105 research outputs found

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Algorithms and Architectures for Secure Embedded Multimedia Systems

    Get PDF
    Embedded multimedia systems provide real-time video support for applications in entertainment (mobile phones, internet video websites), defense (video-surveillance and tracking) and public-domain (tele-medicine, remote and distant learning, traffic monitoring and management). With the widespread deployment of such real-time embedded systems, there has been an increasing concern over the security and authentication of concerned multimedia data. While several (software) algorithms and hardware architectures have been proposed in the research literature to support multimedia security, these fail to address embedded applications whose performance specifications have tighter constraints on computational power and available hardware resources. The goals of this dissertation research are two fold: 1. To develop novel algorithms for joint video compression and encryption. The proposed algorithms reduce the computational requirements of multimedia encryption algorithms. We propose an approach that uses the compression parameters instead of compressed bitstream for video encryption. 2. Hardware acceleration of proposed algorithms over reconfigurable computing platforms such as FPGA and over VLSI circuits. We use signal processing knowledge to make the algorithms suitable for hardware optimizations and try to reduce the critical path of circuits using hardware-specific optimizations. The proposed algorithms ensures a considerable level of security for low-power embedded systems such as portable video players and surveillance cameras. These schemes have zero or little compression losses and preserve the desired properties of compressed bitstream in encrypted bitstream to ensure secure and scalable transmission of videos over heterogeneous networks. They also support indexing, search and retrieval in secure multimedia digital libraries. This property is crucial not only for police and armed forces to retrieve information about a suspect from a large video database of surveillance feeds, but extremely helpful for data centers (such as those used by youtube, aol and metacafe) in reducing the computation cost in search and retrieval of desired videos

    The need for polymorphic encryption algorithms: A review paper

    Get PDF
    Current symmetric ciphers including the Advanced Encryption Standard (AES) are deterministic and open. Using standard ciphers is necessary for interoperability. However, it gives the potential opponent significant leverage, as it facilitates all the knowledge and time he needs to design effective attacks. In this review paper, we highlight prominent contributions in the field of symmetric encryption. Furthermore, we shed light on some contributions that aim at mitigating potential threats when using standard symmetric ciphers. Furthermore, we highlight the need for more practical contributions in the direction of polymorphic or multishape ciphers

    Introduction to Complex Systems, Sustainability and Innovation

    Get PDF
    The technological innovations have always proved the impossible possible. Humans have all the time obliterated barriers and set records with astounding regularity. However, there are issues springing up in terms of complexity and sustainability in this context, which we were ignoring for long. Today, in every walk of life, we encounter complex systems, whether it is the Internet, communication systems, electrical power grids, or the financial markets. Due to its unpredictable behavior, any creative change in a complex system poses a threat of systemic risks. This is because an innovation is always introducing something new, introducing a change, possibly to solve an existing problem, the effect of which is nonlinear. Failure to predict the future states of the system due to the nonlinear nature makes any system unsustainable. This necessitates the need for any development to be sustainable by meeting the needs of people today without destroying the potential of future generations to meet their needs. This chapter, which studies systems that are complex due to intricateness in their connectivity, gives insights into their ways of emergence and the nonlinear cause and effects pattern the complex systems use to follow, effectively paving way for sustainable innovation

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore