198 research outputs found

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Hybrid meta-heuristic algorithm based parameter optimization for extreme learning machines classification

    Get PDF
    Most classification algorithms suffer from manual parameter tuning and it affects the training computational time and accuracy performance. Extreme Learning Machines (ELM) emerged as a fast training machine learning algorithm that eliminates parameter tuning by randomly assigning the input weights and biases, and analytically determining the output weights using Moore Penrose generalized inverse method. However, the randomness assignment, does not guarantee an optimal set of input weights and biases of the hidden neurons. This will lead to ELM instability and local minimum solution. ELM performance also is affected by the network structure especially the number of hidden nodes. Too many hidden neurons will increase the network structure complexity and computational time. While too few hidden neuron numbers will affect the ELM generalization ability and reduce the accuracy. In this study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal ELM structure. The results of HELM were validated with five rule-based hidden neuron selection schemes. Then HELM performance was compared with Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and Regression Tree (CART) to investigate its relative competitiveness. Secondly, to improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the search space with a logarithm spiral model to obtain the optimal values of input weights and biases. The optimal weights and biases from the search space were passed into the ELM input space. However, it did not completely solve the problem of been stuck in the local extremum since MFO could not ensure a good balance between the exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO metaheuristic algorithms ensured a balance of exploration and exploitation in the search space and reduced the possibility of been trapped in the local minima. The performances of these schemes were evaluated on some selected medical datasets from the University of California, Irvine (UCI) machine learning repository, and compared with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm enhanced the selection of optimal weights and biases for ELM, therefore improved its classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the other comparative ELM optimized meta-heuristic algorithms. The convergence curves plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a balance between the exploration and exploitation in the search space, thereby improved the stability up to 53.75%. The overall findings showed that the proposed CEMFO-ELM provided better generalization performance on the classification of medical datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical classification problems but potentially be used in other real-world problems

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Deep Learning Applications in Medical Bioinformatics

    Get PDF
    After a patient’s breast cancer diagnosis, identifying breast cancer lymph node metastases is one of the most important and critical factor that is directly related to the patient’s survival. The traditional way to examine the existence of cancer cells in the breast lymph nodes is through a lymph node procedure, biopsy. The procedure process is time-consuming for the patient and the provider, costly, and lacks accuracy as not every lymph node is examined. The intent of this study is to develop an artificial neural network (ANNs) that would map genetic biomarkers to breast lymph node classes using ANNs. The neural network classes were adopted from the American joint committee on cancer materials pathologic lymph node statuses. Twenty gene biomarkers were selected based on a hybrid feature selection model, and the neural network parameters were configured using hyperparameter tuning techniques targeting the neural network capacity, activation function, weight initialization, and the neural network learning rate and momentum. The METABRIC breast cancer data set was used to train, validate, and test the neural network. The results show an accuracy of 96% for the training dataset and 85% for both the validation and test dataset. As far as the area under the curve (AUC), the neural network scored 100% for the training dataset, 95% for the validation, and finally, 90% for the test dataset. This study directly benefits and supports the cancer organizations transition from identifying cancer based on the organ in the patient’s body, where cancer first starts to develop as well as the shape of cancer under a microscope, to grouping cancer cells based on gene mutations. This change in cancer identification will assist the providers in improving the diagnosis, prognosis, and treatment of cancer patients

    Deep Learning Applications in Medical Bioinformatics

    Get PDF
    After a patient’s breast cancer diagnosis, identifying breast cancer lymph node metastases is one of the most important and critical factor that is directly related to the patient’s survival. The traditional way to examine the existence of cancer cells in the breast lymph nodes is through a lymph node procedure, biopsy. The procedure process is time-consuming for the patient and the provider, costly, and lacks accuracy as not every lymph node is examined. The intent of this study is to develop an artificial neural network (ANNs) that would map genetic biomarkers to breast lymph node classes using ANNs. The neural network classes were adopted from the American joint committee on cancer materials pathologic lymph node statuses. Twenty gene biomarkers were selected based on a hybrid feature selection model, and the neural network parameters were configured using hyperparameter tuning techniques targeting the neural network capacity, activation function, weight initialization, and the neural network learning rate and momentum. The METABRIC breast cancer data set was used to train, validate, and test the neural network. The results show an accuracy of 96% for the training dataset and 85% for both the validation and test dataset. As far as the area under the curve (AUC), the neural network scored 100% for the training dataset, 95% for the validation, and finally, 90% for the test dataset. This study directly benefits and supports the cancer organizations transition from identifying cancer based on the organ in the patient’s body, where cancer first starts to develop as well as the shape of cancer under a microscope, to grouping cancer cells based on gene mutations. This change in cancer identification will assist the providers in improving the diagnosis, prognosis, and treatment of cancer patients

    Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset

    Get PDF
    Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain neurons\u27 abnormal activities and has affected approximately 50 million people worldwide. Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of epilepsy is highly effective in avoiding seizures by intervening in treatment. The electroencephalogram (EEG) signal, which contains valuable information of electrical activity in the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, the result varies with different neurophysiologists for an identical reading. Thus, automatically classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement and has long been investigated. This PhD thesis contributes to the epileptic seizure detection problem using Machine Learning (ML) techniques. Machine learning algorithms have been implemented to automatically classifying epilepsy from EEG data. Imbalance class distribution problems and effective feature extraction from the EEG signals are the two major concerns towards effectively and efficiently applying machine learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the majority class when classes are imbalanced, while effective feature extraction can improve classification performance. In this thesis, we presented three different novel frameworks to effectively classify epileptic states while addressing the above issues. Firstly, a deep neural network-based framework exploring different sampling techniques was proposed where both traditional and state-of-the-art sampling techniques were experimented with and evaluated for their capability of improving the imbalance ratio and classification performance. Secondly, a novel integrated machine learning-based framework was proposed to effectively learn from EEG imbalanced data leveraging the Principal Component Analysis method to extract high- and low-variant principal components, which are empirically customized for the imbalanced data classification. This study showed that principal components associated with low variances can capture implicit patterns of the minority class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging summary statistics analysis of window-based features of EEG signals. The framework first denoised the signals using power spectrum density analysis and replaced outliers with k-NN imputer. Next, window level features were extracted from statistical, temporal, and spectral domains. Basic summary statistics are then computed from the extracted features to feed into different machine learning classifiers. An optimal set of features are selected leveraging variance thresholding and dropping correlated features before feeding the features for classification. Finally, we applied traditional machine learning classifiers such as Support Vector Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through rigorous experimental settings and displayed the effectiveness of the proposed frameworks in terms of accuracy, precision, recall, and F-beta score

    An overview of diabetes diagnosis methods on the Pima Indian dataset

    Get PDF
    In recent years, data mining and machine learning methods in the medical field have received much attention and have optimized many complex issues in the medical field. One of the problems facing researchers is the appropriate dataset, and the suitable dataset on which different methods of data mining and machine learning can be applied is rarely found. One of the most reliable and appropriate datasets in the field of diabetes diagnosis is the Indian Survey Database. In this article, we have tried to review the methods that have been implemented in recent years using machine learning classification algorithms on this data set and compare these methods in terms of evaluation criteria and feature selection methods. After comparing these methods, it was found that models that used feature selection methods were more accurate than other approaches

    A Theoretical Exploration of Artificial Intelligence’s Impact on Feto-Maternal Health from Conception to Delivery

    Get PDF
    Ishfaq Yaseen,1 Riyaz Ahmad Rather2 1Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia; 2Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Hossana, EthiopiaCorrespondence: Riyaz Ahmad Rather, Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Post Box-667, Hossana, Ethiopia, Tel +251 988937374, Email [email protected]: The implementation of Artificial Intelligence (AI) in healthcare is enhancing diagnostic accuracy in clinical setups. The use of AI in healthcare is steadily increasing with advancing technology, extending beyond disease diagnosis to encompass roles in feto-maternal health. AI harnesses Machine Learning (ML), Natural Language Processing (NLP), Artificial Neural Networks (ANN), and computer vision to analyze data and draw conclusions. Considering maternal health, ML analyzes vast datasets to predict maternal and fetal health outcomes, while NLP interprets medical texts and patient records to assist in diagnosis and treatment decisions. ANN models identify patterns in complex feto-maternal medical data, aiding in risk assessment and intervention planning whereas, computer vision enables the analysis of medical images for early detection of feto-maternal complications. AI facilitates early pregnancy detection, genetic screening, and continuous monitoring of maternal health parameters, providing real-time alerts for deviations, while also playing a crucial role in the early detection of fetal abnormalities through enhanced ultrasound imaging, contributing to informed decision-making. This review investigates into the application of AI, particularly through predictive models, in addressing the monitoring of feto-maternal health. Additionally, it examines potential future directions and challenges associated with these applications.Keywords: Artificial intelligence, feto-maternal health, fetal monitoring, machine learning, Artificial neural network
    • …
    corecore