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Abstract 

Cable-stayed bridges represent backbones in the infrastructure networks and their adequate seismic 

response must be ensured. These structures present complex interactions between the deck, the cables, the 

towers and their foundation. This, in combination with the reduced damping and the outstanding slenderness 

of cable-stayed bridges, renders a unique dynamic response. A complete review on the state of knowledge 

about the seismic behaviour of cable-stayed bridges is presented here, with special attention to the analysis 

techniques. The current design trends in the seismic design and control of cable-stayed bridges are also 

presented. 
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1. Introduction 

Cable-stayed bridges combine structural efficiency and elegance to span distances that were insurmountable 

in the past with a great structural efficiency. This typology is competitive in a wide range of span lengths, 

from 200 m to more than 1000 m, and it seems that in the near future these limits will be pushed. As an 

example of the relevance of this structural solution, it is estimated that 68% of the bridges between 300 and 

500 m span in China are cable-stayed bridges [1]. Worldwide, long-span cable-stayed bridges represent key 

points in the infrastructure networks and, in many occasions, they are located in seismically active regions. 

 

The seismic response of cable-stayed bridges have attracted the interest of researchers since the early 80's, 

with the key contributions of Abdel-Ghaffar and his co-authors [2] [3]. Cable-stayed bridges are, in principle, 

good candidates to resist earthquakes: (1) they are remarkably flexible and, consequently, their long 

governing vibration periods have associated reduced levels of spectral acceleration, and (2) they have a 

reduced number of supports, which decreases the seismic vulnerability of the structure and allows for 

important displacements of the deck. However, the intrinsic light-weight and low-damping levels are 

responsible for large amplitude oscillations when subject to dynamic excitations such as strong winds of 

earthquakes. As the main span of the bridge increases, cable-stayed bridges become more susceptible to these 

environmental actions [4], which completely govern their design. 

 

Due to their importance and complex behaviour, cable-stayed bridges are designed and constructed 

according to the highest standards. There is no evidence of catastrophic collapses in cable-stayed bridges 

under seismic action. However, important damages have been reported in several cable-stayed bridges after 

strong earthquakes in the 80's and 90's. This is the case of the Shipshaw Bridge (Canada, 183 m span length), 

damaged at the connection between the deck and the tower during the 1988 Saguenay earthquake, with 

moment magnitude 𝑀𝑊 = 6.0 [5]. Bruneau et al. [6] described the damage of the Higashi-Kobe Bridge piers 

(Japan, 485 m span). [7] reported the severe spalling and cracking at the tower of the Chi-Lu Bridge (Taiwan, 

120 m span) after the great Chi-Chi earthquake (1999, 𝑀𝑊 = 7.3), which was extended from the deck-tower 

connection to the level of the lowest cable anchorages. Even these partial failures are deemed to be 

inadmissible today due to the large social and economic importance of cable-stayed bridges, which 

emphasises the need for research on this topic. 

 

2. Seismic Analysis 
Both the static and the dynamic responses of a cable-stayed bridge may present significant material or 

geometric nonlinearities [8] [9]. These are due to: (1) the nonlinear response of the cables induced by their 

sag, (2) second order effects in the deck and the towers, and (3) large displacements. The response of the 

cables introduces a characteristic `hardening' in the load-displacement response of cable-stayed bridges [10]. 

Figure 1 conceptualise the difference in the response of cable-stayed bridges compared with other types of 

structures and the importance of the nonlinear analysis to capture accurately the response in advanced 

loading stages. 
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Figure 1. Qualitative difference between the load-displacement response of classical cable-stayed bridges and 

structures without cable-system. 

Figure 1 also shows the adequacy of different analysis methods depending on the purpose of the study [2] 

[11]. These methods can be grouped in: (1) Modal Response Spectrum Analysis (MRSA), (2) Nonlinear Static 

`Pushover' methods (NSP), and (3) time-history analysis, which can be based on the superposition of the 

contribution of several vibration modes in the case of Modal Response-History Analysis (MRHA), or the direct 

integration of the system of dynamics (DRHA). 

 
MRSA and MRHA are based on the linearization of the response and the application of the superposition 

principle to combine the contribution of different vibration modes. [8] suggested that the use of MRSA is not 

recommended in the seismic analysis of large cable-stayed bridges due to the errors that may be introduced 

in the combination of different modal maxima. However, [12] explored the applicability of MRSA in the 

Quincy Bay-view Bridge (USA, 274 m main span) and concluded that the Complete Quadratic Combination 

rule (CQC) [13] can accurately account for the modal coupling. [14] compared the accuracy of different elastic 

analysis methods in the analysis of cable-stayed bridges with main spans between and 200 and 600 m. In this 

study the MRHA is identified as the most accurate analysis method for the study of the seismic response of 

cable-stayed bridges in the elastic range. It was also observed that the widespread MRSA consistently 

underestimates by as much as 20% the peak seismic forces in the towers. Based on these results, the MRSA is 

not recommended in the detailed analysis of the seismic response of cable-stayed bridges, even if it is elastic. 

Significant material nonlinearities are expected to occur in a cable-stayed bridge under strong earthquakes 

and nonlinear analysis methods are needed in this case. Pushover methods estimate the nonlinear seismic 

response by means of static calculations in which the structure is pushed until a certain target displacement 

is reached at a control point. The static analysis is performed by applying load patterns that try to represent 

the distribution of inertia forces in the structure during the earthquake. Pushover methods gained a 

significant attention in the last decades because of their computational efficiency and the possibility of 

visualising undesirable structural collapse modes. Most of the research works and design guidelines on 

Pushover methods are focused on building structures [15] [16]. However, relatively few Pushover methods 

are developed specifically for bridges [17] [18], and even less focus on cable-stayed bridges. [19] proposed an 

efficient Pushover method that accounts for the three-dimensional nonlinear interaction between vibration 

modes in cable-stayed bridges. In this work it was observed a good agreement between the advanced 

Pushover methods and the direct integration of the system of dynamics in the nonlinear dynamic analysis 

(DRHA), which is taken as the reference result. Pushover methods are recommended for the preliminary 
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design stages but DRHA is still needed to verify the response of the final design. Regardless of the type of 

dynamic analysis selected, it should start from the deformed configuration of the bridge after the application 

of the self-weight and the combination live-load (Points A and A' in Figure 1), which may be obtained with 

linear static analysis (Point A') [8] [20]. 

3. Modes of vibration 

The study of the vibration modes is essential in the design and assessment of cable-stayed bridges under 

seismic actions, regardless of the analysis method adopted [21]. One of the main characteristics that 

distinguishes the response of cable-stayed bridges from suspension bridges is the strong coupling between 

vibration modes, in particular between the transverse flexure of the deck (perpendicular to the traffic 

direction) and its torsional response. This coupling is governed to a large extent by the distribution of mass in 

the deck cross-section and the cable-arrangement. As a result, the governing modes may not be purely 

vertical, transverse or torsional, and three-dimensional models are usually required to study the seismic 

response [2].  The first vibration modes have long periods and are generally associated with the deck, 

followed by modes that excite the cable-system and may be coupled with the deck [22].  

 

A recent study observed the large contribution of high-order vibration modes to the transverse seismic 

response of large cable-stayed bridges [23], and proposed optimum configurations of the deck and the towers 

to prevent resonance problems between the vibration of both members. The articulation of the deck-tower 

connections plays an important role in the seismic interaction between both elements. The contribution of 

the cable-system to the transverse vibration modes of the deck is negligible and the flexure of the girder is 

usually coupled with its torsion. The torsional deformation of the deck activates different parts of the bridge 

depending on the cable-system arrangement and the tower shape, which affects the seismic response [24]. 

Bridges with two Lateral Cable Planes (LCP) anchored at the edges of the deck usually have open-deck cross-

sections because the torsion is resisted mainly by the cable-system. On the contrary, bridges with a single 

Central Cable-Plane (CCP) anchored at the center of the deck have closed-box sections to provide with the 

necessary torsional resistance [25]. Consequently, by selecting the number of cable-planes and their 

connection to the deck, the designer has some control on the first torsional vibration mode. The tower shape 

in transverse direction also affects the torsional response of LCP bridges. The inverted ‘Y’- or ‘A’-shaped 

towers connect the two cable-planes at the tower top and the purely torsional modes of the deck involve the 

axial extensions of the cables. Consequently, the torsional modes of the deck in bridges with inverted ‘Y’- or 

‘A’-shaped towers have lower vibration periods (stiffer response) than the homologue structures with `H'-

shaped towers [21]. LCP bridges may present very closely spaced vertical and torsional frequencies and this 

affects the accuracy of modal combination rules in the seismic analysis strategies based on mode 

superposition [12].  

 

In the last two decades, several researchers proposed analytical models to estimate the vibration periods of 

cable-stayed bridges. Based on field forced-excitation tests on 13 cable-stayed bridges in Japan, Kawashima et 

al. [26] developed simple expressions that give the fundamental periods (transverse, vertical and torsional) 

exclusively in terms of the main span length. Similar formulae were proposed by [27]. More rigorously, [28] 

included the mechanical properties of the deck and the cable system in the study of the vibration modes. [29] 

also idealised the vertical and the torsional responses of the deck and the cables in LCP bridges, but the 

stiffness of the deck was neglected. Based on the dimensional analysis of a large number of bridges, [24] 

proposed analytical expressions to estimate the fundamental modes of cable-stayed bridges accounting for 

the flexibility of the towers. The results were compared with previous works and with 17 constructed cable-

stayed bridges, observing the importance of the interaction between the tower and the deck in the vertical, 

transverse and torsional fundamental modes, especially for main spans beyond 500 m.  
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The deformation of the soil surrounding the tower foundations is only involved in high-order modes, which 

are not relevant in terms of displacements but may have a significant importance on the seismic forces at the 

tower [30], in particular the axial load [14]. According to different codes of practice [31] [32] it is necessary to 

include in the analysis as many vibration modes as necessary to activate at least 90% of the mass of the 

structure. Satisfying this rule usually requires to include an unreasonably large number of vibration modes in 

the seismic analysis of cable-stayed bridges [33], especially if they are located in rocky terrains and they have 

towers with lower diamond configurations (i.e. towers that connect the lateral shafts below the deck in a 

single central vertical pier). This is due to the large percentage of the total mass that is concentrated close to 

the stiff foundation [34]. In order to accurately capture the contribution of high-order modes, it is important 

to simulate the surrounding soil with springs that represent the foundation flexibility. 

 

4. Soil-structure interaction 

The interaction between the soil and the structure (SSI) can significantly affect the seismic input in terms of 

frequency, amplitude and duration. This phenomenon attracted the attention of researchers, particularly in 

the 90's, but there is still no clear consensus on its effect in cable-stayed bridges. [35] suggested that SSI may 

be especially relevant if the foundation soil is soft and contains characteristic frequencies that are close to the 

governing modes of the bridge. [36] observed that SSI can reduce the seismic forces in the towers. [37] 

concluded that the inclination of the seismic waves with respect to the foundation can isolate the 

superstructure thanks to the rocking movement.  

 

However, [38] pointed at the negative effect of SSI, especially if the deck is not connected to the towers 

(usually referred to as floating connection). More recently, [39] studied the seismic behaviour of the Jindo 

Bridge (South Korea, 344 m span) and noticed the important increment of the longitudinal response 

quantities (parallel to the traffic direction) in the tower when SSI effects are included. [40] investigated the 

bi-directional seismic response of a cable-stayed bridge and observed that SSI does not affect the longitudinal 

shear force at the tower base, but it can strongly increase the transverse response if the stiffness of the soil 

strata ranges from low to medium. This study also concluded that SSI is important in the response of cable-

stayed bridges in which the deck is isolated from the towers. 
 

5. Cable-structure interaction 

The vibration of the cables transfers energy between the deck and the towers during the earthquake, a 

phenomenon that is usually referred to as cable-structure interaction. This effect was first studied by [41] and 

subsequent works have observed that the cable-structure interaction is usually beneficial in the seismic 

response of cable-stayed bridges. The cable-structure interaction can reduce down to 30% the transverse 

force exerted by the deck against the towers in a cable-stayed bridge with 400 m main span [34]. However, 

the structural response can be increased significantly if the bridge is subject to narrow-band earthquakes 

with dominant frequencies that are close to the first global and local cable vibration modes [42]. Tuladhar et 

al. [43] observed the importance of the cable-structure interaction if the first natural frequencies of the cables 

overlap with the first frequencies of the bridge. [44] generalised this result by testing mass-cable systems 

excited perpendicularly to the axis and demonstrated the influence of the cable-structure interaction if the 

structure has global vibration modes with frequencies close to the fundamental modes of the cable, or twice 

this value. The cable vibration can also introduce a significant amount of energy through higher-order modes, 

which are relevant in terms of the seismic forces [2] [3].  

The cable-structure interaction can be analysed by using multiple elements per cable (MEC) in the Finite 

Element model of the bridge. Several authors observed that the accuracy of the seismic response is improved 

using MEC [3] [43] [45] [46]. Caetano [44] conducted sensitivity studies in the Vasco da Gama bridge 
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(Portugal, 420 m main span) to conclude that discretising each cable with 9 elements yields errors below 5%, 

even in the longest cables (226 m long). However, [47] suggested that only the longest cables between towers 

(465 m long) in the Ting Kau bridge (China) need to account for the local cable vibration. 
 

6. Damping 

Cable-stayed bridges have characteristically low damping levels and assuming 5% as the standard fraction of 

critical damping (ξ) may fall on the unsafe side [48]. The total damping depends on the relative contribution 

of each member (towers, cable-system and deck) and their interaction between each other. [48] observed the 

strong dependency on the damping of the vibration modes, and the part of the bridge that is involved in the 

corresponding modal shapes.  This work proposed a method to estimate the global damping by dividing the 

bridge into several sub-structures with the same dissipation mechanisms and applying the superposition 

principle. The structural dissipation directly depends on the amplitude of the oscillations [48] [49] . 

Consequently, bridges with harp cable-system arrangements present larger longitudinal oscillations and 

higher associated damping values than the homologue bridges with fan or semi-fan cable-arrangements. To 

complete and complicate the picture even more, the structural damping also depends on the coupling 

between modes, the wave-propagation velocity, the dimensions of the foundations and the direction of the 

response in consideration.  

 

The dissipation mechanisms in the seismic response of a cable-stayed bridge comprise structural damping, 

bearing friction, internal slip of wires inside the cables (friction), foundation radiation, aerodynamic damping 

and system damping (due to the interaction between the deck, cable-system and towers [42]). In the analysis, 

damping is usually simplified with damping ratios that are associated with the vibration modes of the 

structure. A Rayleigh damping distribution is typically assumed in DRHA, imposing the target fraction of 

critical damping in the fundamental and the higher-order vibration mode of interest. However, based on the 

seismic analysis of the Yokohama Bay bridge (Japan, 460 m main span) [50] recommended to avoid using 

Rayleigh damping distributions in the study of cable-stayed bridges with non-linear deck-tower connections. 

In addition, the structure may incorporate special-purpose devices to add supplemental damping against 

ground motions, which is discussed in the following. The most accurate representation of the damping in the 

structure and auxiliary devices is the realistic characterisation of the post-elastic cyclic response of different 

members, which dissipate the seismic energy through hysteresis loops. 

 

7. Spatial variability of the ground motion 

The ground motion at the abutments, the piers and the towers can be significantly different due to the large 

separation between them in cable-stayed bridges, and it is known to be important in the seismic response of 

these structures [2] [21] [51], especially in multi-span cable-stayed bridges [52]. The main sources of the lack 

of synchronism of the seismic action are [53]: 

 

1. Wave time-shift between supports (∆𝑡) due to the finite apparent propagation velocity of the 

seismic waves (𝑣𝑠) and the incidence angle of the bridge centreline with respect to the fault (θ). 

2. Loss of coherency due to complex refractions and reflections of the seismic waves, especially in 

the high-frequency range. [2] [53] suggested that this effect can be ignored as a first 

approximation in the study of flexible structures (with fundamental periods larger than 1 s), 

which is usually the case of cable-stayed bridges with a total length above 350 m (200 m main 

span). However, [54] observed that this effect can be important in highway bridges (not cable-

supported) shorter than 160 m. 
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3. Filtering effects and local amplifications due to changes in the properties and the orography of the 

soil along the bridge. 

 

The asynchronous excitation of the supports adds a set of pseudo-static forces to the response that should be 

considered in bridges with `long' spans. There is some disagreement among code provisions on how to define 

the total length of the deck beyond which the spatial variability of the seismic action should be considered 

(𝐿𝑙𝑖𝑚). [55] suggests that 𝐿𝑙𝑖𝑚 = 600 m. EN1998-2 [31] takes into account the apparent wave propagation 

velocity (𝑣𝑠) to recommend values of 𝐿𝑙𝑖𝑚 = 120 m or 𝐿𝑙𝑖𝑚 = 240 m for bridges located in soft (TD) and rock 

(TA) terrains, respectively, or with significant changes in the foundation subsoil along their length. Both 

recommendations ignore the structural response, which is known to be important. [2] observed that the 

effect of the spatial variability of the seismic action increases with the stiffness of the structure. For instance, 

larger pseudo-static effects are expected in cable-stayed bridges with prestressed concrete decks, in 

comparison with composite (steel-concrete) or steel girders. [51] concluded that neglecting the spatial 

variability may underestimate the seismic response of cable-stayed bridges, but the level of error depends on 

each particular case of study. Aspects like the foundation soil, the main span length, the stiffness of the 

structure and its level of hyperstatism have been found to be important. This is supported by the work of 

[56], where it was observed that a 400 m main span bridge (total length of 720 m) can be more sensitive to 

the wave-passage effects than longer span bridges due to its larger stiffness. In conclusion, in order to address 

the influence of the spatial variability, the distance between piers should be compared with the wavelength of 

the seismic excitation in the range of the most contributing vibration frequencies of the bridge (as well as in 

the case of the existence of important discontinuities in the foundation soil). Figure 2, adapted from [2] [51], 

illustrates the influence of the span arrangement in cable-stayed bridges in relation to the wavelengths of the 

ground motion. 
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Figure 2. Different types of seismic waves exciting the supports of a long cable-stayed bridge. Adapted from 

from [2] [51]. 

 

The simplest analysis method to account for the spatial variability in cable-stayed bridges, which follows [31], 

is to estimate the pseudo-static forces from static analyses in which different sets of displacements are 

imposed at the foundations (which in turn depend on ∆𝑡). These are combined with the inertial component of 

the seismic forces (obtained from MRSA) using the SRSS rule, which indirectly assumes that both terms are 

completely uncorrelated. [57] generalised the MRSA to include the wave-passage effect, loss of coherency and 

site-response in the acceleration spectrum. [58] proposed a response spectrum method for the study of cable-

stayed bridges under asynchronous excitations, representing the earthquake by its Power Spectral Density 

(PSD) function and a spatial correlation function. Also in the frequency-domain, [59] performed randon 

vibration analysis to study the stochastic asynchronous response of the Jindo Bridge, observing the 

importance of the pseudo-static and the dynamic components. The analysis in the frequency domain assumes 

a linear seismic response. Alternatively, the nonlinear time-history analysis (DRHA) can be used to account 

for the geometric and the material nonlinearities by imposing asynchronous accelerograms at the supports of 

the bridge. These are generated (or modified from recorded signals) by including the wave passage effects, 

the loss of coherency or the lack of homogeneity in the foundation soil along the length of the bridge. [60] 

compared time- and frequency-domain analyses in the study of the asynchronous seismic response of the 

Jindo Bridge. It was observed that the response of the deck and the towers is generally much larger in the 

time-history analysis than in the stochastic analysis. 
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8. Design and control strategies 

The seismic design of cable-stayed bridges follows two main approaches: (1) capacity design, in which the 

damage is concentrated at certain plastic hinges distributed along the structure and designed to 

accommodate the required rotation capacity, and (2) mitigation design, in which special-purpose devices are 

installed to concentrate the seismic damage and to keep the main structure in the elastic range. Nowadays, 

seismic mitigation seems to be the preferred option in the design of cable-stayed bridges located in 

earthquake-prone areas because the towers can remain essentially elastic. This is strongly advisable 

considering the key role of the towers in the structural integrity of a cable-stayed bridge and the complex 

reparation of their large sections. Furthermore, important displacements are assumed and expected in cable-

stayed bridges due to their large flexibility, therefore, the increment of the displacement demand by using 

anti-seismic devices is not normally problematic. Moreover, cable-stayed bridges present very low damping 

values and it is recommendable to add auxiliary sources of energy dissipation.  

 

Unfortunately, the advantages of mitigation design are frequently marred by the increased cost of the anti-

seismic devices and, especially, of their maintenance, in combination with the uncertain long-term behaviour 

related to ageing effects in the dampers [61]. Two of the most important cable-stayed bridges in the world, 

the Rion-Antirion Bridge (Greece, 3x560 m main spans) and the Stonecutters Bridge (China, 1018 m main 

span), combine capacity and mitigation design. These structures include dampers to dissipate the seismic 

energy and allow for some structural damage in the towers in order to reduce the uncertainty under 

unexpectedly large earthquakes (it is sometimes referred to as ‘partial isolation’). In the same line, [2] 

proposed that the seismic-control system should be composed of several sub-systems (e.g. limiters and 

initiators devices), including robust elements in order to ensure the structural integrity.  

 

8.1. Passive devices 

Most of the applications of mitigation design in cable-stayed bridges are based on passive devices, which do 

not require the addition of external energy to actuate. The first research works on the topic were based on the 

base-isolation of the deck by means of Lead Rubber Bearings (LRB) [2]. The objective is two-fold: (1) to 

elongate the vibration periods, thus reducing the spectral acceleration, and (2) to dissipate energy through 

the hysteretic response of the lead core after yielding. [2] [9] verified the efficiency of the deck isolation with 

LRB, but this decreases by increasing the main span length. The poor performance of passive devices in the 

seismic control of long-span cable-stayed bridges when they are installed at the deck-tower connections and 

at the abutments was echoed recently in [62] and [63], respectively. The efficiency of viscous fluid dampers 

(VD) and yielding metallic dampers (YMD) in the transverse seismic control of cable-stayed bridges was 

presented in [62]. VD resulted more efficient in general but a large reduction of the seismic demand in the 

towers of a 200 m span bridge with YMD was also observed. The advantage of YMD equipped in the 

transverse deck-tower connection is that they provide with sufficient stiffness against service wind loads and 

small earthquakes, but yield under large ground motions to limit the force exerted by the deck against the 

towers before they can be damaged. [64] concluded that transverse YMD combined with longitudinal devices 

represent an advantageous solution in the seismic control of the Sutong Bridge (China, 1088 m main span), 

but important aspects like the low-cycle fatigue were not considered. A recent study presented a method for 

the design of YMD in the transverse connections of the deck of short-to-medium span cable-stayed bridges 

(below 400 m main span), minimising the tower damage, the risk of impacts of the deck against the towers 

and the low-cycle fatigue [63].  

 

The position of the devices in the bridge affects their efficiency in the seismic control. [65] concluded that LRB 

distributed along the connections of the deck with the different supports, and not only at the connections 

with the tower, can efficiently reduce the shear forces at the foundation level and also control the 
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displacements. [36] isolated the towers by means of viscoelastic devices and dissipating energy through the 

controlled hysteretic response of the transverse struts between the shafts of ‘H’-shaped towers. [66] 

combined VD in the longitudinal and the transverse directions with elastomeric bearings (including LRB) and 

sliding bearings that isolated the deck of the Quincy Bay-view Bridge. It was observed that the damping 

added by the VD significantly reduces the response of the isolated bridge, avoiding possible impacts between 

the deck and the tower in the transverse direction and reducing the length of the required expansion joints. 

 

In recent years, the efficiency of mitigation strategies in cable-stayed bridges under near-fault records with 

pulse-like effects has been also investigated. [67] studied the response of passive VD connecting the deck and 

the supports in the longitudinal direction. It was observed that passive VD are very effective in reducing the 

response quantities if the predominant period of the ground motion is close to the fundamental period of the 

bridge, but their performance is much worse otherwise. [68] proposed a roll-n-cage isolator with energy-

dissipation and recentering capabilities at the deck-tower connections. The proposed isolation strongly 

reduced the seismic forces in the towers under near-fault earthquakes. 

 

Table 1 presents the seismic control strategies adopted in some of the major cable-stayed bridges located in 

seismic-prone areas around the world. Most of the medium-to-long span cable-stayed bridges in earthquake-

prone regions rely upon auxiliary anti-seismic devices. It can be also observed that the deck-tower connection 

in these structures is close to a floating solution as an attempt to reduce the seismic demand on the towers [9] 

[30] [51] [69]. No reports on major failures in the cable-stayed bridges included in Table 1 have been 

published to the authors’ knowledge. However, the vane-type dampers of the Higashi-Kobe bridge (Japan) 

were broken and taken off during the near-fault Kobe earthquake (1995, 𝑀𝑊 = 7.2), and buckling was 

observed in one of the piers, along with damage in other supports [6] [70]. Despite of these failures, [71] 

concluded that the structure performed outstandingly during the Kobe earthquake in 1995 (𝑀𝑊 = 6.9). 

 
8.2. Active devices 

There is a growing interest on the seismic control of structures with active and semi-active devices, which 

require external energy to actuate on the structure or to modify their mechanical properties, respectively. 

Early analytical and experimental studies in cable-stayed bridges with active dampers were conducted by 

[72]. In this work, the important reduction of the peak seismic forces with active devices was observed, 

especially when the actuators were located at the center of the span. [73] analysed the effect of Active Mass 

Dampers (AMD) in cable-stayed bridges, verifying their effectiveness in the reduction of seismic forces.  
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Table 1: Summary of the deck-tower connection in the longitudinal (X, traffic direction), the transverse (Y) 

and the vertical (Z) directions in some of the most important cable-stayed bridges located in seismic areas.  

   Deck-tower connection 

Bridge Elevation Tower X Y Z 

Rion-Antirion 

(Greece, 2004) 
  

Free VD1 Free 

Bill Emerson 

(USA, 2003) 
 

  

STU2 Fixed Fixed3 

Tsurumi Fairway  

(Japan, 1994) 
 

  

Dampers4  Fixed Fixed 

Yokohama Bay 

(Japan, 1989) 
 

  

Free5 Fixed Free 

Ting Kau 

(China, 1998) 
 

   

Restrained3 Restrained3 Fixed3 

Stonecutters 

(China, 2009) 
 

  

STU2 SB6 Free 

Table Abbreviations: (1) Fuse restrainers and Viscous Dampers (VD); (2) Shock Transmission Units (STU); 

(3) POT supports; (4) Vane dampers and anchor cables; (5) limited movement with Link Bearing 

Connections; (6) Sliding Bearings (SB). 

 

The Benchmark control problems proposed for the Memorial Bill Emerson Bridge (USA, 351 m main span) 

contributed significantly towards innovative research on active, semi-active and hybrid (i.e. the combination 

of active and passive dampers) control strategies. In the first stage of this problem, the bridge was excited 

synchronously in the longitudinal direction [74]. In the second phase of the study, the orientation angle of the 

structure (θ) and the three-directional asynchronous excitation were considered [75]. Based on this 

Benchmark problem [76] verified the superior response of hybrid strategies with LRB (passive) and 

hydraulic actuators (active). [67] proposed a hybrid control system with passive VD and parallel semi-active 
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dampers at the deck-support connections of this bridge. The semi-active dampers were triggered only when 

the required control force exceeded a certain threshold, which improved the response under near-field 

earthquakes and the robustness of the control scheme. Based on a numerical study in the Memorial Bill 

Emerson Bridge and the Tempozan Bridge (Japan, 350 m span) [77] [78] concluded that passive viscous 

dampers with elastic bearings, and especially semi-active devices composed of viscous dampers with variable 

orifices, are very effective when controlling the seismic response of cable-stayed bridges.  

 

Among the wide range of active or semi-active devices the most promising are the magnetorheological semi-

active dampers (MR), in which the viscosity is controlled by magnetic fields. There are numerous research 

works on the control of cable-stayed bridges with MR dampers due to their mechanical simplicity, low power 

requirements, large force capacity and robustness. [79] observed that the response of the Memorial Bill 

Emerson Bridge equipped with MR dampers between the deck and the supports in the longitudinal direction 

is similar to the one with active devices, but the MR dampers provide a more robust and reliable behaviour. In 

the same bridge, [80] compared the response with longitudinal MR dampers, active and passive strategies by 

means of fragility relationships, concluding that MR dampers represent an efficient way to control the 

structure, in particular they outperformed the active control by preventing the cables from exceeding the 

acceptable cable tension.  

 

Active and semi-active control strategies have three physical components: sensors, actuators and a computer-

aided control algorithms that determine the magnitude of control forces in real-time. Developing control 

algorithms that are effective, practical, and that fully take advantage of the structural and the actuator 

characteristics is an essential and challenging goal today. [81] proposed a wavelet-hybrid feedback least 

mean squared algorithm to control a cable-stayed bridge under three different earthquakes which resulted a 

more robust and efficient solution than the classic Linear Quadratic Gaussian (LQG) controller. More recently, 

[82] proposed semi-active fuzzy control algorithms for MR dampers in the Benchmark cable-stayed bridge 

with algorithms based on intuitive IF-THEN statements, which continuously quantifies the input voltage of 

the damper. 
 

9. Conclusions 

This work presents a review of the state of the art on the seismic behaviour of cable-stayed bridges. Whilst 

general aspects on earthquake engineering and structural dynamics are omitted, the key concepts on the 

dynamic response of these structures are presented, with special emphasis on the analysis techniques and the 

control strategies. 

 

Cable-stayed bridges present significant interactions between the cables, the structure and the surrounding 

soil that render a complex seismic response. The characteristic coupling between vibration modes and the 

reduced damping and weight of these structures may lead to large three-directional oscillations of the deck 

and the cables during the earthquake. The interaction between the cables and the structure usually reduces 

the seismic response of the towers under a broadband seismic excitation, but it may cause significant 

problems if the earthquake is dominated by certain frequency bands that coincide with the governing modes 

of the structure. Another characteristic feature of the seismic response of cable-stayed bridges is the lack of 

synchronism of the ground motion at different supports. The magnitude of the seismic forces introduced by 

this effect usually increases with the length of the bridge and its stiffness. However, the latter is usually 

ignored by current code provisions.  

 

In the early stages of the design of a cable-stayed bridge in a seismic-prone region, where damage in the 

towers is expected under extreme earthquakes of very large return periods, advanced Pushover methods that 
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account for the contribution of several vibration modes are recommended due to their reduced 

computational time. However, the nonlinear response should be verified with time-history dynamic analyses 

based on the direct integration of the system of equations of dynamics. 

 

A review of the control strategies in the most important cable-stayed bridges constructed in seismic areas 

around the world showed that the current design solutions rely on passive anti-seismic devices that mitigate 

the effect of the earthquake and keep the towers in the elastic range. In some cases, a certain level of damage 

can be accepted in order to account for the uncertainties in the damper response and to improve the 

robustness. Currently, there is a significant research interest on the active and semi-active seismic control of 

cable-stayed bridges, and the hybrid solutions with passive devices and magnetorheological semi-active 

dampers show a great potential in the future of cable-stayed bridge design. However, very few bridges are 

equipped with these devices. More experimental testing followed by real applications of cable-stayed bridges 

with smart dampers are needed in order to take this technology one step forward. 
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