29,168 research outputs found

    Cargo Consolidation and Distribution Through a Terminals-Network: A Branch-And-Price Approach

    Get PDF
    Less-than-truckload is a transport modality that includes many practical variations to convey a number of transportation-requests from the origin locations to their destinations by using the possibility of goods-transshipments on the carrier?s terminals-network. In this way logistics companies are required to consolidate shipments from different suppliers in the outbound vehicles at a terminal of the network. We present a methodology for finding near-optimal solutions to a less-than-truckload shipping modality used for cargo consolidation and distribution through a terminals-network. The methodology uses column generation combined with an incomplete branch-and-price procedure.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Air Taxi Skyport Location Problem for Airport Access

    Full text link
    Witnessing the rapid progress and accelerated commercialization made in recent years for the introduction of air taxi services in near future across metropolitan cities, our research focuses on one of the most important consideration for such services, i.e., infrastructure planning (also known as skyports). We consider design of skyport locations for air taxis accessing airports, where we present the skyport location problem as a modified single-allocation p-hub median location problem integrating choice-constrained user mode choice behavior into the decision process. Our approach focuses on two alternative objectives i.e., maximizing air taxi ridership and maximizing air taxi revenue. The proposed models in the study incorporate trade-offs between trip length and trip cost based on mode choice behavior of travelers to determine optimal choices of skyports in an urban city. We examine the sensitivity of skyport locations based on two objectives, three air taxi pricing strategies, and varying transfer times at skyports. A case study of New York City is conducted considering a network of 149 taxi zones and 3 airports with over 20 million for-hire-vehicles trip data to the airports to discuss insights around the choice of skyport locations in the city, and demand allocation to different skyports under various parameter settings. Results suggest that a minimum of 9 skyports located between Manhattan, Queens and Brooklyn can adequately accommodate the airport access travel needs and are sufficiently stable against transfer time increases. Findings from this study can help air taxi providers strategize infrastructure design options and investment decisions based on skyport location choices.Comment: 25 page

    Regenerator Location Problem and survivable extensions: A hub covering location perspective

    Get PDF
    Cataloged from PDF version of article.In a telecommunications network the reach of an optical signal is the maximum distance it can traverse before its quality degrades. Regenerators are devices to extend the optical reach. The regenerator placement problem seeks to place the minimum number of regenerators in an optical network so as to facilitate the communication of a signal between any node pair. In this study, the Regenerator Location Problem is revisited from the hub location perspective directing our focus to applications arising in transportation settings. Two new dimensions involving the challenges of survivability are introduced to the problem. Under partial survivability, our designs hedge against failures in the regeneration equipment only, whereas under full survivability failures on any of the network nodes are accounted for by the utilization of extra regeneration equipment. All three variations of the problem are studied in a unifying framework involving the introduction of individual flow-based compact formulations as well as cut formulations and the implementation of branch and cut algorithms based on the cut formulations. Extensive computational experiments are conducted in order to evaluate the performance of the proposed solution methodologies and to gain insights from realistic instances. (C) 2014 Elsevier Ltd. All rights reserved

    Hierarchical Network Design

    Get PDF

    Exact solution of hub network design problems with profits

    Get PDF
    This paper studies hub network design problems with profits. They consider a profit-oriented objective that measure the tradeoff between the revenue due to served commodities and the overall network design and transportation costs. An exact algorithmic framework is proposed for two variants of this class of problems, where a sophisticated Lagrangian function that exploits the structure of the problems is used to efficiently obtain bounds at the nodes of an enumeration tree. In addition, reduction tests and partial enumerations are used to considerably reduce the size of the problems and thus help decrease the computational effort. Numerical results on a set of benchmark instances with up to 100 nodes confirm the efficiency of the proposed algorithmic framework. The proposed methodology can be used as a tool to solve more complex variants of this class of problems as well as other discrete location and network design problems involving servicing decisions.Peer ReviewedPostprint (author's final draft

    Quadratic Assignment of Hubs in p-Hub Median Problem

    Get PDF
    corecore