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Abstract				

In	multicellular	organisms	cells	grow,	divide	and	adopt	different	
fates,	resulting	in	tissues	and	organs	with	specific	functions.		In	
recent	years,	a	number	of	studies	have	brought	quantitative	
knowledge	about	how	these	processes	are	orchestrated,	shed-
ding	new	light	on	cells	as	active	and	central	players	in	morpho-
genesis.	We	explore	recent	advances	in	understanding	plant	
morphogenesis	from	a	quantitative	perspective,	defining	the	re-
search	field	of	Computational	Morphodynamics.	The	focus	is	on	
studies	combining	theoretical	and	experimental	approaches	in-
tegrating	hypotheses	of	how	molecular	and	mechanical	regula-
tion	at	the	cellular	level	lead	to	tissue	behaviour.	Finally,	we	dis-
cuss	some	of	the	main	challenges	for	future	work.	
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Introduction	
			
Morphogenesis,	the	spatial	development	of	tissues	with	special-
ized	structure	and	function	from	populations	of	undifferentiated	
cells,	is	one	of	the	most	fascinating	and	complex	problems	in	na-
ture.	Formation	of	functional	tissues	requires	a	strict	spatiotem-
poral	control	of	cellular	morphology	and	gene	expression.	To	
achieve	this,	individual	cells	can	read	a	multitude	of	microenvi-
ronmental	cues,	respond	via	their	gene	regulatory	networks,	and	
ultimately,	undertake	the	appropriate	fate	decisions	and	mor-
phological	changes	[1].	A	detailed	characterization	of	the	factors	
influencing	cellular	fate	decision,	the	mechanisms	by	which	they	
are	executed	at	the	cellular	level,	and	how	they	are	coordinated	
in	multicellular	tissues,	is	paramount	to	understanding	the	dy-
namic	pattern	formation	driving	development.	
	
Single	cell	studies	in	unicellular	organisms	and	cell	cultures	have	
made	great	progress	in	providing	a	quantitative	description	of	
the	signalling	and	gene	regulatory	mechanisms	that	underlie	cell	
fate	decisions	[2–5].	These	experiments	typically	involve	time-
lapse	microscopy	methods,	in	which	the	cells	of	interest	can	be	
tracked	as	they	grow	in	controlled	microenvironments.	Expres-
sion	dynamics	of	key	regulators	can	be	characterised	by	compu-
tational	quantification	of	fluorescent	reporters	[6,	7]	and	corre-
lated	to	cellular	variables	such	as	size,	division	and	death	[8].		
	
Progress	in	the	development	of	reporters,	microscopy	technolo-
gies	and	computational	methods	now	allows	for	expanding	these	
approaches	to	the	study	of	developing	tissues	in	multicellular	
organisms	in	vivo.		In	plant	biology	in	particular,	morphogenesis	
has	been	the	object	of	multiple	studies	over	the	years	and	the	
role	of	short-range	biochemical	signals,	long-range	hormone	
transport,	and	mechanical	forces	in	shaping	tissue	formation	is	
well	documented	[9–11].	The	ability	to	quantify	the	spatiotem-
poral	dynamics	of	gene	expression	and	cellular	behaviour	at	
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high	resolution	in	single	cells	enables	a	finer	quantitative	appre-
ciation	of	how	signalling	factors	ultimately	lead	to	specialised	
three-dimensional	patterns.	This	level	of	detailed	analysis	re-
quires	powerful	experimental	and	computational	tools	in	order	
to	identify,	track	and	quantify	variables	of	individual	cells	in	a	
three-dimensional	tissue	as	it	grows	in	vivo.	As	these	tools	be-
come	increasingly	available,	it	has	been	possible	to	combine	
high-resolution	time-lapse	microscopy,	image	processing,	quan-
tification	tools	and	computational	models	in	multidisciplinary	
efforts	to	better	understand	plant	development.	This	integrative	
approach	is	the	cornerstone	of	the	emerging	field	of	Computa-
tional	Morphodynamics	[12–14]	(or	Systems	Morphodynamics	
[15]),	which,	by	iterating	between	experimental	design,	
quantitative	data	analysis	and	computer	simulations,	aims	to	
understand	the	factors	that	shape	tissues	and	how	they	affect	
individual	cells	(Fig.	1).		
	
In	this	chapter,	we	will	provide	an	overview	of	the	most	recent	
developments	in	the	Computational	Morphodynamics	field	in	
plants,	particularly	in	terms	of	image	processing,	quantitative	
data	analysis,	and	computational	modelling	techniques.	We	will	
review	recent	studies	that	applied	these	methods	and	
technologies,	with	strong	emphasis	on	work	performed	at	the	
single-cell	level	in	plant	systems,	taking	advantage	of	plant-
specific	properties	such	as	lack	of	cell	migration	and	relatively	
slow	growth.	To	illustrate	some	of	the	techniques,	we	will	refer	
to	several	examples	using	Arabidopsis	thaliana	as	biological	
model,	particularly	where	single	cell	descriptions	lead	to	
behaviour	at	the	scale	of	small	tissues.	We	will	also	discuss	the	
main	hurdles	and	challenges	in	the	field,	as	well	as	new	methods	
and	technologies	that	open	new	and	exciting	avenues	for	further	
understanding	the	dynamical	principles	and	mechanisms	
underlying	tissue	formation	in	plants.		

Capturing	single	cell	dynamics	in	space	and	time	
	
The	accurate	characterization	of	how	single	cells	are	affected	by	
microenvironmental	signals	and	respond	in	accordance	during	
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plant	development	requires	a	detailed	spatiotemporal	descrip-
tion	of	the	tissue	as	it	grows.	This	description	is	typically	based	
on	time-lapse	confocal	microscopy	of	plant	tissue	in	vivo,	or	live	
imaging,	which	allows	the	non-destructive	sampling	of	the	tissue	
in	three-dimensions	over	time.	This	approach,	particularly	in	
combination	with	other	cell	and	molecular	biology	tools	such	as	
fluorescently	tagged	reporters,	can	allow	for	the	quantification	
of	a	wealth	of	variables	related	to	the	dynamics	of	tissue	me-
chanics,	cell	geometry	and	cell	division,	as	well	as	gene	expres-
sion.	Such	experiments	require	high	resolution	imaging	data	
both	spatially	and	temporally.	Ideally,	the	number	of	confocal	
slices	spanning	the	tissue	should	be	as	high	as	possible	(thus	
covering	as	small	a	distance	as	possible)	for	individual	time	
points,	with	time	intervals	being	kept	to	a	period	as	small	as	
possible.	A	limiting	factor	in	both	cases	is	the	phototoxicity	that	
arrives	from	prolonged	and	repeated	exposure	of	the	tissue	to	
the	laser,	and	so	a	suitable	compromise	needs	to	be	found.	Sam-
pling	times	may	also	need	to	be	adjusted	depending	on	tissue	
growth	rates,	such	that	individual	cells	can	be	unequivocally	
tracked.		
	
The	questions	of	how	and	when	cells	divide	in	plant	tissues	have	
attracted	much	attention.	The	first	studies	discussing	cell	divi-
sion	rules	date	back	to	the	late	1800s,	in	which	it	was	proposed	
that	the	geometry	of	the	cell	would	determine	the	orientation	of	
the	cell	division	plane		(more	details	on	this	topic	in	[24,	25]).	In	
the	last	decades,	improvements	of	microscopy	technologies	con-
nected	to	fluorescent	markers	have	enabled	revisiting	these	
questions	in	more	detail.	In	a	pioneering	study,	Laufs	et	al	
(1998)	used	propidium	iodide	to	stain	DNA	and	visualise	indi-
vidual	nuclei	in	Arabidopsis	thaliana	inflorescence	shoot	apical	
meristems	(SAMs)	[16].	This	method	allowed	for	a	detailed	
morphometric	analysis	that	included	the	quantification	of	size,	
spatial	distribution	and	mitotic	index	of	individual	cells	in	wild	
type	and	mutant	lines.	Propidium	iodide	staining	effectively	ar-
rests	growth,	making	it	impossible	to	collect	dynamical	data.	
Reddy	at	al	(2004)	circumvented	this	issue	by	using	fluorescent	
reporters	for	components	of	the	plasma	membrane,	histone	
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markers	and	mitotic	cyclins,	thus	being	able	to	observe	the	dy-
namics	of	cell	and	nuclear	division	events,	as	well	as	to	capture	
cells	about	to	or	in	the	process	of	division	[17].		
	
As	imaging	technologies	and	computational	power	increase,	
higher	resolution	data	can	be	generated	which	affords	automat-
ed	identification	and	tracking	of	individual	cells,	as	well	as	high-
er	precision	in	the	quantification	of	variables	of	interest	[18–23].	
The	implementation	of	a	powerful	automated	4D	imaging	pipe-
line	allowed	Willis	et	al	to	observe	in	great	detail	the	dynamics	
of	cell	growth	and	division	in	Arabidopsis	SAMs	[18].	By	sam-
pling	meristematic	growth	every	four	hours	over	the	course	of	
2-3	days,	and	tracing	each	individual	epidermal	cell	in	space	and	
time,	the	authors	could	show	that	cell	size	regulation	does	not	
strictly	follow	the	so-called	sizer	nor	adder	models	that	had	
been	previously	described	[26],	but	instead	is	an	intermediate	
between	these	two	paradigms.	Jones	et	al	(2017)	also	ap-
proached	this	question	with	single-cell	quantification	of	cell	di-
vision	coupled	with	a	mechanistic	model	of	cyclin-dependent	ki-
nase	(CDK)	activity	[20].	The	study	pointed	to	the	existence	of	
regulatory	mechanisms	that	dynamically	regulate	cell	size	as	a	
function	of	a	number	of	factors	including	growth	rates.	Both	the-
se	studies	suggest	that	cell	size	in	the	meristem	is	not	an	intrin-
sically	defined	(or	measured)	property.	Beyond	the	timing	of	di-
vision,	it	is	also	of	interest	to	understand	how	cells	define	the	
orientation	of	division	planes	and	localization	of	new	cell	walls.	
Factors	such	as	cell	size,	geometry	and	mechanical	forces	have	
all	been	deemed	of	potential	relevance	over	the	years.	Recent	
quantitative	studies	have	supported	the	view	that	cells	divide	
along	local	minima	of	plane	area	leading	to	equal-sized	daughter	
cells	[21],	and	the	alternative	view	that	new	division	planes	es-
tablish	along	directions	of	maximal	tensile	stress	[22].	Shapiro	et	
al	(2015)	implemented	a	quantitative	model	that	predicts	the	lo-
calization	of	new	division	planes	at	minima	of	a	potential	func-
tion	that	incorporates	these	and	other	division	rules	[23].						
	
Despite	all	its	potential,	quantitative	image	analysis	at	the	single	
cell	level	is	experimentally	and	computationally	demanding	and	
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requires	careful	planning	in	order	to	avoid	misleading	conclu-
sions	due	to	technical	artefacts	at	all	stages,	from	image	capture	
to	quantification	and	analysis	[27].	Continuous	collection	of	4D	
data	in	vivo	is	extremely	challenging	in	plants,	due	to	plant	
growth	and	movement,	particularly	in	tissues	such	as	the	SAM	
where	plants	have	to	be	kept	in	light-	and	temperature-
controlled	chambers	between	sampling	times,	and	where	the	
imaging	is	usually	done	with	water-dipping	lenses	[17,	18].	The-
se	challenges	can	in	themselves	be	the	source	of	artefacts,	and	
the	development	of	imaging	technologies	that	circumvent	them	
by	allowing	automated	image	capture	with	minimal	disturbance	
can	be	of	paramount	importance.	To	this	end,	von	Wangenheim	
et	al	(2017)	developed	a	confocal	microscope	setup	that	allows	
vertical	imaging	of	plant	root	tip	growth	with	automated	ad-
justment	of	sampling	positions	between	time	points,	facilitating	
the	tracking	of	objects	of	interest	[28].	This	platform	allowed	
continuous	observation	of	root	growth	even	when	inducing	rap-
id	changes	in	gravity	or	light,	and	was	successfully	tested	in	zeb-
ra	fish	embryos,	showing	its	general	applicability.		
	
The	integration	of	microfluidic	technologies	for	tissue	live	imag-
ing	holds	great	potential	and,	indeed,	has	already	proved	of	im-
portance	in	different	tissues	[29].	One	prominent	example	is	the	
RootChip	[30],	which	allows	continuous	imaging	of	different	
growing	plant	tissues	while	being	exposed	to	different	environ-
mental	perturbations	[30–32].	This	system	has	been	used	for	
studying	for	instance	gibberellin	response	in	growing	hypocot-
yls	[31]	and	root-bacteria	interactions	[32].	Microfluidic	tech-
nologies	afford	working	in	very	small	volumes	as	well	as	the	mi-
nute	control	over	cellular	microenvironment,	and	hence	they	
have	also	become	an	attractive	system	to	observe	and	manipu-
late	plant	cell	cultures,	either	maintained	in	stable	cultures	[33]	
or	freshly	extracted	from	the	tissue	by	cell	wall	digestion	[34].	
Recently,	microfluidic	chips	have	been	used	to	explore	mecha-
nisms	of	regulation	of	cellular	geometry	by	applying	directional	
auxin	gradients	to	single	BY-2	tobacco	cells	[35].	In	the	same	cell	
system,	optical	tweezers	had	previously	been	used	to	create	cy-
toplasmic	protrusions	in	single	cells,	thus	allowing	the	charac-
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terization	of	actin	and	myosin	dynamics	and	their	impact	on	cy-
toplasm	stiffness	[36].	
	
For	some	tissues,	it	is	technically	very	challenging	to	perform	
single-cell	quantification	while	maintaining	the	plant	alive,	in	
which	case	fixing	tissues	can	be	a	suitable	option	[37–39].	Alt-
hough	this	makes	it	impossible	to	collect	dynamical	data,	it	al-
lows	for	detailed	imaging,	and	statistical	methods	can	then	be	
applied	to	extract	information	on	growth	and	division	properties	
from	these	well-defined	cell	patterns	(Fig.	4C-D)	[37].	By	design,	
confocal	microscopy	limits	the	size	of	the	biological	tissue	that	
can	be	imaged	at	high	resolution.	In	that	regard,	whole	tissue	
and	even	whole	organism	techniques	have	been	deployed	to	
quantitatively	characterize	3D	large-scale	phenomena	in	plant	
development	[40,	41].	
	
While	the	challenges	of	imaging	multicellular	and	slow	growing	
tissues	are	many,	several	of	these	challenges	have	recently	been	
overcome	and	plant	development	is	now	approaching	a	stage	
where	it	can	be	studied	with	live	imaging	tools	similar	to	those	
used	for	bacteria	and	yeast,	both	in	vivo	and	in	cell	cultures.	
 

Quantitative	image	analysis	
 
	
Once	image	acquisition	has	been	achieved,	ideally	resulting	in	a	
high	spatiotemporal	resolution	time	lapse	of	tissue	growth,	
quantification	of	cellular	variables	of	interest	is	performed	by	
deploying	a	set	of	computational	methods	that	broadly	allow	the	
identification	and	tracking	of	each	individual	cell	in	space	and	
time.	It	should	be	stressed,	however,	that	image	capture	and	
analysis	are	not	independent	steps	and	that	particular	require-
ments	of	image	processing	should	be	taken	into	account	when	
planning	time-lapse	experiments.	Microscopy	parameters	such	
as	laser	intensity,	voxel	size	(in	particular,	defining	the	thickness	
of	each	confocal	slice),	and	resolution	can	be	optimised	by	iterat-
ing	with	the	image	analysis	software	in	single	images	before	per-
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forming	the	full	time	course.	Time	sampling	should	also	be	care-
fully	defined	such	that	cell	tracking	can	be	performed	with	max-
imal	efficiency.	A	number	of	preprocessing	steps	can	also	be	cru-
cial	to	improve	image	quality	for	the	purpose	of	quantification.	
Deconvolution	may	be	of	importance	when	processing	3D	imag-
es,	in	order	to	circumvent	artificial	stretching	in	the	Z-direction	
caused	by	the	point-spread	function	[42,	43].	Another	relevant	
factor	is	plant	growth	that	occurs	during	image	acquisition	out-
side	the	region	of	interest.	In	this	case,	a	fast	confocal	scan	with	
few	slices	covering	the	whole	tissue	may	be	acquired	first,	and	
used	to	correct	potential	growth	effects	in	the	longer	acquisition,	
by	correcting	z-direction	slice	thickness	[18].	In	addition	to	this,	
other	operations	may	be	beneficial	such	as	denoising,	edge	de-
tection	or	binarisation	of	the	images	to	facilitate	computational	
identification	of	regions	of	interest	(Fig.	2A).	
	
The	identification	of	individual	cells	in	a	tissue	is	achieved	by	
applying	computational	algorithms	that	make	use	of	specific	fea-
tures	of	the	imaging	data	to	delimitate	each	region	of	interest	
(e.g.	a	cell,	nucleus	or	other	cellular	subcompartment)	in	a	pro-
cess	called	segmentation.	One	of	the	most	popular	algorithms	for	
cell	segmentation	is	the	watershed	algorithm	[44].	This	is	par-
ticularly	true	for	cases	where	fluorescence	intensities	are	maxi-
mal	at	the	cell	membrane,	with	the	inside	of	each	cell	having	in-
tensity	close	to	zero.	Different	variants	of	the	watershed	
algorithm	have	been	successfully	applied	to	the	identification	of	
single	cells	in	plant	tissues,	from	embryos	[37],	to	SAMs	[45,	46]	
(Fig.	2B),	and	root	meristems	[45].	When	the	fluorescent	signal	
accumulates	in	a	subcellular	compartment	such	as	the	nucleus,	
other	algorithms	may	be	more	suitable.	An	implementation	of	
the	steepest	gradient	ascent	in	particular	has	been	used	to	seg-
ment	individual	meristem	cells	[47,	48],	and	nuclei	in	time	laps-
es	of	sepal	growth	[49]	(Fig.	2A).	Once	a	region	of	interest	has	
been	segmented,	its	size	and	morphological	parameters	can	be	
quantified.	The	same	is	true	for	fluorescence	intensity	within	
each	region,	which	is	normally	used	as	a	proxy	for	mRNA	or	pro-
tein	levels	for	each	cell	(Fig.	2C).	Although	this	is	often	not	the	
case,	ideal	experimental	design	should	include	a	second	fluores-
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cent	reporter	for	a	constitutive	gene,	which	can	be	used	to	nor-
malize	fluorescence	intensities	in	individual	cells.	
	
Once	individual	cells	are	identified,	characterised	and	computa-
tionally	catalogued	for	each	time	point,	temporal	correspond-
ence	must	be	resolved	by	tracking	each	cell,	as	well	as	their	
progeny,	through	the	time	course.	This	process	thus	needs	to	
consider	cell	divisions	as	well	as	tissue	growth	and	orientation	
changes	between	time	points.	Due	to	the	existence	of	rigid	cell	
walls,	cell	movement	is	not	as	much	of	a	factor	in	plants	as	it	can	
be	in	animal	tissues.	Optimal	cell-cell	pairing	between	consecu-
tive	time	points	can	be	achieved	through	a	process	of	registra-
tion,	where	one	of	the	images	is	linearly	or	non-linearly	trans-
formed	to	maximise	matching	with	the	other	image	of	the	pair	
[50].	Different	registration	methods	can	be	applied	with	reason-
able	success,	particularly	when	taking	into	account	the	specifici-
ties	of	the	tissue	and	objects	of	interest.	These	algorithms	are	
available	through	implementations	in	different	image	analysis	
packages,	often	with	convenient	graphical	user	interfaces	and	
the	possibility	for	manual	correction	of	segmentation	and	track-
ing	errors	[46,	51–54].	In	plant	tissues	specifically,	block	match-
ing	registration	algorithms	[55–57]	have	recently	been	used	to	
successfully	perform	tracking	of	individual	cells	in	growing	
SAMs	(Fig.	2D)	[18],	and	individual	nuclei	in	growing	sepals	[49].		
	
The	current	multitude	of	image	processing	tools	provide	a	large	
pool	of	options	that	in	principle	should	cover	the	exploration	of	
a	wide	range	of	biological	questions.	On	the	other	hand,	such	di-
versity	also	brings	about	the	fragmentation	of	the	community	
regarding	tools	of	choice	and,	more	importantly,	file	and	data	
formats.	Advances	in	the	state-of-the-art	allow	us	to	observe	bio-
logical	phenomena	at	different	scales	and	complexities	from	sin-
gle	molecule	to	whole	organs	[58,	59].	It	is	of	paramount	im-
portance	to	agree	on	file	and	data	standards	within	the	
community	that	maximise	transferability	of	both	raw	image	and	
processed	data,	such	that	we	can	increase	power,	accuracy	and	
efficiency	of	quantification	protocols.	
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The	vast	volumes	of	spatiotemporal	single	cell	data	collected	
through	quantification	of	time-lapse	microscopy	experiments	
can	be	explored	by	computational	methods	in	a	considerable	
number	of	ways.	An	increasingly	used	approach	is	the	applica-
tion	of	machine	learning	methods	to	extract	interesting	features	
or	behaviours	[60].	In	supervised	machine	learning,	objects	of	
interest	(e.g.	cells)	can	be	manually	classified	within	a	set	of	
classes	a	priori	(e.g.	cell	types)	given	a	set	of	variables	(e.g.	size	
or	morphological	parameters).	This	dataset	is	then	used	to	train	
a	model	that,	once	applied	to	a	new	dataset,	can	be	able	to	pre-
dict	with	high	accuracy	the	class	of	a	given	object	by	taking	into	
account	its	set	of	variables.	There	are	a	number	of	models	that	
can	be	used	for	classification	such	as	regression	methods,	sup-
port	vector	machines,	artificial	neural	networks,	decision	trees	
or	random	forests	[60,	61].	In	all	these	methods,	training	in-
volves	minimizing	a	function	that	quantifies	the	error	between	
prediction	and	known	outcome.	A	good	model	should	be	able	to	
learn	from	the	known	data	structure	and	successfully	generalise	
to	large	sets	of	new	data	without	overfitting.	During	the	image	
processing	stages,	classification	methods	that	take	into	account	
cellular	morphology	and	tissue	growth	can	be	used	to	automati-
cally	perform	and	improve	segmentation	and	tracking	[61,	62].	
Cellular	size	and	morphology	parameters	have	indeed	been	used	
for	classifying	cells	in	a	number	of	ways,	from	cell	cycle	stage	
[63]	to	cancer	activity	[64].	Gene	expression	data	are	also	a	fer-
tile	ground	for	the	application	of	classification	methods	in	order	
to	gain	biological	insight.	Single	cell	gene	expression	differences	
between	related	cellular	populations	have	been	used	to	predict	
the	identity	of	genes	[65]	or	the	expression	thresholds	for	a	spe-
cific	gene	[66]	likely	to	be	involved	in	the	decision	to	choose	a	
particular	cellular	fate.	In	plants,	a	similar	approach	was	recent-
ly	followed	to	infer	a	mechanism	by	which	expression	maxima	of	
the	transcription	factor	ATML1	above	a	certain	threshold	during	
the	G2	but	not	the	G1	stage	of	the	cell	cycle	predict	with	high	ac-
curacy	the	giant	cell	fate	in	growing	sepals	(Fig.	2E)	[49].	Unsu-
pervised	machine	learning	methods	allow	exploring	features	of	
interest	in	the	data	structure	itself	without	having	to	a	priori	de-
termine	the	different	classes.	These	include	clustering	as	well	as	
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dimensionality	reduction	methods	such	as	principal	component	
analysis	or	multidimensional	scaling	[60].		
	
Beyond	gene	expression	and	single	cell	morphologies,	it	is	of	
great	interest	to	quantify	spatial	cellular	patterns	within	a	spe-
cialised	tissue,	as	a	means	to	further	understand	its	morphody-
namics.	Methods	that	allow	quantification	of	tissue	order	as	a	
function	of	the	spatial	distribution	of	the	cells	that	compose	it	
can	be	of	interest	to	understand	its	development	and	function	
[67].	In	plants,	this	approach	has	been	followed	to	understand	
pattern	formation	in	leafs,	in	particular	the	variability	of	tri-
chome	patterns	on	its	surface	[68].	More	generally,	a	recent	
study	provided	a	topological	characterization	of	complex	plant	
organs	by	applying	quantitative	network	analysis	methods	to	
high	resolution	descriptions	of	cellular	interactions	(Fig.	2F)	
[69].	As	the	volume	of	data	accumulates,	it	becomes	crucial	to	in-
tegrate	these	measurements	in	order	to	understand	how	spatial	
cellular	patterns	correlate	with	the	underlying	gene	expression	
and	cellular	division	patterns	during	morphogenesis	[39].	
	
Great	progress	has	recently	been	made	in	the	ability	to	segment,	
track	and	quantify	single	cell	information	from	3D	live	imaging	
data.	The	continuous	development	of	imaging	technologies	will	
predictably	lead	to	data	with	higher	spatiotemporal	resolution	
gathered	at	quicker	rates.	The	expected	magnitude	of	data	pro-
duced	by	these	technologies	will	benefit	from	current	and	im-
proved	computational	methods,	but	will	also	require	more	au-
tomatised	(and	preferably	standardised)	analysis	and	storage	
protocols	in	order	not	to	become	a	major	bottleneck	in	future	
studies.		

Modelling	tissue	morphogenesis	from	the	bottom-	
up	
 
Tissue	patterning	results	from	the	interplay	of	intracellular	reg-
ulatory	networks,	cell-to-cell	interactions,	cell	growth	and	divi-
sion,	and	mechanical	forces	[1].	How	can	mathematical	and	
computational	models	take	these	different	processes	into	ac-
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count?	And	how	can	models	integrate	and	be	compared	with	ex-
perimental	data?	
	
Regulatory	networks	have	mostly	been	modelled	using	deter-
ministic	rate	equations	of	cellular	concentrations	of	key	compo-
nents.	In	this	context,	it	can	be	assumed	that,	for	a	given	set	of	
model	parameter	values,	the	dynamics	of	regulatory	networks	
will	achieve	certain	steady	states,	which	can	be	associated	to	dif-
ferent	cell	states	or	fates	[47,	70–74].	For	example,	different	
regulatory	networks	have	been	modelled	for	understanding	epi-
dermal	patterning	of	hair	and	non-hair	fates	in	both	roots	and	
leaves	[70,	71].	Also,	a	model	for	brassinosteroids	signalling	in	
the	root	has	proposed	two	alternative	states	that	would	repre-
sent	a	quiescent	and	a	division	state	of	the	quiescent	centre	(QC)	
cells	[73].		
	
In	different	plant	developing	tissues,	stochasticity	in	the	key	
regulators	has	been	proposed	to	play	a	role	in	cell	fate	decisions	
[75,	76].	In	multicellular	models,	stochasticity	has	mostly	been	
implemented	as	small	initial	cell-to-cell	differences	in	the	signal-
ling	regulators,	which	are	deterministically	propagated	through	
the	regulatory	network.	Though,	due	to	the	probabilistic	nature	
of	chemical	reactions	within	cells,	certain	regulatory	networks	
can	show	stochastic	effects	throughout	time,	and	hence,	stochas-
ticity	needs	to	be	modelled	in	a	dynamic	manner.	The	Gillespie	
algorithm	is	an	exact	and	discrete	method	that	can	be	used	for	
modelling	the	stochastic	nature	of	regulatory	networks	[77,	78].	
Yet,	in	the	context	of	multicellular	modelling,	discrete	methods	
that	simulate	the	number	of	molecules	can	become	computa-
tionally	very	expensive,	and	the	chemical	Langevin	equation,	
which	is	a	continuous	concentration–based	approach,	seems	
more	applicable	[79,	80]	(Fig.	3).	Although	not	being	exact,	this	
algorithm	can	give	quite	good	approximations	to	the	exact	Gil-
lespie	method	when	the	number	of	molecules	is	not	too	low	[79].	
The	chemical	Langevin	equation	contains	a	deterministic	contri-
bution	and	a	stochastic	contribution,	and	the	stochastic	contri-
bution	becomes	smaller	when	the	number	of	molecules	is	high	
[79].	This	model	formulation	facilitates	the	possibility	to	use	dif-
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ferent	analytical	tools	that	are	used	in	deterministic	systems,	as	
nullcline	and	bifurcation	analyses	[81].		
	
Throughout	a	developmental	process,	both	deterministic	and	
stochastic	processes	may	simultaneously	take	place.	Hence,	to	
model	this,	hybrid	algorithms	are	necessary,	in	which	both	sto-
chastic	and	deterministic	variables	are	integrated.	In	the	context	
of	giant	cell	fate	commitment	in	the	developing	sepal,	ATML1	
fluctuations	were	simulated	using	chemical	Langevin	equations	
for	ATML1	itself	and	its	downstream	target	together	with	a	tim-
er	variable,	while	cell	growth	was	modelled	deterministically	
[49].		
	
Often,	the	patterning	process	happens	while	cells	are	growing	
and	dividing.	In	the	root,	the	cellular	growth	and	division	pat-
terns	seem	deterministically	controlled,	leading	to	stereotypical	
files	of	cells	that	robustly	conform	the	root	(Fig.	2C)	[73,	82].	The	
root	shows	a	distinct	behaviour;	growth	is	mainly	anisotropic,	
cell	divisions	are	most	importantly	happening	in	a	single	dimen-
sion	along	the	length	of	the	root.	In	contrast,	the	SAM	epidermis	
undergoes	isotropic	growth	and	cell	divisions	are	occurring	in	
multiple,	but	anticlinal,	directions,	preserving	the	2D	layer	(Fig.	
2D)	[18].	In	the	case	of	the	developing	sepal,	a	pattern	of	giant	
cells	gradually	forms	while	cells	anisotropically	grow	and	divide	
[49].		Also,	in	leaves,	the	stomata	pattern	emerges	as	a	result	of	
an	interplay	of	growth,	cell	divisions	and	cell	fate	decisions	[83].	
Therefore,	incorporating	cell	growth	and	cell	division	in	the	gene	
regulatory	network	models	becomes	fundamental	for	reproduc-
ing	the	different	behaviours	and	spatial	organisations	found	dur-
ing	morphogenesis	of	different	tissues.		
	
How	can	we	incorporate	growth	into	the	models?	Cell	growth	is	
the	result	of	the	internal	turgor	pressure	and	mechanical	cues	
[9,	84].	In	turn,	signalling	–	and	hence,	regulatory	networks	–	can	
modify	cell	wall	properties,	which	feed	back	into	how	cells	re-
spond	to	mechanical	cues.	Turgor	pressure	can	be	effectively	in-
cluded	into	models	in	different	ways;	for	instance,	by	imposing	
exponential	tissue	growth	[49]	(Fig.	3),	or	it	can	be	included	in	
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the	equations	accounting	for	mechanical	cues	[84,	85].	In	simu-
lations,	mechanical	cues	can	be	effectively	included	between	
vertices	through	spring	interactions	acting	according	to	effective	
potentials	[24]	or	through	energies	that	need	to	be	minimised	
[86].	Alternatively,	stress-strain	relations	(Fig.	3)	can	be	includ-
ed	in	triangulated	cell	walls,	using	finite	element	method	based	
approaches	in	3D	[87].	The	inclusion	of	mechanical	cues	in	the	
models	and	interactions	between	joint	walls	will	lead	to	differ-
ent	growth	rates	for	different	cells.	Indeed,	heterogeneity	in	cel-
lular	growth	rates	due	to	mechanical	factors	and	in	asymmetric	
cell	divisions	have	recently	been	reported	[18,	86].	Incorpora-
tion	of	cell	growth	in	the	models	should	drive	dilution	effects	in	
the	different	modelled	concentrations,	and	distribution	of	indi-
vidual	molecules	between	daughters	at	cell	division.	If	cell	
growth	is	exponential,	dilution	can	be	included	as	effective	deg-
radation	rates	of	the	modelled	concentrations	(Fig.	3).	Though,	
given	the	heterogeneity	and	time-dependent	cellular	growth	
rates	due	to	mechanical	cues,	it	becomes	more	convenient	to	
compute	dilution	effects	given	the	actual	volumetric	change	[49]	
(Fig.	3).		
	
Taking	into	account	the	multitude	of	cell	division	patterns	found	
in	plants,	another	challenge	is	to	include	cell	division	in	plant	
tissues	models.	A	recent	study	showed	cells	in	the	SAM	seeming-
ly	divide	following	a	rule	that	is	in	between	critical	size	and	criti-
cal	increment	paradigms	[18].	However,	in	many	cases,	assump-
tions	and	simplifications	of	the	division	process	will	need	to	be	
made	due	to	lack	of	data.	Most	of	the	works	for	plant	tissue	
modelling	have	made	use	of	sizers	(see	e.g.	[24,	25,	48,	88]),	but	
there	are	several	models	that	use	timers	as	well	[19,	49].	Alt-
hough	a	timer	will	not	allow	cell	size	homeostasis	over	time	and	
might	trigger	cell	instabilities	in	the	growing	tissue	[26],	it	can	
work	as	a	mechanism	for	determining	cell	division	times	in	a	dif-
ferentiating	tissue	with	a	countable	number	of	cell	cycles	before	
cell	division	arrests.			
	
In	plant	tissues,	cell-to-cell	interactions	underpin	the	transport	
of	key	regulators	and	hormones	that	are	fundamental	at	the	tis-
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sue	or	at	the	whole	plant	scale.	This	includes,	for	instance,	the	
directed	transport	of	the	phytohormone	auxin.	There	are	differ-
ent	theoretical	proposals	of	how	auxin	is	transported	[89–92],	
and	current	studies	are	still	evaluating	through	a	combination	of	
experiments	and	modelling	whether	such	different	competing	
existing	models	can	explain	patterning		arising	in	different	tis-
sues	[87,	93,	94].	Other	diffusible	factors	including	cytokinins,	
proteins	like	the	stem	cell	activator	WUSCHEL,	and	microRNAs	
seem	to	be	fundamental	for	patterning	[95].	Hence,	in	the	study	
of	certain	patterning	process,	diffusible	and	directed	transport	
between	cells	may	need	to	be	included	into	the	models.	
	
Modelling	morphogenetic	processes	as	a	whole	requires	the	
simultaneous	integration	of	growth,	cell	division,	and	signalling.	
An	example	where	growth,	cell	division	and	intercellular	signal-
ling	are	important	is	the	stem	cell	regulation	in	shoot	meristems.	
In	the	SAM,	a	central	pool	of	cells	grows	exponentially	and	the	
cells	undergo	division	while	the	stem	cell	marker	CLAVATA3	
and	WUSCHEL	expression	domains	are	continuously	main-
tained.		In	this	context,	deterministic	models	have	been	able	to	
predict	the	different	expression	domains	in	models	including	
cell	division	and	can	also	explain	the	variability	seen	following	
variability	in	tissue	size	[96].	
	
Ideally,	a	good	(i.e.	useful)	model	should	at	a	first	instance	be	
sufficient	to	robustly	describe	the	already	existing	data,	and	
then,	it	should	have	some	predictive	power	[14]	(Fig	4).	To	
achieve	the	first	stage,	one	should	define	equivalent	descriptors	
or	observables	in	both	experimental	and	modelled	datasets	that	
can	easily	be	compared.	A	possible	descriptor	could	be	the	ex-
pression	pattern	of	a	fluorescent	reporter,	or	the	time	series	of	a	
certain	variable	of	interest	(Fig.	4).	A	more	quantitative	compar-
ison	can	be	performed	by	comparing	experimental	and	theoreti-
cal	concentration	histograms	and	statistical	properties	of	the	dif-
ferent	datasets.	Classification	analyses	applied	to	both	
experimental	and	theoretical	datasets	can	also	bring	quantita-
tive	ways	to	execute	these	comparisons	(Fig.	4A-B,	cf.	Fig.	2E).	
Ideally,	models	should	present	explorations	in	the	parameter	
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space	to	establish	whether	the	model	can	recapitulate	the	exper-
imental	data	in	a	significant	region	of	the	parameter	space,	ei-
ther	by	investigating	large	parameter	regions	[49,	71,	97,	98],	or	
if	the	model	is	more	complex,	by	performing	multiple	optimisa-
tion	runs	[74,	96].		This	will	determine	whether	the	model	hy-
potheses	are	sufficient	to	robustly	describe	the	experimental	da-
ta.	Still,	several	competing	models	can	explain	specific	data	sets	
equally	well,	and	further	tests	of	the	model	are	required.	Hence,	
in	a	second	and	more	difficult	stage,	the	model	should	be	able	to	
predict	the	outcome	of	experimental	perturbations.	Examples	
from	the	models	we	have	discussed	include	the	ability	to	predict	
an	adaptive	scaling	of	the	stem	cell	domain	to	the	size	of	the	me-
ristem,	later	confirmed	in	experiments	[96],	and	a	weak	feed-
back	component	in	the	ATML1	sepal	model	that	could	later	be	
verified	in	experiments	[49].	Other	examples	are	the	predicted	
growth	patterns	combining	cell	size	and	molecular	input	in	the	
epidermal	root	tip	(Fig.	4C-D)	[37],	and	the	prediction	of	auxin	
levels	given	the	distributions	of	auxin	transporters	extracted	
from	experiments	(Fig.	4E-F)	[82].	Note	that	sometimes	the	the-
oretical	parameter	explorations	can	provide	predictions	of	key	
experimental	perturbations.	For	instance,	in	a	recent	study,	a	
mathematical	model	predicted	that	the	modulation	of	auxin	in-
flux	transport	would	drive	a	change	of	vascular	spacing	in	the	
Arabidopsis	shoot,	and	this	was	experimentally	corroborated	in	
influx	mutants	[93].	
	
As	described,	several	examples	of	models	of	tissue	morphogene-
sis	exist	where	a	robust	simulated	behaviour	can	explain	data,	
and	where	novel	predictions	have	come	from	the	models.	Still,	
the	use	of	single	parameter	value	explorations	are	dominating,	
in	part	due	to	the	complexity	of	running	models	combining	mo-
lecular	regulation	with	growth.	Hence,	more	efforts	will	have	to	
be	made	in	this	direction.	Also,	comparisons	between	data	and	
experiments	can	be	further	developed,	and	probably	can	be	im-
proved	with	the	use	of	machine	learning	techniques.		
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Conclusion	and	outlook	
 
In	recent	years,	several	efforts	have	been	made	for	understand-
ing	morphogenesis	in	plants	in	a	more	quantitative	manner.	
Many	advances	have	been	produced	in	both	experimental	and	
theoretical	methods	and	applications,	and	these	advances	are	
enabling	us	to	see	the	potential	of	cell-centred	approaches	to	
better	understand	tissue	morphogenesis.	Still,	we	need	to	fur-
ther	enhance	and	promote	multidisciplinary	efforts	to	get	tangi-
ble	and	significant	advances	in	the	field	of	Computational	Mor-
phodynamics	in	plants.	It	will	be	essential	to	improve	the	ability	
to	build	on	and	directly	compare	published	experiments	and	
models	from	several	groups	to	generate	a	coherent	quantitative	
understanding	of	plant	development.		
	
Alternative	experimental	approaches,	such	as	the	use	of	plant	
cell	strains,	might	still	have	an	additional	value	to	shed	light	into	
different	puzzling	phenomena	that	cannot	be	disentangled	in	
planta.	Indeed,	single	cell	approaches,	through	the	use	of	plant	
cell	strains,	have	already	brought	very	valuable	knowledge	into	
fundamental	questions,	including	how	auxin	is	transported	in	
plants,	and	in	how	cell	shape	and	cell	polarity	are	generated	
[99].		
	
A	great	challenge	is	to	further	automate	experimental	pipelines	
that	can	offer	quantitative	information	in	a	systematic	and	high-
throughput	manner.	The	development	of	open	source	and	user-
friendly	platforms	for	quantitative	image	analysis,	and	the	crea-
tion	of	standards	between	such	platforms	for	elaborating	more	
complex	pipelines	will	be	pivotal	for	the	establishment	and	con-
solidation	of	the	Computational	Morphodynamics	field.	Fur-
thermore,	the	development	of	models	with	predictive	power,	
close	to	the	experimental	data,	will	be	key	for	a	deeper	under-
standing	of	plant	morphogenesis.	Such	models	might	need	to	in-
corporate	and	integrate	several	mechanisms	that	can	be	present	
in	different	development	scenarios,	such	as	integration	of	me-
chanics	and	molecular	regulation,	dynamic	stochasticity,	alter-
native	cell	division	rules,	or	even	time-dependent	parameters	



18		

[66,	100–102],	to	emulate	the	evolving	and	the	adaptable	nature	
of	regulatory	networks	in	plants.			
	
Finally,	the	success	of	the	Computational	Morphodynamics	field	
will	rely	on	keeping	on	bridging	the	gaps	between	experimental	
and	theoretical	approaches	(Figs.	1	and	4)	through	communica-
tion	between	experimentalists	and	theorists,	and	through	the	
development	of	new	interdisciplinary	scientists	and	laborato-
ries.	
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Figure	captions		
	
Figure	1.	–	Typical	Computational	Morphodynamics	workflow.	
An	integrative	approach	iterating	between	image	collection,	sig-
nal	quantification,	quantitative	analysis	and	computational	
modelling.	For	each	step,	representative	examples	for	methods	
and	techniques	are	given	and	further	detailed	in	the	text.	Note,	
this	is	not	meant	to	be	an	exhaustive	list	of	all	available	possibili-
ties.	
	
Figure	2.-	Quantitative	image	analysis	at	the	single	cell	level.	(A)	
Image	analysis	pipeline	for	3D	nuclear	segmentation	from	con-
focal	images	of	developing	sepals	in	a	plant	expressing	the	
mCitrine-ATML1	fluorescent	reporter	[49].	(B)	3D	visualization	
of	a	shoot	apical	meristem	(SAM)	segmented	using	the	water-
shed	algorithm	as	implemented	by	Fernandez	et	al	(2010)[45].	
(C)	Single	cell	quantification	of	gene	expression	in	the	Arabidop-
sis	root	[82].	Left:	DII-VENUS	(yellow)	and	cell	geometries	given	
by	propidium	iodide	staining	(red).	Right:	measured	DII-VENUS	
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levels	quantified	from	the	raw	intensity	image.	(D)	Single	cell	
tracking	of	a	SAM,	using	the	block	matching	algorithm	[18].	Red	
lines	represent	newly	formed	walls	within	a	period	of	24	hours	
of	meristematic	growth.	(E)	Classification	analysis	of	live	imag-
ing	mCitrine-ATML1	expression	data	from	sepal	growth	experi-
ments	(Fig.	2A)	[49].	Top	left:	ATML1	concentration	time	course	
of	a	small	cell	lineage.	Top	right:	ATML1	concentration	time	
course	of	a	giant	cell	lineage.	In	both	cases,	coloured	circles	
represent	ploidy:	yellow	–	2C;	blue	–	4C;	red	–	8C	and	above,	and	
the	grey	lines	show	all	cell	linages.	Bottom	left:	each	circle	
represents	the	ATML1	concentration	maximum	recorded	in	4C	
cells		(i.e.	during	the	G2	stage	of	the	cell	cycle)	separately	for	
small	and	giant	cell	lineages.	Bottom	right:	performance	of	
classification	of	cells	(as	either	small	or	giant)	based	exclusively	
on	ATML1	concentration	maxima	in	4C	cells	evaluated	by	area	
under	the	ROC	curve	(AUC).	The	red	line	is	the	ROC	curve;	
diagonal	dashed	line	represents	AUC	=	0.5	for	comparison.	An	
AUC	of	0.8	suggests	a	good	classifier	(AUC	=	0.5	corresponds	to	a	
random	classifier;	AUC	=1	to	perfect	classification)	and	led	to	the	
hypothesis	that	a	threshold-based	mechanism	for	cell	fate	
decision	is	at	play	involving	a	combination	of	high	ATML1	
concentration	during	a	specific	stage	of	the	cell	cycle.	Horizontal	
black	dashed	lines	in	the	top	panels	as	well	as	bottom	left	panel	
represent	the	inferred	ideal	ATML1	concentration	threshold.	(F)	
quantification	of	topological	features	of	Arabidopsis	hypocotyls	
in	different	ecotypes	[69].	Top	panel:	tissue	segmentation	
meshes	with	single	cell	segmentations;	heatmap	represents	
scale	of	betweenness	centrality	values.	Bottom	panel:	virtual	
cross	and	longitudinal	sections	of	extracted	cellular	networks	
for	each	ecotype.	Heatmap	represents	scale	of	edge	betweenness	
centrality	values.	Panels	A,E	have	been	extracted	from	[49],	pan-
el	B	from	[45],	panel	C	from	[82],	panel	D	from	[18]	and	panel	F	
from	[69]	1.	
	

																																																								
1	Panels	2A,E	and	F	are	subject	to	the	CC	BY	license	
(https://creativecommons.org/licenses/by/4.0/).	Panel	C	is	subject	to	copy-
right		by	the	American	Society	of	Plant	Biologists.	



20		

	
Figure	3.-	Modelling	cell	fate	decisions	in	a	growing	tissue.	(Left)	
Cartoon	illustrating	a	growing	tissue.	A	regulatory	network	is	
represented	just	in	the	central	cell	i	for	simplicity,	in	which	a	
gene	x	autoactivates	itself	and	activates	a	downstream	target	y.	
(Right)	Possible	schematic	modelling	pipeline.	Top:	Regulatory	
networks	can	be	modelled	either	deterministically	or	stochasti-
cally,	depending	on	the	nature	of	the	studied	problem.	In	this	
scheme,	a	chemical	Langevin	equation	is	shown	describing	the	x	
and	y	gene	dynamics	in	cell	i.		Vi(t)	is	the	volume	of	the	cell	i,	f(xi)	
and	g(xi)	are	generic	functions	describing	the	autoregulation	of	
gene	xi	and	the	activation	of	yi	by	xi	,	respectively.	ξz,i	is	a	Gaussi-
an	random	number	with	zero	mean	fulfilling		〈ξzi(t)	ξz’j(t’)	〉=δ(t-
t’)δzz’δij	,	where	i	and	j	are	cell	indices,	z	and	z’	the	modelled	vari-
ables	(x	and	y),	δzz’	and	δij	are	Kronecker	deltas	and	δ(t-t’)		is	the	
Dirac	delta	[49].	Tissue	growth	can	be	implemented	by	displac-
ing	the	vertices	out	the	tissue	centre	of	mass,	e.g.,	by	following	
the	proposed	growth	rule,	where	rj,k	refers	to	the	k-th	coordinate	
of	the	j–th	vertex	in	the	tissue,	and	αk	is	the	exponential	growing	
rate	along		k-th	direction.	On	top	of	the	exponential	growth,	oth-
er	mechanical	cues	can	be	implemented.	In	this	case,	we	exem-
plify	the	mechanical	contribution	using	a	strain	energy,	S,	which	
is	a	function	of	the	strain	(ε)	and	stress	(σ)	tensors.	The	integra-
tion	of	the	growth	rule	explained	above	with	the	mechanical	
cues	results	into	a	more	complex	tissue	growth,	ui(t),	where	i	re-
fers	to	the	i-th	cell.	This	resulting	growth	needs	to	be	taken	into	
account	when	computing	the	rate	of	change	of	each	concentra-
tion	variable	over	time.	When	the	resulting	growth	is	more	com-
plex	than	an	exponential,	its	dilution	effects	can	be	easily	com-
puted	given	the	volumetric	changes	after	each	integration	step.	
Finally,	different	cell	division	rules	can	be	taken	into	account	to	
determine	the	moment	at	which	a	cell	divides	and	how	the	cell	
division	plane	will	be	positioned.	Willis	et	al	(2016)	showed	that	
the	shoot	apical	meristem	(SAM)	divides	using	a	rule	that	is	in	
between	the	cell	adder	and	sizer	paradigms.	The	division	plane	
can	be	set	with	the	use	of	different	algorithms	[24].	
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Figure	4.-	Bridging	simulated	data	with	experimental	data.	(A-B)	
Giant	cell	formation	as	a	case	study	[49].	(A)	(Left)	Scanning	
electron	microscope	image	of	a	wild-type	adult	sepal,	where	gi-
ant	cells	are	coloured	in	red.	Scale	bar:	100	µm.	(Right)	Simula-
tion	example	of	a	developing	sepal	emulating	the	experimental	
data	(cf.	Fig.	2E).	The	tissue	grows	anisotropically,	while	the	
ATML1	transcription	factor	dynamically	fluctuates.	Cells	having	
ATML1	above	a	certain	threshold	when	at	the	4C	stage	(i.e.	being	
in	G2)	are	likely	to	endoreduplicate	and	become	a	giant	cell.		AU	
refers	to	arbitraty	units.	(B)	Data	analysis	of	simulation	shown	
in	(A)	(cf.	Fig.	2E).	Data	analysis	is	performed	on	lower	time	res-
olution	than	the	simulated	time	resolution	in	order	to	facilitate	
comparisons	with	the	experimental	data.		(Top)	Example	of	
ATML1	simulated	time-courses	for	a	(top	left)	normally	dividing	
cell	and	(top	right)	a	cell	becoming	a	giant	cell.	Colour	refers	to	
the	ploidy	of	the	cells	as	in	panel	(A)	on	the	right.	The	red	
dashed	horizontal	lines	refer	to	the	soft	threshold	for	giant	cell	
fate	commitment.	(Bottom	left)	Spread	plot	showing	the	ATML1	
maxima	at	4C	and	the	predicted	ATML1	threshold.	(Bottom	
right)	ROC	curve.	(C-D)	Mechanical	study	of	the	Arabidopsis	em-
bryo	during	seed	germination	[37].	(C)	Experimental	data	show-
ing	the	relative	cell	expansion	in	the	seed.	(D)	Mechanical	
growth	simulations	through	finite	element	methods.	Cell	colours	
in	Top	panels	in	C-D	show	relative	cell	expansions.	Growth	rates	
depend	on	a	combination	of	gene	expression	input	and	cell	sizes	
[37].	(E-F)	Auxin	patterning	in	the	Arabidopsis	root	[82].	(E)	
Auxin	transporter	localisations	extracted	from	data.	(Left)	PIN	
auxin	efflux	exporters	are	shown	in	green.	(Right)	AUX1	(green	
and	purple),	LAX2	(blue),	and	LAX3	(purple)	auxin	influx	im-
porters.	(Right)	Scale	bars	=	50	µm.	(F)	Simulated	DII-Venus	lev-
els	(compare	it	with	experimental	data	shown	in	Fig	2C)	given	
the	auxin	transporter	localisations	shown	in	(E).			
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Panels	(A-B)	have	been	adapted	from	[49],	panels	(C-D)	from	
[37],	and	panels	(E-F)	form	[82].	See	corresponding	papers	for	
further	details2.	
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