 pF 13.0 pF

 Rn 854.2±394.0 MΩ 1158.0 MΩ

 Ra 52.5±19.8 MΩ 15.5 MΩ

 Cf  105.8±33.0 pF 113.7 pF

 Rf  155.5±59.9 MΩ 132.8 MΩ



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  19 of 32

from the python library scipy (Virtanen et al., 2020). Fits were performed with one, two and three 
components and were compared via the F- statistic (Bardsley et al., 1986). In all recorded DGGCs, 
the two component fit was significantly better than the one exponential fit ( p < 0.05 , 18/18), whereas 
no cell exhibited a significant third component ( p < 0.05 , 0/18). Finally, the extracted two components 
were mapped to a two compartment circuit as explained above and the near capacitance was then 
used in the subsequent CapClamp (Table 2).

An offline reexamination revealed that in several recorded cells the above fitting procedure 
yielded inaccurate estimates of the exponential components, e.g. very short fast components due 
to an artefactual voltage dip before pulse onset. To circumvent these problems, improved offline 
fits were performed for the artifact- free recharging at the pulse end ( see "Adapted fitting proce-
dure of dentate gyrus charging curves" in Appendix 1). In 8/18  cells, the offline and the original 
online estimate of the near capacitance differed by less than 20%, but overall the offline measurement 
yielded higher capacitance values than originally used for the CapClamp (offline:  21.0 ± 9.4 pF/ , online: 

 14.9 ± 4.8 pF/ ). In contrast to the online measurement, the offline procedure reported a better fit with 
three components for a subset of cells ( p < 0.05 , 7/18), but for the analysis presented here the result 
of the two component fit is used in all cells.

Protocol 1: Verification of altered capacitance
After online measurement of the capacitance, each DGGC was clamped at a range of capacitances 
from 60% to 300% of the original near capacitance. For each clamped capacitance, the above offline 
capacitance measurement protocol was repeated to see how the CapClamp altered the slow and 
fast components. These time scale and amplitude changes were then mapped to the corresponding 
two compartment circuit parameters to compare them to the target capacitance (see Measurement 
of near capacitance). Due to the difference between online and offline estimate of the original near 
capacitance, we corrected the original target capacitance to  Ccorr

t = Coff
c + ∆Ct , which preserves the 

targeted capacitance change  ∆Ct = Ct − Con
c  . Equally, the clamping factors in the mapping were 

updated to 
 
k = Ccorr

t
Coff

c  
.

Protocol 2: Analysis of f-I curves and spike shapes
In a subset of cells, after measuring near capacitance, an fI curve was obtained for the original capac-
itance and for target capacitances in the above range. Current pulses were 1 s long and repeated 
three times, at amplitudes ranging from 90% to 200% of an estimated rheobase. This rheobase was 
estimated by the first occurrence of spiking in response to a ramp (length: 5 s, height: 250 pA). For a 
quantitative comparison, the resulting fI curves were fit by a square- root function

 f(I) = Θ(I − Irheo)gain
√

I − Irheo   (8)

which captured their type 1 firing with a continuous frequency- current relationship (Izhikevich, 
2006, p. 168). Cells with more than 30% varying input resistance within the protocol and/or a non- 
monotonically increasing fI curves were excluded from the analysis.

Spikes were detected as a minimum 10 mV elevation over the average depolarization during the 
pulse. For the mean action potential (AP) shape, varying spike forms from the initial (< 300 ms) part 
of the pulse were discarded. The extracted AP features were peak amplitude, threshold voltage and 
threshold time to peak (voltage derivative crossing 10 mV/ms), height (difference between peak and 
threshold), temporal width at half of the height and fast afterhyperpolarization (fAHP; a voltage dip of 
–0.5 mV or larger within 10 ms after the spike). For threshold and fAHP detection, the spike shape was 
filtered with a digital 4th order Butterworth filter with critical frequencies 3.3 kHz, respectively 1 kHz.

To detect, whether changes in capacitance affect the action potential generating currents, we 
compared the recorded spikes with hypothetical ones obtained by assuming unaltered currents with 
respect to the original near capacitance. For a target capacitance  Ct , such a hypothetical spike would 
be a scaled version of the original spike,

 Vhypo(t) = Vc(t0) + Cc
Ct

(
Vc(t) − Vc(t0)

)
,  
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where  Vc(t)  is the spike form at the original cell capacitance  Cc  and the initial time t0 was chosen 
to be  tspike − 3ms  short before onset of the spike generating currents. Changes in the measured spike 
shape compared to this hypothetical shape signal a change of the underlying currents.

Simulations of the CapClamp
Simulations of neuron models coupled to the CapClamp were implemented using the neuron simu-
lator Brian2 (Stimberg et  al., 2019) and the CapClamp was realized using the Brian2 provided 
NetworkOperation that updated the clamp current every sampling interval using Equation 5 with 
zero delay between voltage sampling and current injection (for links to the available code, see "Data 
and software availability" in Appendix 1).

Biophysical neuron model
In order to test the CapClamp in the presence of active ionic conductances, a Wang- Buzsáki (WB) 
neuron, a single compartment model of hippocampal interneurons, was used (Wang and Buzsáki, 
1996). Gating dynamics and peak conductances of the transient sodium current and the delayed 
rectifier potassium current were modeled as described earlier (Hesse et  al., 2017, Appendix A). 
The specific membrane capacitance was chosen as  Cm = 0.75 µF

cm2   and the membrane area was set to 

 A = 20000µm2
 , so that the original cell capacitance was 150 pF. When the capacitance is varied, the 

WB neuron undergoes a well- characterized series of bifurcations; in particular it exhibits a saddle- 
node loop (SNL) bifurcation at  Cm = 1.47 µF

cm2   accompanied by an abrupt doubling of the firing rate 
(Hesse et al., 2017). For the demonstration of the CapClamp here, we decided to restrict the tested 
capacitances to the regime below this critical value, but we confirmed via additional simulations that 
the CapClamp continues to work beyond the bifurcation (data not shown).

Simulations were performed with the second order Runge- Kutta method, a time step of 1  µs  and 
dynamic clamp loop frequencies up to 100 kHz. Analysis of spike shapes and f- I curves was performed 
in the same way as for the recorded cells.

Analytically expected effect of capacitance on the form of the f-I curve
How the form of the f- I curve depends on capacitance can be analytically calculated for a single- 
compartment conductance- based neuron model undergoing a saddle- node on a limit cycle bifurca-
tion at spiking onset like the WB model considered here (Izhikevich, 2006), pp. 162–168; (Schleimer 
and Schreiber, 2018). In this case, the time between two spikes  Tisi  is dominated by the slow traversal 
T2 of the saddle node, which close to threshold is multiple times longer than the brief duration T1 of 
the spike and can be derived by considering solely local dynamics

 
Tisi = T1 + T2 ≈ T2 = π√

ac
(

I−Irheo
)
  

where  a  and  c  parametrize the normal form of the dynamics around the saddle node and  Irheo = Isn  
is the current value where the saddle node bifurcation occurs. Inverting the inter spike interval to get 
the frequency then gives the square root form of the f- I curve (see Equation 8). Under the assumption 
of fast gating kinetics, the  gain =

√
ac
π   is expected to be proportional to the inverse of the capaci-

tance  
1
C , because the relevant time scale for the local slow dynamics around the saddle node is the 

membrane time constant implying that the traversal duration scales as  T2 ∝ τ ∝ C . The rheobase 
current in contrast is expected to remain constant, because equilibrium points are independent of the 
time scales of the dynamics. Formally calculating the normal form parameters  a  and  c  confirms these 
expectations (see "Formal derivation of f- I curve gain and rheobase dependence oncapacitance" in 
Appendix 1).

The  
1
C  dependence of the gain allows to estimate an expected gain reduction for small capacitance 

changes around the original capacitance  Cc  by Taylor expansion

 ∆gain = gain(Cc) − gain(Cc + ∆C) ≈ − gain(Cc)
Cc

∆C  

which we compare for both simulated neuron and DGGCs to the observed gain reduction.
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Multicompartment model of a dentate gyrus granule cell
For a controlled test of the CapClamp in an electrotonically non- compact cell, a morphologically 
reconstruction of a recorded DGGC was used as the basis for a multicompartment simulation. Soma 
and the two dendritic trees had a total area of 14,126  µm2

 . The axon was removed for the simula-
tion. Membrane properties were assumed to be uniform and chosen such that they reproduced the 
average values of the total capacitance and the membrane time constant observed in the experiments: 

 Cm = Cn+Cf
A ≈ 0.9 µF

cm2   and  Rm = τ0
Cm

≈ 16800Ωcm2
 . The axial resistivity was chosen as  Raxial = 300Ωcm . 

Simulations were performed with exponential Euler integration, a time step of 10  µs  and a dynamic 
clamp sampling frequency of 20 kHz. Capacitance measurement and clamp procedure were the same 
as in the recorded DGGCs (Table 2).

Acknowledgements
We thank Jan Benda and Lukas Sonnenberg for their dedicated support with dynamic clamp and fruitful 
discussions. We are grateful to Eve Marder and Ekaterina Morozova for being able to test the RTXI 
implementation of the CapClamp and apply the CapClamp in neurons of the crustacean stomatogas-
tric ganglion. We thank Robert Gowers and Philipp Norton for valuable feedback on the manuscript.

This project has received funding from the European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation program (grant agreement No 864243). The article 
processing charge was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation) – 491192747 and the Open Access Publication Fund of Humboldt- Universität zu Berlin.

Additional information

Funding

Funder Grant reference number Author

Bundesministerium für 
Bildung und Forschung

01GQ1403 Jan-Hendrik Schleimer
Susanne Schreiber

Deutsche 
Forschungsgemeinschaft

GRK 1589/2 Paul Pfeiffer
Federico José Barreda 
Tomás

Deutsche 
Forschungsgemeinschaft

EXC 257 Federico José Barreda 
Tomás
Imre Vida

Deutsche 
Forschungsgemeinschaft

FOR 2134 Federico José Barreda 
Tomás
Imre Vida

H2020 European Research 
Council

864243 Susanne Schreiber

Einstein Stiftung Berlin EZ-2014-224 Jiameng Wu

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Paul Pfeiffer, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project 
administration, Software, Visualization, Writing – original draft, Writing – review and editing; Federico 
José Barreda Tomás, Data curation, Investigation, Methodology, Software, Validation, Visualization, 
Writing – review and editing; Jiameng Wu, Formal analysis, Investigation, Methodology, Software, 
Visualization, Writing – review and editing; Jan- Hendrik Schleimer, Conceptualization, Formal anal-
ysis, Methodology, Supervision, Writing – review and editing; Imre Vida, Funding acquisition, Project 
administration, Resources, Supervision, Writing – review and editing; Susanne Schreiber, Conceptu-
alization, Funding acquisition, Project administration, Resources, Supervision, Writing – original draft, 
Writing – review and editing



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  22 of 32

Author ORCIDs
Paul Pfeiffer   http://orcid.org/0000-0001-5324-5886
Jiameng Wu   http://orcid.org/0000-0002-6266-7666
Jan- Hendrik Schleimer   http://orcid.org/0000-0002-2156-330X
Imre Vida   http://orcid.org/0000-0003-3214-2233
Susanne Schreiber   http://orcid.org/0000-0003-3913-5650

Ethics
All procedures and animal maintenance were performaed in accordance with institutional guidelines, 
the German Animal Welfare Act, the European Council Directive 86/609/EEC regarding the protection 
of animals, and guidelines from local authorities (Berlin, T- 0215/11).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.75517.sa1
Author response https://doi.org/10.7554/eLife.75517.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
All data generated, analysis code as well as computational modelling code is uploaded on https:// 
zenodo.org/, see article section Data and software availability.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Pfeiffer P, Barreda 
Tomás F J

2021 Capacitance Clamp 
Demonstration in Rat 
Dentate Gyrus Granule 
Cells

https:// doi. org/ 10. 
5281/ zenodo. 5552207

Zenodo, 10.5281/
zenodo.5552207

References
Amaducci R, Reyes- Sanchez M, Elices I, Rodriguez FB, Varona P. 2019. RTHybrid: A Standardized and Open- 

Source Real- Time Software Model Library for Experimental Neuroscience. Frontiers in Neuroinformatics 13:11. 
DOI: https://doi.org/10.3389/fninf.2019.00011, PMID: 30914940

Amzica F, Neckelmann D. 1999. Membrane capacitance of cortical neurons and glia during sleep oscillations and 
spike- wave seizures. Journal of Neurophysiology 82:2731–2746. DOI: https://doi.org/10.1152/jn.1999.82.5. 
2731, PMID: 10561441

Ashida G, Abe K, Funabiki K, Konishi M. 2007. Passive soma facilitates submillisecond coincidence detection in 
the owl’s auditory system. Journal of Neurophysiology 97:2267–2282. DOI: https://doi.org/10.1152/jn.00399. 
2006, PMID: 17135480

Athilingam JC, Ben- Shalom R, Keeshen CM, Sohal VS, Bender KJ. 2017. Serotonin enhances excitability and 
gamma frequency temporal integration in mouse prefrontal fast- spiking interneurons. eLife 6:e31991. DOI: 
https://doi.org/10.7554/eLife.31991, PMID: 29206101

Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, Richardson MJE. 2008. Dynamic I- V curves are reliable 
predictors of naturalistic pyramidal- neuron voltage traces. Journal of Neurophysiology 99:656–666. DOI: 
https://doi.org/10.1152/jn.01107.2007, PMID: 18057107

Bal T, Destexhe A. 2009. Dynamic- Clamp: From Principles to Applications. New York, NY: Springer US. DOI: 
https://doi.org/10.1007/978-0-387-89279-5

Bar- Yehuda D, Korngreen A. 2008. Space- clamp problems when voltage clamping neurons expressing voltage- 
gated conductances. Journal of Neurophysiology 99:1127–1136. DOI: https://doi.org/10.1152/jn.01232.2007, 
PMID: 18184885

Bardsley WG, McGinlay PB, Wright AJ. 1986. The F Test for Model Discrimination with Exponential Functions. 
Biometrika 73:501. DOI: https://doi.org/10.2307/2336228

Beaulieu- Laroche L, Toloza EHS, van der Goes MS, Lafourcade M, Barnagian D, Williams ZM, Eskandar EN, 
Frosch MP, Cash SS, Harnett MT. 2018. Enhanced Dendritic Compartmentalization in Human Cortical Neurons. 
Cell 175:643–651. DOI: https://doi.org/10.1016/j.cell.2018.08.045, PMID: 30340039



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  23 of 32

Bekkers JM, Häusser M. 2007. Targeted dendrotomy reveals active and passive contributions of the dendritic 
tree to synaptic integration and neuronal output. PNAS 104:11447–11452. DOI: https://doi.org/10.1073/pnas. 
0701586104, PMID: 17592119

Benda J, Gollisch T, Machens CK, Herz AV. 2007. From response to stimulus: adaptive sampling in sensory 
physiology. Current Opinion in Neurobiology 17:430–436. DOI: https://doi.org/10.1016/j.conb.2007.07.009, 
PMID: 17689952

Bettencourt JC, Lillis KP, Stupin LR, White JA. 2008. Effects of imperfect dynamic clamp: computational and 
experimental results. Journal of Neuroscience Methods 169:282–289. DOI: https://doi.org/10.1016/j.jneumeth. 
2007.10.009, PMID: 18076999

Booker SA, Song J, Vida I. 2014. Whole- cell patch- clamp recordings from morphologically- and neurochemically- 
identified hippocampal interneurons. Journal of Visualized Experiments:e51706. DOI: https://doi.org/10.3791/ 
51706, PMID: 25350149

Brette R, Piwkowska Z, Monier C, Rudolph- Lilith M, Fournier J, Levy M, Frégnac Y, Bal T, Destexhe A. 2008. 
High- resolution intracellular recordings using a real- time computational model of the electrode. Neuron 
59:379–391. DOI: https://doi.org/10.1016/j.neuron.2008.06.021, PMID: 18701064

Carvalho- de- Souza JL, Pinto BI, Pepperberg DR, Bezanilla F. 2018. Optocapacitive Generation of Action 
Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophysical Journal 114:283–288. DOI: https:// 
doi.org/10.1016/j.bpj.2017.11.018, PMID: 29273263

Castelfranco AM, Hartline DK. 2015. The evolution of vertebrate and invertebrate myelin: A theoretical 
computational study. Journal of Computational Neuroscience 38:521–538. DOI: https://doi.org/10.1007/ 
s10827-015-0552-x, PMID: 25832903

Chamorro P, Muñiz C, Levi R, Arroyo D, Rodríguez FB, Varona P. 2012. Generalization of the dynamic clamp 
concept in neurophysiology and behavior. PLOS ONE 7:e40887. DOI: https://doi.org/10.1371/journal.pone. 
0040887, PMID: 22829895

Contreras SA, Schleimer JH, Gulledge AT, Schreiber S. 2020. Activity- Mediated Accumulation of Potassium 
Induces a Switch in Firing Pattern and Neuronal Excitability Type. Neuroscience 1:403782. DOI: https://doi.org/ 
10.1101/2020.11.30.403782

de Oliveira BL, Pfeiffer ER, Sundnes J, Wall ST, McCulloch AD. 2015. Increased cell membrane capacitance is the 
dominant mechanism of stretch- dependent conduction slowing in the rabbit heart: A computational study. 
Cellular and Molecular Bioengineering 8:237–246. DOI: https://doi.org/10.1007/s12195-015-0384-9, PMID: 
27087858

Desai NS, Gray R, Johnston D. 2017. A Dynamic Clamp on Every Rig. ENeuro 4:ENEURO.0250- 17.2017. DOI: 
https://doi.org/10.1523/ENEURO.0250-17.2017, PMID: 29085905

Dorf R, Bishop R. 2010. Modern Control Systems. twelfth ed. Pearson.
Dorval AD, Christini DJ, White JA. 2001. Real- Time linux dynamic clamp: A fast and flexible way to construct 

virtual ion channels in living cells. Annals of Biomedical Engineering 29:897–907. DOI: https://doi.org/10.1114/ 
1.1408929, PMID: 11764320

Economo MN, Fernandez FR, White JA. 2010. Dynamic clamp: alteration of response properties and creation of 
virtual realities in neurophysiology. The Journal of Neuroscience 30:2407–2413. DOI: https://doi.org/10.1523/ 
JNEUROSCI.5954-09.2010, PMID: 20164323

Edwards DH, Mulloney B. 1984. Compartmental models of electrotonic structure and synaptic integration in an 
identified neurone. The Journal of Physiology 348:89–113. DOI: https://doi.org/10.1113/jphysiol.1984. 
sp015101, PMID: 6716298

Eyal G, Verhoog MB, Testa- Silva G, Deitcher Y, Lodder JC, Benavides- Piccione R, Morales J, DeFelipe J, 
de Kock CP, Mansvelder HD, Segev I. 2016. Unique membrane properties and enhanced signal processing in 
human neocortical neurons. eLife 5:e16553. DOI: https://doi.org/10.7554/eLife.16553, PMID: 27710767

Feng L, Zhao T, Kim J. 2015. neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on 
the SWC Format. ENeuro 2:ENEURO.0049- 14.2014. DOI: https://doi.org/10.1523/ENEURO.0049-14.2014, 
PMID: 26464967

Franci A, Drion G, Sepulchre R. 2018. Robust and tunable bursting requires slow positive feedback. Journal of 
Neurophysiology 119:1222–1234. DOI: https://doi.org/10.1152/jn.00804.2017, PMID: 29357476

Gentet LJ, Stuart GJ, Clements JD. 2000. Direct measurement of specific membrane capacitance in neurons. 
Biophysical Journal 79:314–320. DOI: https://doi.org/10.1016/S0006-3495(00)76293-X, PMID: 10866957

Goethals S, Brette R. 2020. Theoretical relation between axon initial segment geometry and excitability. eLife 
9:e53432. DOI: https://doi.org/10.7554/eLife.53432, PMID: 32223890

Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. 2009. Membrane capacitance 
measurements revisited: dependence of capacitance value on measurement method in nonisopotential 
neurons. Journal of Neurophysiology 102:2161–2175. DOI: https://doi.org/10.1152/jn.00160.2009, PMID: 
19571202

Gorur- Shandilya S, Marder E, O’Leary T. 2020. Activity- dependent compensation of cell size is vulnerable to 
targeted deletion of ion channels. Scientific Reports 10:15989. DOI: https://doi.org/10.1038/s41598-020- 
72977-6, PMID: 32994529

Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, Koch C, Arkhipov A. 2018. Systematic 
generation of biophysically detailed models for diverse cortical neuron types. Nature Communications 9:710. 
DOI: https://doi.org/10.1038/s41467-017-02718-3, PMID: 29459718

Harrigan P, Madhani HD, El- Samad H. 2018. Real- Time Genetic Compensation Defines the Dynamic Demands of 
Feedback Control. Cell 175:877–886. DOI: https://doi.org/10.1016/j.cell.2018.09.044, PMID: 30340045



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  24 of 32

Hartline DK, Colman DR. 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. 
Current Biology 17:R29–R35. DOI: https://doi.org/10.1016/j.cub.2006.11.042, PMID: 17208176

Hasenstaub A, Otte S, Callaway E, Sejnowski TJ. 2010. Metabolic cost as a unifying principle governing neuronal 
biophysics. PNAS 107:12329–12334. DOI: https://doi.org/10.1073/pnas.0914886107, PMID: 20616090

Hesse J, Schreiber S. 2015. Externalization of neuronal somata as an evolutionary strategy for energy 
economization. Current Biology 25:R324–R325. DOI: https://doi.org/10.1016/j.cub.2015.02.024, PMID: 
25898099

Hesse J, Schleimer JH, Schreiber S. 2017. Qualitative changes in phase- response curve and synchronization at 
the saddle- node- loop bifurcation. Physical Review. E 95:052203. DOI: https://doi.org/10.1103/PhysRevE.95. 
052203, PMID: 28618541

Hocker D, Park IM. 2019. Myopic control of neural dynamics. PLOS Computational Biology 15:e1006854. DOI: 
https://doi.org/10.1371/journal.pcbi.1006854, PMID: 30856171

Izhikevich EM. 2006. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT 
Press. DOI: https://doi.org/10.7551/mitpress/2526.001.0001

Jaffe DB, Brenner R. 2018. A computational model for how the fast afterhyperpolarization paradoxically 
increases gain in regularly firing neurons. Journal of Neurophysiology 119:1506–1520. DOI: https://doi.org/10. 
1152/jn.00385.2017, PMID: 29357445

Kemenes I, Marra V, Crossley M, Samu D, Staras K, Kemenes G, Nowotny T. 2011. Dynamic clamp with StdpC 
software. Nature Protocols 6:405–417. DOI: https://doi.org/10.1038/nprot.2010.200, PMID: 21372819

Kirst C, Ammer J, Felmy F, Herz A, Stemmler M. 2015. Fundamental Structure and Modulation of Neuronal 
Excitability: Synaptic Control of Coding, Resonance, and Network Synchronization. Neuroscience. . 1 :022475. 
DOI: https://doi.org/10.1101/022475

Krasovitski B, Frenkel V, Shoham S, Kimmel E. 2011. Intramembrane cavitation as a unifying mechanism for 
ultrasound- induced bioeffects. PNAS 108:3258–3263. DOI: https://doi.org/10.1073/pnas.1015771108, PMID: 
21300891

Krueppel R, Remy S, Beck H. 2011. Dendritic integration in hippocampal dentate granule cells. Neuron 
71:512–528. DOI: https://doi.org/10.1016/j.neuron.2011.05.043, PMID: 21835347

Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. The metabolic cost of neural information. Nature 
Neuroscience 1:36–41. DOI: https://doi.org/10.1038/236, PMID: 10195106

Linaro D, Couto J, Giugliano M. 2015. Real- time Electrophysiology: Using Closed- loop Protocols to Probe 
Neuronal Dynamics and Beyond. Journal of Visualized Experiments 1:e52320. DOI: https://doi.org/10.3791/ 
52320, PMID: 26132434

Liu J, Kim YS, Richardson CE, Tom A, Ramakrishnan C, Birey F, Katsumata T, Chen S, Wang C, Wang X, 
Joubert LM, Jiang Y, Wang H, Fenno LE, Tok JBH, Pașca SP, Shen K, Bao Z, Deisseroth K. 2020. Genetically 
targeted chemical assembly of functional materials in living cells, tissues, and animals. Science (New York, N.Y.) 
367:1372–1376. DOI: https://doi.org/10.1126/science.aay4866, PMID: 32193327

Major G, Evans JD, Jack JJB. 1993. Solutions for transients in arbitrarily branching cables: I. Voltage recording 
with a somatic shunt. Biophysical Journal 65:423–449. DOI: https://doi.org/10.1016/S0006-3495(93)81037-3, 
PMID: 8369447

Martina M, Vida I, Jonas P. 2000. Distal initiation and active propagation of action potentials in interneuron 
dendrites. Science (New York, N.Y.) 287:295–300. DOI: https://doi.org/10.1126/science.287.5451.295, PMID: 
10634782

McComb C, Meems R, Syed N, Lukowiak K. 2003. Electrophysiological differences in the CPG aerial respiratory 
behavior between juvenile and adult Lymnaea. Journal of Neurophysiology 90:983–992. DOI: https://doi.org/ 
10.1152/jn.00263.2003, PMID: 12711713

Newman JP, Fong M, Millard DC, Whitmire CJ, Stanley GB, Potter SM. 2015. Optogenetic feedback control of 
neural activity. eLife 4:e07192. DOI: https://doi.org/10.7554/eLife.07192, PMID: 26140329

Nörenberg A, Hu H, Vida I, Bartos M, Jonas P. 2010. Distinct nonuniform cable properties optimize rapid and 
efficient activation of fast- spiking GABAergic interneurons. PNAS 107:894–899. DOI: https://doi.org/10.1073/ 
pnas.0910716107, PMID: 20080772

Ori H, Hazan H, Marder E, Marom S. 2020. Dynamic clamp constructed phase diagram for the Hodgkin and 
Huxley model of excitability. PNAS 117:3575–3582. DOI: https://doi.org/10.1073/pnas.1916514117, PMID: 
32024761

O’Leary T, Williams AH, Franci A, Marder E. 2014. Cell types, network homeostasis, and pathological 
compensation from a biologically plausible ion channel expression model. Neuron 82:809–821. DOI: https:// 
doi.org/10.1016/j.neuron.2014.04.002, PMID: 24853940

Patel YA, George A, Dorval AD, White JA, Christini DJ, Butera RJ, Poisot T. 2017. Hard real- time closed- loop 
electrophysiology with the Real- Time eXperiment Interface (RTXI. PLOS Computational Biology 13:e1005430. 
DOI: https://doi.org/10.1371/journal.pcbi.1005430, PMID: 28557998

Pfeiffer P, Egorov AV, Lorenz F, Schleimer JH, Draguhn A, Schreiber S. 2020. Clusters of cooperative ion 
channels enable a membrane- potential- based mechanism for short- term memory. eLife 9:e49974. DOI: https:// 
doi.org/10.7554/eLife.49974, PMID: 32031523

Plaksin M, Shoham S, Kimmel E. 2014. Intramembrane Cavitation as a Predictive Bio- Piezoelectric Mechanism for 
Ultrasonic Brain Stimulation. Physical Review X 4:011004. DOI: https://doi.org/10.1103/PhysRevX.4.011004

Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP. 2017. Mapping the function of 
neuronal ion channels in model and experiment. eLife 6:e22152. DOI: https://doi.org/10.7554/eLife.22152, 
PMID: 28267430



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  25 of 32

Prescott SA, De Koninck Y, Sejnowski TJ. 2008a. Biophysical basis for three distinct dynamical mechanisms of 
action potential initiation. PLOS Computational Biology 4:e1000198. DOI: https://doi.org/10.1371/journal.pcbi. 
1000198, PMID: 18846205

Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ. 2008b. Pyramidal neurons switch from integrators in vitro to 
resonators under in vivo- like conditions. Journal of Neurophysiology 100:3030–3042. DOI: https://doi.org/10. 
1152/jn.90634.2008, PMID: 18829848

Prinz AA, Abbott LF, Marder E. 2004. The dynamic clamp comes of age. Trends in Neurosciences 27:218–224. 
DOI: https://doi.org/10.1016/j.tins.2004.02.004, PMID: 15046881

Rihn LL, Claiborne BJ. 1990. Dendritic growth and regression in rat dentate granule cells during late postnatal 
development. Brain Research. Developmental Brain Research 54:115–124. DOI: https://doi.org/10.1016/0165- 
3806(90)90071-6, PMID: 2364540

Rivera CM, Kwon HJ, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG. 2015. Towards a dynamic clamp 
for neurochemical modalities. Sensors (Basel, Switzerland) 15:10465–10480. DOI: https://doi.org/10.3390/ 
s150510465, PMID: 25946635

Robinson HP. 1994. Conductance injection. Trends in Neurosciences 17:147–148. DOI: https://doi.org/10.1016/ 
0166-2236(94)90088-4, PMID: 7517591

Santin JM, Schulz DJ. 2019. Membrane Voltage Is a Direct Feedback Signal That Influences Correlated Ion 
Channel Expression in Neurons. Current Biology 29:1683–1688. DOI: https://doi.org/10.1016/j.cub.2019.04. 
008, PMID: 31080077

Schleimer JH, Schreiber S. 2018. Phase- response curves of ion channel gating kinetics. Mathematical Methods in 
the Applied Sciences 41:8844–8858. DOI: https://doi.org/10.1002/mma.5232

Schmidt- Hieber C, Jonas P, Bischofberger J. 2007. Subthreshold dendritic signal processing and coincidence 
detection in dentate gyrus granule cells. The Journal of Neuroscience 27:8430–8441. DOI: https://doi.org/10. 
1523/JNEUROSCI.1787-07.2007, PMID: 17670990

Sengupta B, Stemmler M, Laughlin SB, Niven JE. 2010. Action potential energy efficiency varies among neuron 
types in vertebrates and invertebrates. PLOS Computational Biology 6:e1000840. DOI: https://doi.org/10. 
1371/journal.pcbi.1000840, PMID: 20617202

Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F. 2017. Corrigendum: Infrared light excites cells by 
changing their electrical capacitance. Nature Communications 8:16148. DOI: https://doi.org/10.1038/ 
ncomms16148, PMID: 29125141

Sharp AA, O’Neil MB, Abbott LF, Marder E. 1993. The dynamic clamp: artificial conductances in biological 
neurons. Trends in Neurosciences 16:389–394. DOI: https://doi.org/10.1016/0166-2236(93)90004-6, PMID: 
7504352

Stiefel KM, Gutkin BS, Sejnowski TJ. 2008. Cholinergic neuromodulation changes phase response curve shape 
and type in cortical pyramidal neurons. PLOS ONE 3:e3947. DOI: https://doi.org/10.1371/journal.pone. 
0003947, PMID: 19079601

Stiefel KM, Gutkin BS, Sejnowski TJ. 2009. The effects of cholinergic neuromodulation on neuronal phase- 
response curves of modeled cortical neurons. Journal of Computational Neuroscience 26:289–301. DOI: 
https://doi.org/10.1007/s10827-008-0111-9, PMID: 18784991

Stimberg M, Brette R, Goodman DF. 2019. Brian 2, an intuitive and efficient neural simulator. eLife 8:e47314. 
DOI: https://doi.org/10.7554/eLife.47314, PMID: 31429824

Svirskis G, Kotak V, Sanes DH, Rinzel J. 2004. Sodium along with low- threshold potassium currents enhance 
coincidence detection of subthreshold noisy signals in MSO neurons. Journal of Neurophysiology 91:2465–
2473. DOI: https://doi.org/10.1152/jn.00717.2003, PMID: 14749317

Szoboszlay M, Lőrincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z. 2016. Functional Properties of Dendritic Gap 
Junctions in Cerebellar Golgi Cells. Neuron 90:1043–1056. DOI: https://doi.org/10.1016/j.neuron.2016.03.029, 
PMID: 27133465

Szűcs A, Rátkai A, Schlett K, Huerta R. 2017. Frequency- dependent regulation of intrinsic excitability by 
voltage- activated membrane conductances, computational modeling and dynamic clamp. The European 
Journal of Neuroscience 46:2429–2444. DOI: https://doi.org/10.1111/ejn.13708, PMID: 28921695

Temporal S, Lett KM, Schulz DJ. 2014. Activity- dependent feedback regulates correlated ion channel mRNA 
levels in single identified motor neurons. Current Biology 24:1899–1904. DOI: https://doi.org/10.1016/j.cub. 
2014.06.067, PMID: 25088555

Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H. 2018. Perineuronal nets decrease 
membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nature Communications 
9:4724. DOI: https://doi.org/10.1038/s41467-018-07113-0, PMID: 30413686

Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SBB, Both M, Draguhn A, Beck H, Egorov AVV. 
2014. Axon- carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83:1418–
1430. DOI: https://doi.org/10.1016/j.neuron.2014.08.013, PMID: 25199704

Turrigiano GG, Marder E, Abbott LF. 1996. Cellular short- term memory from a slow potassium conductance. 
Journal of Neurophysiology 75:963–966. DOI: https://doi.org/10.1152/jn.1996.75.2.963, PMID: 8714669

Ullah G, Schiff SJ. 2009. Tracking and control of neuronal Hodgkin- Huxley dynamics. Physical Review. E, 
Statistical, Nonlinear, and Soft Matter Physics 79:1–4. DOI: https://doi.org/10.1103/PhysRevE.79.040901, 
PMID: 19518166

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, 
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, 
Kern R, Larson E, Carey CJ, et al. 2020. Author Correction: SciPy 1.0: fundamental algorithms for scientific 



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  26 of 32

computing in Python. Nature Methods 17:352. DOI: https://doi.org/10.1038/s41592-020-0772-5, PMID: 
32094914

Wang XJ, Buzsáki G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network 
model. The Journal of Neuroscience 16:6402–6413 PMID: 8815919., 

White WE, Hooper SL. 2013. Contamination of current- clamp measurement of neuron capacitance by voltage- 
dependent phenomena. Journal of Neurophysiology 110:257–268. DOI: https://doi.org/10.1152/jn.00993. 
2012, PMID: 23576698

Wilders R. 2006. Dynamic clamp: A powerful tool in cardiac electrophysiology. The Journal of Physiology 
576:349–359. DOI: https://doi.org/10.1113/jphysiol.2006.115840, PMID: 16873403

Wybo WAM, Torben- Nielsen B, Nevian T, Gewaltig MO. 2019. Electrical Compartmentalization in Neurons. Cell 
Reports 26:1759–1773. DOI: https://doi.org/10.1016/j.celrep.2019.01.074, PMID: 30759388

Wybo WA, Jordan J, Ellenberger B, Marti Mengual U, Nevian T, Senn W. 2021. Data- driven reduction of 
dendritic morphologies with preserved dendro- somatic responses. eLife 10:e60936. DOI: https://doi.org/10. 
7554/eLife.60936, PMID: 33494860



 Tools and resources Neuroscience

Pfeiffer et al. eLife 2022;11:e75517. DOI: https://doi.org/10.7554/eLife.75517  27 of 32

Appendix 1
Impedance of a capacitance-clamped RC circuit
The impedance of a cell captures its linear response to the whole range of input frequencies (see 
Figure 1—figure supplement 1b). In the following, we derive the impedance of a passive membrane, 
an RC circuit, with capacitance  Cc  coupled to the CapClamp and compare it to the impedance of an 
RC circuit with the target capacitance  Ct .

Analysis of the dynamic clamp via the Z-transform
In general, the dynamic clamp technique forms a digital filter, mapping the incoming sampled 
voltages to injected currents. For a sampling interval  ∆t , a linear mapping such as the CapClamp 
has the form

 Idyn(i∆t) =
∑N

j=0 νjV
(
(i − j)∆t

)
+
∑M

k=1 γkIdyn
(
(i − k)∆t

)
,  (9)

where  N   and  M   determine history of voltage and current values, respectively, taken into account. 
For the CapClamp, the coefficients depend on cell capacitance  Cc , target capacitance  Ct  and the 
sampling interval (see Equation 5),

 

ν0 = CC − Ct
Ct

CC
∆t

,

ν1 = −ν0,

γ1 = −CC − Ct
Ct

.
  

(10)

This linear mapping can be represented and analyzed using the Z- transform (Dorf and Bishop, 
2010, Ch. 13),

 Î(z) = Fdyn(z)V̂(z),  (11)

 
Fdyn(z) =

∑N
j=0 νjz−j

1−∑M
k=1 γkz−k .

  
(12)

where the transfer function follows from the properties of the Z- transform: linearity  λXi
Z−→ λX̂(z)  

and delay transformation  Xi−1
Z−→ z−1X̂(z)  (Dorf and Bishop, 2010, Table 13.2),

If the cell also forms a linear system, like the RC circuit, the transfer function of the coupled 
system Appendix 1—figure 1 is given by Dorf and Bishop, 2010, Table 2.6.

 Hcell+dyn(z) = Hcell(z)
1−Hcell(z)Fdyn(z) ,  (13)

where  Hcell(z)  is the Z- transform of the membrane filter, e.g.  Hcell(z) = HRC(z) .
The transfer function of the coupled system  Hcell+dyn(z)  can then be compared with the one of the 

target system  Htarget(z)  (Appendix 1—figure 1). Additionally, the frequency- dependent impedance 
can be retrieved from the transfer function by

 Zcell+dyn(f) = Hcell+dyn(ei2πf∆t).  (14)
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A B
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Appendix 1—figure 1. Analysis of the capacitance clamp as a discrete feedback filter. (A) Block diagram of 
the coupled system: RC circuit with original capacitance Cc and capacitance clamp feedback current. (B) Block 
diagram of the target system: RC circuit with target capacitance Ct. (C) Pole- zero plot of the transfer functions at a 
decreased (left), the original and an increased capacitance. In addition to mimicking the pole of the target system, 
the clamped system has an additional pole and an additional zero. (D) Pole and zero position versus capacitance.

Transfer function of the CapClamp
The Z- transform of the CapClamp filter can be read directly from the general form of the transfer 
function (Equation 12) and the CapClamp feedback coefficients (Equation 10),

 
Fdyn(z) = Cc−Ct

Ct
Cc
∆t

1−z−1

1+ Cc−Ct
Ct

z−1 .
  

(15)

Transfer function of the RC circuit
In an RC circuit, the dynamics of the voltage are

 C dV
dt = −V

R + I.  

Thus, in a single time step  ∆t , when the current is fixed, the voltage evolves as

 V(k∆t) = V((k − 1)∆t)e−
∆t
τ + RI(1 − e−

∆t
τ ),  

where  τ = RC  is the time constant. Applying the Z- transform results in the transfer function

 
HRC(z) = R

(
1 − e−

∆t
τ

)
1

z−e−
∆t
τ

,
  

(16)

which is subsequently used as the cell’s transfer function  Hcell(z) = HRC(z) .

Transfer function of the clamped RC circuit
Introducing  K = Cc−Ct

Ct   and  hc = ∆t
τc  , the RC circuit (Equation 16) and CapClamp (Equation 15) 

transfer functions can be combined using Equation 13 to get the transfer function of the combined 
system

 
Hcell+dyn(z) = R(1 − e−hc ) z+K

z2+(K−e−hc− 1
hc

K(1−e−hc ))z−K(e−hc− 1
hc

(1−e−hc )) .
  (17)
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In comparison, the transfer function of the target RC circuit reads

 
Htarget(z) = R

(
1 − e−ht

)
1

z−e−ht   

with  ht = ∆t
τt

= ∆t
RCt   reflecting the different target capacitance.

Figure  1—figure supplement 1b compares the resulting impedances for decreased and 
increased capacitances. As discussed in the "Results" section , the impedance amplitudes fit well up 
to a tenth of the dynamic clamp frequency. A closer look at the transfer function explains the fit at 
low frequencies and the deviations at higher frequencies.

Input resistance is preserved
The input resistance is equal to the impedance at zero frequency, that is at  z = ei2π0 = 1 , which for 
both coupled and target system is the original resistance,

 Hcell+dyn(1) = Htarget(1) = R.  (18)

Poles and zeros
For a further comparison, poles and zeros of the transfer functions are calculated. To simplify the 
expressions, it is assumed that the time constant of the original and target circuits are much larger 
than the sampling interval, that is  hc ≪ 1  and  ht ≪ 1 .

Target circuit
The target circuit has no zero and a single pole located at

 p(1)
t = e−ht = 1 − ht + . . .  (19)

Capacitance clamped circuit
The coupled system has one zero at

 r(1)
c = −K = 1 − Cc

Ct
.  (20)

The clamped circuit has two poles at

 p(1)
c = 1 − (1 + K)hc + . . .  (21)

and

 p(2)
c = K

2 hc + . . .  (22)

Comparison of poles
All poles and zeros for an RC circuit in its original state and clamped at decreased and increased 
capacitances are shown in Appendix 1—figure 1. The first pole of the clamped circuit coincides with 
the one of the target circuit:  p

(1)
c = 1 − Cc

Cc
∆t
RCc

= 1 − ht = p(1)
t  . As these pole lies close to  z = 1 , they 

determine the lower frequency response, which explains why the impedance amplitudes fit so well 
in this range.

In addition to moving the existent pole of the cell circuit to the one of the target circuit, the 
CapClamp creates an additional pole  p

(2)
c ≈ hc

2 ( Cc
Ct

− 1)  and a new zero  r
(1)
c = 1 − Cc

Ct  . Thus, at an 
increased capacitance  Ct > Cc , the new pole lies in the left half of the unit circle and thereby increases 
the impedance at higher frequencies. In contrast, at a decreased capacitance, the additional zero 
moves into the left half of the complex plane and thereby decreases the impedance at higher 
frequencies.

Stability
For the investigated RC circuit with  R =100 MΩ and  C  = 150 pF and a sampling interval of 50 us, 
both poles of the capacitance clamped system remain within the unit circle (Appendix 1—figure 1) 
for the tested range from 0.1 to 10 times the original capacitance. As the coupled system is naturally 
causal, this implies that the transfer function of the clamped circuit is stable for this range of target 
capacitances, i.e. there are no unstable oscillations.
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Mapping between a charging curve with two components and a two 
compartment circuit
In the following, we explain how a charging curve of a cell with two components can be mapped to 
the parameters of a two compartment circuit, which we used to extract the local capacitance in the 
recorded dentate gyrus granule cells (see Figure 3). We first report the approach and results derived 
earlier (Golowasch et al., 2009) and then explain how to extend the mapping when the capacitance 
is clamped to a modified value.

Golowasch et al. derived expressions for the near capacitance and the other circuit parameters 
by comparing the impedance of a two compartment circuit in Figure 3A

 

Z(s) = 1
1

Rn
+sCn+ 1

Ra+ 1
1
Rf

+sCf   
(23)

with the impedance of a system whose response to a step currents is a sum of two exponentials

 Z(s) = R0
1

1+sτ0
+ R1

1
1+sτ1

.  (24)

The comparison of these two impedances gives four equations linking the circuit parameters and 
the two components of the charging curve:

 
R0 + R1 =

RaRn + RfRn

Ra + Rf + Rn
,
  

(25)

 
R0τ0 + R1τ1 =

RaRnRfCf
Ra + Rf + Rn

,
  

(26)

 
τ0 + τ1 =

(Ra + Rn)CfRf + (Ra + Rf)CnRn

Ra + Rf + Rn
,
  

(27)

 
τ0τ1 =

RaCnRnCfRf
Ra + Rf + Rn

.
  

(28)

To solve this set of equations, they assume that the membrane time constant is the same in 
all compartments  CnRn = CfRf = τc . However in a clamped neuron, where the near capacitance is 
targeted to be modified to a k- fold different value, this equation becomes

 CnRn = kCfRf,  (29)

where  k = Cn,clam.
Cn,orig.  .

For the unclamped case,  k = 1 , the mapping from the two components to the circuit parameters is

 
Rn = R0 + τ0

τ1
R1,

  (30)

 
Cn = τ0τ1

τ1R0 + τ0R1
,
  

(31)

 
Rf = R0τ1

R1τ0

(
R0 + τ0

τ1
R1

)

  
(32)

 
Cf = R1τ0

R0τ1

τ0τ1
τ1R0 + τ0R1   (33)

 
Ra = τ1

τ0 − τ1

(
R0 + τ0

τ1
R1

)(
1 + R0τ1

R1τ0

)
.
  (34)

For the clamped case,  k ̸= 1 , we used the python package sympy to solve the equations.
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Adapted fitting procedure of dentate gyrus charging curves
The initial online capacitance measurement was based on fitting the charging curve at the beginning 
of the current pulse. Posterior analysis showed an artefactual voltage drop of –0.2  mV starting 
about 0.2ms before pulse onset (probably due to coupling of the DAQ measurement card and the 
motherboard of the dynamic clamp computer), which limited the reliability of the online fit for cells 
with a small fast component. As no such artifact was observed for the recharging at the end of the 
pulse, this part was used in an improved offline fit. Additional measures to improve the fit were: cut 
of the first 0.2ms after pulse end to minimize electrode artifacts, limiting the fit to the first 60 ms (3–4 
times  τ0 ) after the pulse to prioritize the early part of the charging curve and a switch to the python 
package lmfit for better evaluation of parameter confidence bounds (https://lmfit.github.io/lmfit- 
py/). Furthermore, the finite rise time of the current injection by the amplifier was taken into account 
by adapting the original form of the charging curve (Equation 6) to

 

V(t) = Iext


 ∑

i;τi ̸=τa

Ri
τi − τa

(
τi

(
1 − e−

t
τi

)
− τa

(
1 − e−

t
τa

))
+

∑

i;τi=τa

Ri

(
1 − e−

t
τi − t

τi
e−

t
τi

)
 ,

  

(35)

where the current rise time of the amplifier  τa  ( 87 ± 2µs ) was obtained by fitting the recorded 
injected current for the current step command by a simple exponential. A comparison of the two 
exponential components and the resulting circuit parameters for the online and offline fitting 
procedures is show in Appendix 1—table 1.

For the charging curves under capacitance clamp, the fitting procedure for the charging curve 
with two exponentials was initialized with values as expected for the targeted capacitance change: 
mapping the fitting results of the unclamped response to a two compartment circuit, changing 
the near capacitance to the targeted value and finally mapping this altered circuit back to the 
expected time scale and amplitudes. This initialization improved the fits especially at increased near 
capacitances, where the amplitude of the fast component becomes smaller.

Formal derivation of f-I curve gain and rheobase dependence on 
capacitance
To confirm the expectations of gain and rheobase dependence on capacitance in a single 
compartment neuron model (see "Analytically expected effect of capacitance on the form of the f- I 
curve" in Methods), we here sketch the calculation of the normal form parameters  a  and  c  following 
Izhikevich, 2006, pp. 162–163. In principle,  a  and  c  can be calculated for arbitrary gating kinetics by 
projecting the dynamics on the center manifold (Schleimer and Schreiber, 2018). For the assumption 

Appendix 1—table 1. Comparison of online and offline fits to charging curves in the recorded 
dentate gyrus granule cells (N = 18).

Online fit (mean ± std) Offline fit (mean ± std)

Two comp.

 τ0 14.9±4.8 ms 15.1±4.8 ms

R0 136.9±47.5 MΩ 127.1±44.6 MΩ

 τ1 0.41±0.23 ms 0.77±0.24 ms

R1 25.1±14.1 MΩ 34.5±14.7 MΩ

Circuit

 Cn 14.9±4.7 pF 21.0±9.4 pF

 Rn 1106.3±519.3 MΩ 854.2±394.0 MΩ

 Ra 34.9±19.9 MΩ 52.5±19.8 MΩ

 Cf  99.1±33.7 pF 105.8±33.0 pF

 Rf  159.6±58.1 MΩ 155.5±59.9 MΩ
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of small gating time constants, however, they can be expressed in simpler terms using the steady 
state I- V relation of the neuron divided by its membrane capacitance

 
I(V, I) = 1

C
(
I − I∞(V)

)
= 1

C

(
I −∑N

i=1 gi
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, where the saddle node voltage  Vsn  

and current  Isn  are given by the equations
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In summary, both  a  and  c  are proportional to  
1
C  and the rheobase current  Irheo = Isn = I∞(Vsn)  is 

independent of capacitance, thus confirming the expected scaling.

Data and software availability
•  Electrophysiological recordings of capacitance clamped dentate gyrus granule cells: Pfeiffer, 

P., & Tomás F. J. B. (2021). Capacitance clamp demonstration in rat dentate gyrus granule cells. 
https://doi.org/10.5281/zenodo.5552207 

•   Project repository with capacitance clamp module for https://scicrunch.org/resolver/RRID: 
SCR_017280RELACS and custom analysis/simulation in python: Pfeiffer, P., Tomás, F. J. B., Wu, 
J., Schleimer, J.-H., Vida, I., & Schreiber, S. (2021). Software for: A dynamic clamp protocol to 
artificially modify cell capacitance. https://doi.org/10.5281/zenodo.6322768 

•   Capacitance clamp plugin for http://rtxi.org/RTXI, a real- time data- acquistion and control 
application for biological research that allows to extend a conventional electrophysiology 
setup for dynamic clamp experiments (Patel et al., 2017). Capacitance_clamp_rtxi_module: 
https://doi.org/10.5281/zenodo.5553946  
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Figure 1—figure supplement 1. Impedance analysis of an RC circuit coupled to the capacitance clamp. (A) 
Injection of an oscillating current at 300 Hz (left) and at 3 kHz (right) to a passive cell (RC- circuit) with voltage 
responses clamped at an increased (middle) and a decreased capacitance (bottom). Black lines indicate the 
response of the cell at the original capacitance and gray lines those of the corresponding control cells. (B) 
Comparison of frequency- dependent impedance and phase shift of a cell at the above capacitances (black: cell 
capacitance, blues: clamped, gray: control). (C) Difference of impedances at 300 Hz (dotted) and 3 kHz (dashed) 
for clamped and control cell across different capacitances and for dynamic clamp frequencies of 20 kHz (left) and 
100 kHz (right).



5 Discussion

5.1 Summary

This cumulative thesis investigated the role of cooperative ion channels (Publica-
tion COOPMEM) and variations in cell capacitance (Publication CAPCLAMP)
for the electrical dynamics of neurons and other excitable cells. In studying
these experimentally observed, but rarely considered aspects of excitable mem-
branes, these two lines of research explored neuronal dynamics beyond the
standard modeling assumptions of independent channel gating and membrane
capacitance as a biological constant. The main results of this exploration are a
new model-based hypothesis for the function of ion channel cooperativity in
cell-autonomous short-term memory and the first experimental technique to
artificially modify cell capacitance in biological neurons.

1. Small clusters of strongly-coupled cooperative ion channels have been
shown to act as bistable conductances, whose memory capabilities can
mediate persistent spiking – a firing mode suited to maintain information
on past activity in a single neuron.

2. A new dynamic clamp protocol able to mimic a cell capacitance change in
an intracellularly recorded neuron has been proposed and demonstrated
to affect spike shape, ionic currents, and firing frequency in dentate gyrus
granule cells.

In Publication COOPMEM, cooperative channels were analyzed in a model
combining two central factors: the observed clustering of interacting channels
and a potential regime of strong coupling. Strong coupling between channels
has previously been suggested as a mechanism for highly synchronous opening
of channels, but the potential of such positive feedback for cellular short-term
memory has remained unnoticed. The central model prediction established here
is that a cluster of strongly coupled channels acts like a bistable conductance –
a macro-channel that keeps track of recent electrical activity.
The robustness of this memory was evaluated by relating the bistability

to cluster size, coupling strength, and channel kinetics. The critical coupling
strength required for bistability could be derived from the steepness of the single
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channel activation curve and the cluster size. Smaller clusters were observed
to be prone to channel noise. But already at about ten channels, the expected
lifetimes of the open and closed cluster configuration could be shown to exceed
the single channel time constant in the millisecond range by multiple orders of
magnitude up to several seconds and more. Consequently, cooperativity suggests
itself as a cellular mechanism for a membrane-based second-long short-term
memory.

Finally, ion channel cooperativity was demonstrated to offer an alternative
mechanism for cell-autonomous graded persistent activity (GPA). GPA has been
difficult to explain and is thought to rely on forms of indirect calcium-mediated
feedback between independently-gating channels. Cooperative channels, how-
ever, assembled into an ensemble of bistable clusters were observed to also
equip a modeled cell with the graded, stable, and activity-modulated conduc-
tance required for GPA. The mechanism is robust enough to mediate GPA
in biological neurons as confirmed by dynamic clamp injection of cooperative
channels. Combined, the results of Publication COOPMEM demonstrate that
cooperative interactions hidden in a small subset of spatially-clustered channels,
different from the populations directly involved in action potential generation,
can increase the functional repertoire of a neuron and contribute, in interaction
with the surrounding network, to working memory.

In Publication CAPCLAMP, the established dynamic clamp technique to
insert virtual conductances was developed further to enable virtual capacitance
changes. The protocol – termed capacitance clamp (CapClamp) – is the first
tool to precisely and flexibly alter capacitance in biological neurons. This
neuronal modification, so far not accessible in experiments, is shown to enable
a different approach to study neuronal excitability and the role of biologically
observed exceptions to the rule of constant membrane capacitance.

Capacitance alteration exploits the closed loop of the dynamic clamp in a
new way. Different from classical conductance injection, where a current is
added to mimic the presence of the modeled channel, capacitance alteration
relies on a clamping current that estimates the rate of change of the membrane
potential and dynamically adjusts it to the value expected for the chosen target
capacitance. For this estimation, as shown in the derivation of the clamping
currents, the proposed protocol requires a measurement of the original local
capacitance of the clamped compartment1. In this regard, the capacitance clamp

1Note that if the capacitance physically changes during a capacitance clamp experiment, this
is not automatically detected by the protocol and an updated capacitance measurement is
needed to correctly adjust the clamping currents. In this way, the expression of “clamp”
in capacitance clamp differs from the one in voltage and current clamp, which fix the
corresponding physical variables at a given value. The term capacitance clamp is instead
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inherits a constraint common to all patch clamp techniques, the space clamp,
namely that they operate locally at the recording site.

Thorough testing and analysis of the CapClamp in a series of simulations
and experiments ensured that the technique is practical and robust. In a simple
passive cell model (RC circuit), the CapClamp achieved the expected changes
in the membrane time constant. Simulations of a biophysical neuron model
with active sodium and potassium channels coupled to the CapClamp showed
that practically available dynamic clamp frequencies of 20 kHz are sufficient to
accurately capture the effects of capacitance on spike shape and firing frequency.

Finally, experiments with rat dentate gyrus granule cells (DGGCs) confirmed
that the CapClamp allows electrophysiologists to alter capacitance in biological
electrotonically complex neurons. A local capacitance measurement method
was presented to estimate the near-somatic capacitance and then verify its
alteration upon clamping. In the tested range from 60% to 300%, measured
and targeted capacitance values matched well. Effects on spiking and firing
frequency were also found to be consistent with the results from the simulated
neuron, indicating that in DGGCs the capacitative load of the soma affects the
site of action potential initiation.

In a set of illustrative applications, the CapClamp was used to alter temporal
integration in DGGCs and to study energy consumption during spiking at
different capacitances. These proof-of-principle experiments recaptured the
two-fold motivation for developing the capacitance clamp. First, via control
over capacitance, the CapClamp sets the membrane time constant and thereby
integrative properties of a neuron. This clean temporal modification of voltage
dynamics, not possible via conductance changes, has been exploited in theory-
driven approaches to understand neuronal firing types and might prove useful
in experiments. Second, against its reputation as being a biological constant,
capacitance can vary both in physiological contexts as well as with new neural
stimulation techniques like infrared or ultrasound. As shown in the DGGCs
experiments the functional consequences of such alterations, like for example a
reduced energetic cost per action potential at a decreased capacitance, can be
elucidated via the CapClamp.

In the following discussion, a critical assessment of these two works is pre-
sented and future research questions building on their results are sketched,
beginning with Publication COOPMEM.

inspired by the “conductance clamp”, an alternative name for the original dynamic clamp
(Reyes, Rubel, and Spain 1996).
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5.2 Cellular short-term memory by cooperative ion
channel gating

The assessment of Publication COOPMEM starts with a more detailed exami-
nation of the biological plausibility of bistable gating by cooperativity, leading
to questions about how the strong coupling regime affects channels with more
complex gating schemes. Next, cooperativity is compared to the other major
mechanism for cellular short-term memory, calcium-mediated feedback on chan-
nel activity, followed by a brief outlook on how these two feedback mechanisms
could potentially be combined. After this inspection of mechanisms, the long-
standing question of the function of cell-autonomous memory in networks and
working memory is discussed. Finally, the subchapter concludes with ideas
for future modeling studies on cooperativity, including dendritic memory and
heterogeneous clusters.

5.2.1 Biological plausibility

The central prediction of Publication COOPMEM is a cluster bistability for
strongly cooperating channels. As discussed in the article, it relies on biologically
plausible assumptions for the cluster sizes and suggests concrete voltage clamp
experiments to test whether candidate cooperative channels like calcium or
TRP channels are coupled sufficiently strong for the bistable regime. Here, the
robustness of the proposal is further examined concerning the physiologically
relevant modeling assumptions of basic channel kinetics with only two states
and the linear voltage-shift model of cooperativity.

The role of channel inactivation An obvious way to interfere with the bista-
bility of a cluster is channel inactivation. If cooperative channels have an
inactivated state in addition to the open and closed one considered in Publi-
cation COOPMEM, open channels might – despite mutual facilitation with
their coupled neighbors – first inactivate and then return to the closed state.
Whether the conductance of such cooperative inactivating channels can still be
bistable and which effects are expected for the membrane potential dynamics
(that could involve other channel populations) depends on the gating scheme
and the nature of the coupling.

How inactivation can interfere with the conductance bistability is illustrated
by the case of strongly-coupled inactivating sodium channels, proposed as a
mechanism for rapid spike onset in cortical neurons (Naundorf, Wolf, and
Volgushev 2006; Huang, Volgushev, and Wolf 2012). As activation is strongly
cooperative for these channels, their activation curve is expected to have the
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same “S”-formed shape as the one reported in Publication COOPMEM2. Still,
the conductance of these channels would not be bistable and should not exhibit
a hysteresis with respect to voltage, because the open state is destabilized by
voltage-independent inactivation as apparent in their gating scheme:

C O

I.

Considering the implications for membrane potential dynamics, another
difference is that the all-to-all coupled population of sodium channels studied
by Naundorf, Wolf, and Volgushev is directly involved in the generation of
the action potential. In this way, the synchronous opening of these channels
achieves the desired rapid onset of the spike. To terminate the spike, however,
inactivation becomes important, because it circumvents the bistability and
allows the channels to close again. The further consequences for firing are
difficult to judge because their analysis only focused on the first generated
spike. Repetitive firing, for example, is only mentioned in a later version of
the model where the sodium channel population is split into a cooperative
and a non-cooperative fraction (Öz, Huang, and Wolf 2015). In Publication
COOPMEM, in contrast, interference between spike generation and the effects
of strong coupling is avoided by placing cooperative interactions in a separate
channel population. Concluding, even in the absence of bistability, the regime
of strong might still be exploited by inactivating channels, e.g., for synchronous
gating. To further guarantee functional spiking in the presence of strong
coupling, it appears that cooperative and AP-generating populations should
not (completely) overlap.
There are scenarios, where inactivating cooperative channels could retain

bistable gating dynamics and potentially still support cell-intrinsic memory.
On the one hand, cooperative interactions in the above gating scheme could
additionally affect the transition to the inactivated state (Hichri, Selimi, and
Kucera 2020). Otherwise, the bistability of a cluster is also expected to be
preserved, when the inactivating gate is independent of the activation gate(s)
(independence in the sense that except for the indirect coupling via the membrane
potential they do not interact). This is for example the case in the classical
description of the sodium channel in the Hodgkin-Huxley model (Koch 1999)
(simplified to a single closed state instead of three)

2Naundorf, Wolf, and Volgushev, however, display the activation curve as a step function with
a sudden jump from the closed to the open state (as they are interested in the synchronous
opening of these channels) and do not consider the potentially bistable regime.
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With such a gating scheme, it is possible that a cooperative inactivating
population (separate from the spike generating channels like in Publication
COOPMEM) could still mediate graded persistent activity. Channels in an
open state (O) might inactivate (OI) during a spike, but the open activation
gates would continue to mutually facilitate each other. Back at the resting
membrane potential, the channels would return to the non-inactivated open
state (O) and drive the membrane potential back to the spike threshold.

To summarize, whether cluster bistability occurs in the presence of inactivating
channels depends on the channel kinetics as well as the coupling. The scenarios
discussed above could be quantitatively analyzed by extending the cluster model
from Publication COOPMEM. To constrain such cluster models with complex
single channel kinetics, more experimental data is needed, because these clusters
have a large state space and many transitions can be affected by cooperativity
(Hichri, Selimi, and Kucera 2020).

The role of the cooperativity model Cluster bistability requires a strong
coupling regime, but it is not expected to depend on a specific form of interac-
tion. Generally, the main requirement is that the mutual facilitation between
the channels can outweigh the activation set by the membrane potential. In
Publication COOPMEM, these requirements are quantified for the theoretically
convenient linear voltage-shift model. Although a heuristic description, it can
be shown to obey microscopic reversibility, a condition for any physically valid
cooperativity model as specified by Hichri, Selimi, and Kucera (in other words,
the altered transition rates can in principle be mapped to a modified energy
landscape, as demonstrated in the Appendix).

While physically consistent, the voltage-shift model so far has not been fit to
any of the experimentally observed instances of cooperative gating. To account
for experimental data, the model might need adjustments like a saturation
of the coupling when multiple neighboring channels are in the open state
(corresponding to a non-linear form for the shift function in Equation 2.7) or
a more sparse interaction graph instead of all-to-all coupling. If the coupling
strength is still sufficient, such a generalized voltage-shift model should allow
for bistability just like the simplified linear version.
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5.2.2 Comparison to calcium-based mechanisms of cell-intrinsic
short-term memory

Direct positive feedback by ion channel cooperativity offers an additional
mechanism for cell-intrinsic short-term memory. The experimental question
about the still unknown nature of the channels underlying graded persistent
activity, including the possibility that they are cooperative, has been discussed
in Publication COOPMEM. Here, cooperativity and the major alternative
mechanism, calcium-mediated feedback between channels are compared from
a model-driven perspective, focusing on functional differences, mathematical
similarities, potential complementary roles, and external modulation.

Differences and similarities to the calcium-based model of graded persistent
activity A long-standing hypothesis on the mechanism of GPA by Fransén
et al. is based on calcium control of a channel-regulating protein (Fransén
et al. 2006). Although based on a physiologically different mechanism from the
cooperativity hypothesis, the Fransén model exploits a similar mathematical
pattern to achieve the multistability in firing required for GPA. It proposes the
existence of a regulatory protein X whose availability depends on intracellular
calcium and determines the amount of active ICAN carrying channel. The
number of available X proteins (or equivalently the number of activated CAN
channels) hence corresponds to the number of open clusters in the cooperativity
proposal. While the clusters are bistable with respect to the membrane potential,
the availability of the X protein is bistable with respect to the intracellular
calcium concentration. Therefore, the availability of X proteins, similar to
the number of open clusters, remains constant at low firing frequencies but
can be increased during periods of high firing and decreased during periods of
hyperpolarization.

Comparing both proposals, a strength of the Fransén model is the bistability
with respect to the calcium concentration. In this way, the concentration of
the X protein (or equivalently the ratio of active CAN channels) is expected
to remain truly constant during the self-sustained low firing with intracellular
calcium concentration in the bistable regime. For the clusters, in contrast, a few
channels are transiently opening during the high membrane potential values
of a spike. As a result, long channel time constants are required to reduce the
chance of a cluster switching to the open state during low firing.

A conceptual advantage of the presented cooperativity model is that it
specifies the mechanism underlying the central bistability – namely the positive
autofeedback between the coupled channels. As a result, the cooperativity
model can make concrete predictions on the extent of the bistable regime and
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the expected memory robustness. For the bistability of protein X with respect to
the calcium concentration, in contrast, a mechanistic understanding is missing.
It is an interesting parallel that one potential feedback loop implementing the
bistability in the Fransén model could be the cooperative binding of calcium
ions to an intermediate signaling molecule, a system that could be modeled in
a similar way as the cluster of cooperative channels.

Combined feedback loops Calcium- and cooperativity-mediated feedback
loops, so far regarded separately, might also act together. In a combined model
of calcium-dependent cooperativity, spiking could trigger calcium inflow, which
either directly or through a secondary messenger unlocks the cooperative gating
mode. The increased activation of the coupled channels leads to an additional
current that drives self-sustained firing and calcium inflow, closing the feedback
cycle. Evidence for parts of such a combined feedback cycle has been reported for
CaV1.3 channels. During spiking, calcium inflow induced coupling of previously
independent channels. In turn, artificially coupling channels increased the
spontaneous firing of hippocampal neurons (Moreno et al. 2016). In a combined
feedback cycle, weak channel cooperativity might suffice for persistent activity,
because clusters are not required to be bistable, but solely need to have a steeper
activation curve.

Modulation of cell-intrinsic memory mechanisms An interesting functional
dimension for cell-intrinsic memory mechanisms is how the memory mode can
be modulated externally. GPA, for example, is only observed in the presence
of carbachol, a substance mimicking the action of acetylcholine (Egorov et al.
2002) – a neuromodulator fittingly implicated in working memory (Newman
et al. 2012). It remains an open question how acetylcholine, which triggers a
variety of downstream signaling by activating muscarinic receptors, modulates
the ion channels underlying persistent activity.

Within the class of calcium-based models, acetylcholine appears to close
the feedback cycle by activating calcium-regulation of the channels that set
the excitability of the cell. An example of such a controlled cellular memory
mechanism is the Ether-a-go-go-related gene (ERG) potassium channel (Cui
and Strowbridge 2018). These channels close in response to high calcium
concentrations, but due to an unidentified molecular AND logic only in the
presence of acetylcholine. If the channels are allowed to close, this leads to
a second-long increase in subthreshold excitability after a period of activity.
For the cooperativity proposal, a corresponding control mechanism could be
envisioned by which channels only link and interact when acetylcholine prepares
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the corresponding intracellular environment. A case of external regulation
of cooperativity is the coupling of CaV1.3 channels, which is conditioned on
a mechanistic link between two channel proteins via calmodulin, a calcium-
activated messenger protein (Moreno et al. 2016).

5.2.3 Role of persistently active neurons in networks and working
memory

A cell-autonomous persistent activity like GPA suggests a role for flexible short-
term storage and accumulation of information required for cognitive processes
like working memory. Neurons capable of self-sustained firing are part of brain
networks implicated in short-term memory functions such as path integration in
the entorhinal cortex (Egorov et al. 2002; Egorov, Unsicker, and Von Bohlen Und
Halbach 2006) or evidence accumulation and decision making in the prefrontal
cortex (Winograd, Destexhe, and Sanchez-Vives 2008). To date, models of
persistent activity in these networks, however, focus mostly on synapse-based
memory (Durstewitz, Seamans, and Sejnowski 2000; Compte 2006; Zylberberg
and Strowbridge 2017). To underline the relevance of cell-intrinsic mechanisms
such as ion channel cooperativity proposed here, ideas on how they might
complement existent network models are discussed in the following.

Network models of short-term memory A major class of network models of
persistent activity is built on the hypothesis of synaptic reverberation (Amit
1995). Similar to the cluster of cooperative channels, the network acquires
bistability through the positive feedback between connected neurons whose
intrinsic memory is limited to several milliseconds. A model system to study
synaptic reverberation are neurons from the oculomotor system, which integrate
movements of the eyes into persistent activity encoding the eye position (Seung et
al. 2000). For such an essential and stereotyped task, the recurrent connectivity
could be genetically predetermined, although the required precision speaks in
favor of other mechanisms to make this network more robust (Goldman et al.
2003)

The enormous flexibility of more general short-term memory is however hard
to reconcile with the idea of pre-wired neuronal ensembles or slowly learned ones
by long-term synaptic plasticity. Thus, such fixed neuronal ensembles have been
proposed to underlie expert “crystallized” forms of short-term memory, whereas
novice “liquid” forms require other mechanisms such as chaotic dynamics in
random networks (Barak et al. 2013).
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Flexibility and robustness via cell-intrinsic memory Cell-autonomous memory
could offer an alternative for a more flexible formation of neuronal ensembles.
Among a set of weakly connected neurons, each capable of persistent activity,
any combination of neurons can become a persistently firing ensemble (Compte
2006). Similarly, in the more realistic case of a broadly connected network, a
persistent increase of excitability could select stimulated neurons into newly
forming ensembles. Such a cell-intrinsically driven sustained activity is for
example observed in the dentate gyrus (Larimer and Strowbridge 2010; Walker,
Pavlov, and Kullmann 2010). As these ensembles are not synaptically pre-
configured, the network might store stimuli that it has not yet encountered.
An interesting observation in this regard is a recent study on the formation of
cellular assemblies for long-term memory by Alejandre-Garćıa et al. (Alejandre-
Garćıa et al. 2022). They tried to artificially “imprint” new cellular assemblies
into a network via prolonged optogenetic stimulation. Afterwards, contrary to
the classic model of synaptic ensemble formation, neurons in these artificial
assemblies were not stronger connected than before. Instead, the stimulated
neurons exhibited increased intrinsic excitability. This observation emphasizes
the need to study networks with hybrid memory mechanisms combining synaptic
connectivity and cell-intrinsic properties.

Another role of cell-autonomous memory could be to stabilize network-based
delay activity. Exploring the conditions for robust synaptic reverberation, Wang
observed that persistent activity in a simulated network connected by fast AMPS
synapses alone tends to vanish over time and that slower NMDA synapses are
needed to stabilize it (Wang 1999). Focusing on synaptic time scales, this
study considered pyramidal cells whose integration time was limited by their
membrane time constant. Longer cell-intrinsic time scales provided by calcium-
or cooperativity-mediated feedback loops might be a further robustness measure
to prevent reverberatory activity from dying out (Compte 2006). Neuronal
and dendritic bistabilities have indeed been shown to make delay activity more
robust against perturbations and imprecise connectivity, but this demonstration
was limited to rate-based model neurons (Camperi and Wang 1998; Goldman et
al. 2003). In conductance-based spiking neuron models, slow calcium-activated
currents were observed to act in a similar stabilizing fashion complementing
the role of NDMA synapses, yet the considered levels were not sufficient for
cellular bistability (Tegnér, Compte, and Wang 2002). How biologically realistic
cell-intrinsic memory integrates into a network of spiking neurons remains to
be further explored.
Studying larger networks of neurons with complex cellular memory like the

ensemble of clusters of cooperative channels will get computationally expensive.
For such explorations, simplified models of persistent activity might be better
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suited (Rodriguez et al. 2018).

5.2.4 Future directions and further roles of cooperative gating

Spatial distribution of clusters One future direction to explore is the question
of where to strategically place clusters of cooperative channels in a neuron
to exploit their memory function. Even in the simple one-compartment neu-
ron model studied so far, the enlarged memory capacity implicitly depends
on a spatial property, namely the arrangement of channels into clusters. In
more realistic morphologies, the distribution of bistable clusters throughout
the dendritic tree may further enhance cell-autonomous memory capabilities.
Especially, in large neurons, where dendritic sites are electrically decoupled,
clusters might represent the recent synaptic activity on a specific dendritic
branch and persistently alter the response to further inputs at the same site.
Such dendritic attenuation or boosting could be another way to complement
synaptic short-term plasticity mechanisms (Debanne, Inglebert, and Russier
2019).

Cooperativity in heterogeneous clusters

As demonstrated in Publication COOPMEM, a cluster of identical channels
exhibits emerging dynamics, qualitatively different from those of its constituents.
What if clusters were composed of various channels, maybe with opposing
functions?

The majority of experimental evidence of cooperativity is for homogeneous
channel ensembles, but interactions have also been observed between different
channel types, for example in clusters of BK potassium and CaV1.3 calcium
channels (Vivas et al. 2017). Channels might, as in this case, differ in their
activation profiles and carry opposing currents. This makes it difficult to
preview how heterogeneous clusters behave and how they contribute to neuronal
dynamics. A quantitative approach to these questions can make use of the here
presented cluster modeling, which can accommodate heterogeneity, for example,
via different channel activation functions.

Concerning the potential of heterogeneous clusters, an interesting thought
experiment is in what could be termed counterfactual biology: cooperative
gating between the two main channel types underlying the typical action
potential in the Hodgkin-Huxley model – the depolarizing sodium and the
delayed-rectifier potassium channel. Admittedly, coupling between these two
channels has not been observed and appears unlikely given the long history
of research on their gating behavior. So why even consider such a coupling?
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An aspect of spike generation that has received significant attention is the
energetically costly overlap of sodium and potassium currents (Sengupta et al.
2010). Some mammalian axons exhibit a close to optimal reduction of overlap.
But for independent channels, it has been shown that the underlying tuning of
time constants comes at a cost, for example, the maximum firing frequency that
can be obtained (Hasenstaub et al. 2010). At first sight, negative cooperativity
appears as an ideal candidate to further minimize this overlap, reducing the
simultaneous opening of sodium and potassium channels.

Although purely speculative, a “counterfactual” model neuron with negative
Na+-K+ coupling might yield insights into the question of why some channels
cooperate and others do not. Given that these channels are observed to operate
independently, it is expected that such an examination unveils why cooperativity
has not emerged as a solution to the overlapping current problem. Is action
potential generation even possible with coupled Na+-K+ clusters? And if this
were the case, could the overlap be minimized given that any interactions would
be local, so that in one cluster sodium channels could be open while in another
one potassium channels are open?

Future work addressing the role of cooperativity in heterogeneous clusters
can build on the modeling techniques applied in Publication COOPMEM. The
applications of the other resource developed in this thesis, the capacitance
clamp, are discussed next.

5.3 Capacitance clamp – a novel tool to probe neural
dynamics

Major limitations and hardware requirements of the capacitance clamp tech-
nique are addressed in the discussion provided in Publication CAPCLAMP.
The following section, therefore, elaborates on how the technique can be applied,
including ideas like the vision to characterize bifurcations in neuronal dynam-
ics, studying neuronal homeostasis, and a potential extension to emulating
a capacitance varying in time. Finally, an outlook on future model-driven
closed-loop experiments is provided from the dynamic clamp for single cells to
the opto-clamp for whole networks.

5.3.1 Ideas for further applications of the capacitance clamp

A firing pattern map in capacitance-conductance-current C-g-I space The
capacitance clamp might enrich experimental characterization protocols of
neurons. An fI curve, the canonical way to characterize a cell, maps how a
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neuron reacts to stimulation, but it provides no information on how a neuron
reacts to modulation. Neuronal modulation, however, can profoundly change
the input-output function of a neuron – changes that in one case are crucial
for flexible context-dependent computation, but that in another case provoke
pathological brain activity. A general map of modulatory influences is impossible
to obtain given their diverse origins from environmental factors like temperature
(Roemschied et al. 2014; Ratliff et al. 2021), or network activity (Chance, Abbott,
and Reyes 2002), to targeted neuromodulation (Stiefel, Gutkin, and Sejnowski
2008). Theory-driven explorations of neuronal excitability, however, suggest
that a basic informative map of modulations, can be obtained by characterizing
how firing patterns respond to capacitance C and leak conductance gL changes
(Kirst et al. 2015; Hesse, Schleimer, and Schreiber 2017). Experimentally, the
combination of the here presented capacitance clamp and the “classic” dynamic
clamp can realize such a mapping, which might provide a basis to predict
responses to other modulatory factors.

Searching for critical capacitances Modulatory influences on neuronal firing
are especially interesting if they can switch the dynamical type of firing in a
neuron. It is currently unclear if neurons try to actively stay away from such
critical switches or even tune into them in order to exploit their functional
consequences. In this regard, the demonstration of the capacitance clamp in the
dentate gyrus granule cells can be viewed as a proof-of-principle experiment to
identify how “close” or “far” neurons are from such switches. At their original
capacitance, DGGCs exhibited a continuous fI curve indicating a SNIC-type
spike onset. According to modeling, increasing the capacitance of such a cell
over a critical value is predicted to change the spike onset to the less extensively
studied, but computationally interesting HOM-type as determined by the
underlying (technically codimension-two) saddle-node-loop (SNL) bifurcation
(Hesse, Schleimer, and Schreiber 2017; Hesse et al. 2022). In a reexamination of
the capacitance clamp experiments in DGGC, the following discussion provides
preliminary results on this prediction.

One hallmark of the SNL transition is that a neuron firing close to the current
threshold is expected to double its firing frequency when crossing a critical
capacitance value (see Fig. 5.1). Simulations confirmed that a capacitance-
clamped neuron exhibits this doubling of the firing frequency at the theoretically
expected capacitance values – confirming that the capacitance clamp can induce
and locate the transition. Among the clamped DGGCs, however, all cells
decreased their firing rates when capacitance was increased (see Publication
CAPCLAMP Fig. 4). This observation indicates that the critical capacitance
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values of DGGCs lie above the tested range.

This distance from the SNL transition in capacitance space could reflect that
DGGCs, at least in a brain slice environment, are not operating “close” to this
switch. Based on the argument that capacitance approximates effects of other
parameters which change the relative timescales of the membrane potential
and channel gating, the firing type of DGGCs would then be expected to also
exhibit a degree of robustness against, for example, an increased temperature.

Further experiments are required to confirm the robustness of the DGGC
firing type against capacitance changes. For a demonstration that the transition
can be experimentally induced, further attempts should aim at increasing
the tested capacitance range. Robust recordings at higher capacitances than
reported in Publication CAPCLAMP were possible and can potentially be
improved further by investing in capacitance measurements and more accurate
voltage monitoring.

If neurons remain at their firing type even within such an increased capacitance
range, another measure could be to modulate them into a regime, where they
are closer to the transition, e.g., by altering the temperature or adding a leak
conductance via the classic dynamic clamp. Furthermore, the search could be
complemented by measuring other fingerprints of crossing the SNL bifurcation
like the bistability between firing and resting state, detectable in the noise-driven
spiking statistics (Schleimer, Hesse, and Schreiber 2019).

In the interpretation of the distance to a firing type measured by the ca-
pacitance clamp, it is important to note that the technique only controls the
near-somatic capacitance. The comparably large dendritic capacitative load
remains constant – a scenario whose effects on the distance and nature of the
possible transitions have to be further investigated. The prediction of the
SNL transition is based on point neurons without a spatial dimension (Hesse,
Schleimer, and Schreiber 2017). To test how the locality of the capacitance
changes affects the SNL transition, analysis and simulations of multicompart-
mental models should be used (Gowers and Schreiber 2021).

Probing neuronal homeostasis Perturbation of neuronal firing by modifying
capacitance could contribute to testing hypotheses on how neurons self-organize
into a functional regime. During development or in response to environmental
changes, neurons and networks adjust their properties to achieve or respectively
maintain function. The homeostatic mechanisms behind the resilience of neural
systems (Turrigiano and Nelson 2004; Turrigiano 2011; Wu et al. 2020), as well
as their failure in several brain disorders (O’Leary 2018; Mizusaki and O’Donnell
2021), remain only partially understood (Davis 2006; Niemeyer, Schleimer, and
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Schreiber 2021).

A specific question in this regard is how neurons control the combination
of ion channels determining their firing type (Turrigiano, Abbott, and Marder
1994; Schulz et al. 2008; Goaillard and Marder 2021). Levels of ion channel
expression in neurons of the same type vary significantly, suggesting that
neurons regulate firing behavior rather than channel numbers (Schulz, Goaillard,
and Marder 2006). To maintain a firing property, like the average firing
rate, neurons could sense activity, e.g., via intracellular calcium levels, and
correspondingly adjust channel function (Stemmler and Koch 1999) or expression
(Liu et al. 1998; O’Leary et al. 2014). Complementary to such activity-dependent
mechanisms, direct feedback between proteins could link the expression of
different channel types to provide functional combinations (Kulik et al. 2019;
Tyssowski et al. 2019). One way to experimentally distinguish contributions of
activity-dependent mechanisms of channel homeostasis from other forms is to
electrophysiologically control membrane potential dynamics, for example via
enforcing a voltage trajectory by the voltage clamp and monitoring its long-term
effects on channel expression (Santin and Schulz 2019). Extending this direction,
capacitance clamp and dynamic clamp experiments could test whether and how
neurons compensate for altered cell capacitance, additional ionic conductances,
or combinations thereof. Such an approach has the advantage that it isolates the
activity-dependent part of homeostasis, because the actual cellular environment
does not change.

Another natural growth scenario, interesting for channel homeostasis, that
can be mimicked via the dynamic clamp is the emergence of a dendritic branch.
One could approximate the additional capacitative and resistive load via a
combination of capacitance and dynamic clamp. Such an approach, however,
remains approximative because the impedance of a dendrite cannot be captured
by a simple RC circuit due to its spatial extent (Koch 1999). A more accurate
alternative would consist in simulating the entire dendrite and connecting it to
the biological neuron via the axial currents flowing at the connection point.

Emulation of dynamic cell capacitance In addition to the permanent capaci-
tance alteration considered so far, the capacitance clamp can be extended to
mimic a capacitance varying in time. Technically, this amounts to replacing the
target capacitance by a time-dependent function Ct(t) and adding the usually
neglected part of the capacitative current −Ct(t)̇ V (see Eq. 2.1). This current
is simple to implement via the dynamic clamp because it only depends on the
recorded membrane potential and the selected capacitance shape. It thus has
the same form as the current through an ionic conductance with a 0 mV reversal
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potential and a conductance given by the rate of capacitance change.
If capacitance changes are fast and of sufficient amplitude, the associated

capacitative currents can evoke relevant voltage responses and might even
elicit action potentials. From the known cases of a dynamic capacitance in
physiological scenarios, the associated currents are expected to be relatively
small3. Stronger capacitative currents are supposed to underlie two novel
neural stimulation techniques based on infrared light and ultrasound. Infrared
stimulation is hypothesized to excite the firing of neurons by fast temperature-
induced changes in membrane capacitance (Shapiro et al. 2017). In ultrasound
stimulation, the oscillating pressure could induce rapid capacitance changes by
modulating membrane thickness (Plaksin, Shoham, and Kimmel 2014).

A capacitance clamp extended to emulate a dynamic capacitance could provide
a way to test such hypotheses in a controlled fashion. An important limitation
that would need to be tested for is the maximum frequency of time-varying
capacitance that could be reliably captured. One advantage of an emulated
capacitance change is the ability to separate the role of the altered capacitance
value from the capacitative current by either emulating both or only a single
one.

5.3.2 Dynamic clamp of capacitance and other cellular parameters
beyond conductances

The dynamic clamp has been applied in many variations since its introduction
in 1992. The large majority of applications exploited the underlying closed-loop
current injection to insert virtual conductances as originally suggested. The
capacitance clamp is a demonstration that the dynamic clamp can be useful to
study neuronal parameters different from conductances. The following outlook
discusses the potential of closed-loop model-guided protocols in neurons and
networks.

A closer look at studying conductances via the dynamic clamp In the realm
of conductances, it is important to emphasize that the dynamic clamp goes
beyond the insertion of ion channels modeled according to the Hodgkin-Huxley

3In a study of anesthetized cats, for example, cell capacitance of cortical neurons was measured
to undergo a ≈ 1 Hz oscillation with an amplitude of 50-150 pF in correspondence with
the membrane potential switching between an up- and a down state produced by the
surrounding network (Amzica and Neckelmann 1999). These capacitance oscillations were
hypothesized to stem from cell swelling in response to altered ionic concentrations during the
phases of high activity or from altered gap junction functioning. Given a resting membrane
potential of around -75 mV, the capacitative current amounts to 50 pF · 1 Hz · 75 mV
≈ 4 pA.

130



description. One example was the insertion of clusters of cooperative channels
with stochastic dynamics in Publication COOPMEM. In these experiments,
cluster size and coupling strength were varied at will, a degree of control missing
for real cooperative channels.

But the dynamic clamp cannot only insert additional conductances. It
also can modulate currents already present in the cell’s membrane. Peak
conductances, for example, can be directly reduced or abolished by inverting the
injected current. However, to avoid destabilizing the dynamics with this inverted
current, an accurate model of the channel in question is required (Vervaeke et al.
2006). An approximate but more stable solution is to pharmacologically block
the conductance of interest and then “re-inject” it virtually with the desired
conductance level.

Another advantage of this “block”-“reinsert” approach is that it allows the
experimenter to explore aspects of an existent ionic current that cannot be
directly modified via the dynamic clamp. Replacing sodium channels in fast-
spiking interneurons with virtual ones, Hasenstaub et al. for example tested
how half activation voltage or gating time constant affects the energetic costs of
spiking (Hasenstaub et al. 2010). In this way, the dynamic clamp could serve to
screen the effects of channel phosphorylation or genetic mutations. A parameter
apparently not yet studied in dynamic clamp experiments, but accessible in
this approach is the reversal potential of a conductance.

Mimicking ionic concentration dynamics via the dynamic clamp Reversal
potentials set the driving force of a current and have widespread effects on the
electrical dynamics of a cell. As the reversal potential depends on the extra- and
intracellular concentrations of the conducted ionic species, varying the reversal
potential of a virtual conductance via the dynamic clamp would correspond to
studying cellular excitability under different concentration conditions.

Actual concentration conditions and the associated reversal potentials, how-
ever, are dynamic. During strong spiking activity, potassium flows outside of
the cell, temporarily exceeding the restorative activity of the Na+-K+ pump,
and accumulates in the extracellular space. As a result, the reversal potential
of potassium increases, cells become more excitable and potentially switch their
excitability type (Contreras et al. 2021). Accounting for these concentration
dynamics in the dynamic clamp is challenging because it would require addi-
tional electrodes to measure the concentrations and provide them to the running
conductance model (Fröhlich et al. 2008; Heiny, Cannon, and DiFranco 2019).

An interesting theoretical proposal to circumvent the need for additional
measurements is to infer the concentrations in real time from the recorded
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membrane potential. Ullah and Schiff demonstrated accurate online estimation
of the extracellular potassium concentration via a Kalman filter, but so far this
demonstration remains restricted to a simulated neuron (Ullah and Schiff 2009).
As the Kalman filter technique relies on a model of the whole dynamics of the
recorded neuron, it is questionable whether it can be used in practice. Still, a
further advantage of this online running digital copy of the real neuron would
be that it provides other not directly observable variables like the membrane
currents or the state of the gating variables.

Ways to improve the capacitance clamp protocol In principle, using Kalman
filtering might further improve the capacitance clamp. It could reduce noise in
the estimate of the transmembrane current and shorten the delay in the injection
of the clamping current by relying on the predicted value. Practically, however,
the value of this online estimation depends on how robust the technique is with
respect to the neuron model, for example, the number of included ionic currents
– a question that requires further investigation.

If a digital twin of the biological neuron was required, this would defy the
original purpose of developing the capacitance clamp, namely probing the
role of capacitance in the unknown physiology of a real cell. The proposed
capacitance clamp protocol in contrast is suited for this purpose because it only
requires measuring the cell capacitance, but no knowledge about the present
ionic currents.

Designing subthreshold processing of neurons by shaping their impedance
profile Subthreshold processing of neurons – how they react to small inputs – is
determined by their electrical impedance profile. The mathematical impedance
analysis of a clamped neuron demonstrated in Publication CAPCLAMP suggests
a way to directly imprint a desired target impedance on a recorded neuron –
extending the capacitance clamp to a form of “impedance clamp”. Provided
with a measurement of the cell impedance, for example via a ZAP current
covering a large range of input frequencies (Schreiber et al. 2004), and given
a target impedance, the coefficients of a linear dynamic clamp protocol could
be optimized to minimize the distance between the two. As impedance is
complex-valued, capturing both amplitude and phase of the linear response, an
important non-trivial step in this minimization is the choice of an adequate
distance measure.

Although more of a playful idea, such an “impedance clamp” might for
example be useful to study links of subthreshold properties and spiking in a
general fashion independent of the specific membrane components (conductances
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and capacitance).

Closed-loop techniques to investigate and control network dynamics The
dynamic clamp as an intracellular recording technique is bound to investigate
the biophysical properties of one or up to a few neurons. With recent optical
means to interact with large ensembles of neurons, however, the closed-loop
principle behind the dynamic clamp could also be used on the network level.
In all-optical neuroscience, experimenters monitor spiking activity and even
the membrane potential with novel fluorescent indicators (Jin et al. 2012),
while at the same time stimulating neurons via genetically implanting light-
sensitive ion channels (Emiliani et al. 2015; Rost et al. 2022). While technically
still challenging, optical monitoring and stimulation of neural activity can be
combined for closed-loop paradigms – a form of an optical dynamic clamp.
Called an ‘opto-clamp’ such systems can keep a network at a chosen firing
frequency (Newman et al. 2015) and maintain average membrane potentials
of neurons at desired levels (Bergs et al. 2022). In the future, opto-clamp
applications might be possible that act more in a dynamic clamp manner,
emulating neuronal or synaptic changes within the biological network.

In addition to providing new research tools, closed-loop stimulation paradigms
on the network level are a promising route for therapeutic applications. The
dynamic clamp, as well as the capacitance clamp, are related to model reference
control, whose objective is to ensure that a system follows a given target
dynamics (Hocker and Park 2019). Model reference control has been proposed as
a theoretical framework for designing closed-loop brain stimulation that returns
a network with pathological dynamics, e.g., with a detrimental oscillatory state,
back to its functional physiological dynamics. In addition to precise monitoring
and manipulation of neural activity, such control relies on good models of
the system to be controlled – another reason among many for a thorough
understanding of neuronal dynamics.

5.4 Conclusion

This thesis analyzed the consequences of revising two experimentally question-
able assumptions of single neuron modeling, independent channel gating and
membrane capacitance as a universal constant.

The results of this thesis demonstrate how to incorporate ion channel cooper-
ativity and altered capacitance into neuronal models, and how to study them
in biological neurons via closed-loop electrophysiology. The proposed role of
cooperative channels in cell-autonomous memory gives further credence to the
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emerging picture that cooperativity is not a by-product of the highly interactive
nature of channels, but that these interactions serve functional adaptations.
The novel capacitance clamp is expected to complement the electrophysiologist’s
toolbox, both to specifically shine a light on cases of varying capacitance and
more generally as a way to study modulation of neuronal dynamics.
Concluding, this thesis provides predictions and tools to guide further in-

vestigations into the functional role of cooperative ion channels and varying
membrane capacitance. It emphasizes the role of the variable properties of
neurons, unlikely to be captured by a single standard model, to create the wide
range of dynamics, which makes the brain such a powerful and adaptive organ.
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A B

Figure 5.1: Detecting bifurcations with the capacitance clamp. A Left : In a simulated
neuron model, spiking slows down when increasing capacitance (here up to 285 pF), but
a further small increase to 300 pF abruptly doubles the firing frequency, a signature of
the saddle-node-loop (SNL) bifurcation. Right : Histograms of the time spent at different
membrane potentials between two spikes illustrate the origin of the frequency doubling,
namely that beyond the critical capacitance the altered spike skips the slow approach to the
“ghost” of the previous rest state (gray dashed line). This altered approach is also apparent
in the insets showing the spike dynamics in the potassium gating n-voltage V plane. B
The capacitance clamp can induce the SNL bifurcation and locate the critical capacitance
CSNL. Top: Frequency doubling, or equivalently halving of the interspike interval (ISI), is also
observed when modifying capacitance via a simulated capacitance clamp at 20 kHz (dashed)
and 100 kHz (dotted) dynamic clamp frequency (control simulation with actually altered
capacitance parameter in gray and the expected critical capacitance CSNL indicated in green).
Bottom: Capacitance at maximal ISI against fdyn shows that frequencies ≥ 40 kHz are required
to correctly locate the bifurcation. For smaller frequencies, the bifurcation happens at a
reduced capacitance value. Adapted from the preprint version of Publication CAPCLAMP,
available at biorxiv.org/content/10.1101/2021.11.12.468368v1.

135

https://www.biorxiv.org/content/10.1101/2021.11.12.468368v1




6 Appendix

6.1 Microscopic reversibility of the linear voltage-shift
model

The voltage-shift model of cooperative gating is a heuristic description. In
particular, it is a priori unclear whether this description is physically consistent
and which interaction energies between channels are required for a given value
of the coupling j. The following section confirms the physical consistency of
the voltage shift-model and shows how to estimate these interaction energies.
Consider a dimer consisting of two identical coupled channels with an open

state O and a closed state C. The channels have an activation curve m(V )
and a gating time τ(V ). According to the voltage-shift model, the transition
rates from the all closed CC state to the OC or OC state are just the single
channel opening α(V ) = m(V )

τ and closing rates β(V ) = m(V )
τ , whereas the

rates between the states with one open channel OC or OC and all open OO
are correspondingly shifted by the coupling coefficient α(V + j) and β(V + j).

To demonstrate that the voltage-shift model is compatible with microscopic
reversibility, the altered transition rates have to be consistent with a modified
energy landscape, either by a change in the energy of the states or the barri-
ers between them (see Fig. 6.1). For the involved states and barriers, these
modifications can be derived as:

• the state energy EOC remains unaltered, because otherwise the closing
rate back to the all closed state CC would be affected,

• the height of the energy barrier ∆OC↔OO has to change by an amount

δ∆OC↔OO to obtain the altered opening rate α(V+j) = e−
δ∆OC↔OO

kT α(V ) ⇒
δ∆OC↔OO = −kT log α(V+j)

α(V ) ,
• so that the state energy EOO has to change by an amount δEOO to
obtain the altered closing rate, which is already affected by the modi-
fied energy barrier β(V + j) = eδEOO/kT e−δ∆OC↔OO/kTβ(V ) ⇒ δEOO =

kT log β(V+j)
β(V ) + δ∆OC↔OO.

As an illustration, assume that the channels are half-activated at the current
membrane potential m(V ) = 0.5 and that the activity is increased to m(V +j) =
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Figure 6.1: Energy levels (bottom) and barriers between states (top) of a cluster of two
independent channels and the corresponding alterations to realize the cooperative interactions
in the voltage-shift model.

0.75 when a neighboring channel opens. Consequently, the ratio of transition
rates are α(V+j)

α(V ) = 1.5 and β(V+j)
β(V ) = 0.5 and the corresponding energy changes

are δ∆OC↔OO ≈ −0.4kT and δEOO ≈ −1.1kT . Thus such positive coupling
would both lower the energy barrier – increasing the opening rate – and at
the same time further decrease the energy of the all open state – reducing the
closing rate. Energetic modifications on the order of kT appear plausible and
are also found to be required to explain the altered gating behavior of dimers
of cooperative sodium channel (Hichri, Selimi, and Kucera 2020).

For clusters that contain more than two channels, the same argument can be
used iteratively to demonstrate that also interactions between multiple channels
are physically consistent . Starting from the altered energy level of the state
with n open channels, to obtain the desired opening rate α(V + nj), the height
of the energy barrier to the state with n+ 1 open channels is modified. Then
the energy level of this state has to be adapted to get the closing rate β(V +nj).
This iterative procedure provides a well-defined series of changes to barriers and
state energies. Whether these changes remain in the physiologically plausible
regime depends on the number of involved channels and the coupling coefficient.
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