
Decision Making in the Medical Domain: Comparing the Effectiveness                  
of GP-Generated Fuzzy Intelligent Structures.  

Athanasios Tsakonas, and Georgios Dounias 
University of the Aegean, Dept. of Business Administration, 

8 Michalon Str., 82100 Chios, Greece,  
Phone: +30-271-35165, Fax: +30-271-93464  

e-mail: tsakonas@stt.aegean.gr, g.dounias@aegean.gr 
 

ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we 
apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems 
and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based 
systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy 
Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. 
Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are 
discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and 
efficiency of the presented approach.  

KEYWORDS: hybrid computational intelligence, medical diagnosis, aphasia, Aachen Aphasia Test, genetic 
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INTRODUCTION 

Genetic Programming (GP) is a search methodology belonging to the family of evolutionary computation (EC). These 
algorithms nowadays have been applied in a wide range of real-world problems. Among successful EC 
implementations, GP retains a significant position due to its valuable characteristics, such as the flexible variable-length 
solution representation and the absence of population convergence tendency. Genetic programming in its canonical 
form enables the automatic generation of mathematical expressions or programs. Grammar-guided genetic 
programming (G3P) for knowledge discovery is an extension to the original GP concept and it makes possible the 
efficient automatic discovery of empirical laws. It relates to the Machine Discovery framework, originally described by 
Langley [17], which incorporated inductive heuristics and suffered from limitations regarding ill-conditioned data and 
large search spaces [27]. Genetic programming however can avoid these problems due to its stochastic nature. 
In the present paper, grammar-guided genetic programming is applied in medical diagnosis. Various computational 
intelligent approaches have been applied to medical problems in the past, including artificial neural networks (NN) and 
fuzzy systems [18] and evolutionary algorithms [23]. The problems addressed in this work have been used extensively 
as benchmarking data in the machine learning society. This data consists of four diagnosis problems from the Proben1 
collection [25] of real-world data sets. We applied two methods. The first approach fuzzy rule-based classifiers. The 
second approach creates fuzzy Petri-nets (FPN). For the latter methodology, we describe the cellular encoding paradigm 
in the GP grammar, in order to allow arbitrary network sizes and topologies. The models we selected to test have 
different properties for the discovery of empirical laws, a fact that makes useful the comparison of their effectiveness in 
dissimilar problems. Their difference is noteworthy in terms of their structure (competitive bases, networks). 
Specifically, the fuzzy model generates competitive fuzzy rule-based classifiers. On the other hand, the fuzzy Petri-nets 
methodology creates cooperative fuzzy rule networks.  
The objective of this work is first to demonstrate the applicability of the G3P in a range of different medical problems. 
Second, to compare the effectiveness of the approaches and try to point out advantages and drawbacks of each approach 
in respect to the characteristics of each application domain. Additionally, the selected problems make possible for the 
reader to measure their relative success by further comparing the results to those found in literature [4, 25]. 
 
The paper is organized as follows. In section II we introduce the theoretical background of GP. We also present the G3P 
principles, context-free grammars and current research in the field of cellular encoding. In section III we give a short 
description of the data used in our experiments. Section IV presents the experimental setup of our models. Our results 
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regarding effectiveness and training time are presented in section V. The last section of this paper concludes with 
comparison of results and with a short discussion on future perspectives regarding this work. 
 

BACKGROUND 

As part of the Evolutionary Computation algorithms, genetic programming has been widely applied in a series of real-
world problems.  In general, evolutionary models were inspired by the Darwinian theory of evolution. According to the 
most common implementations, a population of candidate solutions is maintained, and after a generation is 
accomplished, the population is expected to be better fitted for a given problem. Three genetic operators are mostly 
used in these algorithms: 
reproduction: copies an individual without affecting it 
recombination (crossover): exchanges genetic material between two individuals 
mutation: exchanges a part of a randomly selected genetic material 

An evolutionary algorithm is summarized in the following steps: 
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Figure 1. Tree representation of the program (expression):  (a-8)+7*(a/b). 

1. Initialize a population of individuals at random. 
2. Evaluate randomly an individual and compare its fitness to other (this fitness determines how closely is an individual 
to the desired goal). 
3. Modify an individual with a relatively high fitness using a genetic operator. 
4. Repeat steps 2-3 until a termination criterion is met. 
Usual termination criterions appear to be the accomplishment of a number of generations, the achievement of a desired 
classification error, etc. Genetic programming uses tree-like individuals that can represent mathematical expressions, 
making valuable the application of GP in symbolic regression problems. Such a GP individual is shown in Figure 1.  

GRAMMAR-GUIDED GENETIC PROGRAMMING 

The prime advantage of genetic programming over genetic algorithms, is the ability to construct functional trees of 
variable length. This property enables the search for very complex solutions that are usually in the form of a 
mathematical formula - an approach that is commonly known as symbolic regression. Later paradigms extended this 
concept to calculate any boolean or programming expression. Thus, complex intelligent structures, such as fuzzy rule-
based systems or decision trees have already been used as the desirable intention in genetic programming approaches 
[1, 15, 31, 32, 33].  The main qualification of this solving procedure is that the feature selection, and the system 
configuration, derive in the searching process and do not require any human involvement. Moreover, genetic 
programming, by inheriting the genetic algorithms' stochastic search properties, does not use local search -rather uses 
the hyperplane search-, and so avoids driving the solution to any local minimum. The potential gain of an automated 
feature selection and system configuration is obvious; no prior knowledge is required and, furthermore, not any human 
expertise is needed to construct an intelligent system. Nevertheless, the task of implementing complex intelligent 
structures into genetic programming functional sets in not rather straightforward. The function set that composes an 
intelligent system retains a specific hierarchy that must be traced in the GP tree permissible structures. This writing 
offers two advantages. First, the search process avoids candidate solutions that are meaningless or, at least, obscure. 
Second, the search space is reduced significantly among only valid solutions. Thus, a genotype - a point in the search 
space- corresponds always to a phenotype - a point in the solution space. This approach -known as legal searchspace 
handling method [36]- is applied in this work using context-free grammars. As we will discuss in the next paragraph, 
the implementation of constraints using a grammar can be the most natural way to express a family of allowable 

 



architectures. While each intelligent system -such as a fuzzy system- has a functional equivalent -by means of being 
composed by smaller, elementary functions-, what defines and distinguishes this system is its grammar.   
 

CONTEXT-FREE GRAMMARS 

Although powerful in its definition, the genetic programming procedure may be proved greedy in computational and 
time resources. Therefore, when the syntax form of the desired solution is already known, it is useful to restrain the 
genetic programming from searching solutions with different syntax forms [10, 20]. The most advantageous method to 
implement such restrictions among other approaches [21], is to apply syntax constraints to genetic programming trees, 
usually with the help of a context-free grammar declared in the Backus-Naur-Form (BNF) [9, 14, 22, 29]. The BNF-
grammar consists of terminal nodes and non-terminal nodes and is represented by the set {N,T,P,S} where N is the set 
of non-terminals, T is the set of terminals, P is the set of production rules and S is a member of N corresponding to the 
starting symbol. The use of the terms terminal and non-terminal in a BNF-grammar, does not correspond to what Koza 
defines as terminal and function. Rather, a function -a non-terminal node in terms of the GP tree architecture- is 
expressed as terminal in a BNF grammar. To avoid confusion, the use of the terms GPFunction and GPTerminal -
instead of the ambiguous terms function and terminal- has been proposed [34] and is adapted throughout this paper. The 
construction of the production rules can be the most critical point in the creation of a BNF grammar, since these 
production rules express the permissible structures of an individual. An example grammar expressing a class of 
individuals, which can produce the program in Figure 1, is composed by the following sets: 
N = {EXPR, OP} 
T = {-,*,/,a,b,7,8} 
S = <EXPR> 
 
Then, P is expressed as shown in Table I. 
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CELLULAR ENCODING 
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 cut function is given in Section IV. 



The models are tested in three different setups of four data sets from the medical domain. These data sets have been 
taken unmodified by a collection of real-world benchmark problems, the Proben1 [25] that has been established for 
neural networks.  The original data are derived by the UCI Machine Learning Repository [2]. In the Proben1 data set, 
modifications were applied for processing with NN and better comparability results. Specifically, first the values of 
every data attribute were standardized in the range [-1,1]. Then, nominal values were substituted using binary encoding, 
incrementing this way the number of inputs or outputs (see Table II). Missing values were substituted by standard -zero- 
values. Three different sequences of the examples were created. The outputs were represented using 1-of-n encoding 
where n outputs were used to express n classes. This encoding facilitated the winner-takes-all approach that is also 
followed in our experiments. Table II shows the problem complexity of these data sets. The first problem to be 
addressed is the Wisconsin Breast Cancer data. The goal is to diagnose between benign and malignant breast tumor. 
The second problem is the Pima Indians Diabetes data, where we diagnose between positive or negative diabetes. The 
problem of the Heart disease follows, where the goal is to diagnose if the diameter of a heart vessel is reduced by more 
than 50% or not. The last problem is to diagnose between thyroid hyperfunction, hypofunction or normal function. 
  

DESIGN AND IMPLEMENTATION 

Each data set was separated into a training set, a validation set and a test set. The training set consists of 50% of the data 
and the rest 50% is divided equally between the validation set and the test set. The separation of the examples into 
training, validation and test sets was performed in a loop manner. Specifically, the first two examples were assigned to 
the training set, then the next to the validation set and the fourth to the test set. This process was repeated until all the 
examples were assigned a set.  
 
During the training phase, the validation set is typically used to avoid overfitting. A solution that has better 
classification score in the training set, is adapted as new best solution if and only if the sum of classification scores of 
both training and validation sets is the same or better than the best solution's respective score. We performed 20 runs for 
each data set. In all experiments, we used the same GP parameters. 

It is accepted that the G3P procedure may suffer size problems during initialization [27]. Although the fine-tuning of 
our algorithm was not the main concern of this paper, we investigated various initialization approaches. Without 
claiming optimality, the GP parameters are presented in Table III. This setup, together with function selection 
probability optimization, offered for the presented grammars stable and effective runs throughout experiments. As it can 
be observed, this setup denotes our preference for significantly high mutation rates, especially shrink mutation [30] that 
slows down the code bloat caused by crossover operations. The optimization of function selection probabilities is 
consisted of giving more selection probability to GPTerminals rather than GPFunctions. Although the initialization of 
the population is random, using this probability bias the algorithm is 'forced' to generate individuals of acceptable size. 

Table III. GP parameters for G3P 

Parameter Value 
Population:  2,000 individuals  
GP implementation: Steady-state G3P 
Selection:  Tournament with elitist strategy 
Tournament size:  6 
Crossover Rate:  0.35 
Overall Mutation Rate:  0.65 
Node Mutation Rate: 0.4 
Shrink Mutation Rate: 0.6 
Killing Anti-Tournament size:  2 
Maximum allowed individualsize:  650 nodes  
Maximum number of generations: 100 

Table II. Problem Description 

Inputs 
Problem Attributes 

conti-
nuous 

discre-
te 

Classes Records 
used 

cancer 9 9 0 2 696 
diabetes 8 8 0 2 764 
heart 13 6 29 2 916 
thyroid 21 6 15 3 7196 

 



This optimization was decided after experimentation for each of the four implementations, since it was not possible to 
obtain a general principle regarding the most proper probability values. 

G3P FOR FUZZY RULE-BASED SYSTEMS 

A fuzzy if-then rule  [13], can be in the form: 
if x is A then y is B with C, [0,1]C∈  

where the "x is A" is the antecedent (or premise) set, "y is B" is the consequent (or conclusion) set, and C is the 
certainty factor. In fuzzy reasoning, the traditional two-valued logic, the modus ponens, is used in a generalized form. 
Namely, a fact may be more or less true, based on the truth of another fact. A fuzzy set is defined as: 

{( , ( )) | }AA x x x Xµ= ∈  
where, the µA(x) is a membership function for the fuzzy set. Fuzzy sets are seen an extension to the classic sets that have 
a crisp boundary, where the transition for a value from belonging to a set and not belonging to the set is gradual and 
characterized be the membership function.  
 

The membership functions are described as a mathematical formula. The X is called the universe of discourse, and it 
may be comprised by discrete or continuous values. When the universe of discourse X is a continuous space, several 
fuzzy sets are used, most times covering the X uniformly. These fuzzy sets often are given linguistic terms such as 
"Small" or "Medium", thus they are called linguistic variables. These linguistic variables are used in fuzzy rules, which 
are interpreted as fuzzy relations using fuzzy reasoning.  

 
Table V.Functions for the simulation of a Mamdani-model classifier 

Function Pseudo-code 

RL (arg1,arg2)  If absolute(arg1)>absolute(arg2) then return arg1; 
else return arg2 

RULE(arg1,arg2) Return arg1*arg2 
IF(arg1,arg2) Fuzzify (arg1), based on the (arg2) value, return 

weight 
AND(arg1,arg2) Return minimum(arg1,arg2) 
THEN(arg1,arg2) If arg1=arg2 then return 1; else return -1 
L, M, L, etc. Return a constant value (e.g  -1 for L, 0 for M 

etc.).  
CLASS1, CLASS2, etc.  Return a constant value (e.g  1 for CLASS1, 2 for 

CLASS2, etc.).  
X1,X2, etc. System inputs (assuming a numerical value) 
Y System output (assuming a numerical value) 

Table IV. Production Rules for Fuzzy Rule-Based Systems 

Symbol Rule 

<TREE> ::=<RL> |<RULE> 
<RL> ::=RL <TREE> <TREE> 
<RULE> ::=RULE <COND> <CLASS> 
<COND> ::=<IF> | <AND>  
<IF> ::=IF <INP> <FS> 
<AND> ::=AND <COND> <COND> 
<CLASS> ::=THEN <OUT> <CLASS_VALUE> 
<FS> ::=S | M | L 
<INP> ::=X1 | X2 | X3 | X4 
<CLASS_VALUE> ::=CLASS1 | CLASS2 | CLASS3 … 
<OUT> ::=Y 

 

 
Fuzzy reasoning contains inference rules that derive conclusions from a set of fuzzy rules and input data. In the 
Mamdani classifier model using the max-min composition, several steps are followed to perform fuzzy reasoning. 
Firstly, we compare the input data with the antecedent sets of the fuzzy rules and we get the degrees of compatibility 
(called weights) with respect to these antecedent sets. Then, we combine these degrees using fuzzy AND or OR to 
obtain a firing strength, which shows the degree that a rule is satisfied. The firing strength corresponds to the certainty 

 



factor presented above. The max-min criterion, when only AND operators are used, will assign as firing strength the 
smaller of the antecedent degrees of compatibility. Finally, we obtain the overall output between the consequent sets of 
the rules. When the max-min composition is used, the rule with the larger firing strength will be the system's output. 
The definition of the grammar we used is shown in Table IV [1]. 

 
Figure 2. Membership functions of the fuzzy rule-based system. 

 
This grammar describes a fuzzy system model with four inputs and one output. The GPFunctions used to describe the 

fuzzy mechanism, correspond to the words with bold in Table IV.  We suggested the working shown in Table V, in 
order to simulate a Mamdani classifier. 

The fuzzification is applied in IF nodes. The implementation uses Gaussian membership functions, and for a given 
Gaussian range a (standard for the IF nodes) , a center c=arg2  and a value x=arg1,  the function output will be the 
following:  
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In order to offer more degrees of freedom, we selected to use nine (9) membership functions, which are presented in 
Figure 2. The THEN node returns 1 if for the examining example the output (arg1), belongs to the class described by 
arg2 and -1 otherwise. The reason to use this mechanism, together with the RL working, is to be able to know (when 
the tree evaluation is complete) whether the rule that fired was true or false. If the fired rule describes a false consequent 
set, the program value will be negative. While an individual represents a complete rule base, when examining an 
example during the training phase, this procedure will produce either positive or negative values indicating correct or 
wrong classification.. 

G3P FOR FUZZY PETRI-NETS 

A fuzzy Petri net [19] can be seen as a network that is constructed by input places, transitions and output places. The 
topology of a simple fuzzy Petri net is depicted in Figure 3. The framework of a fuzzy Petri net is finely correlated with 
the classification process of any pattern recognition task [24]. The input places are associated with the values of the 
features. These values are processed by the transitions of the network. The levels of firing of the network, depend on the 
parameters that are associated with each transition.  

 
Figure 3. A fuzzy Petri net. 

 
Consequently, an output place corresponds to a class. As with the case of NN in the previous paragraph, in order to 

handle a number of classes larger than two, this system adopts the winner-takes-all approach. Formally, a fuzzy Petri 
net is described by the following 8-tuple : 

 



( , , , , , , , )FPN I O cf a β= P T D  

where  is a finite set of places,  1 2{ , ,..., }nP P P=P

1 2{ , ,..., }nT T T=T  is a finite set of transitions,  

1 2{ , ,..., }nD D D=D is a finite set of propositions, 

,∩ ∩ =∅P T D  

:I ∞→T P  is the input function, a mapping from transitions to bags of places, 
:O ∞→T P  is the output function, a mapping from transitions to bags of places, 
: [0,cf →T  1] is a

1]
n association function, a mapping from transitions to real values in the range [0,1], 

: [0,a →P is an association function, a mapping from places to real values in the range [0,1], 
:β →P D is an association function, a mapping from places to propositions. 

Table VI. FPN Place-manipulating functions 

 
Name Description Number of 

arguments 
Input place sp1 Sequential division 3 
 pp1 Parallel division 2 
 in Initialize the value 2 
Intermediate 
place 

sp2 Sequential division 3 

 pp2 Parallel division 3 
 stop Terminate the 

modification 
0 

 
The incorporation of fuzzy Petri nets into G3P was originally presented by [35]. That implementation made possible 

the description of fuzzy Petri nets of arbitrary size and topology. Unlike in [35], where a context-sensitive grammar is 
used to guide the genetic process, we present a context-free version of that grammar. The context-free equivalent, which 
applied in this work, satisfies the same descriptive rules. According to the methodology described in [35], manipulating 
functions are used to insert additional places and transitions. Since there are two types of modifiable places, the input 
and intermediate ones, we classify the place-manipulating functions into two types.  These functions are presented in 
Table VI. Moreover, we have manipulating functions that are used on transitions. These transition-manipulating 
functions are shown in Table VII. 

Two variables were used to assist the simulation of the breadth-first execution, as with the model of the previous 
paragraph: a parameter array Q and a parameter value V. The working of these functions can be summarized as follows: 

Table VII. FPN Transition-manipulating functions 

 
Name Description Number of 

arguments 
st Sequential division 3 
pt Parallel division 2 
cut Remove one of the incoming edges 2 
setcf Set the certainty factor 1 

 

The sp1 function takes three arguments. The first and the third argument can be pp1 or sp1 (or in) functions. The 
second argument is a transition manipulating function such as pt, st or cut. It calls sequentially the three arguments. Its 
application to the developing fuzzy Petri net is to add sequentially a new input place next to the place that is applied. 

The pp1 function has two arguments. They can be pp1or sp1 (or in) functions. It feeds the arguments with copies of 
the array Q. It then saves the concatenation of them to array Q. It does not affect explicitly the variable V. Its 
modification to the developing fuzzy Petri net is to create an input place in parallel to the place that is applied. 

 



The in function has one argument. This argument is one of the FPN inputs. It fuzzifies the input and initializes the 
array Q and the variable V to this value. We used five (5) Gaussian membership functions, which are shown in Figure 
4. 

The sp2 function has three arguments. The first and the third argument can be pp2 or sp2 (or stop) functions. The 
second argument is a transition manipulating function (pt, st, etc.). It calls sequentially the three arguments. Its 
application to the developing FPN is to add sequentially a place next to the place that is applied (in a similar fashion of 
the sp1 ). 

 
Figure 4. Membership functions of the fuzzy Petri net. 

The pp2 function takes three arguments. The first and the third argument can be pp2 or sp2 (or stop) functions. The 
second argument is a transition manipulating function. Initially, it feeds the three arguments with copies of the array Q . 
Then, it saves the concatenation of the first and the third argument to the array Q . Its modification to the developing 
FPN is to create a place in parallel to the place that is applied, similar to pp1. It does not affect explicitly the variable V.  

The stop function has no arguments. It signals the end of further modification. The array Q is initialized with the 
value V. 

The st function has three arguments. The first and the third argument are transition manipulating functions. The 
second argument is a place manipulating function. It calls sequentially the three arguments. Its application to the 
developing neural network is to add sequentially a transition next to the transition that is applied. 

The pt function has two arguments. They can be transition manipulating functions. It feeds the arguments with copies 
of the array Q. Its modification to the developing fuzzy Petri net is to create an transition in parallel to the place that is 
applied. 

The cut function has two arguments. The first argument is an integer. The second one is a transition manipulating 
function. It cuts the connection that corresponds to the (I mod N) value -where I is the number of inputs to this place and 
N is the integer-, iff the number of inputs to this place is greater than 1. It passes down to the second argument the 
parameters Q and V. 

The setcf function takes one argument. This argument is a certainty factor value. It performs the transition of the 
input value. The result is saved to variable V. 

The BNF grammar is shown in Table VIII. The starting symbol is the <CLAUSE> symbol. This grammar 
corresponds to a binary decision fuzzy Petri net.  

Table VIII.Production Rules for Fuzzy Petri Nets 

Symbol Rule 

<CLAUSE> ::=<FPN> 
<FPN> ::=<PROG> <PROG> 
<PROG> ::=<PLACE1><TRAN> 
<PLACE1> ::= SP1 <PLACE1> <TRAN> <PLACE2> 
 | PP1 <PLACE1> <PLACE1> 
 | <INIT> 
<INIT> ::=<ATTR> 
<PLACE2> ::=SP2 <PLACE2> <TRAN> <PLACE2> 
 | PP2 <PLACE2> <TRAN> <PLACE2> 
<TRAN> ::=PT <TRAN> <TRAN> 
 | ST <TRAN> <PLACE2> <TRAN> 
 | CUT <NUMBER> <TRAN> 
 | SETCF <CF>  
<NUMBER> ::=integer in [1,256] 
<CF> ::=real in [0,1] 
<ATTR> ::=data attribute (system input) 

 

 

 



 
RESULTS AND DISCUSSION 

 
In Table IX we present the training classification error (CE) for each model and data set. The presentation of these 

results is useful since, as stated previously, during the training phase we the best solution is the one that has the lower 
sum of the classification errors in both training and validation set. The validation and test CEs are shown in Table X. 
This setup seems to be restrictive for the G3P for FPN model. More specifically, as it was expected, a high correlation 
between the size of the produced FPN and the training classification result was noticed. Hence, we consider that a larger 
GP model should be appropriate for the G3P for FPN methodology in order to achieve competitive results. As it can be 
seen from Table XV, the average best solution size for fuzzy Petri nets, in our configuration is less than those of the 
FRBSs. The G3P for FRBS is highly competitive. Its success comes in the diabetes and the cancer data.   

 

 
Table IX. Classification Errors in Medical Data Training Sets. 

G3P for Fuzzy Rule-Based 
Systems  G3P for Fuzzy Petri Nets 

Problem 
best avg. stddev best avg. stddev 

cancer1 1.14 2.08 0.55 3.16 3.44 0.25 
cancer2 0.57 1.59 0.48 1.43 3.16 1.54 
cancer3 0.28 1.01 0.46 1.14 2.61 1.62 
diabetes1 15.70 17.25 1.11 20.41 23.62 1.96 
diabetes2 17.01 19.89 2.08 21.46 23.82 1.84 
diabetes3 16.49 19.80 2.23 21.72 23.76 2.03 
heart1 14.62 16.24 1.52 19.43 20.18 0.99 
heart2 15.28 17.14 2.04 20.74 20.89 0.13 
heart3 15.06 15.65 0.77 21.17 21.25 0.16 
thyroid1 5.33 6.66 1.09 6.19 7.19 0.86 
thyroid2 5.58 6.37 1.03 5.78 6.71 0.91 
thyroid3 5.80 6.75 1.33 5.78 6.41 0.74 

 

In general, classification competence of fuzzy systems over crisp systems is expected in data sets having continuous 
features, a principle that is verified in our experiments. In Table XI, we show the average effective generations for the 
models and the data sets. These results show that in more difficult problems -such as ill-conditioned or large sized (e.g. 
thyroid data) problems- the algorithm needed slightly more training time to find the best solution. This is the same 
result found in [4] concerning the effective time of linearGP. 
 

Table X. Validation and Test Classification Error Rates of G3P for Fuzzy Rule-Based Systems and Fuzzy Petri 
Nets in Medical Data Sets. 

 G3P for Fuzzy Rule-Based Systems G3P for Fuzzy Petri Nets 

Validation CE (%) Test CE (%) Validation CE (%) Test CE (%) 
Problem 

best avg. stddev best avg. stddev best avg. stddev best avg. stddev 

cancer1 1.72 2.87 0.83 2.29 4.39 1.42 2.29 3.06 0.69 2.87 4.31 0.94 
cancer2 2.87 4.48 0.84 1.72 4.45 1.23 2.29 5.17 2.20 2.29 4.83 1.19 
cancer3 4.02 5.08 0.61 3.44 4.90 0.83 4.02 6.26 1.49 2.29 4.42 1.43 
diabetes1 26.17 28.75 1.44 21.98 26.47 3.40 24.08 27.53 2.26 23.03 26.82 2.56 
diabetes2 24.08 25.47 0.97 23.56 24.78 1.22 24.60 27.78 2.22 23.03 27.08 2.65 
diabetes3 23.56 24.95 1.02 21.99 24.25 1.64 26.17 28.63 2.19 24.08 28.21 2.16 
heart1 23.14 25.29 1.25 18.34 22.12 1.93 24.89 25.76 0.79 23.14 25.63 1.44 
heart2 16.59 18.55 1.44 20.96 23.68 1.89 21.83 22.12 0.25 21.83 25.32 3.73 
heart3 17.90 25.76 3.08 25.32 25.76 0.61 21.39 22.85 2.15 24.89 25.90 1.76 
thyroid1 5.55 6.77 0.90 5.28 6.08 0.57 6.28 7.17 0.77 5.55 6.26 0.69 
thyroid2 5.94 6.54 0.82 5.44 5.95 0.52 6.03 6.75 0.79 5.44 5.95 0.60 
thyroid3 6.00 6.80 1.13 5.44 6.03 0.82 6.17 6.51 0.61 4.22 5.49 0.84 

 

 



CONCLUSIONS AND FURTHER RESEARCH 

This work presented a comparison of two grammar-guided genetic programming approaches in medical diagnosis. 
Namely, fuzzy rule-based systems and fuzzy Petri nets were implemented using context-free grammars. Cellular 
encoding was adopted in order to describe arbitrary network topology for the fuzzy Petri nets. Four data sets were used 
from the medical domain.  We performed twenty runs in three variations of these data for each of the approaches. The 
results allow driving conclusions on the effectiveness of this methodology. Specifically it was shown that fuzzy Petri 
nets approach should be used with a larger than the examined model, in terms of genetic population and training time. 
We suggest that a large GP model could make this cellular encoding model (FPN) more antagonistic in terms of 
classification accuracy. For this work, we encountered data sets each with two or three classes. We observed that the 
FRBS approach performed less better in data sets that had discrete features and it was more effective in data sets 
consisted of only continuous attributes. Furthermore, we consider that experiments with data sets having larger number 
of classes (such as the mushroom data from the UCI Machine Learning repository) would offer interesting 
observations on the relative performance of the models. In this work, the large number of the experiments led us to 
adopt a relatively small maximum number of generations. We suggest that a larger number (e.g. 200-300 generations) 
would offer fairly lower classification error of the best solution. 

 
Research will follow this work regarding larger models that would enable to both methodologies to perform 
competitively. In the absence of a standard GP benchmarking data set, other real-world domains will be used in order to 
obtain transparent results on the classification success of this approach. More intelligent models -such as Kohonen 
networks- can be implemented in context-free grammars to offer more generalized knowledge discovery attempt. 
Finally, tuning properly the initialization procedure of a grammar-guided genetic programming will enable better 
exploration of the search space for a given size of the GP model. 

Table XII. Effective training time of G3P in Medical Data (in generations). 
G3P for Fuzzy 

Rule-Based 
Systems  

G3P for Fuzzy 
Petri Nets 

Problem 

avg. stddev avg. stddev 

cancer1 48 32 47 15 
cancer2 43 29 54 30 
cancer3 48 27 50 37 
diabetes1 71 25 45 27 
diabetes2 42 12 46 29 
diabetes3 40 31 52 30 
heart1 77 24 30 26 
heart2 56 40 24 7 
heart3 40 23 30 11 
thyroid1 84 30 52 46 
thyroid2 75 37 41 31 
thyroid3 85 21 34 43 

Table XI Average Best Solution Size of G3P in Medical Data. 
G3P for Fuzzy 

Rule-Based 
Systems  

G3P for Fuzzy 
Petri Nets 

Problem 

avg. stddev avg. stddev 

cancer1 214 116 83 80 
cancer2 193 135 92 76 
cancer3 160 118 92 75 
diabetes1 274 125 45 26 
diabetes2 172 150 44 25 
diabetes3 207 208 51 17 
heart1 378 139 45 11 
heart2 372 168 89 53 
heart3 315 119 64 31 
thyroid1 165 212 39 20 
thyroid2 188 208 32 17 
thyroid3 193 178 34 22 
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