1,497 research outputs found

    Boosting the hardware-efficiency of cascade support vector machines for embedded classification applications

    Get PDF
    Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can efficiently handle problems where the majority of data belongs to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM classification process is still computationally demanding due to the number of support vectors. Consequently, in this paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the implementation of additional stages in the cascade, leading to significant resource and power savings. The architecture was evaluated for the application of object detection on 800×600 resolution images on a Spartan 6 Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by ∌30%, and simultaneously observed ∌20% peak power reduction compared to a baseline implementation

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    FPGA implementation of an embedded face detection system based on LEON3

    Get PDF
    This paper presents an FPGA face detection embedded system. In order achieve acceleration in the face detection process a hardware-software codesign technique is proposed. The paper describes the face detection acceleration mechanism. It also describes the implementation of an IP module that allows hardware acceleration.ComisiĂłn Europea MOBY-DIC FP7-IST-248858Ministerio de Ciencia y TecnologĂ­a TEC2011-24319Junta de AndalucĂ­a P08-TIC-0367

    Embedded Face Detection and Facial Expression Recognition

    Get PDF
    Face Detection has been applied in many fields such as surveillance, human machine interaction, entertainment and health care. Two main reasons for extensive attention on this typical research domain are: 1) a strong need for the face recognition system is obvious due to the widespread use of security, 2) face recognition is more user friendly and faster since it almost requests the users to do nothing. The system is based on ARM Cortex-A8 development board, including transplantation of Linux operating system, the development of drivers, detecting face by using face class Haar feature and Viola-Jones algorithm. In the paper, the face Detection system uses the AdaBoost algorithm to detect human face from the frame captured by the camera. The paper introduces the pros and cons between several popular images processing algorithm. Facial expression recognition system involves face detection and emotion feature interpretation, which consists of offline training and online test part. Active shape model (ASM) for facial feature node detection, optical flow for face tracking, support vector machine (SVM) for classification is applied in this research

    Cascaded face detection using neural network ensembles

    Get PDF
    We propose a fast face detector using an efficient architecture based on a hierarchical cascade of neural network ensembles with which we achieve enhanced detection accuracy and efficiency. First, we propose a way to form a neural network ensemble by using a number of neural network classifiers, each of which is specialized in a subregion in the face-pattern space. These classifiers complement each other and, together, perform the detection task. Experimental results show that the proposed neural-network ensembles significantly improve the detection accuracy as compared to traditional neural-network-based techniques. Second, in order to reduce the total computation cost for the face detection, we organize the neural network ensembles in a pruning cascade. In this way, simpler and more efficient ensembles used at earlier stages in the cascade are able to reject a majority of nonface patterns in the image backgrounds, thereby significantly improving the overall detection efficiency while maintaining the detection accuracy. An important advantage of the new architecture is that it has a homogeneous structure so that it is suitable for very efficient implementation using programmable devices. Our proposed approach achieves one of the best detection accuracies in literature with significantly reduced training and detection cost

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    A characterization of visual feature recognition

    Get PDF
    technical reportNatural human interfaces are a key to realizing the dream of ubiquitous computing. This implies that embedded systems must be capable of sophisticated perception tasks. This paper analyzes the nature of a visual feature recognition workload. Visual feature recognition is a key component of a number of important applications, e.g. gesture based interfaces, lip tracking to augment speech recognition, smart cameras, automated surveillance systems, robotic vision, etc. Given the power sensitive nature of the embedded space and the natural conflict between low-power and high-performance implementations, a precise understanding of these algorithms is an important step developing efficient visual feature recognition applications for the embedded space. In particular, this work analyzes the performance characteristics of flesh toning, face detection and face recognition codes based on well known algorithms. We also show how the problem can be decomposed into a pipeline of filters that have efficient implementations as stream processors
    • 

    corecore