106 research outputs found

    Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction

    Get PDF
    Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop machine learning based effective tools to predict disordered protein, its properties and dynamics, and interaction paradigm by systematically mining and analyzing large-scale biological data. In this dissertation, we propose a robust framework to predict disordered proteins given only sequence information, using an optimized SVM with RBF kernel. Through appropriate reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein residues, a useful structural property that defines protein’s exposure to partners, using regularized regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of this research, we then introduce a novel method to extract position specific energy (PSEE) of protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the peptide-protein transient interactions that involve the induced folding of short peptides through disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors is developed to identify the residue-patterns of Peptide-Recognition Domains from protein sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using the stacked generalization ensemble technique. The involved biologically relevant case-studies demonstrate possibilities of discovering new knowledge using the developed tools

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    Predicting the Most Tractable Protein Surfaces in the Human Proteome for Developing New Therapeutics

    Get PDF
    A critical step in the target identification phase of drug discovery is evaluating druggability, i.e., whether a protein can be targeted with high affinity using drug-like ligands. The overarching goal of my PhD thesis is to build a machine learning model that predicts the binding affinity that can be attained when addressing a given protein surface. I begin by examining the lead optimization phase of drug development, where I find that in a test set of 297 examples, 41 of these (14%) change binding mode when a ligand is elaborated. My analysis shows that while certain ligand physiochemical properties predispose changes in binding mode, particularly those properties that define fragments, simple structure-based modeling proves far more effective for identifying substitutions that alter the binding mode. My proposed measure of RMAC (rmsd after minimization of the aligned complex) can help determine whether a given ligand can be reliably elaborated without changing binding mode, thus enabling straightforward interpretation of the resulting structure-activity relationships. Moving forward, I next noted that a very popular machine learning algorithm for regression tasks, random forest, has a systematic bias in the predictions it generates; this bias is present in both real-world datasets and synthetic datasets. To address this, I define a numerical transformation that can be applied to the output of random forest models. This transformation fully removes the bias in the resulting predictions, and yields improved predictions across all datasets. Finally, taking advantage of this improved machine learning approach, I describe a model that predicts the “attainable binding affinity” for a given binding pocket on a protein surface. This model uses 13 physiochemical and structural features calculated from the protein structure, without any information about the ligand. While details of the ligand must (of course) contribute somewhat to the binding affinity, I find that this model still recapitulates the binding affinity for 848 different protein-ligand complexes (across 230 different proteins) with correlation coefficient 0.57. I further find that this model is not limited to “traditional” drug targets, but rather that it works just as well for emerging “non-traditional” drug targets such as inhibitors of protein-protein interactions. Collectively, I anticipate that the tools and insights generated in the course of my PhD research will play an important role in facilitating the key target selection phase of drug discovery projects

    Discovering meaning from biological sequences: focus on predicting misannotated proteins, binding patterns, and G4-quadruplex secondary

    Get PDF
    Proteins are the principal catalytic agents, structural elements, signal transmitters, transporters, and molecular machines in cells. Experimental determination of protein function is expensive in time and resources compared to computational methods. Hence, assigning proteins function, predicting protein binding patterns, and understanding protein regulation are important problems in functional genomics and key challenges in bioinformatics. This dissertation comprises of three studies. In the first two papers, we apply machine-learning methods to (1) identify misannotated sequences and (2) predict the binding patterns of proteins. The third paper is (3) a genome-wide analysis of G4-quadruplex sequences in the maize genome. The first two papers are based on two-stage classification methods. The first stage uses machine-learning approaches that combine composition-based and sequence-based features. We use either a decision trees (HDTree) or support vector machines (SVM) as second-stage classifiers and show that classification performance reaches or outperforms more computationally expensive approaches. For study (1) our method identified potential misannotated sequences within a well-characterized set of proteins in a popular bioinformatics database. We identified misannotated proteins and show the proteins have contradicting AmiGO and UniProt annotations. For study (2), we developed a three-phase approach: Phase I classifies whether a protein binds with another protein. Phase II determines whether a protein-binding protein is a hub. Phase III classifies hub proteins based on the number of binding sites and the number of concurrent binding partners. For study (3), we carried out a computational genome-wide screen to identify non-telomeric G4-quadruplex (G4Q) elements in maize to explore their potential role in gene regulation for flowering plants. Analysis of G4Q-containing genes uncovered a striking tendency for their enrichment in genes of networks and pathways associated with electron transport, sugar degradation, and hypoxia responsiveness. The maize G4Q elements may play a previously unrecognized role in coordinating global regulation of gene expression in response to hypoxia to control carbohydrate metabolism for anaerobic metabolism. We demonstrated that our three studies have the ability to predict and provide new insights in classifying misannotated proteins, understanding protein binding patterns, and identifying a potentially new model for gene regulation

    Exploring the structural integrity of a picornavirus capsid

    Get PDF
    Expected release date-May 202

    Delineating Structural Characteristics of Viral Capsid Proteins Critical for Their Functional Assembly.

    Full text link
    Viral capsids exhibit elaborate and symmetrical architectures of defined sizes and remarkable mechanical properties not seen with cellular macromolecular complexes. The limited coding capacity of viral genome necessitates economization upon one or a few identical gene products known as capsid proteins for shell assembly. The functional uniqueness of this class of proteins prompts questions on structural features critically important for their higher order organization. In this thesis, I develop the statistical framework and computational tools to pinpoint the structural characteristics of viral capsid proteins exclusive to the virosphere by testing a series of hypotheses, providing understanding of the physical principles governing molecular self-association that can inform rational design of nanomaterials and therapeutics. In the first chapter, I compare the folds of capsid proteins with those of generic proteins, and establish that capsid proteins are segregated in structural fold space, highlighting the geometric constraints of these building blocks for tiling into a closed shell. Second, I develop a software program, PCalign, for quantifying the physicochemical similarity between protein-protein interfaces. This tool overcomes the major limitation of current methods by using a reduced representation of structural information, greatly expanding the structural interface space that can be investigated through inclusion of large macromolecular assemblies that are often not amenable to high resolution experimental techniques. As an application of this method, I propose a computational framework for template-based protein inhibitor design, leading to the prediction of putative binders for a therapeutic target, the influenza hemagglutinin. In silico evaluations of these candidate drugs parallel those of known protein binders, offering great promise in expanding therapeutic options in the clinic. Lastly, I examine protein-protein interfaces using PCalign, and find strong statistical evidence for the disconnectivity between capsid proteins and cellular proteins in structural interface space. I thus conclude that the basic shape and the sticky edges of these Lego pieces act concertedly to create the sophisticated shell architecture. In summary, the novel tools contributed by this dissertation work lead to delineation of structural features of viral capsid proteins that make them functionally unique, providing an understanding that will serve as the basis for prediction and design.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110375/1/sscheng_1.pd
    • …
    corecore