10,850 research outputs found

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Feature Selection and Molecular Classification of Cancer Using Genetic Programming

    Get PDF
    AbstractDespite important advances in microarray-based molecular classification of tumors, its application in clinical settings remains formidable. This is in part due to the limitation of current analysis programs in discovering robust biomarkers and developing classifiers with a practical set of genes. Genetic programming (GP) is a type of machine learning technique that uses evolutionary algorithm to simulate natural selection as well as population dynamics, hence leading to simple and comprehensible classifiers. Here we applied GP to cancer expression profiling data to select feature genes and build molecular classifiers by mathematical integration of these genes. Analysis of thousands of GP classifiers generated for a prostate cancer data set revealed repetitive use of a set of highly discriminative feature genes, many of which are known to be disease associated. GP classifiers often comprise five or less genes and successfully predict cancer types and subtypes. More importantly, GP classifiers generated in one study are able to predict samples from an independent study, which may have used different microarray platforms. In addition, GP yielded classification accuracy better than or similar to conventional classification methods. Furthermore, the mathematical expression of GP classifiers provides insights into relationships between classifier genes. Taken together, our results demonstrate that GP may be valuable for generating effective classifiers containing a practical set of genes for diagnostic/ prognostic cancer classification

    Comprehensible credit scoring models using rule extraction from support vector machines.

    Get PDF
    In recent years, Support Vector Machines (SVMs) were successfully applied to a wide range of applications. Their good performance is achieved by an implicit non-linear transformation of the original problem to a high-dimensional (possibly infinite) feature space in which a linear decision hyperplane is constructed that yields a nonlinear classifier in the input space. However, since the classifier is described as a complex mathematical function, it is rather incomprehensible for humans. This opacity property prevents them from being used in many real- life applications where both accuracy and comprehensibility are required, such as medical diagnosis and credit risk evaluation. To overcome this limitation, rules can be extracted from the trained SVM that are interpretable by humans and keep as much of the accuracy of the SVM as possible. In this paper, we will provide an overview of the recently proposed rule extraction techniques for SVMs and introduce two others taken from the artificial neural networks domain, being Trepan and G-REX. The described techniques are compared using publicly avail- able datasets, such as Ripley's synthetic dataset and the multi-class iris dataset. We will also look at medical diagnosis and credit scoring where comprehensibility is a key requirement and even a regulatory recommendation. Our experiments show that the SVM rule extraction techniques lose only a small percentage in performance compared to SVMs and therefore rank at the top of comprehensible classification techniques.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research;

    A Convolutional Neural Network for the Automatic Diagnosis of Collagen VI related Muscular Dystrophies

    Full text link
    The development of machine learning systems for the diagnosis of rare diseases is challenging mainly due the lack of data to study them. Despite this challenge, this paper proposes a system for the Computer Aided Diagnosis (CAD) of low-prevalence, congenital muscular dystrophies from confocal microscopy images. The proposed CAD system relies on a Convolutional Neural Network (CNN) which performs an independent classification for non-overlapping patches tiling the input image, and generates an overall decision summarizing the individual decisions for the patches on the query image. This decision scheme points to the possibly problematic areas in the input images and provides a global quantitative evaluation of the state of the patients, which is fundamental for diagnosis and to monitor the efficiency of therapies.Comment: Submitted for review to Expert Systems With Application

    Feature Selection for Classification with Artificial Bee Colony Programming

    Get PDF
    Feature selection and classification are the most applied machine learning processes. In the feature selection, it is aimed to find useful properties containing class information by eliminating noisy and unnecessary features in the data sets and facilitating the classifiers. Classification is used to distribute data among the various classes defined on the resulting feature set. In this chapter, artificial bee colony programming (ABCP) is proposed and applied to feature selection for classification problems on four different data sets. The best models are obtained by using the sensitivity fitness function defined according to the total number of classes in the data sets and are compared with the models obtained by genetic programming (GP). The results of the experiments show that the proposed technique is accurate and efficient when compared with GP in terms of critical features selection and classification accuracy on well-known benchmark problems

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Genetic Algorithm to Optimize k-Nearest Neighbor Parameter for Benchmarked Medical Datasets Classification

    Get PDF
    Computer assisted medical diagnosis is a major machine learning problem being researched recently. General classifiers learn from the data itself through training process, due to the inexperience of an expert in determining parameters. This research proposes a methodology based on machine learning paradigm. Integrates the search heuristic that is inspired by natural evolution called genetic algorithm with the simplest and the most used learning algorithm, k-nearest Neighbor. The genetic algorithm were used for feature selection and parameter optimization while k-nearest Neighbor were used as a classifier. The proposed method is experimented on five benchmarked medical datasets from University California Irvine Machine Learning Repository and compared with original k-NN and other feature selection algorithm i.e., forward selection, backward elimination and greedy feature selection.  Experiment results show that the proposed method is able to achieve good performance with significant improvement with p value of t-Test is 0.0011
    corecore