183,568 research outputs found

    Bridges between people: nonverbal mediation in an intercultural perspective and training proposals

    Get PDF
    Starting from the meaning of terms prejudices and mediation, the paper will deal with the theme of “intercultural mediation”, discussing aspects that characterize it, focusing on the non-verbal and creative elements. It will than reflect upon the necessary professional skills and on possible trainings through the body-artistic language (focusing on dance-movement therapy methodology), drawing inspiration from training experiences with professionals who face emergency situations within very complex social contexts. Italy receives 89% of the unaccompanied foreign minors arriving in Europe. However, Italy does not have adequate laws in place to initiate life projects and social inclusion which could help the overwhelming influx of refugees and migrants. In this very complex situation non-verbal competences can give the possibility to build bridges between people and to create social networks, that could help bring about more effective actions and, may be, political chang

    Complex Contagions and the Weakness of Long Ties

    Get PDF
    The strength of weak ties is that they tend to be long—they connect socially distant locations, allowing information to diffuse rapidly. The authors test whether this “strength of weak ties” generalizes from simple to complex contagions. Complex contagions require social affirmation from multiple sources. Examples include the spread of high‐risk social movements, avant garde fashions, and unproven technologies. Results show that as adoption thresholds increase, long ties can impede diffusion. Complex contagions depend primarily on the width of the bridges across a network, not just their length. Wide bridges are a characteristic feature of many spatial networks, which may account in part for the widely observed tendency for social movements to diffuse spatially

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    Get PDF
    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.Fil: Uhart, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Flores, Gabriel. Eventioz/eventbrite Company; ArgentinaFil: Bustos, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Bridges in three-dimensional granular packings: experiments and simulations

    Full text link
    In this letter, we present the first experimental study of bridge structures in three-dimensional dry granular packings. When bridges are small, they are predominantly 'linear', and have an exponential size distribution. Larger, predominantly 'complex' bridges, are confirmed to follow a power-law size distribution. Our experiments, which use X-ray tomography, are in good agreement with the simulations presented here, for the distribution of sizes, end-to-end lengths, base extensions and orientations of predominantly linear bridges. Quantitative differences between the present experiment and earlier simulations suggest that packing fraction is an important determinant of bridge structure.Comment: 6 pages, 7 figures, accepted by EPL (2013

    Lagrangian network analysis of turbulent mixing

    Get PDF
    A temporal complex network-based approach is proposed as a novel formulation to investigate turbulent mixing from a Lagrangian viewpoint. By exploiting a spatial proximity criterion, the dynamics of a set of fluid particles is geometrized into a time-varying weighted network. Specifically, a numerically solved turbulent channel flow is employed as an exemplifying case. We show that the time-varying network is able to clearly describe the particle swarm dynamics, in a parametrically robust and computationally inexpensive way. The network formalism enables to straightforwardly identify transient and long-term flow regimes, the interplay between turbulent mixing and mean flow advection, and the occurrence of proximity events among particles. Thanks to their versatility and ability to highlight significant flow features, complex networks represent a suitable tool for Lagrangian investigations of turbulence mixing. The present application of complex networks offers a powerful resource for Lagrangian analysis of turbulent flows, thus providing a further step in building bridges between turbulence research and network science
    corecore