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Abstract

This paper considers hub network design problems with profits in which the
simultaneous optimization of the collected revenue, fixed setup cost of the
hub network and variable transportation cost are considered. An exact al-
gorithmic framework is proposed for two variants of this class of problems,
where a sophisticated Lagrangean function that exploits the structure of the
problems is used to efficiently obtain bounds at the nodes of an enumera-
tion tree. In addition, reduction tests and partial enumerations are used to
considerably reduce the size of the problems and thus help decrease the com-
putational effort. Numerical results on a set of benchmark instances with up
to 100 nodes confirm the efficiency of the proposed algorithmic framework.

Keywords: location; hub network design; hub location; Lagrangean
relaxation; branch-and-bound.

1. Introduction

Large-scale transportation and telecommunications networks arising in
air and ground transportation, postal delivery, and rapid transit systems
frequently use hub-and-spoke architectures to efficiently route flows. Trans-
shipment, consolidation, or sorting points, referred to as hub facilities, are
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employed in these networks to connect a large number of origin/destination
(O/D) pairs indirectly by using a small number of links. Hub location prob-
lems (HLPs) consider the design of hub networks by selecting a set of nodes
to locate hubs, activating a set of links, and routing a predetermined set of
commodities through the network while optimizing a cost-based (or service-
based) objective function.

This paper studies hub network design problems with profits (HNDPPs),
a class of HLPs recently introduced in Alibeyg et al. (2016). HNDPPs re-
lease the classical requirement of most HLPs that all service demand must
be satisfied, and incorporate one additional level to the decision making pro-
cess so as to determine the O/D nodes and associated commodities whose
demand must be served. The rationale behind HNDPPs is that in many
applications a revenue is obtained for serving the demand of a given com-
modity. Capturing such a revenue is likely to incur not only a routing cost
but also additional setup costs, as the O/D nodes of the served commodities
may require the installation of additional infrastructure. Classical HLPs,
however, ignore these considerations, as reflected by the requirement that
the demand of every commodity must be served. Broadly speaking, this re-
quirement expresses the implicit hypothesis that the overall cost of solution
networks will be compensated by the overall revenue. Since such hypothesis
does not necessarily hold, incorporating decisions on the nodes where service
should be offered and the commodities that should be routed have important
implications in the strategic and operational costs.

Potential transportation applications of HNDPPs arise in the airline and
ground transportation industries. In the case of airline companies, network
planners have to design their transportation network when they are first
entering into the market, or may have to modify already established hub-
and-spoke networks through alliances, merges and acquisitions of companies.
The involved decisions are to determine the cities that will be part of their
network, i.e. what cities they will provide service to (served nodes) and
what O/D pairs (served commodities) will be served in order to offer air
travel services to passengers (served demand) between city pairs. Additional
decisions focus on the location of their main airports (hub facilities) and
on the selection of the legs used for connecting regional airports (served
nodes) with hub airports and for connecting some hub airports between them.
Finally, the transportation of passengers using their established network. The
objective is to find an optimal hub network structure that maximizes the total
net profit for providing air travel services to a set O/D pairs while taking
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into account the (re)design cost of the network.
To the best of our knowledge the literature on HNDPPs reduces to Al-

ibeyg et al. (2016), where several variants of HNLPPs are introduced and
analyzed. These models incorporate into the decision-making process ad-
ditional strategic decisions on the nodes and the commodities that will be
served. They consider profit-oriented objectives that measure the tradeoff
between the revenue due to served commodities and the overall network
design and transportation costs. Broadly speaking the proposed HNDPPs
are of three types: (i) primary profit-oriented models, which may or may
not consider service commitment constraints, (ii) profit-oriented models with
network design decisions that incur setup costs on the edges used on service
routes, and (iii) more complex models with multiple demand levels and pos-
sibly multiple service levels as well. The results of extensive computational
experiments reported in Alibeyg et al. (2016) illustrate the characteristics
of the solution networks produced by these different models, as well as the
computational difficulty for solving them with a state-of-the art commer-
cial solver. In particular, the results also show that, despite the advantages
that HNDPPs may bring to the decision maker, the proposed formulations
are very demanding from a computational point of view, in terms of both
computing time and memory when used with a commercial solver. For the
primary profit oriented model without any additional service commitment
constraints, instances with up to 70 nodes can be solved to optimality in
one day of CPU time, and when such additional constraints are added only
instances with up to 60 nodes can be solved. When approaching the more
complex models with multiple demand and service levels, only instances with
up to 35 nodes can be solved in the same time limit.

In this paper we focus on methodological aspects leading to the exact
solution of the two primary HNDPPs presented in Alibeyg et al. (2016). The
first one, denoted as PO1, is flexible in the sense that among all commodities
associated with served O/D nodes, only those that are actually profitable are
routed. It is applicable in situations where there are no service commitments
or external regulations imposing the decision maker to serve any commodity
whose O/D nodes are both activated. The second model, denoted as PO2,
considers a more restrictive scenario in which such commitments or regula-
tions do exist and thus, all commodities whose O/D nodes are both activated
would have to be served, even if this would reduce the total profit.

The main contribution of this paper is to propose a unified algorithmic
framework applicable to large-scale instances of both PO1 and PO2 mod-
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els involving up to 100 nodes. It is an exact branch-and-bound procedure in
which a sophisticated Lagrangean relaxation is used to obtain tight bounds at
each node of the enumeration tree. In particular, the proposed Lagrangean
function resorts to the solution of well-known quadratic boolean problems
(QBPs). We show how, due to the special cost structure associated with
the quadratic term of the objective function, the QBPs can be efficiently
solved by transforming them to classical minimum cut problems. The algo-
rithm is enhanced through several algorithmic refinements that make it more
efficient. These include: (i) variable elimination techniques that allow reduc-
ing considerably the size of the formulations at the root node, (ii) a partial
enumeration phase capable of effectively exploring the solution space by re-
ducing the required number of nodes in the tree, and (iii) the use of simple
but effective primal heuristics embedded in the subgradient algorithm that
exploit the structure of the problem. Computational experiments confirm
the effectiveness of our exact algorithmic framework since it is able to obtain
optimal solutions for instances with up to 100 nodes for both PO1 and PO2,
whereas a commercial solver can only handle instances with up to 70 and 60
nodes, respectively.

The remainder of the paper is organized as follows. Section 2 reviews
relevant literature related to HNDPPs. In Section 3 we introduce the for-
mal definition and mixed integer programming (MIP) formulations of PO1

and PO2. Section 4 describes the proposed Lagrangean relaxations of PO1

and PO2 and the solution of their associated Lagrangean duals. Section 5
explains the variable elimination techniques used whereas Section 6 presents
the partial enumeration and the overall branch-and-bound algorithm. Sec-
tion 7 describes the computational experiments we have run. Conclusions
follow in Section 8.

2. Literature Review

HNDPPs extend hub arc location problems (HALPs) by selecting the
nodes to be served and the commodities to be routed. That is, HNDPPs in-
corporate an additional level to usual HALP decisions. In its turn, HALPs ex-
tend fundamental HLPs (see, Campbell and O’Kelly, 2012; Contreras, 2015)
by incorporating network design decisions dealing with the selection of the
hub arcs that can be used in O/D paths, in addition to classical hub location
and allocation decisions. Different HALPs have been studied in the litera-
ture. For instance, HALPs with a cardinality constraint on the number of
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opened hub arcs (Campbell et al., 2005), HALPs that incorporate setup costs
for the hub nodes and hubs arcs (Contreras and Fernández, 2014; Gelareh
et al., 2015), or HALPs that impose particular topological structures, such as
tree-star (Contreras et al., 2010), star-star (Labbé and Yaman, 2008), ring-
star (Contreras et al., 2016), and hub lines (Martins de Sá et al., 015a,b). We
can also relate HNDPPs to studies that focus on the design of hub networks
in airline transportation (see, for instance, Aykin, 1995; Jaillet et al., 1996;
Sasaki et al., 1999; Bryan and O’Kelly, 1999; O’Kelly, 2012; Saberi and Mah-
massani, 2013). We note that all these works focus on the location of hubs,
but ignore other relevant decisions addressed in HNDPPs, like the nodes to
be served and the commodities to be routed.

Contrary to most HLPs and HALPs that optimize a cost-based (or service-
based) objective, HNDPPs deal with a profit-oriented objective which opti-
mizes the profit expressed as the difference between the revenue obtained for
the service offered and the costs due to the design of the network and to
transportation. This feature relates HNDPPs to two families of HLPs, aim-
ing at the maximization of the profit obtained for serving nodes and routing
commodities: maximal hub covering problems (MHCPs), and competitive hub
location problems (CHLPs). In MHCPs, demand is covered if both origin and
destination nodes are within a specified distance of a hub node. These prob-
lems were introduced by Campbell (1994) and more recently extended by
Hwang and Lee (2012) and Lowe and Sim (2012). Similarly to HNDPPs,
MHCPs allow some commodities not to be served (in this case due to cov-
ering constraints). However, like in the previous HLPs mentioned above,
MHCPs do not incorporate decisions on the nodes to be served, which are
essential in HNDPPs.

From a different perspective, CHLPs focus on the design of hub networks
within the framework of competing firms. Most CHLPs assume that a com-
pany already operates in the market (leader), and address the maximization
of demand captured by a new company who wants to enter the market (fol-
lower). That is, the usual objective in CHLPs is to maximize the market
share of the new firm. Marianov et al. (1999) introduce CHLPs with two
competitors in which the follower looks for the best location for its hubs so
as to maximize its captured demand, assuming the single allocation of cus-
tomers to open hubs. The first proposed model assumes that if the routing
cost of of the new firm does not exceed the current competitor’s cost for a
given O/D pair, then its associated flow will be fully captured. The second
model is more flexible as it allows a fraction of the demand flow to be cap-
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tured. This feature is modeled using a stepwise linear function, which is used
for the comparison with the competitor’s routing costs. In both models, at
most one path can be used to route commodities between each O/D pair.
Eiselt and Marianov (2009) extended that work by considering a gravity like
attraction function that allows using more than one path for routing a given
commodity. This utility is assumed to depend on three factors. The first
factor is the basic attractiveness of a pair of hub in each trip by each airline
company. The second factor is the cost of the route and the third is the total
time required by a flight.

Lüer-Villagra and Marianov (2013) study a competitive model in which
pricing decisions are involved and the aim is to maximize the profit of the
entering company rather than its market share. The new company (entrant)
looks for the best hub network and prices that maximizes his/her profit. The
entrant’s profit is defined as the difference between the net revenue minus
the fixed and variable costs. Contrary to Eiselt and Marianov (2009), in
which customer’s choice are represented using a gravity model, Lüer-Villagra
and Marianov (2013) represent the customers’ behavior using a logit discrete
choice model which reflects customers’ sensitivity to prices. When the cus-
tomers’ sensitivity to prices is low, they do not necessarily look for the route
with the cheapest price which has been considered by Marianov et al. (1999).
The authors also confirm that in a competitive environment, maximizing the
market share is dominated by profit maximization.

Other CHLPs have been studied, for instance, by Gelareh et al. (2010),
who present a model arising in liner shipping networks, where a new liner
service provider designs its network to maximize its market share, using a
stepwise attraction function, which depends on service times and routing
costs. and by Mahmutogullari and Kara (2016) who present hub-medianoid
and hub-centroid CHLPs where the market is assumed to be a duopoly, cus-
tomers select one firm based on the provided service levels and the objective
is to maximize their market share. The interested reader is addressed to
Adler and Smilowitz (2007), Lin and Lee (2010), and Sasaki et al. (2014),
for examples of approaches of CHLPs under a game theoretic framework.

O’Kelly et al. (2015) study a hub location model with price-sensitive
demands that considers three different service levels for routing commodities:
two-hub O/D paths, one-hub O/D paths, and direct connections. The model
is formulated as an economic equilibrium problem that maximizes a nonlinear
concave utility function minus the sum of the setup and routing costs. One
key difference between HNDPPs and CHLPs is the competitive framework in
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CHPLs, which contrasts to the one single firm’s framework of the HNDPPs.
Another difference is that, to the best of our knowledge, none of the studied
CHLPs deal with servicing decisions for O/D nodes.

3. Formal Definition and Formulation of the HNDPP

In this section we formally define the considered primary HNDPPs and
provide their associated modeling assumptions. The reader is referred to
Alibeyg et al. (2016) for an extensive analysis of these modeling assumptions
and their implications.

Let G = (N,A) be a directed graph, with |N | = n, and let also H ⊂ N
be the set of potential hub locations. We denote by AH = {(i, j) ∈ A |
i, j ∈ H} ⊂ A the subset of arcs connecting two potential hub nodes, where
it is possible that i = j. We also consider the set of edges connecting two
potential hubs, denoted as EH = {{i, j} | i, j ∈ H}. Any edge {i, j} ∈ EH
is indistinctively denoted as {j, i}. The elements of EH are called hub edges.
In the literature hub edges are often referred to as hub arcs but, like in
Alibeyg et al. (2016), we prefer to maintain the distinction between edges
and arcs. Service demand is given by a set of commodities that we denote by
K. Each k ∈ K is defined as a triplet (o(k), d(k),Wk), where o(k), d(k) ∈ N ,
respectively denote its origin and its destination, also referred to as its O/D
pair, and Wk ≥ 0 denotes its service demand, i.e., the amount of flow that
must be routed from o(k) to d(k) if commodity k is served.

Each node i ∈ N will be of exactly one of the following types: a hub
node, a served node, or an unserved node. If a node i ∈ N is activated
either as hub or as served, then it will be possible to route commodities with
origin or destination at i. On the contrary, no commodity originated or with
destination at an unserved node can be routed. Each served node must be
assigned to at least one hub node and we allow multiple assignments, i.e. the
assignment need not be unique. These assignments will be used to define the
paths that serve commodities starting or terminating at the served nodes.

For (i, j) ∈ A, dij ≥ 0 denotes the unit transportation (routing) cost
between nodes i and j, which we assume to be symmetric, i.e., dij = dji, and
to satisfy the triangle inequality. Associated with each i ∈ N , ci ≥ 0 denotes
the setup cost for serving node i. If a node i ∈ H is selected to be a hub, a
fixed setup cost fi ≥ 0 is incurred. In this case it will be possible to route
commodities with origin or destination at i ∈ H without incurring the service
setup cost ci. Edges in EH can be activated incurring setup costs. We denote
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by re ≥ 0 the setup cost of e ∈ EH . Activating a hub edge also requires to
activate its end-nodes as hub nodes, and allows sending flows through any
of its associated arcs with discounted transportation costs. If {i, j} ∈ EH is
activated, the per unit flow cost through its associated arcs (i, j), (j, i) ∈ AH
is αdij, where the parameter α, (0 ≤ α ≤ 1) is used as a discount factor.

In the HNDPP, the effect of serving (routing) commodity k ∈ K is three-
fold. On the one hand, it forces the activation of its O/D nodes o(k) and
d(k). On the other hand, it produces a per unit revenue Rk ≥ 0, which is
independent of the path used to send the commodity demand Wk through
the solution network. Finally, serving commodity k also incurs a transporta-
tion cost, which depends on Wk and on the path that is used to route it
from o(k) to d(k). Similarly to most HLPs, in the HNDPP all O/D paths
used to route served commodities must include at least one hub node and
at most three edges. Hence, solution networks contain no direct connections
between two non-hub nodes. For a served commodity k, let (o(k), i, j, d(k))
denote the path connecting o(k) and d(k). In this path it is required that i
(resp. j) be a hub to which o(k) (resp. d(k)) is assigned. Moreover, when
i 6= j the intermediate leg, {i, j}, must be associated with a hub edge. O/D
paths of the form (o(k), o(k), d(k), d(k)), using just one hub arc, may arise
only when both o(k) and d(k) are hub nodes. O/D paths with i = j do not
use any hub arc and consist solely of the collection and distribution legs, i.e.
(o(k), i, i, d(k)) (origin-hub-destination) with o(k) 6= i and d(k) 6= i. The per
unit transportation cost for routing commodity k via the path (o(k), i, j, d(k))
is defined as Fijk = (χdo(k)i + αdij + δdjd(k)), where the parameters χ and δ
reflect weight factors for collection and distribution, respectively.

The HNDPP consists of: (i) selecting a set of nodes to be served, (ii)
locating a set of hub facilities, (iii) activating a set of hub edges, (iv) se-
lecting a set of commodities to be served, both of whose O/D nodes have
been selected in (i) and, (v) determining the paths to route the selected com-
modities through the solution network, with the objective of maximizing the
difference between the total revenue obtained for serving the demand of the
selected commodities minus the sum of the setup costs for the design of the
network and the transportation costs for routing the commodities.

We next provide an MIP formulation for the first primary HNDPP, de-
noted as PO1, in which no service commitments are imposed. For i ∈ H,
we introduce binary location variables zi equal to 1 if and only if a hub is
located at node i, and for i ∈ N we define binary variables si equal to 1 if and
only if node i is served (i.e. activated as a non-hub node). For e ∈ EH , we
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define ye equal to 1 if and only if hub edge e is activated. Finally, for k ∈ K,
i, j ∈ H, let the routing variable xijk represent the fraction of commodity k
routed via arc (i, j) ∈ AH . When i = j, xiik = 1 indicates that commodity k
is routed through the path (o(k), i, d(k)) visiting only hub i and thus, does
not use any hub edge. Using these sets of variables, Alibeyg et al. (2016)
formulate the HNDPP as follows:

(PO1) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

−
∑
e∈EH

reye (1)

subject to si + zi ≤ 1 i ∈ H (2)∑
(i,j)∈AH

xijk ≤ so(k) + zo(k) k ∈ K (3)

∑
(i,j)∈AH

xijk ≤ sd(k) + zd(k) k ∈ K (4)

∑
j∈H

xijk +
∑

j∈H:i 6=j

xjik ≤ zi k ∈ K, i ∈ H (5)

xijk + xjik ≤ ye k ∈ K, e = {i, j} ∈ EH (6)

xijk ≥ 0 k ∈ K, (i, j) ∈ AH (7)

zi ∈ {0, 1} i ∈ H (8)

si ∈ {0, 1} i ∈ N (9)

ye ∈ {0, 1} e ∈ EH . (10)

The first term of the objective function is the net profit of the commodities
that are routed. The other terms represent the total setup costs of the hubs
that are chosen, the non-hub nodes that are selected to be served, and the hub
edges that are used. Constraints (2) guarantee that if a node is activated
as a hub then it is not activated as a served node. Constraints (3) and
(4) impose that the O/D nodes of each routed commodity are activated,
either as hub or served nodes. When o(k) or d(k) do not belong to H then
the right hand side of constraints (3) and (4) reduces to so(k) and sd(k),
respectively. Constraints (5) prevent commodities from being routed via non-
hub nodes, whereas constraints (6) activate hub edges. Finally, constraints
(7)–(10) define the domain for the decision variables. Finally, (1)–(10) uses
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|N | + |H| + |EH | binary variables, |K||AH | continuous variables, and |H| +
|K|(2 + |H|+ |EH |) constraints.

Even though (1)–(10) does not consider integrality conditions of the rout-
ing variables x, it always exist an optimal solution of (1)–(10) in which all
x variables are integral. This is a consequence of the lack of capacity re-
strictions on the amount of flow routed though the hub nodes and hub arcs.
For a given commodity, it may happen that two or more paths have the
same (minimum) transportation cost, which may cause the commodity to be
routed via more than one O/D path. However, the solution can always be
modified (without affecting the objective value) to use exactly one path for
every routed commodity on the solution network.

An extension of the above primary HNDPP, denoted as PO2, considers
service commitments that impose to serve any commodity whose O/D nodes
are both activated, even if this would reduce the total profit. An MIP for-
mulation for this more restrictive model can be obtained by adding to (1) -
(10) the following set of constraints (Alibeyg et al., 2016):

so(k) + zo(k) + sd(k) + zd(k) ≤
∑

(i,j)∈AH

xijk + 1 k ∈ K. (11)

Constraints (11) force to route any commodity where both its O/D nodes are
activated. PO2 has the same number of variables as PO1 but |K| additional
constraints. The effect of constraints (11) in the actual difficulty for solving
the problem is notorious. The results of Alibeyg et al. (2016) show that the
required CPU times for solving PO2 with a commercial solver are at least one
order of magnitude higher than those of PO1 for all considered benchmark
instances. As we will show later in Section 7, our algorithmic framework is
capable of considerably mitigating the effect of (11) in the CPU times.

4. Lagrangean Relaxation

Lagrangean relaxation (LR) is a well-known decomposition method that
exploits the inherent structure of the problems to compute dual bounds on
the value of the optimal solution. Pirkul and Schilling (1998), Elhedhli and
Wu (2010), and Contreras et al. (011b) provide some examples of successful
implementations of LR for obtaining tight bounds for various classes of HLPs.

Our algorithmic framework uses LR to obtain upper bounds of PO1 and
PO2. In the case of PO1 we relax the sets of constraints (5) and (6), whereas
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for PO2 we also relax the additional set of constraints (11). Hence, the
structure of the resulting Lagrangean function is very similar in both cases:
the domain is the same and only the objective functions differ. In both cases
the Lagrangean function can be decomposed in two subproblems: one of
them is trivial and the other one can transformed into a QBP. Due to the
structure of the cost coefficients, we show how the Lagrangean function can
actually be evaluated in polynomial time. We next provide the details of the
entire process for PO1 and then briefly describe how to proceed in a similar
fashion for PO2.

4.1. The Lagrangean function for PO1

When we relax constraints (5) and (6), and incorporate them to the
objective function of PO1, with weights given by a multiplier vector (λ, µ)
of appropriate dimension, we obtain the following Lagrangean function:

L1(λ, µ) = maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

−
∑
e∈EH

reye −
∑
k∈K

∑
i∈H

λik(
∑
j∈H

xijk +
∑

j∈H:i 6=j

xjik − zi)

−
∑

e={i,j}∈EH

∑
k∈K

µek(xijk + xjik − ye)

subject to (2)− (4), (7)− (10),

which is equivalent to

L1(λ, µ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi −
∑
e∈EH

reye

subject to (2)− (4), (7)− (10),

where

• P ijk =

{
(Rk − Fijk)Wk − λik − λjk − µ{i,j}k, if (i 6= j)
(Rk − Fiik)Wk − λik, if (i = j),

• f i = fi −
∑
k∈K

λik,

• re = re −
∑
k∈K

µek.
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Note that L1(λ, µ) can be decomposed in two independent subproblems,
one in the y space, that we denote Ly(µ), and another one in the (z, s, x)
space, that we denote Lz,s,x(λ, µ). The first subproblem reduces to

Ly(µ) = max

{
−
∑
e∈EH

reye : y ∈ {0, 1}|EH |

}
,

and an optimal solution can be obtained by inspection. That is, we set ye = 1
for all e ∈ EH with re < 0, and ye = 0 otherwise. Subproblem Lz,s,x(λ, µ)
can be stated as

Lz,s,x(λ, µ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi

subject to (2)− (4), (7)− (9).

We next show that Lz,s,x(λ, µ) can be reformulated as a QBP involving
only |N | binary variables.

4.1.1. Solution to Subproblem Lz,s,x(λ, µ)

Given (2), for each i ∈ H we can replace si+zi with a new binary variable
hi, with cost coefficient Fi = min

{
ci, fi

}
. For each i ∈ N \H we just define

hi = si with coefficient Fi = ci. We can now express Lz,s,x(λ, µ) as

Lh,x(λ, µ) = maximize
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈N

Fihi

subject to
∑

(i,j)∈AH

xijk ≤ ho(k) k ∈ K (12)

∑
(i,j)∈AH

xijk ≤ hd(k) k ∈ K (13)

hi ∈ {0, 1} i ∈ N.

Given that (12) and (13) imply that, in an optimal solution to Lh,x(λ, µ)
when both ho(k) = hd(k) = 1, commodity k will be routed via arc (ik, jk) ∈
arg max

{
P ijk : (i, j) ∈ AH

}
, provided P ikjkk > 0. This allows us to project

out the xijk variables and to rewrite Lh,x(λ, µ) only in terms of the h variables.
For each k ∈ K, let Qk = max

{
0,max(i,j)∈AH

{
P ijk

}}
and

Lh(λ, µ) = max

{∑
k∈K

Qkho(k)hd(k) −
∑
i∈N

Fihi : h ∈ {0, 1}|N |
}
.
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We note that the only difference between the above expression for Lh(λ, µ)
and a standard QBP formulation is that the former is stated on a directed
graph, whereas QBP is typically stated on an undirected graph. Indeed, this
difference can be easily overcome by redefining the cost coefficients as follows.
For each pair l,m ∈ N , with l < m let k, k̄ ∈ K denote the two commodities
with endnodes l and m, i.e. o(k) = l, d(k) = m, and o(k̄) = m, d(k̄) = l. By
setting Qlm = Qk + Qk, we finally obtain the following QBP reformulation
of Lz,s,x(λ, µ):

Lh(λ, µ) = max

{ ∑
l,m∈N :l<m

Qlmhlhm −
∑
i∈N

Fihi : h ∈ {0, 1}|N |
}
.

Although QBP is NP-hard in the general case, there are some particular
cases which are known to be polynomially solvable. Picard and Ratliff (1975)
show that when all cost coefficients of the quadratic term are non-negative,
the QBP reduces to a minimum cut problem in an auxiliary network. Given
that by definition Qlm ≥ 0 for all l,m ∈ N , l < m, for any feasible multiplier
vector (λ, µ) ≥ 0, Lh(λ, µ) can thus be evaluated in polynomial time. For
the sake of completeness, we next provide a sketch of the procedure to define
the auxiliary network used for solving Lh(λ, µ) as a minimum cut problem.
The reader is addressed to Picard and Ratliff (1975) for further details.

Let GAux = (V Aux, AAux) be a digraph where the set of nodes V Aux

contains the original nodes l ∈ N , denoted as vl, plus an artificial source s0

and an artificial sink sn. The set of arcs AAux is characterized as follows.
There is an arc (s0, vl) connecting the source with each l ∈ N of capacity∑

m∈N Qlm, if Fl ≥ 0, and 2(
∑

m∈N Qlm − Fl), otherwise. There is also an
arc (vl, sn) connecting each l ∈ N with the sink of capacity Fl, if Fl ≥ 0,
and

∑
m∈N Qlm − Fl, otherwise. For each pair l,m ∈ N with l < m there is

also an arc (vl, vm) with capacity Qlm. Finally, there is an arc (s0, sn) with
capacity K −

∑
l,m∈N :l<mQlm, where K =

∑
l,m∈N :l<mQlm.

Any (s0, sn)-cut in the above network can be associated with a solution h̄
to Lh(λ, µ) (and vice-versa) as follows. If, for a given l ∈ N , (s0, vl) does not
belong to the (s0, sn)-cut, then h̄l = 1 in the associated solution to Lh(λ, µ).
Moreover, the arcs of the cut of the form (vl, vm) correspond to the pairs
l,m ∈ N , l < n, where both h̄l = h̄m = 1. Furthermore, the value of the
cut is precisely the value of Lh(λ, µ) for the solution h̄ plus the constant K.
An optimal solution to Lh(λ, µ) can thus be obtained by finding a minimum
(s0, sn)-cut in GAux.

13



An optimal solution (z̄, s̄, x̄) to Lz,s,x(λ, µ) in the original space can be
retrieved from an optimal solution (h̄, ȳ) to Lh(λ

t, µt) as follows. Note first
that the only non-zero components of x̄ are associated with commodities
k ∈ K with h̄k = 1. For each such commodity, we set x̄ikjkk = 1 if P ikjkk > 0,
and 0 otherwise. As for the s variables, we set s̄i = h̄i for each i ∈ N \ H
such that Fi = ci, and 0 otherwise. Finally, we set z̄i = h̄i for all i ∈ H such
that Fi = fi, and 0 otherwise.

PROPOSITION 1. For a given vector of multipliers (λ, µ), the Lagrangean
function L1(λ, µ) can be solved in O(|K||AH |+ |N |3) time.

Proof The solution of Ly(µ) has complexity O(|EH |), which is dominated
by the evaluation of coefficients Qlm for l,m ∈ N for l < m, with complexity
O(|K||AH |). Given that |V Aux| = O(|N |) and |AAux| = O(|N |2), the solution
of Lz,s,x(λ, µ) can be obtained in O(|N |3) time using the max-flow algorithm
given in Orlin (2012) and the result follows. �

4.1.2. Solution to the Lagrangean Dual

In order to obtain the best upper bound for PO1 using L1(λ, µ) we solve
its associated Lagrangean dual problem

(D1) ZD1 = min
(λ,µ)≥0

L1(λ, µ) = Ly(µ) + Lh(λ, µ).

We use subgradient optimization to solve D1. The algorithm follows the
usual iterative scheme (λt+1, µt+1) = (λt, µt) + εtγ

t, where εt is the step
length and γt is a subgradient of L1 at (λt, µt). A subgradient of L1 at a
given point (λt, µt) can be easily obtained from an optimal solution (s̄, z̄, x̄, ȳ)
to L1(λt, µt). In particular,

γt =

(∑
j∈H

x̄ijk +
∑

j∈H:i 6=j

x̄jik − z̄i

)
i,k

, (x̄ijk + x̄jik − ȳe)i,j,e

 .

We update the step length according to εt = Λt(L1(λt, µt) − η)/||γt||2,
where η is a valid lower bound on the optimal value of PO1 and Λt is a given
parameter whose value is updated at certain iterations (see Section 7.1 for
the specific details of our implementation). Algorithm (1) summarizes the
subgradient optimization algorithm that we apply. The algorithm terminates
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when one of the following criteria is met: (i) all the components of the
subgradient are zero. In this case the current solution is proven to be optimal,
(ii) the difference between the upper and lower bounds is bellow a threshold
value, i.e., |ZD1 − Z∗| < ε, (iii) there is no improvement on the value of
the upper bound after niter consecutive iterations, and (iv) the maximum
number of iteration Itermax is reached.

Algorithm 1 Subgradient Optimization for PO1

Initialization
ZD1 = +∞; Initialize (λ0, µ0); Λ0

Let η be a lower bound on the optimal solution value
while Stopping criteria not satisfied do

Solve L1(λt, µt) and obtain an optimal solution (s̄, z̄, x̄, ȳ)
if L1(λt, µt) < ZD1 then

ZD1 ← L1(λt, µt)
end if
Compute the subgradient γt

Compute the step length εt ← Λt(L1(λt, µt)− η)/||γt||2
(λt+1, µt+1)← (λt, µt) + εtγ

t

t← t+ 1
end while

4.2. The Lagrangean Function for PO2

Similarly to PO1, in our LR of PO2 we relax (5) and (6), incorporating
them to the objective function with a multiplier vector (λ, µ). Moreover, we
also relax (11), weighted with a multiplier vector π. An important property
of this relaxation is that the domain of the Lagrangean function

L2(λ, µ, π) =
∑
k∈K

πk + max
∑
k∈K

∑
(i,j)∈AH

P ijkxijk −
∑
i∈H

f izi −
∑
i∈N

cisi −
∑
e∈EH

reye

s.t. (2)− (4), (7)− (10),

where

• P ijk =

{
(Rk − Fijk)Wk − λik − λjk − µ{i,j}k − πk, if (i 6= j)
(Rk − Fiik)Wk − λik − πk, if(i = j),

• ci = ci −
∑

k∈K:o(k)=i or d(k)=i

πk,
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• f i = fi −
∑
k∈K

λik −
∑

k∈K:o(k)=i or d(k)=i

πk,

• re = re −
∑
k∈K

µek,

remains the same as in L1(λ, µ) and the only difference is the objective func-
tion. It now consists of the constant

∑
k∈K πk, which does not appear in

L1(λ, µ) but is irrelevant for the optimization, and two terms, one in the y
space, which has exactly the same cost coefficients as in L1(λ, µ), and an-
other one in the (z, s, x) space, where the cost coefficients are now different
from those of L1(λ, µ). As before, Lz,s,x(λ, µ, π) can be transformed into
a QBP on an undirected graph with non-negative cost coefficients. Thus,
L2(λ, µ, π) =

∑
k∈K πk + Ly(µ) + Lz,s,x(λ, µ, π) can also be solved in polyno-

mial time by transforming Lz,s,x(λ, µ, π) into a min-cut problem.
Similarly to PO1, in order to obtain the best upper bound for PO2 using

L2(λ, µ, π) we solve its associated Lagrangean dual problem

(D2) ZD2 = min
(λ,µ,π)≥0

L2(λ, µ, π) =
∑
k∈K

πk + Ly(µ) + Lz,s,x(λ, µ, π).

We apply a subgradient optimization algorithm similar to Algorithm 1
for solving the Lagrangean dual. Details are omitted.

4.3. Lower Bounds from Primal Solutions

In this section we explain how feasible solutions are constructed to obtain
valid lower bounds for PO1 and PO2. In particular, we exploit the informa-
tion generated from the integer solutions to the Lagrangean duals at some
iterations of the corresponding subgradient optimization algorithms.

4.3.1. A Primal Heuristic for PO1

Let (s̄, z̄, x̄, ȳ) denote the solution to L1(λ, µ) at the current iteration.
Since in L1(λ, µ) the sets of constraints (5) and (6) are relaxed, the solution
(s̄, z̄, x̄, ȳ) may not be feasible for PO1. We next describe a simple heuristic
to obtain a feasible solution (ŝ, ẑ, x̂, ŷ) to PO1.

The initial solution is the outcome of L1(λ, µ) but with all routing vari-
ables at value zero, i.e., initially, (ŝ, ẑ, x̂, ŷ) = (s̄, z̄,0, ȳ). This solution con-
tains a set of open hubs, a set of served nodes, and a set of active hub
edges. Given that Ly(µ) and Lh(λ, µ) are independently solved, some hub
edges could be associated with closed hub nodes. In order to guarantee the
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feasibility of the edge variables ŷ, we close all hub edges that do not have
both end-nodes open as hubs. That is, for each e = {i, j} ∈ EH such that
ẑi = 0 or ẑj = 0, we set ŷe = 0. Finally, we select the set of commodities
to be served and their routing paths as follows. For each commodity k ∈ K
with both end-nodes activated, we identify the most “attractive” path among
the ones using open hub edges (and thus open hub nodes), and route com-
modity k through it only if it is profitable. That is, for each k ∈ K with
ŝo(k)+ẑo(k) = ŝd(k)+ẑd(k) = 1, let e(k) ∈ arg max {Rk − Fek : ŷe = 1, e ∈ EH}.
If Rk − Fe(k)k > 0, then x̂e(k)k = 1, and 0 otherwise.

4.3.2. A Primal Heuristic for PO2

To obtain feasible solutions to PO2 we apply a two phase heuristic. The
first phase is an adaptation of the heuristic applied to PO1. Since the quality
of the PO2 solutions produced by such first phase is usually quite weak, we
apply a second phase to improve the outcome of the first phase.

The first phase starts with (ŝ, ẑ, x̂, ŷ) = (s̄, z̄,0, ȳ), and then closes all
hub edges that do not have both end-nodes open as hubs. The set of
commodities to be served and their routing paths are selected as follows.
In order to satisfy constraints (11), for each commodity with both end-
nodes activated we identify the best path among the ones using open hub
edges, and route such commodity through it regardless if it is profitable or
not. That is, for each k ∈ K with ŝo(k) + ẑo(k) = ŝd(k) + ẑd(k) = 1, let
e(k) ∈ arg max {Rk − Fek : ŷe = 1, e ∈ EH} and set x̂ekk = 1 (independently
of the sign of Rk − Fekk). Let η̂ denote the objective value of (ŝ, ẑ, x̂, ŷ).

The second phase is a three-step procedure that aims at improving the
output of Phase 1 by: (i) activating additional hub edges, (ii) adding new
served nodes, and (iii) closing open hub nodes.

(i) For each non-activated hub edge e = {i, j} ∈ EH but with both
endnodes open as a hubs, we compute the variation in the objective
function if hub edge e were activated and the commodities re-routed
accordingly. Then, the hub edge is activated if the estimation is posi-
tive. That is, we consider in an arbitrary order each e = {i, j} ∈ EH
with ŷe = 0 and ẑi = ẑj = 1, and for each k ∈ K we set

∆k =


max{Rk − Fijk, 0} if

∑
(i′,j′)∈A x̂i′j′k = 0,

max{Fekk − Fijk, 0} if x̂ekk = 1,

0 otherwise.
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If Γe =
∑

k∈K ∆k − rij > 0, then ŷe = 1 and η̂ = η̂ + Γe.

(ii) For each node i ∈ N that is not served, we compute the variation in the
objective function if node i was served and its associated commodities
routed. The node is then served if the estimation is positive. We denote
as Â = {(i′, j′) ∈ A | ŷi′j′ = 1} the set of arcs whose associated hub
edges are active in the current solution. We consider in an arbitrary
order each i ∈ N with ŝi = 0, and for each k ∈ K we define

∆k =


max{Rk −min(i′,j′)∈Â{Fi′j′k}, 0}, if o(k) = i and ŝd(k) + ẑd(k) = 1,

max{Rk −min(i′,j′)∈Â{Fi′j′k}, 0}, if d(k) = i and ŝo(k) + ẑo(k) = 1,

0 otherwise.

If Γi =
∑

k∈K ∆k − ci > 0, then ŝi = 1 and η̂ = η̂ + Γi.

(iii) For each hub i ∈ H that is open we compute the variation in the
objective function if hub i was closed and its associated commodities
re-routed. The hub node is then closed if the estimation is positive.
We denote as Ê(i) = {{i′, j′} ∈ E | ŷi′j′ = 1, and i′ = i or j′ = i} the
set of active hub edges incident to i. We consider in an arbitrary order
each i ∈ N with ẑi = 1, and for each k ∈ K we define

∆k =

{
−(Rk − Fi(k)j(k)k), if x̂i(k)j(k)k = 1 and {i(k), j(k)} ∈ Ê(i),

0, otherwise.

If Γi =
∑

k∈K ∆k + fi +
∑

(i′,j′)∈Ê(i) ri′j′yi′j′ > 0, then ẑi = 0, ŷe = 0 for

all e ∈ Ê(i), and η̂ = η̂ + Γi.

5. Variable Elimination Techniques

One of the main challenges of the MIP formulations we use to model PO1

and PO2 are the very large number of variables and constraints that these
require, even for small-size instances. By slightly increasing the size of the
instances, the number of variables in the formulations becomes so large that
considerable amounts of computing time and memory are required to solve
them with a commercial solver. In the previous sections, we have presented
LRs whose Lagrangean functions can be solved efficiently in polynomial time.
Still, any reduction on the size of the formulations is highly beneficial for at-
taining a higher efficiency. In our algorithmic framework we reduce the size
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of the instances by means of three effective procedures: (i) Preprocessing,
valid only for PO1, which is applied prior to the solution of D1, and aims
at eliminating variables and constraints; (ii) Reduction Tests, valid for both
PO1 and PO2, which eliminate variables based on the information obtained
from the Lagrangean functions; and, (iii) Post-processing, which further elim-
inates variables, both for PO1 and PO2, using jointly information from the
reduction tests and valid lower bounds.

5.1. Preprocessing

In the case of PO1, it is possible to a priori eliminate routing variables x
that will not make part of an optimal solution by using the following property.

Property 1. [Alibeyg et al. (2016)] There is an optimal solution to formu-
lation (1) – (10) where xijk = 0, for all k ∈ K and (i, j) ∈ AH , with
Rk − Fijk ≤ 0.

The use of Property 1 in PO1 allows to eliminate all routing variables with
unprofitable arcs. That is, for each k ∈ K we set xijk = 0 for all (i, j) ∈ AH
such that Rk − Fijk ≤ 0. Since we are assuming that routing costs are
symmetric, if (i, j) ∈ AH is unprofitable so is (j, i) ∈ AH . Thus, when we
set xijk = 0, we not only set xjik = 0, but also eliminate the corresponding
constraint (6), as it becomes unnecessary. Hence, for each k ∈ K we restrict
the set of potential candidate arcs for routing it to the arcs that are profitable
for this commodity, Ak = {(i, j) ∈ AH | Rk − Fijk > 0}. Let also Ek denote
the corresponding set of profitable hub edges for k.

Since the above elimination affects variables and constraints of PO1, it can
also be extended to the Lagrangean function L1(λ, µ), where only arcs and
edges of Ak and Ek, respectively, will now be considered. We also note that
the reduction on the number of constraints (6) of PO1 causes a significant
reduction on the number of Lagrangean multipliers µ in L1(λ, µ).

An important consequence of (11), is that Property 1 does not hold for
PO2 as all the commodities whose O/D nodes are active must be served,
independently of whether or not there are profitable arcs for them.

5.2. Reduction Tests

Another way of reducing the size of the formulations is to develop tests
to eliminate variables based on information generated from the LR. We next
develop two such tests based on sufficient conditions that determine if a
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potential hub will be closed or if a hub edge will not be activated in an
optimal solution of a given HNDPP instance. These tests are valid for both
PO1 and PO2, since they are based on the information produced by their
respective Lagrangean functions L1 and L2. We will not distinguish the case
of PO1 from the case of PO2, since the structure of the terms that constructs
the Lagrangean functions L1(λ, µ), and L2(λ, µ) is exactly the same and the
rationale of the tests is also the same in both cases. Similar reduction tests
have been successfully applied to other HLPs (see Contreras et al., 011a,b).

5.2.1. Elimination of Potential Hub Nodes

The idea of this test is to use the Lagrangean function to obtain upper
bounds on the profit that would be obtained in the original problem if a
given node l ∈ H is chosen to become a hub. If this estimated profit is less
than the value of the best known solution to the original problem, then node
l will not be a hub in any optimal solution. Let L̂h(λ, µ, Sz) denote the value
of Lh(λ, µ) when restricted to a set of potential hub nodes Sz ⊆ H, and its
associated set of hub arcs AS = {(i, j) ∈ AH : i, j ∈ Sz}. That is,

L̂h(λ, µ, Sz) = maximize
∑
k∈K

Qkho(k)hd(k) −
∑
i∈N

Fihi

subject to hi ∈ {0, 1} i ∈ N,

where Qk = max
{

0,max(i,j)∈AS

{
P ijk

}}
. Let L̂lh(λ, µ, Sz) denote the optimal

value of L̂h(λ, µ, Sz) with the additional constraint that hub l is open, i.e.
zl = 1. The only difference between L̂h(λ, µ, Sz) and L̂lh(λ, µ, Sz) is that,
in the latter, node l is now a priori activated as an open hub. This means
that now Fl = {fl} and hl = 1. The following result can be used to perform
variable elimination tests on hub location decisions.

PROPOSITION 2. Let η be a valid lower bound on the optimal value of PO1

(resp. PO2), Sz ⊆ H a given set of potential hub nodes, l ∈ Sz a specific
potential hub node, and (λ, µ) a multiplier vector. If ∆l(λ, µ, Sz) = Ly(µ) +

L̂lh(λ, µ, Sz) < η, then zl = 0 in any optimal solution.

Proof The result follows since ∆l(λ, µ, Sz) is an upper bound on the ob-
jective function value of any solution in which a hub is located at node l.
Therefore, if ∆l(λ, µ, Sz) < η, no optimal solution will have an open hub at
l ∈ Sz, so zl = 0. �
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We use this result as follows. The subgradient optimization is initialized
with all possible nodes as candidate hub nodes, that is Sz = H. Once the
deviation between the upper and lower bounds becomes smaller than a given
threshold εTest after a number of iterations of the subgradient optimization
algorithm, we apply the reduction test for each l ∈ Sz that is not active in the
current subgradient optimization iteration, i.e. s̄l = z̄l = 0, every niterTest1

iterations. If ∆l(λ, µ, Sz) < η, we eliminate l from the set of candidate hub
nodes, i.e. Sz ← Sz \ {l}. According to Proposition 2, by applying the test
in this way we ensure that Sz always contains an optimal set of hubs.

When some node is eliminated from Sz, not only the associated zl variable
is eliminated from the LR, but also several routing variables xijk associated
with node l. This plays an important role in the computational complexity
for solving Lz,s,x(λ, µ), as the running time is now dependent of the size of AS,
instead of AH . That is, the Lagrangean functions L1(λ, µ) and L2(λ, µ, π) can
now be solved in O(|K||AS| + |N |3) time. Another important consequence
of eliminating one variable zl is that we can remove |K| constraints (5) from
the solution process, which in turn significantly reduces the solution space of
the Lagrangean dual problems D1 and D2.

5.2.2. Elimination of Potential Hub Edges

An immediate consequence of the elimination of potential hub nodes is
that if the two end-nodes of a hub edge have been eliminated, then the hub
edge can also be eliminated. That is, we set ye = 0 for all e = {i, j} ∈ EH
where zi and zj have been set to zero.

Additional hub edges can be further eliminated by estimating an upper
bound on the objective function value if a hub edge is activated. This bound
can be easily computed after setting at value one the variable associated with
the candidate edge in Ly(µ). In particular, for a set of candidate hub edges

Sy ⊆ EH , and a hub edge ē ∈ Sy, let L̂ēy(µ, Sy) denote the optimal value of
Ly(µ) restricted to Sy when hub edge ē has been activated

L̂ēy(µ, Sy) = −rē −
∑

e∈Sy\{ē}

min{0, re}.

The following result can be used to perform reduction tests on hub edge
activation decisions.

PROPOSITION 3. Let η be a valid lower bound on the optimal value of PO1

(resp. PO2), Sy ⊆ EH a given set of potential hub edges, ē ∈ Sy a spe-
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cific potential hub edge, and (λ, µ) a multipliers vector. If ∆ē(λ, µ, Sy) =

L̂ēy(µ, Sy) + Lz,s,x(λ, µ) < η, then yē = 0 in any optimal solution.

Proof The result follows since ∆ē(λ, µ, Sy) is an upper bound on the ob-
jective function value of any solution in which a hub edge ē is activated.
Therefore, if ∆ē(λ, µ, Sy) < η, hub edge ē will not be activated in any opti-
mal solution. �

Reduction tests for hub edges are applied immediately after reduction
tests for hub nodes. Let EH0 denote the set of edges eliminated in the first
phase of the hub elimination test. For the second phase, we set Sy = EH\EH0 ,
and apply the elimination test to each candidate hub edge ē in the updated
set Sy. Then, if ∆ē(λ, µ, Sy) < η, we eliminate ē from the set of candidate
hub edges, i.e. Sy ← Sy \ {ē}. According to Proposition 3, applying the test
in this way ensures that Sy always contains an optimal set of hub edges.

In addition, once a ye variable has been eliminated, we can also remove
|K| constraints (6) from the solution process, which causes a considerable
reduction of the solution space of the Lagrangean dual problems D1 and D2.

5.3. Post-processing

This is a simple procedure where we use information obtained from the
reduction tests for hub edges to update the set of candidate hub edges Ak,
so as to further eliminate additional routing variables xijk. In particular, for
each k ∈ K, we remove from its set of profitable edges Ak any hub edge that
has been fixed to zero during the hub edge elimination test. That is, any
variable xijk associated with an arc removed from Ak is permanently set at
value 0. Given that the amount of time for updating this set is significant,
this procedure is only applied every niterTest2 applications of the tests.

Algorithm (2) summarizes the enhanced subgradient optimization algo-
rithm with reduction tests. Note that the primal heuristic described in the
previous section is applied every niterheur iterations of the subgradient algo-
rithm.

6. An Exact Solution Algorithm

In this section we present the complete algorithmic framework used for
solving problems PO1 and PO2 to optimality. Its core component is a branch-
and-bound method in which, at every node of the enumeration tree, we obtain

22



Algorithm 2 Subgradient Optimization with Reduction Tests

Initialization
Initialize ZD1 ←∞; Sz ← H; Sy ← EH ; (λ0, µ0); Λ0

Let η be a lower bound on the optimal solution value
Apply preprocessing to initialize Ak and Ek sets

while Stopping criteria not satisfied do
Solve L1(λt, µt, Sz, Sy) and obtain an optimal solution (s̄, z̄, x̄, ȳ)
if L1(λt, µt, Sz, Sy) < ZD1 then

ZD1 ← L1(λt, µt, Sz, Sy)
end if
if t mod niterheur = 0 then

Apply primal heuristic and update η
end if
if (|ZD1 − η|/η)× 100 < εtest then

if t mod niterTest1 = 0 then
for l ∈ Sz do

if ∆l(λ, µ, Sz) < η then
Sz ← Sz \ l

end if
end for
for ē ∈ Sy do

if ∆ē(λ, µ, Sy) < η then
Sy ← Sy \ ē

end if
end for

end if
if t mod niterTest2 = 0 then

Apply post-processing to update Ak sets
end if

end if
Compute the subgradient γt

Compute the step length εt ← Λt(L1(λt, µt)− η)/||γt||2
(λt+1, µt+1)← (λt, µt) + εtγ

t

t← t+ 1
end while
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lower and upper bounds by using the subgradient optimization algorithms
and the primal heuristics presented in Section 4. We also apply a partial
enumeration phase to enhance the application of the reduction tests. This
phase is applied at the beginning of the branch-and-bound procedure right
after solving the root node. It is particularly useful to reduce the number
of variables to branch on, and to reduce the size of the subproblems in the
nodes of the tree. Contreras et al. (011a,b) provide some examples of success-
ful implementations of branch-and-bound algorithms based on Lagrangean
bounds used to solve HLPs. We next describe the partial enumeration and
then the overall branch-and-bound algorithm.

6.1. Partial Enumeration

The partial enumeration works as follows. Let H0 and H1 denote the set
of potential hubs that have been already fixed at value 0 and 1, respectively.
Since, the partial enumeration is applied after solving the root node, initially
we have H0 = H \Sz and H1 = ∅. Then, for each hub not yet considered i ∈
H \ (H0 ∪H1), we temporarily fix zi = 1 and solve the resulting Lagrangean
dual problem using an iteration limit of Itermax = 80. If the resulting upper
bound ub1

i is smaller than the current best lower bound, we set zi = 0 (as
well as the the related y variables) and we update the set H0, accordingly.
Otherwise, we temporarily fix zi = 0 and solve the resulting Lagrangean
function. If the obtained upper bound ub0

i is smaller than the current best
lower bound, we set zi = 1 and update the set H1. At the end of the partial
enumeration we re-optimize the Lagrangean dual problem using an iteration
limit of Itermax = 1, 000 to further improve the bound of the root node. The
partial enumeration phase is summarized in Algorithm 3.

6.2. Branch and Bound

We now present a branch-and-Bound algorithm in which valid lower and
upper bounds are constructed at each node of the enumeration tree with the
proposed LR. The tree is structured in three levels: the first level where we
branch on the z variables (hub nodes); the second level where we branch on
the s variables (served nodes); and a third level, where we branch on the
y variables (hub edges). Each level is explored according to a depth first
search policy in which the 1-branch is explored first. No subsequent level
is explored until all the nodes of the previous level have been explored. We
use three standard rules for pruning nodes: i) pruning by infeasiblity (empty
partition), ii) pruning by optimality (the optimal solution to the Lagrangean
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Algorithm 3 Exact Algorithm for PO1: Partial Enumeration Phase

Require: 1: (Solve root node)
Solve D1 with Algorithm 2
Initialize η ← ZD1 ; H

0 ← H \ Sz; H1 = ∅
Let η be the best lower bound obtained with Algorithm 2

Require: 2: (Partial enumeration)
for i ∈ H \ (H0 ∪H1) do

Solve D1 with zi = 1 to obtain ub1
i

if ub1
i < η then
H0 ← H0 ∪ i

else
Solve D1 with zi = 0 to obtain ub0

i

if ub0
i < η then
H1 ← H1 ∪ i

end if
end if

end for
Apply post-processing to update Ak sets
Resolve D1 with Algorithm 1 to update η
if (|η − η|/η)× 100 > ε then

Go to Step 3
else

Stop with an ε-optimal solution
end if

dual is feasible for the original problem), and iii) pruning by bound (upper
bound of node is strictly smaller than best known lower bound).

The strategy for selecting of the branching variable at each node of the
first level is guided by the output of the partial enumeration. In particular,
for each potential hub node not yet fixed i ∈ H \ (H0 ∪ H1), we compute
δi = min{ub0

i , ub
1
i }. At any point during the first level, the branching variable

zj is the selected as j ∈ arg max{δi | i ∈ H \ (H0 ∪H1)}.
After finishing branching on the z variables, we continue branching on

the s variables. For each active node at the end of the first level, we set
si = 0 for all i ∈ H1, and continue branching on the remaining si variables
with i ∈ N \H1. During the second level, branching variables are arbitrarily
selected. If some nodes remain active after completing the branching on the
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z and s variables, then the branching on the hub edge variables y begins.
For each active node at the end of the second level, we set ye = 0 for all
e ∈ H0×H0. During the third level, branching variables are also arbitrarily
selected. Given that the Lagrangean dual problems are only approximately
solved with Algorithm 1, it may happen that there are some active nodes
after finishing branching in the third level. In this case, the remaining routing
subproblems can be efficiently solved to optimality as described in Section
4.3. Finally, at each node of the enumeration tree, we use the optimal dual
solution to the Lagrangean dual of its parent node, as the initial solution to
the current Lagrangean dual, instead of starting from scratch. The overall
branch-and-bound phase is summarized in Algorithm 4.

7. Computational Experiments

We have run extensive computational experiments to analyze and com-
pare the performance of the Lagrangean relaxation, the reduction tests and
the exact algorithm, both for PO1 and PO2. All algorithms were coded in
C and run on an HP station with an Intel Xeon CPU E3-1240V2 processor
at 3.40 GHz and 24 GB of RAM under Windows 7 environment. In all the
experiments the maximum CPU time was set to 86,400 seconds (one day).

The benchmark instances we have used for our computational study are
the same we used in Alibeyg et al. (2016). Most of the data comes from the
well-known CAB data set of the US Civil Aeronautics Board and has been ob-
tained from http://www.researchgate.net/publication/269396247 cab100 mok.
This data provides Euclidean distances dij between 100 cities in the US
and the values of the service demand Wk between each pair of cities. We
have considered instances with n ∈ {25, 30, 40, 50, 60, 70, 80, 90, 100} and
α ∈ {0.2, 0.5, 0.8}. Since the CAB instances do not provide setup costs fi for
opening hubs, we use the ones generated by de Camargo et al. (2008). For the
remaining missing information, we use the following additional data that we
generated for the computational experiments of Alibeyg et al. (2016). The
setup costs ci for served nodes are ci = νfi, where ν = 0.1 unless otherwise
stated. The setup costs for activating hub edges are re = τ(fi + fj)/2, where
τ ∈ {0.3, 0.6, 0.4} is a parameter used to model the increase (decrease) in
setup costs on the hub edges when considering smaller (larger) discount fac-
tors α. The revenues Rk for routing commodities are randomly generated as
Rk = ϕ

∑
(i,j)∈AH

Fijk/|AH |, where ϕ is a continuous random variable follow-

ing a uniform distribution ϕ ∼ U [0.25, 0.35]. The collection and distribution
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factors are χ = δ = 1.

7.1. Implementation Details

After some fine-tuning, we set the following parameter values for the
subgradient optimization algorithm. The maximum number of iterations,
Itermax, is 3,000 at the root node, 80 at each application of the partial enu-
meration, and 1,000 in the re-optimization after the partial enumeration. At
each node of the branch and bound tree we set Itermax = 200. The addi-
tional parameters that are used for the termination criteria of the subgradient
optimization are the following: the threshold between the upper and lower
bounds is ε = 10−6 (termination criterion ii); and the number of consecu-
tive iterations without improvement is niter = 1, 500 (termination criterion
iii). We set (λ0, µ0, π0) = (95, 85, 85) as the initial multipliers vector. The
parameter Λt that is used in the computation of the step length is initialized
to 7 and halved every 500 iterations, provided that the % gap is less than
50%, and is reset to its initial value whenever it becomes smaller than 2. We
apply the heuristics every 10 iterations of the subgradient algorithm. We use
η = 0 as the initial lower bound. This value is updated and recorded for
further applications of the subgradient and the elimination tests, whenever
the heuristic improves the incumbent solution. We apply the elimination
tests every niterTest1 = 100 and iterations of subgradient optimization and
the post-processing every niterTest2 = 700 applications of the tests. Both the
tests and post-processing are only applied if the percentage gap between the
upper and lower bounds is below the threshold εTest = 5%.

7.2. Comparison of the Exact Algorithmic Framework and CPLEX

We next analyze and compare the performance of the general purpose
solver CPLEX 12.6.3 using a traditional (deterministic) branch-and-bound
algorithm and our exact algorithmic framework for PO1 and PO2. The
application of CPLEX to PO1 and PO2 is referred to as CPLEX1 and
CPLEX2, respectively, whereas our exact algorithms for PO1 and PO2 are
referred to as BB1 and BB2, respectively. All parameters have been set to
their default values both in CPLEX1 and CPLEX2. It is worth mentioning
that, similar to Alibeyg et al. (2016), Property 1 is also applied to CPLEX1.

Figures 1 and 2 give performance profiles of CPLEX1 (dotted line) and
BB1 (solid line), and of CPLEX2 (dotted line) and BB2 (solid line), respec-
tively. In each figure, the horizontal axis refers to computing times while the
vertical axis refers to number of instances. The points (x, y) depicted in the
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lines on each figure indicate the total number of instances y optimally solved
within the computing time x. In general, small size instances can be solved
rather fast both with CPLEX and our exact algorithms, but the performance
decreases as the sizes of the instances increase. This is why in the two lines
depicted in each figure the vertical values increase fast at the beginning but
slow down after a while. Throughout the considered one-day time interval,
BB1 is consistently better than CPLEX1. Moreover, within the time limit,
BB1 is able to optimally solve all 27 instances, whereas CPLEX1 only solves
18. The effect of the additional set of constraints (11) on the difficulty for
solving PO2 is evident, and both CPLEX2 and BB2 are slower than their re-
spective counterparts for PO1. In any case, BB2 still outperforms CPLEX2

and, within the time limit, it is able to optimally solve 21 instances instead
of the 15 instances optimally solved by CPLEX2.
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Figure 1: Performance profile of CPLEX and BB1 for PO1.
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Figure 2: Performance profile of CPLEX and BB2 for PO2.

Tables 1 and 2 give information of the bounds at the root nodes and
of the complete enumeration trees of the compared solution methods for
PO1 and PO2, respectively. The first two columns of each table give some
instances data: α, the discount factor on hub edges, and |N |, the number of
nodes. The next two columns, under the heading % Dev, give the percentage
deviations of the upper bounds produced by the employed relaxations: Linear
Programming (LP) in the case of CPLEX and Lagrangean in our proposed
solution algorithms. These deviations have been computed as 100(vRP −
v∗)/v∗, where vRP denotes the upper bound produced by the relaxed problem
(LP or Lagrangean) and v∗ the optimal or best-known value. The next
two columns under the header Nodes give the number of nodes explored
in the enumeration trees. The three columns under the header Time (sec)
give computing times in seconds. The first of these columns gives the total
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time consumed by CPLEX, and the other two refer to our exact solution
algorithms: LR for the computing time for solving the Lagrangean Dual at
the root node and BB for the overall time needed to optimally solve each
instance. Finally, the last two columns RT and PE give the percentage of
hubs fixed with the reduction tests (see Section 5.2) and with the partial
enumeration (see Section 6.1), respectively. That is, the entries of these
columns are computed as 100(FH/|H|), where FH is the number of hubs
fixed in each case. The entries corresponding to instances that could not be
handled by CPLEX because of insufficient memory are filled with the text
mem. When an instance could not be solved to optimality within the time
limit, the corresponding entry in the column of the computing times is time
followed by the percentage optimality gap at termination, in parenthesis.

The results of Table 1 confirm the superiority of BB1 over CPLEX1. On
the one hand, even if formulation (1)-(10) produces, in general, very tight
LP bounds, it has a very strict limitation in terms of the size of the instances
that can be handled by CPLEX1. It is true that the LP gap of CPLEX1 is
always 0.00% for the 18 instances with up to 70 nodes. However, the quality
of these bounds contrasts with the insufficiency of the 24 GB of memory
available: none of the remaining nine instances with 80-100 nodes could even
be uploaded to the CPLEX solver. In contrast, our Lagrangean Dual D1 is
highly effective in all cases, as it is able to produce tight bounds for all 27
instances using only 2 GB of memory for the largest considered instances with
up to 100 nodes. In some cases achieving convergence when solving D1 was
very difficult, and the actual upper bound ZD1 could not be attained. This
explains why in some cases % Dev is 0.00 for LP, but it is strictly positive for
LR. Still, the bounds we could obtain with D1, together with the quality of
the heuristic applied within subgradient optimization, assess its effectiveness.
The optimality of four out of the 27 PO1 instances was already proven after
solving D1 at the root node. For these instances, the heuristic applied within
subgradient optimization produced a feasible solution with the same value as
that of the upper bound. For 16 and seven of the remaining 23 instances, the
percent deviation after solving D1 was below 0.5% and 1.46%, respectively.

The columns under Time (sec) relative to D1 and BB1 confirm that these
good results were obtained with a small computing effort. On the one hand,
BB1 is able to solve all 27 instances to proven optimality within the CPU
time limit, while CPLEX1 is able to solve only instances with up to 70 nodes.
On the other hand, BB1 is, in general, much faster than CPLEX1 on the
18 instances that could be solved by CPLEX1, particularly for the instances
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α |N | % Dev Nodes Time (sec) % Fixed hubs

LP LR CPLEX BB CPLEX LR BB RT PE

0.2

25 0.00 0.00 0 0 3.00 1.80 1.80 0.00 0.00

30 0.00 0.00 0 0 9.64 5.63 5.63 0.00 0.00

40 0.00 0.04 0 0 126.12 35.78 45.66 0.00 100.00

50 0.00 0.11 0 0 513.20 81.94 120.31 0.00 100.00

60 0.00 0.16 0 160 2370.97 181.69 349.34 0.00 98.33

70 0.00 0.27 0 218 10460.44 391.55 850.60 0.00 98.57

80 mem 0.26 mem 340 mem 736.90 1641.43 0.00 98.75

90 mem 0.36 mem 1318 mem 1298.37 4129.42 1.11 97.78

100 mem 0.64 mem 6738 mem 1970.64 19048.79 0.00 90.00

0.5

25 0.00 0.00 0 0 1.60 0.36 0.36 8.00 8.00

30 0.00 0.00 0 0 4.55 3.85 3.85 13.33 13.33

40 0.00 0.03 0 0 21.53 13.67 19.08 15.00 100.00

50 0.00 0.10 0 0 75.90 45.63 59.83 18.00 100.00

60 0.00 0.13 0 162 309.06 110.09 189.35 18.33 98.33

70 0.00 0.27 0 570 1006.20 248.81 626.97 7.14 97.14

80 mem 0.40 mem 600 mem 446.79 1170.51 12.50 92.50

90 mem 1.46 mem 3676 mem 634.52 14824.07 0.00 67.78

100 mem 1.28 mem 3666 mem 1161.68 17537.49 1.00 77.00

0.8

25 0.00 0.02 0 0 1.36 1.83 2.34 24.00 100.00

30 0.00 0.01 0 0 3.62 3.42 4.71 20.00 100.00

40 0.00 0.03 0 0 15.42 9.61 13.55 22.50 100.00

50 0.00 0.36 0 128 44.93 22.09 43.13 24.00 94.00

60 0.00 0.27 0 132 121.70 46.91 100.51 25.00 96.67

70 0.00 0.51 0 166 293.20 155.21 386.88 2.86 85.71

80 mem 0.53 mem 792 mem 267.48 1085.56 5.00 88.75

90 mem 0.88 mem 24214 mem 471.32 20789.11 6.67 88.89

100 mem 0.87 mem 52372 mem 698.48 58546.99 11.00 89.00

Table 1: Results of exact algorithm using CAB instances for PO1

with the smallest discount factor α = 0.2. Note that BB1 is faster than
CPLEX1 in 15 of out of the 18 such instances. Finally, the last two columns
of Table 1 assess the effectiveness of the reduction tests and, particularly,
of the partial enumeration: in 21 benchmark instances it was possible to fix
more than 80% of the hubs. The side effect of the good performance of these
tests is that no enumeration is required in 11 out of the 27 tested instances.

The results of Table 2 confirm that, as mentioned, solving PO2 is more
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α |N | % Dev Nodes Time (sec) % Fixed hubs

LP LR CPLEX BB CPLEX LR BB RT PE

0.2

25 0.00 0.00 0 0 25.15 28.23 28.23 12.00 12.00

30 0.00 0.07 0 30 130.19 61.34 81.31 13.33 93.33

40 0.00 0.20 0 166 1162.89 486.23 735.45 2.50 95.00

50 0.00 0.19 0 150 5557.70 552.99 1153.80 4.00 98.00

60 0.00 0.71 0 872 37065.80 7015.70 13311.15 0.00 83.33

70 mem 0.97 mem 2610 mem 7550.15 57608.85 0.00 64.29

80 mem 1.15 mem 259 mem 15347.87 time (0.02) 0.00 0.00

90 mem 1.40 mem 335 mem 27938.78 time (0.92) 43.33 47.77

100 mem 1.44 mem 573 mem 14092.6 time (0.35) 0.00 64.00

0.5

25 0.00 0.04 0 0 10.24 21.04 23.32 40.00 100.00

30 0.00 0.03 0 0 31.81 41.99 46.45 36.67 100.00

40 0.00 0.14 0 0 216.29 138.28 162.76 37.50 100.00

50 0.00 0.29 0 100 1364.90 379.20 530.78 42.00 94.00

60 0.00 0.39 0 0 8339.37 1326.02 1526.58 36.67 100.00

70 mem 0.87 mem 524 mem 3654.87 9727.55 27.14 75.71

80 mem 0.91 mem 622 mem 7117.06 15128.05 0.00 85.00

90 mem 4.02 mem 175 mem 10881.89 time (2.77) 0.00 12.22

100 mem 3.74 mem 54 mem 18334.13 time (3.17) 0.00 17.00

0.8

25 0.00 0.04 0 0 7.06 18.40 19.83 44.00 100.00

30 0.00 0.02 0 0 17.87 25.64 28.32 50.00 100.00

40 0.00 0.05 0 34 88.42 125.79 141.74 45.00 95.00

50 0.00 0.11 0 0 305.75 252.98 280.06 52.00 98.00

60 0.00 0.09 0 0 805.18 420.89 453.19 53.33 100.00

70 mem 0.38 mem 198 mem 1259.86 1690.30 50.00 97.14

80 mem 0.68 mem 220 mem 3931.77 5099.68 42.50 93.75

90 mem 1.05 mem 8366 mem 5122.81 83735.91 0.00 93.33

100 mem 1.04 mem 11174 mem 8995.96 time (0.61) 42.00 88.00

Table 2: Results of the exact algorithm for PO2 with CAB instances

challenging than solving PO1 both for CPLEX and for our exact algorithmic
framework. In any case, the superiority of our exact algorithm over CPLEX
becomes even more evident for PO2 than for PO1. In particular, with the
24 GB of memory available, CPLEX2 could only handle the 15 instances
with up to 60 nodes, all of which were optimally solved at the root node.
However, it was not possible to even upload to CPLEX any of the remaining
12 instances with 70-100 nodes. The reason for which CPLEX2 could handle
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fewer instances than CPLEX1 is that Property 1 no longer applies to PO2

so, for a given instance, the actual size formulation (1)-(11) is considerably
larger than that of the PO1 formulation (1)-(10). Despite the fact that
Property 1 no longer applies to the PO2 formulation (1)-(11), D2 could be
optimally solved for all 27 instances using only 3 GB of memory, producing
percentage deviations %Dev smaller than 1% for 20 of the instances, and
smaller than 4.02% for the remaining 6 instances. Moreover, BB2 was able
to solve to optimality 21 benchmark instances within the time limit of 86,400
seconds. For the remaining six instances the percentage optimality gaps at
termination (given in parentheses under the column Time (sec)) never exceed
3.17%. The effectiveness of the partial enumeration and the reduction tests
is higher in PO2 than in PO1. This effectiveness is particularly noticeable for
the instances with higher values of α. Altogether, the partial enumeration
was able to fix all the hubs in 7 instances, and the reduction tests fixed more
than 40% of the hubs in 11 additional instances.

We complete the information reported and discussed above, by analyzing
in detail the performance of each of the steps of the enumeration trees of
BB1 and BB2. In particular, Tables 3 and 4 show additional information of
the partial enumeration at the root node, as well as of each of the branching
levels, namely branching on hubs (z variables), branching on served nodes (s
variables) and branching on hub edges (y variables). The first two columns
in each table give the discount factor α, and the number of nodes |N | of
each instance. The next three columns under the heading of Nodes depict
the exact number of nodes explored at each of the levels of the enumeration
trees: enumeration on the hub variables (z), enumeration on the served nodes
variables (s), and enumeration on the hub edges variables (y). The next five
columns, under the heading Time (sec), indicate the computing times, in
seconds, consumed at each of the following steps: root node, partial enumer-
ation, branching on z, branching on s, and branching on y. Similarly, the
last four columns under the heading %Dev give the percent deviation of the
best-known solution at the end of each step relative to the optimal (or best-
known solution). These deviations have been computed as 100(v − v∗)/v∗

where v is the upper bound at the end of each level, and v∗ denotes the
optimal or best-known value for each instance.

Table 3 further confirms the effectiveness for PO1 of Property 1 and of
the partial enumeration at the root node, which allow fixing hubs and also
eliminating hub edges. Note that, particularly for smaller values of α, the
enumeration trees of BB1 generate very few nodes at the first level (z) and
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α |N | Nodes Time (sec) % Dev

z s y Root PE z s y Root PE z s

0.2

25 0 0 0 2 0 0 0 0 0.00 0.00 0.00 0.00

30 0 0 0 6 0 0 0 0 0.00 0.00 0.00 0.00

40 0 0 0 36 9 0 0 1 0.04 0.00 0.00 0.00

50 0 0 0 82 36 2 0 0 0.11 0.03 0.00 0.00

60 2 104 54 182 106 7 36 18 0.16 0.06 0.06 0.01

70 2 146 70 392 322 13 86 38 0.27 0.05 0.05 0.01

80 2 220 118 737 588 21 202 92 0.26 0.11 0.11 0.02

90 4 758 556 1298 1049 53 1097 632 0.36 0.19 0.19 0.04

100 44 3182 3512 1971 2184 418 7607 6870 0.64 0.21 0.20 0.04

0.5

25 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00

30 0 0 0 4 0 0 0 0 0.00 0.00 0.00 0.00

40 0 0 0 14 4 1 0 0 0.03 0.01 0.01 0.00

50 0 0 0 46 12 2 0 0 0.10 0.07 0.07 0.00

60 2 130 30 110 32 5 33 9 0.13 0.04 0.04 0.01

70 6 452 112 249 129 16 187 46 0.27 0.13 0.13 0.06

80 28 404 168 447 272 74 288 89 0.40 0.23 0.20 0.02

90 454 2144 1078 635 1189 3377 6646 2977 1.46 1.02 0.36 0.03

100 572 2480 614 1162 1428 5028 8033 1886 1.28 0.81 0.22 0.06

0.8

25 0 0 0 2 0 0 0 0 0.02 0.00 0.00 0.00

30 0 0 0 3 1 0 0 0 0.01 0.00 0.00 0.00

40 0 0 0 10 3 0 0 1 0.03 0.00 0.00 0.00

50 8 120 0 22 10 4 8 0 0.36 0.10 0.10 0.00

60 4 128 0 47 20 6 28 0 0.27 0.11 0.11 0.00

70 52 114 0 155 108 74 50 0 0.51 0.09 0.02 0.02

80 70 722 0 267 219 134 465 0 0.53 0.25 0.17 0.00

90 140 20278 3796 471 473 398 16065 3382 0.88 0.63 0.45 0.45

100 210 46960 5202 698 677 862 52043 4267 0.87 0.66 0.56 0.56

Table 3: Detailed results of exact algorithm using CAB instances for PO1

also at the level of the hub edges, where only for 12 out of the 27 instances
any such node was generated. As can be seen, the most consuming level is
the branching on served nodes (s), but a reduction in the percent deviation
can be clearly observed after each step. In any case, the majority of the
instances can be solved to optimality in less than one hour of computing
time (21 out of 27), including the three larger instances with N = 80 nodes,
which highlights the efficiency of BB1.

The results of Table 4 allow making similar observations about the effec-
tiveness of BB2 for solving PO2. Similarly to BB1, there are fewer nodes
at the hub nodes level (z) than at the other levels. However, for the largest
instances there are still quite a few hubs to branch on after the partial enu-
meration. Despite the difficulty of PO2, BB2 is still robust for solving it:
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α |N | Nodes Time (sec) % Dev

z s y Root PE z s y Root PE z s

0.2

25 0 0 0 28 0 0 0 0 0.00 0.00 0.00 0.00

30 4 26 0 61 13 3 4 0 0.07 0.06 0.02 0.02

40 6 106 54 486 86 18 91 55 0.20 0.10 0.10 0.03

50 2 88 60 553 234 77 171 119 0.19 0.07 0.07 0.03

60 92 466 314 7016 1536 823 2321 1615 0.71 0.39 0.31 0.05

70 366 1392 852 7550 4313 10165 21481 14100 0.97 0.44 0.30 0.07

80 256 3 n.a. 15348 11870 59241 561 time 1.15 1.15 0.02 0.02

90 335 n.a. n.a. 27939 17165 41395 time time 1.40 0.93 0.93 0.92

100 490 83 n.a. 14093 26171 41851 4778 time 1.44 1.02 0.35 0.35

0.5

25 0 0 0 21 1 1 0 0 0.04 0.02 0.00 0.00

30 0 0 0 42 3 0 0 0 0.03 0.00 0.00 0.00

40 0 0 0 138 22 0 0 0 0.14 0.00 0.00 0.00

50 10 90 0 379 66 23 62 0 0.29 0.12 0.12 0.12

60 0 0 0 1326 187 14 0 0 0.39 0.13 0.00 0.00

70 170 286 68 3655 937 2424 2003 709 0.87 0.32 0.19 0.03

80 80 474 68 7117 1580 1481 4101 848 0.91 0.86 0.24 0.02

90 175 n.a. n.a. 10882 22216 53576 time time 4.02 3.56 2.85 2.85

100 54 n.a. n.a. 18334 34389 33754 time time 3.74 3.27 3.27 3.27

0.8

25 0 0 0 18 1 0 0 0 0.04 0.00 0.00 0.00

30 0 0 0 26 2 1 0 0 0.02 0.01 0.00 0.00

40 4 30 0 126 6 4 6 0 0.05 0.01 0.01 0.01

50 0 0 0 253 21 0 0 0 0.11 0.00 0.00 0.00

60 0 0 0 421 25 0 0 0 0.09 0.00 0.00 0.00

70 4 194 0 1260 138 34 258 0 0.38 0.05 0.03 0.03

80 30 168 22 3932 357 237 473 101 0.68 0.27 0.27 0.02

90 38 6100 2228 5123 452 783 51097 26281 1.05 0.62 0.62 0.62

100 98 9816 1260 8996 734 1566 64718 12828 1.04 0.61 0.61 0.61

Table 4: Detailed results of exact algorithm using CAB instances for PO2

nine out of the 27 instances are optimally solved without any branching, in-
cluding the 60 nodes instances for α = 0.5, 0.8. Moreover, 15 instances are
optimally solved in less than an hour of computing time. For only six in-
stances the optimality of the best-known solution could not be proven within
the time limit of one day.

8. Conclusions

In this paper we have proposed an exact algorithmic framework for hub
network design problems with profits. In contrast to classical hub location
problems, this class of problems do not assume all demand will be served and
thus, the nodes that will be served and the commodities to be routed, must
also be decided. We have considered two variants, which differ from each
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other in only one set of constraints that forces to route all the commodities
with their two end-nodes activated. We proposed a Lagrangean relaxation
that exploit the structure of the problems and can be solved efficiently. In
particular, the Lagrangean functions can be decomposed in two independent
subproblems: one of them is trivial and the other one can transformed into
a Quadratic Boolean Problem, which can be solved efficiently as a max-flow
problem. The Lagrangean dual problems were solved with a subgradient op-
timization algorithms that applied simple primal heuristics, which produced
valid lower bounds. The Lagrangean relaxation was embedded within exact
branch-and-bound algorithms for each of the considered problems. Moreover,
reduction tests were applied at the root node, which helped to considerably
reduce the number of variables and constraints. These tests were enhanced
with the application of a partial enumeration phase to reduce the number of
branches of the enumeration phase. The results from computational experi-
ments with benchmark instances with up to 100 nodes assessed the efficiency
of the proposed framework, and its superiority over CPLEX. On the one
hand, because of memory limitations CPLEX was not able to solve instances
with more than 60 or 70 nodes, depending on the version of the problem,
whereas our proposed solution algorithms did not have this limitation. On
the other hand, for the instances where both type of methods could be com-
pared, our algorithms consistently outperformed CPLEX.
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Algorithm 4 Exact Algorithm for PO1: Branch and Bound Phase

Require: 3: (Branch on location variables z)
Order i ∈ H \ (H0 ∪H1) in non-increasing order with respect to δi
Branch on zi using the previous order and solve D1 with Algorithm 1
Let AN z be the set of remaining active nodes after fixing all zi variables
if UN z 6= ∅ then

Go to Step 4
else

Stop with an ε-optimal solution
end if

Require: 4: (Branch on service variables s)
for a ∈ AN z do

Branch on si variables for i ∈ N \ H1 using an arbitrary order and
solve D1 with Algorithm 1

end for
Let AN s be the set of remaining active nodes after fixing all si variables
if AN s 6= ∅ then

Go to Step 5
else

Stop with an ε-optimal solution
end if

Require: 5: (Branch on hub-edge variables z)
for a ∈ AN s do

Branch on ye variables for e ∈ H1 ×H1 using an arbitrary order and
solve D1 with Algorithm 1

end for
Let ANy be the set of remaining active nodes after fixing all ye variables
if ANy 6= ∅ then

Go to Step 6
else

Stop with an ε-optimal solution
end if

Require: 6: (Solve routing subproblems)
for a ∈ ANy do

Solve routing subproblems to obtain optimal values for xijk variables
and a valid lower bound ηa
Update η if ηa > η

end for
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