60,264 research outputs found

    Bounds on the 2-domination number

    Get PDF
    In a graph G, a set D⊆V(G) is called 2-dominating set if each vertex not in D has at least two neighbors in D. The 2-domination number γ2(G) is the minimum cardinality of such a set D. We give a method for the construction of 2-dominating sets, which also yields upper bounds on the 2-domination number in terms of the number of vertices, if the minimum degree δ(G) is fixed. These improve the best earlier bounds for any 6≤δ(G)≤21. In particular, we prove that γ2(G) is strictly smaller than n/2, if δ(G)≥6. Our proof technique uses a weight-assignment to the vertices where the weights are changed during the procedure. © 2017 Elsevier B.V

    Coloring, location and domination of corona graphs

    Get PDF
    A vertex coloring of a graph GG is an assignment of colors to the vertices of GG such that every two adjacent vertices of GG have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set SS of vertices of a graph GG is a dominating set in GG if every vertex outside of SS is adjacent to at least one vertex belonging to SS. A domination parameter of GG is related to those structures of a graph satisfying some domination property together with other conditions on the vertices of GG. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-kk colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, throughout some relationships between the distance-kk chromatic number of corona graphs and the distance-kk chromatic number of its factors. Moreover, we give the exact value of the distance-kk chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating-domination number of corona graphs. We give closed formulaes for the kk-domination number, the distance-kk domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.Comment: 18 page

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page

    The bondage number of graphs on topological surfaces and Teschner's conjecture

    Get PDF
    The bondage number of a graph is the smallest number of its edges whose removal results in a graph having a larger domination number. We provide constant upper bounds for the bondage number of graphs on topological surfaces, improve upper bounds for the bondage number in terms of the maximum vertex degree and the orientable and non-orientable genera of the graph, and show tight lower bounds for the number of vertices of graphs 2-cell embeddable on topological surfaces of a given genus. Also, we provide stronger upper bounds for graphs with no triangles and graphs with the number of vertices larger than a certain threshold in terms of the graph genera. This settles Teschner's Conjecture in positive for almost all graphs.Comment: 21 pages; Original version from January 201
    corecore