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RESUMO 

A identificação de complexos proteína-proteína e das suas interações é fundamental 

para a compreensão da organização da maquinaria celular. Devido à elevada 

dificuldade na obtenção de dados experimentais, novas metodologias e ferramentas 

computacionais estão a surgir, proporcionando alternativas fiáveis. É especialmente 

verdade que algoritmos de Machine Learning (ML) são extremamente promissores para 

a pesquisa de interação de proteínas através da identificação de padrões biológicos 

relevantes, o que levará ao aumento do nosso conhecimento do mecanismo funcional 

de proteínas dentro das células. Ao longo das últimas décadas, a melhoria de um grande 

número de técnicas computacionais levou à diminuição de custos e ao aumento de base 

de dados por ordens de grandeza. No entanto, a precisão ainda se encontra longe do 

que seria de esperar e existe espaço para melhorias.  

Neste trabalho, aplicamos técnicas de ML que vão além do atual estado da arte e que 

nos levam a previsões precisas de Hot-Spots em complexos de proteína-proteína. 

Exploramos a capacidade de usar ML para o problema biológico em causa e 

comparamos diferentes classificadores e condições de pré-processamento. Com base 

nesta avaliação, concluímos que a aplicação do algoritmo C5.0 com super-amostragem 

da classe menor leva a resultados em concordância com a realidade e que apresenta 

uma precisão global numa base de dados independente de 0.88. Devido à relevância 

do tema para a comunidade científica que trabalha em biologia estrutural, criámos um 

web-server que se encontra disponível de forma grátis: 

http://milou.science.uu.nl/cgi/servicesdevel/SPOTON/spoton/  

PALAVRAS-CHAVE 

Bioinformática, Interações proteína-proteína, Hot-spots, Machine-learning, 

Classificação supervisionada, Avaliação de resultados.
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ABSTRACT 

The identification of protein complexes and interactions is crucial for the understanding 

of cellular organization and machinery. Due to the high difficulty in attaining experimental 

data about such an important subject, computational tools and methodologies are 

emerging as reliable alternatives. It is especially true that Machine-Learning (ML) 

algorithms hold an incredible promise for protein interaction research by identifying 

biological relevant patterns, which accelerates our knowledge of the functional 

mechanism of proteins within the cells. Over the last decades the improvement of a large 

number of computational techniques led to significant cost decreases and, also, 

increases in throughput by orders of magnitude. However, there is still room for 

improvement as their accuracy is still far from optimal. 

In this work, we have developed and applied computer modelling techniques that went 

beyond the current state-of-the-art, leading to quantitative and reliable molecular-level 

predictions of Hot-Spots at protein-protein complexes. We explored the feasibility of 

using ML in the HS detection and compared different classifiers as well as different pre-

processing conditions. Based on this evaluation, we concluded that applying the C5.0 

algorithm with minor class up-sampling leads to accurate results. The overall accuracy 

in an independent test set demonstrated to be 0.88. Due to the theme’s relevance to the 

large scientific community working on structural biology, we have assembled a freely 

available web-server that can be found at: 

http://milou.science.uu.nl/cgi/servicesdevel/SPOTON/spoton/ 

KEYWORDS 

Bioinformatics, Protein-protein interactions, hot-spots, Machine-learning, Supervised 

learning, Classification, Performance metrics. 
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1 INTRODUCTION 

Structural Bioinformatics is a key research area in the field of Computational Biology and 

it focuses on the analysis and prediction of 3D structures of nucleic acid- and protein-

based machineries (1). A high-resolution structural model of such assemblies is crucial 

for the correct understanding of their function and mechanism (2) as protein structure, 

dynamics and function are interdependent (3). Various experimental techniques such as 

X-ray diffraction, electron microscopy and NMR are widely used to gain structural insight 

into biomolecules but they are simultaneously time consuming, experimentally expensive 

and often with inherent technical difficulties. That led to a big discrepancy between the 

number of published sequences and published 3D structures (Figure 1). Therefore, there 

is an urgent need for complementary computational procedures capable of reliably 

generating and identifying 3D protein-protein structures and, especially, identifying their 

interactions. Moreover, it is imperative to obtain accurate predictions that, integrated with 

experimental data, can potentially enlarge the structural understanding of the most 

relevant biological targets. The functional characterization of the complex cellular 

machinery and of the impact of mutations on protein structure is crucial for the 

development of new drugs (4). 

 

Figure 1. Number of available protein sequences (retrieved from NCBI Reference Sequence (5, 6) Database) and 

structures (retrieved from PDB (7)) between the years 2013 and 2016. 
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1.1 PROTEIN-PROTEIN INTERACTIONS  

The human interactome consists of more than 400.000 PPIs, which are fundamental for 

a wide-range of biological pathways (8-10). Interactome-level descriptions of molecular 

function are becoming crucial for a detailed picture and understanding of the nature of 

complex traits and diseases (11). Characterizing the critical residues involved in these 

interactions, which can be performed by experimental or computational methods, is 

crucial in PPI fine tuning. Furthermore, only through gaining an atomistic-level of detail 

of PPIs can we develop new methods and drugs that modulate their binding (11, 12). 

Critical to PPI understanding has been the discovery that the driving forces of protein 

coupling are not evenly distributed across their surfaces: instead, a usually small set of 

residues contribute the most to the binding process – the so called Hot-Spots (HS). 

1.2 BINDING HOT-SPOTS 

Protein-protein interfaces often involve a large number of residues. However, it is 

generally recognized that small regions of a few residues, termed HS, are essential for 

maintaining the integrity of the interface. ASM is the method of choice for mapping 

functional epitopes and can be used to infer energy contributions of individual side-

chains to protein binding. The contribution of a residue to the binding energy is measured 

by the binding free energy difference (ΔΔGbinding) between WT and mutant complex upon 

mutation of a specific residue to an alanine (13). Bogan and Thorn (14) defined the 

residues with  ΔΔGbinding ≥ 2.0 kcal mol-1 as HS; and  the residues with ΔΔGbinding <  2.0 

kcal mol-1 as NS. HS, apart from providing stability to the complex, also contributes to 

the specificity at the binding sites. Figure 2 illustrates a protein-protein complex in which 

the HS and NS are highlighted by a van der Waals representation.  

HS are conserved residues tightly packed at the center of the interface (15, 16) with an 

amino-acid composition similar to the core residues defined by Chakrabarti et al. (17). 

The amino acid composition of HS has shown not to be equally distributed, being 

enriched with Trp, Tyr and Arg residues (14). The number of HS was shown to increase 

with the increase of the interface surface area, maybe to overcome a larger 

configurational entropic cost [29]. At the end, functional and structural epitope were 

defined as comprising HS or all residues that participate in the interface, respectively 

[30]. 
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Figure 2. Structural representation of a protein-protein complex (1GC1 (18)). Interfacial residues are highlighted in a van 

der Walls representation. 

HS tend to be found on both monomers and show a high degree of complementarity with 

buried charged residues forming salt bridges and hydrophobic residues fitting into the 

nooks on the opposite face (10, 11). Also, PPIs have shown to have a high degree of 

plasticity, and so, specific proteins may bind to different partners re-utilizing the same 

HS, although possibly with different combinations (15). 

Experimental methods for identifying HS such as the mentioned ASM are based on 

molecular biology techniques that are accurate but complex, time-consuming and 

expensive. The inherent low-throughput of these techniques due to the need to express 

and purify each individual protein before measurement is a major bottleneck  (19). Highly 

efficient computational methods for predicting HS can therefore provide a viable 

alternative to experimentation. Molecular modelling tools like MD simulations are largely 

used to construct and analyze protein-protein interactions models and to investigate the 

dynamic behavior of complex formation or inhibition (12, 20-25).  However, due to the 

complexity and typically large size of protein-protein complexes, these methods are still 

computationally expensive. Recently, ML approaches trained on various features of 

experimentally determined HS residues have been developed in order to predict HS in 

new protein complexes (19, 26-37). ML techniques are especially suitable to deal with 

HS prediction due to their ability to infer input-output relationships without explicitly 

assuming a pre-determined model. They tend to work quite well even in non-linear and 
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noisy environments. Computational ML approaches to PPI prediction tend to fall into two 

broad categories:  

i) sequence-based methods which use an encoding of sequence-derived features 

of the residues and their neighbours and then explore amino-acid identity, 

physicochemical properties of amino-acids, predicted solvent accessibility, 

PSSMs, conservation in evolution and interface propensities;  

ii) structure-based methods that use an encoding of structure-based features of the 

target residues and neighbours such as propensities at interface and surface, 

interface size, geometry, chemical composition, roughness, SASA, atomic 

interactions, among others. 

A detailed review of current ML algorithms applied to HS detection can be found at 

Moreira (10). 

1.3 THESIS STRUCTURE 

This master’s dissertation consists of eight sections. In Section 1 we introduce the 

specific field of HS detection. Section 2 consists of a literature review on the basis of ML 

methods with special focus on the mathematical foundations of the tested algorithms. 

Section 3 is a detailed description of the methodology used to attain a reliable predictive 

model. In Section 4 we present the computational results and in Section 5 we make final 

considerations and plans for future work. After references (Section 6) you can find the 

Annexes Section (Section 7) with further tables of results as well as the two publications 

that resulted from this master’s thesis (Section 8); one that will be submitted and another 

already published in a peer-reviewed journal: 

Melo,R., Fieldhouse,R., Melo,A., Correia,J.D.G., Cordeiro,M.N.D.S., Gümüş,Z.H., 

Costa,J., Bonvin,A.M.J.J. and Moreira,I.S. (2016) A Machine Learning Approach for Hot-

Spot Detection at Protein-Protein Interfaces. IJMS, 17, 1215 

Moreira,I.S*., Koukos,P*., Melo,R., Almeida,J.G., Gomes, A., Schaarschmidt,J., 

Trellet,M., Gumus,Z.H., Costa,J. and Bonvin,A.M.J.J. (2016) SpotON: a web server for 

prediction of protein-protein binding hot-spots. 



FCUP 
Hot-Spot Classification 

19 

 

2 METHODOLOGY 

Contrary to the reductionist approach aimed at understanding individual components, 

the new data revolution will allow the understanding of complicated interactions and  

pathways through the use of statistical and ML techniques (38).  The volume of biological 

data that becomes available every day is transforming the way research is done in the 

field of bioinformatics. However, the gap between raw protein data and functional 

knowledge extraction can be attributed to the fact that experimental bench work is highly 

costly from a time and money point of view. Computational approaches arise as a 

practical and viable solution in understanding structure and function as a dual 

relationship (4). ML algorithms  were already successfully applied in a variety of subjects 

such as chemogenomics approaches in virtual screening against G-Protein Coupled 

Receptors (39), gene expression (40, 41), proteomics mass spectrometry data (42), 

metabolomics (43), just to name a few. 

2.1 ML BASIS 

ML are general-purpose approaches defined as the automatic extraction of information 

from large amounts of data by efficient algorithms, in order to discover patterns and 

correlations and build predictive models.  ML involves the creation of algorithms that 

improve their performance when undertaking a certain task based on its own experience. 

They should be fully automatic and off-the-shelf methods that process the available data 

and maximize a problem dependent performance criterion (44).  

ML algorithms can be broadly classified into 3 main categories:  

i) Supervised – based on training a model on data samples that have known 

categorical class labels associated with them. 

ii) Unsupervised – which aim to discover patterns from the data without knowing 

their labels. 

iii) Semi-supervised or active learning – based on training a model using 

unlabelled data (a small set of labelled data with a large amount of unlabelled 

data). 

The large majority of ML algorithms are designed for binary classification scenarios: 

positive and negative classification. During training, the algorithms learn a decision 

boundary in the feature space that separate data points into positive and negative 
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classes. If there are more than two categorization classes, the problem is said to be 

multi-class. Not all algorithms are ready to tackle this type of problem but a general 

approach is to turn a multi-class problem into a binary problem in which one class is 

classified in opposite to all others. The typical ML workflow, explained in more detail in 

the following sub-sections, involves:  

i) Data cleaning and pre-processing; 

ii) Feature extraction; 

iii) Model fitting; 

iv) Evaluation. 

2.1.1 Data Cleansing and Pre-Processing 

Data is the key ingredient of all ML systems (45) and ideally should be a uniformly 

random sample from the database. Due to its relevance in algorithm performance it is 

important to carefully collect, label, clean and normalize data by subtracting the variable 

mean (µ) and divide by its standard deviation (σ) (Equation 1). To avoid inaccuracy, 

outliers should be detected and removed and missing values imputed (46).  

X" = $%&
' 								[	1	]	

2.1.2 Feature Extraction 

The multivariate structure of data causes problems in computation and visualization. 

Therefore, dimensionality reduction is crucial in ML. This dimensionality reduction is 

relevant by removing noise and redundancy or by combining relevant measurements 

into a smaller number of features that still describe the data with sufficient accuracy (42). 

Features strongly coupled with other features do not provide extra information and 

unnecessarily bias the result (44).  

There are two main methods of dimension reduction: feature selection and feature 

extraction. In the first method, k features of the d dimensions are selected and on the 

second the original d dimensions are transformed to a new set of dimensions of which k 

are selected. Feature selection involves the selection of significant attributes for 

reduction of datasets by removal of redundant or irrelevant features with the aim to 

increase the accuracy of models and increasing the computational speed. Feature 

selection can be both supervised and unsupervised. As it is computationally intensive, a 

number of sub-optimal methods have been proposed. The most common ones for a 

supervised approach are: 
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i) Filtering that orders all features using a criterion of how useful they are, 

such as t-statistics, and adds one feature at a time until performance stops 

improving; 

ii) Wrapper with forward and backward search methods that take into 

account that two individually poor features may together be informative. 

In the feature extraction, there is an attempt to find a transformation y=f(x) 

for the original vector x. 

For the unsupervised that does not use the categorical class label but rather intrinsic 

properties of selected or extracted features we have:  

i) PCA; 

ii) MDS that uses a nonlinear transformation to preserve distances or 

dissimilarities between objects. 

PCA is an orthogonal linear transformation of data to a new coordinate system and 

constitutes one of the most common practices in ML to reduce data size but still maintain 

all the useful information. It works by projecting the data into a lower dimension linear 

space formed by the principal components, in which the variance of the projected data 

is maximized. For that it computes the covariance matrix: 

Σ = -
. (012

13- )(01)5        [ 2 ] 

That is then diagonalized to calculate the eigenvectors. PCA is often implemented using 

the Single Value Decomposition, a more stable mathematical procedure: 

X = UD85         [ 3 ] 

2.1.3 Model Fitting 

It is important to first split the database into the training set that represent a percentage 

of the data and the remaining data should be used as a test set, where an independent 

performance analysis can be made. Also, bootstrapping or k-fold cross-validation should 

be used, which is especially important if the dataset is small. In the cross-validation 

method, which was used in this work, the dataset is usually divided randomly into K 

equal-sized parts. K-1 parts are then used to train the model and the remaining one 

(validation set) to evaluate it. This process is repeated K times. Extensive tests on 

various datasets with different learning algorithms have shown that K = 10 is about the 

right number of folds to get the best estimate of error. Moreover, here we went beyond 

simple cross-validation and we have followed a k repeat of k-cross-validation, in which 
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the cross-validation procedure is executed k times in order to increase performance. The 

typical workflow on a ML study is depicted in Figure 3. 

 

Figure 3. Workflow of a typical ML in HS detection. 

The goal of model training is to find parameters w that minimize an objective function 

L(w), which measures the fit between the predictions the model parameterized by w and 

the actual observations.  

2.1.4 Evaluation 

As already mentioned, evaluation of classification models is essential and should be 

performed by producing the model on the training set and testing it on an independent 

test set as performance estimates on the training set would be too much optimistic and 

heavily overfitted (47). In bioinformatics applications the more natural choices are: the 

Area Under the Receiver Operator Curve (AUROC), the Accuracy (equation 4), True 

Positive Rate (TPR/recall/sensitivity, equation 5), True Negative Rate (TNR/specificity, 

equation 6), Positive Predictive Value (PPV/Precision, equation 7), Negative Predictive 

Value (NPV, equation 8), False Discovery Rate (FDR, equation 9), False Negative Rate 

(FNR, equation 10) and F1-score (equation 11).  

Accuracy = ?@A?B
?@AC@ACBA?B	 [ 4 ] 

TPR = ?@
?@ACB         [ 5 ] 

TNR = ?B
C@A?B                 [ 6 ] 
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PPV = ?@
?@AC@         [ 7 ] 

NPV = C@
C@A?B         [ 8 ] 

FDR = C@
C@A?@ = 1 − PPV         [ 9 ] 

FNR = CB
?@ACB = 1 − TPR         [ 10 ] 

F1 − score = N?@
N?@AC@ACB         [ 11 ] 

in the equations above, TP stands for true positive (predicted hot-spots that are actual 

hot-spots), FP stands for false positive (predicted hot-spots that are not actual hot-spots), 

FN stands for false negative (non-predicted hot-spots that are actual hot-spots), and TN 

stands the true negatives (correctly predicted null-spots). 

2.2 ML ALGORITHMS  

One of the main questions in applying ML to structural biology is finding the optimal 

classifier complexity for a given problem, which constitutes one of the focus of this thesis. 

As ML algorithms can usually be separated by similarity in terms of their function, we will 

briefly explain the main assumptions of the field as well as mathematical notations and 

formulations for some of the most common approaches. 

2.2.1 Discriminant Analysis   

Like clustering approaches, dimensionality reduction seeks to exploit the inherent 

structure in the data. Some of the most common supervised methods are: LDA and QDA. 

LDA and the related Fisher’s linear discriminant are methods used in statistics, pattern 

recognition and ML to find a linear combination of features, which characterize or 

separate two or more classes of objects or events. The final combination may be used 

as a linear classifier or, more commonly, for dimensionality reduction before later 

classification. In more detail, assuming the density of each class is modelled as 

multivariate Gaussian: 

OP 0 = -
(NQ)R/T|VW|X/T

Y{%
X
T([%\W)

] ([%\W)}_X
W 	        [ 12 ] 
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LDA assumes that the covariance for each predictor is the same ΣP = Σ		∀k 

(homoscedasticity assumption). In a binary classification problem with two classes k and 

l, it is enough to take into account the log-ratio as it gives a linear equation in x: 

bcd @e	(f3P|g3[)
@e	(f3h|g3[) = bcd iW([)

ij([)
+ bcd QW

Qj
= bcd QW

Qj
− -

N lP + lh 5Σ%- lP − lh + 05Σ%- lP − lh =

m5Σ%- lP − lh + no        [ 13 ] 

From the previous equation, it is derived that the linear discriminant functions are 

equivalent to the decision rule p 0 = qrdsq0PtP(0): 

tP 0 = 05Σ%-lP −
-
N lP

5Σ%-lP + bcduP        [ 14 ] 

The parameters of the Gaussian distributions cannot be easily calculated and need to 

be estimated on the training set by: u = vw
v  where vP	is the number of class-k 

observations: 

uP = 01/vPxy3P         [ 15 ] 

Σ = ([y_\W)([y%\W)]zy{W
|
W{X

}%~         [ 16 ] 

If the variables have different covariances, the method is called QDA: 

tP = − -
N log ΣP − -

N 0 − lP 5 0 − lP%-
P + bcduP        [ 17 ] 

in which the decision boundary is a quadratic function:  

{0:	tP 0 = th 0 }        [ 18 ] 

2.2.2 Decision Trees  

Decision trees are machine learning models that structure the knowledge used to 

discriminate between examples in a tree-like structure with the root at the top and the 

leaves at the bottom. The root splits into two or more branches that continue to split until 

a leaf is reached, a node that cannot be further split. These can model highly nonlinear 

decision boundaries. They are usually constructed top-down by choosing a variable in 

each step that best splits the dataset, which is usually evaluated by measuring the 

homogeneity of the target variable within the subsets. One of the most common metrics 

is the Gini impurity: 

Ç(É) = 1 − Ñ1N			P
13-         [ 19 ] 
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where i stands for the observations i ∈ {1,…,k} and pi their probability. Another common 

approach is the calculation of entropy: 

Ç É = − Ñ1log	(P
13- Ñ1)        [ 20 ] 

Simple decision trees are very easy to interpret but are more prone to overfitting and to 

suffer from high variance (48). Their prediction sensitivity is highly influenced by the 

quality and complexity of input data. To overcome this pitfall, Random Forest methods 

were constructed using multiple randomized trees and combining their output in which 

the majority vote leads to the prediction of individual classes (49). An average of N 

identically distributed random variables, each with variance ÖN has variance 
-
} Ö

N. 

Considering the positive pairwise correlation ρ, the variance of the average is given by: 

ÜÖN + -%á
} ÖN        [ 21 ] 

As the feature’s number increases, the variance of the average is restricted to the first 

term, and so the size of correlation of bagged trees limits the benefits.  Random forest 

improves variance by reducing the correlation between the trees without increasing 

variance too much.  

2.2.3 Ensemble  

These are powerful and popular techniques that are composed of multiple weaker 

models, which are independently trained and whose predictions are combined at the 

end. There are 3 types of ensemble models: 

i) Bagging, also called Bootstrap aggregating: builds multiple models with 

equal weight of the same type from random subsamples of the training 

dataset. Individual classifiers are trained independently.  

ii) Boosting: builds multiple models of the same type, in which the more 

recent learns to fix the prediction error of the previous model. The training 

is sequential and iterative but more prone to overfitting of the data. 

iii) Voting: builds multiple models of different types and use simple metrics to 

combine predictions. 

A boost classifier has the form: 

àâ 01 = OP(~
P3- 01)        [ 22 ] 

in which fk is the output of a weak learner with the input x and that returns the class of 

the object. The predicted class is identified by the sign and the confidence of 
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classification is given by the absolute value. The sum training error of the state n of the 

boost classifier is minimized by: 

ä2 = ä[àã%- 01 + å2ℎ 01 ]1         [ 23 ] 

àã%- 0  is the boosted classifier built from previous step, E(H) is an error function and 

O2 0 = å2ℎ 0  is the weak learner considered for addition to the final classifier.  

AdaBoost is one of the most important ones, with solid theoretical foundation, accurate 

prediction, great simplicity and successful application (50). 

2.2.4 SVM 

SVM were first developed by Vapnik and coworkers (51) and base their prediction in the 

concept of linear separability between classes. They are some of most accurate and 

robust methods (50). These algorithms aim to minimize both the complexity of the 

classifier and the number of misclassifications on the training set, the so called structural 

risk minimization (51). For a linearly separable dataset, a linear classification function 

corresponds to a separating hyperplane f(x) that passes through the middle of the two 

classes. However, as there are many linear hyperplanes, SVM tries to find the best 

function by maximizing the margin between the two classes, which confers it the best 

generalization ability. SVMs are defined by the criteria used to define the optimal linear 

classifier based on the concept of separation margin maximization, by the identification 

of the so-called support vectors, the minimal set of training instances that are necessary 

to define the optimal linear classifier. SVM classifiers attempt to maximize the following 

function with respect to b and w: 

Lê =
-
N w − αíγí w. xí + b + αíó

í3-
ó
í3-         [ 24 ] 

where t is the number of training examples, and αi , i ∈ {1, . . . , t}, are non-negative 

numbers such that the derivatives of LP with respect to αi are zero. αi are the Lagrange 

multipliers and LP is called the Primal Lagrangian. In this equation, the vectors ò and 

constant b define the hyperplane.  To minimize the Lagrangian, we take derivatives of w 

and b and set them to 0: 

ôöR
ôõ = 0 ⟹ w = αíγíxíó

í3-         [ 25 ] 

ôöR
ôû = 0 ⟹ αíγíó

í3- = 0       [ 26 ] 
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This Primal Lagrange function can be substituted by the Dual, which is easier to solve 

numerically: 

Lü = − -
N αíα1†γíγ1† ℎ 01 , ℎ(01†)ã

1†3- + αíó
í3-

ó
í3-         [ 27 ] 

ℎ 01  are transformed feature vectors involved through inner products and for which only 

the kernel function knowledge is required to compute the inner products in the 

transformed space: 

K 0, 0" = ℎ 01 , ℎ(01†)         [ 28 ] 

So, in most real-world problems, which involve data distribution that are not linearly 

separable, it is common to use kernels (kernel-trick) to transform the original set of 

variables into a higher order non-linear space. The kernel function k is substituted into 

the dual of the Lagrangian, allowing the determination of a maximum margin hyperplane 

in the transformed space. There are four typical families of functions:  

i) Linear				K 0, 0" = 0 ∙ 0"							[ 29 ] 

ii) Polynomial				K 0, 0" = (ß0 ∙ 0" + n)®						[ 30 ] 

iii) Sigmoid				K 0, 0" = tanh	(ß0 ∙ 0" + n)							[ 31 ] 

iv) RBF				K 0, 0" = Y%Æ [%[† T
					[ 32 ] 

The first three are global ones and RBF is a local kernel. The choice of SVM kernel is 

dependent on empirical and experimental analysis as no well-established method was 

yet designed for this selection. 

2.2.5 Neural Networks 

ANNs are statistical ML models inspired by the workings of the brain (52) and are 

composed of a collection of computational elements (neurons) that are interconnected. 

ANNs have several advantages as the ability to perform multiple training steps, detecting 

all possible interactions and requiring less formal statistical training. The common MLP 

architecture combines layers of perceptron-like processing elements (neurons) 

connected by weighted connections (synapses) (53). The neurons are grouped into 

layers with only full synaptic connection between successive layers. The layers that 

receives the signal are the input layers and all others are hidden layers that propagate 

the signal until the output layer. The depth corresponds to the number of hidden layers 

and the width is related to the maximum number of neurons in one of its layers. The 

weights are free parameters that capture the representation of the model and are learned 
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from samples. Each neuron is a variant of a linear classifier, but the inclusion of multiple 

neurons and layers result in the construction of sophisticated nonlinear classifiers that 

allow for their application to complex problems. Mathematically each input is 

characterized by a real number xi, where j ∈	{ 1,…,k}. The mapping of information from 

input to output is modeled by: 

∞± = Ö(ò≤ + ò±0±)	P
±3-         [ 33 ] 

 where wi is the weight assigned to each input line and wo plays the role of a threshold 

value. The activation function Ö enables the use of different gradient techniques for 

learning algorithms and can be given by: 

i) Logistic sigmoid2 Ö ≥ = -
-A¥_µ        [ 34 ] 

ii) Hyperbolic tangent Ö ≥ = tanh ≥ ;        [ 35 ] 

iii) Rectified linear Ö ≥ = max 0, ≥ :        [ 36 ] 

The weights can be attained using the sum-of-squared error (equation 37) or cross-

entropy/deviance (equation 38): 

∑ ò = (∞1± − O± 01 )N}
13-

~
±3-         [ 37 ] 

∑ ò = − ∞1±bcdO± 01~
±3-

}
13-         [ 38 ] 

Usually, we do not want to achieve the global minimizer R(w) as it would lead to an 

overfitted solution and instead regularization should be introduced either directly through 

a penalty term or indirectly by early stopping. R(w) is then minimized by gradient descent, 

by back-propagation. A major recent advance in ML is the automatization by learning a 

suitable representation of the data with deep artificial neural networks. A deep neural 

network takes the raw data at the lowest (input) layer and transforms them into 

increasingly abstract feature representations by successively combining outputs from the 

preceding layer in a data-driven manner, encapsulating highly complicated functions. 

The potential of deep learning in high-throughput biology is clear: in principle, it affords 

better exploitation of increasingly large and highly-dimensional data sets by training 

complex networks with multiple layers that capture their internal structure. The learned 

networks discover high-level features, improve performance over traditional models, 

increase interpretability and provide additional understanding about the structure of the 

biological data.  
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2.2.6 Naïve Bayes 

The probabilistic approach to modeling uses probability theory to express all forms of 

uncertainty (45). NB is based on Bayes’ theorem, which provides a mathematical 

framework for describing the probability of an event that might be the result of two or 

more causes. NB is easy to construct, robust and performs quite well, even 

outperforming more sophisticated alternatives. NB assumes that given a class G = j, the 

features xk are independent: 

O± m = O±P mP∏
P3-         [ 39 ] 

 Using the logit-transform we get: 

bcd @e	(f3h|g)
@e	(f3π|g) = åh + dhP mP∏

P3-         [ 40 ] 

2.2.7 Instance-Based  

Instance based algorithms are also called winner-take-all and memory-based learning 

approaches and typically compare training and test data by some similarity measure. 

The most popular one, which was also used in this study, is k-NN. 

K-NN followed in this work looks into a group of k objects in the training set that are close 

to the object and assigns a label based on a predominance of a particular class in its 

neighborhood (50). K-NN is a simple and intuitive ML algorithm where an observation is 

classified according to the majority vote. 

Majority	voting:	y" = argmaxΩ I v = yí 				(ø¿,	¡¿)∈ü¬         [ 41 ] 

where v is a class label, yi is the class label for the ith nearest neighbors, and I is an 

indicator function that returns the value 1 if its argument is true and 0 otherwise. The k-

NN is sensitive to the local structure of the data and therefore can be used for calculating 

properties with strong locality, as is the case of protein function.  

2.2.8 Regression-Based 

These classifiers involve a more probabilistic view of classification and aim to attain the 

posterior probabilities: 

Pr √P m = 0 = QWiW([)
Qyiy([)W

y{X
        [ 42 ] 

The model has a linear form: 
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bcd @e √P%- m = 0
@e √~ m = 0 = ƒ P%- o + ƒP%-5 x        [ 43 ] 

Maximum likelihood and the Newton-Raphson algorithms are used to fit this linear model. 

Usually, these methods make no assumption about distribution of classes in the feature 

space, are quickly trained, have good accuracy, resistant to overfitting and can interpret 

model coefficients as indicators of feature importance.  

The choice of ML algorithm while studying a particular problem should be made in light 

of its characteristics, deep familiarity with the theoretical foundations of the field, data 

source and prediction performance (48). ML is an active area of research in computer 

science with the increasing availability of big data collections of all sorts prompting 

interest in the development of novel tools for data mining. It is expected that continuous 

improvement of software infrastructure will make ML applicable to a growing range of 

biological problems. Silicon Valley companies understand the value of ML in the biology 

world and have been investing millions of dollars to address the usage of scalable ML 

tools and their application to this field. As an example, Facebook founder, Mark 

Zuckerberg, and his wife, Priscilla Chan, have recently announced a 3 billion dollars’ 

contribution to the creation of a network of researchers of different fields of knowledge 

with the intent of preventing, curing and managing disease. It’s foreseeable that a 

significant part of this investment will be guided toward new computational methods and 

techniques that ensure such an outcome, as is the case of computational biology 

methods. 

It is thus now the time to develop and apply new techniques to transform the current 

state-of-the-art and possibly leading to the reliable molecular-level prediction of HS at 

protein-protein interfaces.  
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3 METHODS 

3.1 HS DETECTION METHOD 

3.1.1 Dataset Construction 

We constructed a database of complexes by combining information from the ASEdb (54), 

the BID (55), SKEMPI (56) and PINT (57) databases. Combined they provide both 

experimental ΔΔGbinding values for interfacial residues and tridimensional (3D) X-ray 

structure information. The protein sequences were filtered to ensure a maximum of 35% 

sequence identity for at least one protein in each interface. Crystal structures were 

retrieved from the PDB (7) and all water molecules, ions and other small ligands were 

removed. Our final dataset consists of 545 mutations from 53 different complexes. 

3.1.2 Sequence/Structural Features 

From a structural point of view, we compiled 12 previously used different SASA 

descriptors for all interfacial residues:  i) compSASAi  the solvent accessible surface area 

of residue i in the complex form; ii) monSASAi the residue SASA in the monomer form; iii) 

ΔSASAi, the SASA difference upon complexation (equation 44); iv) relSASAi the ratio 

between ΔSASA for each residue and the monSASAi value for the same residue (equation 

45). Four additional features (comp/resSASAi, mon/resSASAi, Δ/resSASAi and rel/resSASAi), 

defined by equations 46 to 49, were determined by applying amino-acid standardization 

and dividing the previous features by the average protein resSASAr values as determined 

by Miller and colleagues (58, 59), with r being the respective residue type. Four other 

amino-acid standardized features were calculated by replacing the values determined 

by Miller by our own protein averages aveSASAr for each amino-acid type in its respective 

protein: comp/aveSASAi, mon/aveSASAi, Δ/aveSASAi and rel/aveSASAi defined in equations 50 to 

53. 

ΔSASAí = SASAí∆«»ê − SASAí»«…         [ 44 ] 

SASAe À í =
ÃÕŒÕŒ¿

ÕŒÕŒ¿œ–—
        [ 45 ] 

SASA∆«»ê e “ í =
ÕŒÕŒ¿”–œ‘

ÕŒÕŒ’’÷◊
         [ 46 ] 
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SASAí»«… e “ = ÕŒÕŒ¿œ–—
ÕŒÕŒ’’÷◊

        [ 47 ] 

SASAíÃ e “ = ÃÕŒÕŒ¿
ÕŒÕŒ’’÷◊

        [ 48 ] 

SASAíe À e “ = e ÀÕŒÕŒ¿
ÕŒÕŒ’’÷◊

        [ 49 ] 

SASAí∆«»ê ÿΩ = ÕŒÕŒ¿”–œ‘
ÕŒÕŒ’Ÿ⁄÷

        [ 50 ] 

SASAí»«… ÿΩ = ÕŒÕŒ¿œ–—
ÕŒÕŒ’Ÿ⁄÷

        [ 51 ] 

SASAíÃ ÿΩ = ÃÕŒÕŒ¿
ÕŒÕŒ’Ÿ⁄÷

        [ 52 ] 

SASAíe À ÿΩ = e ÀÕŒÕŒ¿
ÕŒÕŒ’Ÿ⁄÷

        [ 53 ] 

We further introduced two features directly related to the size of the interface: the total 

number of interfacial residues and the ΔSASAtotal (sum of the ΔSASAi of all residues at 

the protein-protein binding interfaces). Twenty other features were added by splitting the 

total number of interface residues into the 20 amino-acid types. Four contact features 

were also calculated: i) and ii) the number of protein-protein contacts within 2.5 Å and 

4.0 Å distance cut-offs, respectively; iii) the number of intermolecular hydrogen bonds 

and iv) the number of intermolecular hydrophobic interactions. In-house scripts using the 

VMD molecular package (60) were used for all these calculations. In total, we used 38 

structural features in our study. 

The evolutionary sequence conservation information was introduced, upon using 

CONSURF server (61, 62), that  calculates a conservation score for each amino-acid at 

an interfacial position for a complex, based on known sequences in different organisms. 

We also computed PSSM using BLAST (63, 64) as well as the weighted observed 

percentages, introducing them as 40 new features for all interfacial residues. Positive 

values in this matrix appear for substitutions more frequent than expected by random 

chance and negative values indicate that the substitution is not frequent. So, a total of 

41 evolutionary sequence-related features were added to the structural features, 

resulting in 79 features total. These features were used in a previous version of the study, 

published during the course of this master’s thesis (28). In the meanwhile, we have 

extended the sequence related features to include 850 ones extracted from the PROTR 
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(65) module from the R package: i) the ACC of protein, the fraction of each amino acid 

type within the protein; ii) PAAC (66) adds up to the standard 20 amino acid definition, 

providing information about patterns; iii) amphiphilic PAAC (67), a set of the twenty 

original amino acids, plus descriptors regarding the hydrophobicity/hydrophilicity of the 

sequences that have often displayed positive effects regarding protein-protein interaction 

prediction algorithms; iv) BLOSUM  which provides evolutionary features in the form of 

a scoring matrix upon sequence alignment taking into account amino acid substitution at 

a 62% level of similarity; v) Protein Fingerprinting, a process that allows for the 

identification and differentiation of proteins by unique characteristics, sometimes despite 

sequence similarity and is generated from both the AAindex and by PCA; vi) PCM (68) 

derived from PCA of 2D and 3D descriptors, that allows for a perspective regarding 

protein dynamics and interaction with ligands. Due to the large increase in available data 

on the human genome a much deeper characterization and understanding of sequences 

is now possible. Therefore, we have integrated it in the context of structural 

understanding of proteins leading to a better description of PPIs.  

We totalize a final of 929 features for which all results will be presented in section 4.1. 

These features were calculated for 545 observations, each one corresponding to an 

amino acid residue classified as HS or NS. We have written all the feature calculation 

code in Python and will make it available to all researchers in the area on GitHub. 

3.1.3 Machine-Learning Techniques  

In this study, we used the Classification and Regression Training (Caret) Package (69) 

from the R software, which provides a unified interface with a large number of built-in 

classifiers, in order to train a HS predictor. We randomly split this dataset (for details see 

Annex Table SI-1) into a training set consisting of 70% of data (382 

mutations/observations) and an independent test set (163 mutations/observations - 

30%). This is a standard division scheme demonstrated to give a good result. One of the 

main concerns when applying classification to the detection of HS is the natural 

imbalance of the data. As expected, the number of HS is lower than the number of NS 

at a protein-protein interface, as indicated by the presence of 185 HS and 360 NS in the 

main dataset. In ML classification methods, the disparity of frequencies of the observed 

classes may have a very negative impact on the models performance. To overcome this 

problem, we have tried two different subsampling techniques for the training set: down-

sampling and up-sampling. In the first, there is a random sub-setting of all classes at the 

training set with their class frequency matching the least prevalence class (HS), whereas 

in the up-sampling the opposite is happening with random sampling (with the 
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replacement) of the minority class (HS) to reach the same size as the majority class 

(NS). The 54 algorithms tested were: Boruta, C5.0, C5.0Rules, C5.0Tree, J48, 

LogitBoost, ORFlog, ORFpls, ORFridge, ORFsvm, RRF, RRFglobal, ada, adaboost, 

amdai, avNNet, bagEarth, bagEarthGCV, bagFDA, bagFDAGCV, ctree, ctree2, 

dwdPoly, dwdRadial , evtree, fda, gamboost, gbm, glm, glmboost, hdda, knn, lda, lda2, 

loclda, multinom, nb , parRF , pda , plr , qda, ranger, rda, rf, stepLDA, stepQDA, 

svmLinear, svmLinear2, svmPoly, svmRadial, svmRadialCost, svmRadialSigma, 

svmRadialWeights and wsrf.  

All the classification models were tested using 10-fold cross validation repeated 10 times 

in order to avoid overfitting and to obtain the model’s generalization error. This means 

that the training set was split randomly into ten isolated parts, using nine of the ten parts 

to train the model and taking the remaining fold of data to test the final performance of 

the model. This process was repeated ten times. Two different sets were tested in which:  

i) the variables were normalized; 

ii) the variables were normalized and then subjected to PCA.  

Both techniques are described in more detail in sections 2.1.1 and 2.1.2. The validity and 

performance of the various methods was determined by measuring the AUROC, the 

Accuracy, TPR, TNR, PPV, NPV, FPR, FNR and F1-score described in section 2.1.4 

over our dataset. The calculations for the various algorithms were written in R and 

performed in parallel for the various conditions.  

The 54 algorithms were analysed on different attributes for which a binary value was 

given (1/0 if present/absent). These were subjected to hierarchical clustering that 

returned a distance matrix using the Jaccard similarity coefficient as a metric and the 

Ward aggregation scheme. The different clusters attained were compared by three 

different techniques to discriminate among the various groups: two nonparametric 

procedures (MRPP and ANOSIM) and the parametric MANOVA. In MRPP, the delta (the 

weighted mean within-group distance) for g groups was calculated based on the average 

distance matrix calculated in each group (€‹): 

€YbÉq = t = 2y
} €‹x

13-         [ 54 ] 

Here, ›1	is the number of items in group I and N is the total number of items. ANOSIM is 

also a nonparametric procedure that is based on the calculation of dissimilarity matrixes 

and their ranking. It calculates the test statistics R (an index of relative within-group 

dissimilarity) upon calculating the mean among- and within-group rank dissimilarities: 
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∑ = fifl%fi‡
}(}%-) ×4        [ 55 ] 

In which N(N-1)/2 is the number of sample pairs. Then, for both procedures, the 

probability of a delta/R value is calculated through Monte Carlo permutations that involve 

randomly assigning sample observations to groups. 

We have also used one-way MANOVA, a parametric test to check if the groups differ 

from each other significantly in one or more characteristics.  The two hypotheses tested 

were: 

ào:	l- = lN = ⋯ = lö	‰Â			à-:	lfi ≠ lÁ	Ocr	c›Y	ÑqÇr	r, Â. 

MANOVA calculates the two matrices of between- and within-scatter: 

à = w (0‹. − 0. . )(0‹. − 0. . )5ö
13-         [ 56 ] 

ä = w (01± − 0‹. )(01± − 0‹. )5~
±3-

ö
13-         [ 57 ] 

Considering that A = à×ä%-, four different statistics were calculated based on the 

eigenvalues Ë∏of the A matrix: 

i) Samuel Stanley Wilks 			ËÈ1hPÁ = €YÉ(Í + Î)%-        [ 58 ] 

ii) Pillai M S. Barlett trace ËÏ1hhÌ1 = Ér( Í + Î %-)        [ 59 ] 

iii) Laeley-Hotelling ÉrqnY	ËöÓ = Ér(Î)       [ 60 ] 

iv) Roy’s greatest root  ËÔ≤ = sq0∏(Ë∏)       [ 61 ] 

3.1.4 Comparison with other HS Detection Software 

We compared our results with some of the common methods in the literature: ROBETTA  

(70), KFC2-A and KFC2-B (30) and CPORT (71). 
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4 RESULTS 

4.1 HS DETECTION METHOD  

4.1.1 Exploratory Data Analysis 

The accuracy of ML depends largely on the quality of the feature sets and the 

experimental data available to train the model. A few databases contain information 

about a handful of experimentally determined HS, and a non-redundant representative 

dataset can be construct with a vast coverage of all relevant type of interactions. 

However, this data, as the majority of data in biology, is still atypical for ML, too sparse 

and incomplete, too biased and too noisy (72). Moreover, the field is marked by 

imbalanced data, which turns the selection of proper performance measures and 

algorithms even more important.  

Our final dataset includes 545 amino acids from 53 complexes (140 HS and 405 NS). 

More clearly, the final number of observations are 545 with 140 of them belonging to the 

positive class and 405 to the negative one. For these observations, we began our work 

by calculating 79 features that were extended to 929 used in this thesis. We calculated 

the percentage of the different type of amino acids within HS and NS sets: 

i) NS set - SER: 7.4; GLY: 1.5; PRO: 2.0; VAL: 3.2; LEU: 2.7; ILE: 5.2; MET: 

1.0; CYS: 0.7; PHE: 4.7; TYR: 5.9; TRP: 4.9; HIS: 4.4; LYS 8.9; ARG: 10.6; 

GLN: 5.4; ASN: 6.2; GLU: 9.9; ASP: 7.2; THR: 8.1; 

ii) HS set - SER: 2.1; GLY: 2.9; PRO: 2.9; VAL: 3.6; LEU: 7.1; ILE: 4.3; MET: 

0.0; CYS: 0.0; PHE: 6.4; TYR: 20.0; TRP: 5.7; HIS: 2.1; LYS 7.1; ARG: 6.4; 

GLN: 2.1; ASN: 5.0; GLU: 7.1; ASP: 10.7; THR: 4.3.  

For both sets, there is a natural expected tendency for a higher percentage of large 

hydrophobic or charged residues at the interfaces, in particular TYR. Although different 

patterns could influence the training of a robust classifier, we have previously 

successfully constructed models that were bias-free for all different amino acids (27).  

As in any statistical study, we began by performing an EDA to investigate the database 

and summarize its main characteristics. Various libraries (R-packages) were used to 

implement it: PerformanceAnalytics, ggplot2, reshape2, FactoMineR, factoextra, 

corrplot. This step was of particular importance to maximize the insight into the data. In 
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particular, we plotted comparative boxplots and histograms of the distribution of all the 

numeric variables within our dataset and calculated simple statistics such as mean, 

standard deviation, just to name a few. Correlation r2 and p-values for the Pearson 

correlation test were also calculated using the R package corrplot and the Performance 

Analytics packages. Only 4 SASA-based descriptors (Equations 46 to 49) demonstrated 

to have high correlation with compSASAi , monSASAi, ΔSASAi, and relSASAi, as they are 

simple standardization of the same metric. However, as they proved to be relevant in our 

previous studies (26-28) we decided to keep them in our dataset. 

The features used in this work have different scales (i.e. the range of the raw data varies 

significantly), and therefore we have performed feature normalization or data 

standardization of the predictor variables at the training set by centering the data, i.e. 

subtracting the mean and normalizing it by dividing by the standard deviation. The same 

protocol was followed for the test set taking into consideration the use of the training 

mean and standard deviation to ensure a good estimation of the model quality and 

generalization power. As we have a high-dimensional dataset, we have also applied PCA 

to reduce the dimensionality of the data. As explained in detail at the 2.1.2 Section, PCA 

works by establishing an orthogonal transformation of the data to convert a set of 

possible correlated variables into a set of linearly uncorrelated ones, the so-called 

principal components. In particular, on the preprocessing function of Caret, SVD is used 

on covariance matrixes. PCA was shown to be an acceptable trade-off between 

computational time, data variance and model performance (73). We plotted the variances 

explained by the first 49 principal components (Figure 4), the ones that account for a 

cumulative percentage variance 
ÒyÚ

y{X
Òyy

≥ 95%, and that will be considered in this study. 

As this is a case in which the number of observations (n) is lower than the number of 

features (p), the number of principal components with non-zero variance attained (49) 

could not exceed n-1. 
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Figure 4. Plot of percentage of explained variance versus dimension considered. 

         

Different conditions were thus established:  

i) Scaled - dataset generated upon normalization of variables; 

ii) Scaled_Up - dataset generated upon normalization of variables and up-

sampling of the minor class (HS); 

iii) Scaled_Down - dataset generated upon normalization of variables and 

down-sampling of the major class (NS); 

iv) PCA - dataset generated upon normalization of variables and PCA; 

v) PCA_Up - dataset generated upon normalization and PCA of variables 

and up-sampling of the minor class (HS); 

vi) PCA_Down - dataset generated upon normalization and PCA of variables 

and down-sampling of the major class (NS). 

Various statistical metrics (described in detail in Section 2.1.4) were adopted to evaluate 

the performance of the algorithms tested. Figure 5 illustrates the final workflow followed 

in this study. 
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Figure 5. The flowchart of the current work. 

4.1.2 Clustering of ML algorithms 

54 algorithms were tested. For a better performance comparison, and due to the difficulty 

in categorizing ML approaches in a simple way, we began by characterizing them in 

agreement with Caret’s tags (69): Accepts Case Weights, Bagging, Bayesian Model, 

Binary Predictors Only, Boosting, Categorical Predictors Only, Cost Sensitive Learning, 

Discriminant Analysis, Distance Weighted Discrimination, Ensemble Model, Feature 

Extraction, Feature Extraction Models, Feature Selection Wrapper, Gaussian Process, 

Generalized Additive Model, Generalized Linear Model, Generalized Linear Models, 

Handle Missing Predictor Data, Implicit Feature Selection, Kernel Method, L1 

Regularization, L1 Regularization Models, L2 Regularization, L2 Regularization Models, 

Linear Classifier, Linear Classifier Models, Linear Regression, Linear Regression 

Models, Logic Regression, Logistic Regression, Mixture Model, Model Tree ,Multivariate 

Adaptive Regression Splines, Neural Network, Oblique Tree, Ordinal Outcomes, Partial 

Least Squares, Polynomial Model, Prototype Models, Quantile Regression, Radial Basis 

Function, Random Forest, Regularization, Relevance Vector Machines, Ridge 

Regression, Robust Methods, Robust Model, ROC Curves, Rule-Based Model, Self-

Organizing Maps, String Kernel, Support Vector Machines, Text Mining, Tree-Based 

Model and Two Class Only. For all tags, a binary attribute was given with a value of 1 (if 

present) or 0 (if not present). 

• 38 structural features

• 891 genomic features
1) Features definition

• Dataset split into training (70%) and test (30%) sets

• Normalization of features

• PCA

• Down-sampling and up-sampling for treatment of 

imbalanced classes

2) Pre-processing data

• 54 different algorithms tested at training set

• 10 repeated 10-fold cross-validation

• Several statistical performance metrics measured

• Independent measure of performance on the test set 

for selected algorithms

3) Learning Method
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All methods were then subjected to hierarchical clustering that returned a distance matrix 

using the Jaccard similarity coefficient as a metric and the Ward aggregation scheme. 

The dendrogram is depicted in Figure 6, which allows us to distinguish 5 main clusters: 

i) Cluster I (mainly random forest and bagging based): bagEarth, 

bagEarthGDV, bagFDA, bagFDAGCV, RRF, RRFglobal, wsrf, ranger, 

parRF, rf; 

ii) Cluster II (mainly tree-based and random forest models): LogistBoost, 

ada, adaboost, C5.0, gbm, fda, C5.0Rules, C5.0Tree, J48, evtree, ctree, 

ctree2; 

iii) Cluster III (random forest to neural models): Orfridge, ORFsvm, PRFlog, 

PRFpls, multinom, plr, glmboost, glm, nb, knn, avNNet, Boruta 

iv) Cluster IV (SVM models): svmLinear, svmLinear2, svmPoly, svmRadial, 

svmRadialCost, svmRadialSigma, and svfmRadialWeights; 

v) Cluster V (mainly linear pr quadratic models): stepLDA, loclda, lda2, hdda, 

kda, dwdPoly, amdai, rda, stepQDA, pda, qda 

 

 

 

Figure 6. Cluster Dendrogram of the ML algorithms tested in this work. 
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4.1.3 ML algorithms Performance Discrimination 

We present extensive statistical measures, covering all possible aspects of the 

assessment proposed so far, for the six conditions at Annexes Tables SI-2 to SI-7. For 

some approaches, the algorithms used did not converged and are not listed in the 

Annexes section. Figure 7 and Figure 8 illustrate the mean values and box-plot 

distributions of the sum of AUROC, TPR and TNR metrics for all six pre-processing 

conditions studied. From the Scaled conditions, it seems that C4 algorithms performed 

differently from the remaining ones with lower mean and wider distributions. For the PCA 

conditions it seems that C3 members present on average higher mean. 

We have then performed various statistical analysis to access the real discrimination 

power between the 5 attained clusters: C1, C2, C3, C4 and C5. In particular, we used 

MRPP, ANOSIM and MANOVA for all 6 pre-processing conditions, and the p-values 

attained are listed in Table 1. 

Table 1. P-Values for the statistical methods used to discriminate between groups. 1- All 8 metrics were used; 2- 

AUROC, TPR, TNR metrics were used. 

MRPP and ANOSIM are nonparametric procedures for testing the hypothesis of no 

difference between the 5 groups based on permutation test of among- and within- group 

dissimilarities. With the exception of Scaled-Up pre-processing condition, it can be 

concluded for this test that at a significant level of 0.10, the 5 clusters differ significantly 

in terms of the measured performance metrics.  

MANOVA is a parametric test that has some assumptions: multivariate normality of the 

data, multivariate homoscedasticity, no multicollinearity, and that there are no 

multivariate outliers. As all algorithms are organized already by similarity, they are not 

independent and these assumptions are not fulfilled by our data. However, fortunately 

MANOVA is usually robust to violations of theses assumptions, which nevertheless are 

PRE-
PROCESSING 

METHODS / P-VALUE 

MRPP 1 MRPP 2 ANOSIM 1 ANOSIM 2 MANOVA 

Scaled 0.089 0.069 0.081 0.093 0.069 

Scaled_Up 0.198 0.094 0.186 0.158 0.276 

Scaled_Down 0.039 0.023 0.033 0.059 0.022 

PCA 0.039 0.021 0.058 0.029 0.002 

PCA_Up 0.042 0.018 0.083 0.091 0.001 

PCA_Down 0.047 0.015 0.040 0.028 0.001 
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hard to prove on a multivariate perspective, and we can have confidence on the attained 

results.  The same conclusion retrieved from the non-parametric procedures was 

achieved by application of MANOVA. 

 

 

Figure 7. Mean of AUROC, TPR and TNR metrics for the Scaled, Scaled-Up and Scaled-down pre-processing 

conditions on the left panel. Right panels are the box-plots of the same metrics over the 5 clusters. 
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Figure 8. Mean of AUROC, TPR and TNR metrics for the PCA, PCA-Up and PCA-Down pre-processing conditions on 

the left panel. Right panels are the box-plots of the same metrics over the 5 clusters. 
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4.1.4 ML algorithms Performance Comparison 

The results for the training set for the 5 best algorithms (as clustered in Figure 6) and for 

each of the 6 conditions studied are listed in Table 2. 

 

Table 2. Statistical metrics attained for 5 algorithms with top performance for each of the studied conditions at the 

training set. 

PRE-
PROCESSING 

METRICS ALGORITHMS 

  Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA  bagEarthGCV adaboost ORFlog svmPoly dwdPoly 

 AUROC 0.83 0.83 0.84 0.81 0.81 

 Accuracy 0.81 1.00 1.00 0.89 0.87 

 TPR 0.79 1.00 1.00 0.86 0.82 

 TNR 0.83 1.00 1.00 0.92 0.91 

 PPV 0.81 1.00 1.00 0.91 0.89 

 NPV 0.81 1.00 1.00 0.88 0.85 

 FDR 0.19 0.00 0.00 0.09 0.11 

 F1-score 0.80 1.00 1.00 0.89 0.86 

PCA_Up  parRF adaboost ORFlog svmLinear lda2 

 AUROC 0.84 0.85 0.86 0.83 0.83 

 Accuracy 1.00 1.00 1.00 0.82 0.80 

 Sensitivity 1.00 1.00 1.00 0.80 0.77 

 Specificity 1.00 1.00 1.00 0.85 0.83 

 PPV 1.00 1.00 1.00 0.84 0.82 

 NPV 1.00 1.00 1.00 0.81 0.78 

 FPR 0.00 0.00 0.00 0.16 0.18 

 F1-score 1.00 1.00 1.00 0.82 0.79 

PCA_Down  parRF adaboost ORFridge svmPoly lda2 

 AUROC 0.82 0.82 0.83 0.81 0.81 

 Accuracy 1.00 1.00 0.99 0.89 0.80 

 Sensitivity 1.00 1.00 0.99 0.86 0.77 

 Specificity 1.00 1.00 1.00 0.92 0.82 

 PPV 1.00 1.00 1.00 0.91 0.81 

 NPV 1.00 1.00 0.99 0.88 0.78 

 FPR 0.00 0.00 0.00 0.09 0.19 

 F1-score 1.00 1.00 0.99 0.89 0.79 

Scaled  bagEarthGCV gbm glmboost svmLinear dwdPoly 

 AUROC 0.96 0.94 0.92 0.91 0.91 

 fAccuracy 0.96 1.00 0.90 0.97 0.99 

 Sensitivity 0.96 1.00 0.91 0.98 0.98 
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The statistical measures presented, and commonly used in the ML field, have inherent 

problems. Accuracy can provide deceivingly high numbers for unbalanced data, both 

AUROC and Accuracy put the emphasis on performance in areas not of interest for 

researchers and F1-score relies on unknown class priors (72). However, AUROC is one 

of the most widely used measures as shows the trade-off between the fraction of true 

positive and false positives as a function of a threshold on the output of the classifier.  

So, in this work, we used AUROC as the main statistical measure to rank the 

performance of the classifiers. In case of draw between different classifiers, we used the 

TPR as second choice since, from a biological point of view, the correct classification of 

HS is more important than the one of the NS. Nevertheless, TNR was taken into account 

when necessary as these 3 metrics have shown the best discriminative power. Table 2 

shows that various ML techniques perform quite well. The best classifiers from the six 

different pre-processing conditions are: 

i) Cluster I: bagEarthGCV, parRF; 

 Specificity 0.96 1.00 0.9 0.97 0.99 

 PPV 0.96 1.00 0.89 0.97 0.99 

 NPV 0.96 1.00 0.91 0.98 0.98 

 FPR 0.04 0.00 0.11 0.03 0.01 

 F1-score 0.96 1.00 0.90 0.97 0.99 

Scaled_Up  bagEarthGCV C5.0 glmboost svmLinear lda 

 AUROC 0.96 0.93 0.92 0.92 0.90 

 Accuracy 0.96 0.99 0.90 0.98 0.94 

 Sensitivity 0.96 0.98 0.90 0.98 0.93 

 Specificity 0.96 0.99 0.90 0.97 0.94 

 PPV 0.96 0.99 0.90 0.97 0.94 

 NPV 0.96 0.98 0.90 0.98 0.93 

 FPR 0.04 0.01 0.10 0.03 0.06 

 F1-score 0.96 0.99 0.90 0.98 0.94 

Scaled_Down  bagEarthGCV Gbm glmboost svmLinear dwdPoly 

 AUROC 0.95 0.94 0.92 0.91 0.90 

 Accuracy 0.95 1.00 0.90 0.98 0.99 

 Sensitivity 0.96 1.00 0.91 0.98 0.99 

 Specificity 0.95 1.00 0.90 0.97 0.99 

 PPV 0.95 1.00 0.90 0.97 0.99 

 NPV 0.96 1.00 0.91 0.98 0.99 

 FPR 0.05 0.00 0.10 0.03 0.01 

 F1-score 0.95 1.00 0.90 0.98 0.99 
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ii) Cluster II: adaboost, gbm, C5.0; 

iii) Cluster III: ORFlog, ORFridge, glmboost; 

iv) Cluster IV: svmLinear, svmPoly; 

v) Cluster V: dwdPoly, lda2, lda. 

The AUROC values vary between 0.76 and 0.83 on the 3 PCA-based cases and between 

0.80 and 0.88 on the remaining 3 of the best 5 classifiers. In this case, it seems that PCA 

leads to a decrease of the performance due to some loss of important information. 

The performance of a classifier on the training set from which it was constructed gives a 

poor estimate of its accuracy in new cases as the training error is likely to be lower than 

the actual generalization error. Overfitting on algorithms without regularization terms 

(such as decision trees and random forests) is harder to address on the training set. The 

overfitting problem is even bigger for these biological datasets as the number of 

observations at the training set (382) is roughly 40% of the number of tested features 

(929) and the large discrepancy between observations and number of features could 

lead to incorrect prediction on a new dataset. This is known as the ”Hughes effect” or 

curse of dimensionality and it appears when the number of predictors (p) is much higher 

than the number of available training examples (n). This problem is however quite 

common. For example, in the Kaggle competitions there are situations with less than 300 

data points in the training set and around 28.000 dimensions. In these p >>n situations, 

one of the major problems is the inclusion of irrelevant/noise attributes as a set of them 

can become the truly relevant ones due to random fluctuations, not contributing to the 

reduction of classification error. Introduction of more data can lead to sparseness of the 

training data and therefore the accurate estimation of the classifier’s parameters (e.g. 

decision boundaries) becomes more difficult. Also, sparseness is not uniformly 

distributed over the search space. There is no fixed rule that defines how many features 

can be used in a classification problem as it depends of the amount of training data 

available, the complexity of decision boundaries and the type of classifier used. To 

overcome this problem, we have used PCA to reduce the dimensionality space and a 

built-in feature selection method available in 50% of all tested algorithms (ada, adaboost, 

bagEarth, bagEarthGCV, bagFDA, bagFDAGCV, C5.0, C5.0Rules, C5.0Tree, ctree, 

ctree2, evtree, fda, gamboost, gbm, J48, LogitBoost, ORFlog, ORFpls, ORFridge, 

ORFsvm, parRF, ranger, rf, RRF, RRFglobal and wsrf). Built-in feature selection can be 

more efficient than algorithms where search routine for the right predictors is external to 

the model, and typically couples the predictor search algorithm with the parameter 

estimation and are usually optimized with a single objective function. Also, the true 
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predictive accuracy of the classifier was estimated on a separate test set corresponding 

to 30% of the main dataset. Table 3 summarizes the performance on the independent 

test set for the best classifiers shown in Table 3. 

Table 3. Statistical metrics attained for 5 algorithms with top performance for each of the studied conditions at the 

independent test set. 

PRE-
PROCESSING 

METRICS ALGORITHMS 

  Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA  bagEarthGCV adaboost ORFlog svmPoly dwdPoly 

 AUROC 0.78 0.78 0.78 0.78 0.76 

 Accuracy 0.78 0.78 0.78 0.78 0.76 

 Sensitivity 0.78 0.75 0.74 0.71 0.70 

 Specificity 0.78 0.81 0.82 0.84 0.81 

 PPV 0.77 0.78 0.79 0.81 0.77 

 NPV 0.79 0.78 0.77 0.76 0.74 

 FDR 0.22 0.22 0.21 0.19 0.23 

 F1-score 0.75 0.77 0.77 0.76 0.73 

PCA_Up  parRF adaboost ORFlog svmLinear lda2 

 AUROC 0.77 0.78 0.78 0.83 0.80 

 Accuracy 0.76 0.78 0.78 0.83 0.80 

 Sensitivity 0.81 0.75 0.77 0.84 0.81 

 Specificity 0.72 0.81 0.80 0.82 0.80 

 PPV 0.73 0.78 0.78 0.81 0.78 

 NPV 0.80 0.78 0.79 0.85 0.81 

 FPR 0.27 0.22 0.22 0.19 0.22 

 F1-score 0.77 0.77 0.77 0.83 0.79 

PCA_Down  parRF adaboost ORFridge svmPoly lda2 

 AUROC 0.74 0.78 0.76 0.78 0.79 

 Accuracy 0.74 0.78 0.76 0.78 0.79 

 Sensitivity 0.75 0.75 0.73 0.71 0.77 

 Specificity 0.73 0.81 0.80 0.84 0.82 

 PPV 0.73 0.78 0.77 0.81 0.80 

 NPV 0.76 0.78 0.76 0.76 0.79 

 FPR 0.27 0.22 0.23 0.19 0.2 

 F1-score 0.74 0.77 0.75 0.76 0.78 

Scaled  bagEartGCV gbm glmboost svmLinear dwdPoly 

 AUROC 0.84 0.87 0.83 0.81 0.83 

 Accuracy 0.84 0.86 0.82 0.81 0.82 

 Sensitivity 0.87 0.91 0.87 0.84 0.83 

 Specificity 0.82 0.82 0.78 0.78 0.82 

 PPV 0.82 0.82 0.79 0.78 0.81 
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From Table 3 it is clear than even the more overfitted methods still perform really well on 

an independent test set. The AUROC values at the test set still range between 0.76 and 

0.83 for the PCA pre-processing cases and between 0.76 and 0.88 for the remaining, 

which are clearly high. 

From all methods, C5.0, trained on the normalized up-scaling set, had the highest 

performance metrics on the independent test set. It was thus chosen as a final model. 

C5.0 is significantly faster than its precedent C4.5, more efficient, uses smaller decision 

trees, has support for boosting, introduces different weights and also allows the 

winnowing of the attributes that could potentially decrease performance. C5.0 can 

produce two kinds of models: a decision tree or a rule set. A decision tree follows the 

explanation of Section 2.2.2, and exactly one prediction is possible. In contrast, a rule 

set is a set of rules that makes predictions for individual observations. These are derived 

from decisions trees but in a more simplified way. The crucial difference is that for a rule 

set, more than one rule may apply for a particular observation or no rules at all may 

apply. In the first situation, the observation will be classified according to a combination 

of the weights for all the applied rules. If no rules apply, a default prediction is assigned 

to the observation. Figure 9 (Panel A) illustrates the AUROC values for the various tuning 

parameters tested for the C5.0 algorithm: rules or tree-based and with or without 

 NPV 0.87 0.91 0.87 0.84 0.84 

 FPR 0.18 0.18 0.21 0.22 0.19 

 F1-score 0.84 0.86 0.83 0.81 0.82 

Scaled_Up  bagEarthGCV C5.0 glmboost svmLinear Lda 

 AUROC 0.84 0.88 0.82 0.81 0.80 

 Accuracy 0.84 0.88 0.82 0.81 0.80 

 Sensitivity 0.87 0.91 0.86 0.84 0.79 

 Specificity 0.82 0.84 0.78 0.77 0.81 

 PPV 0.82 0.84 0.79 0.84 0.79 

 NPV 0.87 0.91 0.86 0.84 0.81 

 FPR 0.18 0.16 0.21 0.23 0.21 

 F1-score 0.84 0.88 0.82 0.81 0.79 

Scaled_Down  bagEarthGCV gbm glmboost svmLinear dwdPoly 

 AUROC 0.85 0.86 0.82 0.76 0.80 

 Accuracy 0.84 0.86 0.82 0.76 0.80 

 Sensitivity 0.88 0.88 0.83 0.74 0.78 

 Specificity 0.81 0.84 0.82 0.78 0.82 

 PPV 0.81 0.84 0.81 0.76 0.80 

 NPV 0.88 0.89 0.84 0.76 0.80 

 FPR 0.19 0.16 0.19 0.24 0.20 

 F1-score 0.84 0.86 0.82 0.75 0.79 
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winnowing. Although all of them are quite high, the best model consists on rule-based 

algorithm with 20 boosting interactions and without winnowing of features.  

 

 

Figure 9. A: ROC plot for the best C5.0 classifier: B: Top 10 features used by the chosen C5.0 algorithm. 

In our analysis of this classifier (Figure 9 – panel B), we observed that the key features 

are sequence-related ones: 3 PSSM values, 6 PROTR values introduced more recently 

and a structural one that seems consisted in all our applications of the method (related 

to relSASAi or one of its standardizations) (26-28). 

To validate the accuracy of the best predictor, we performed the HS predictions with 

other methods reported in literature such as ROBETTA [19] , KFC2-A [20], KFC2-B [20] 

and CPORT (not specialized in HS prediction but instead a protein-protein interface 

predictor) [21] on the same training and test sets. Comparison among these ML methods 

(Table 4) demonstrates that our new method achieves the best performance with F1-

scores/AUROC values of 0.88/0.88 on the test set, compared to our previous approach 

0.73/0.78 and 0.39/0.62, 0.56/0.66, 0.42/0.67 and 0.43/0.54 for ROBETTA, KFC2-A, 

KFC2-B and CPORT, respectively.  
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Table 4. Comparison of the statistical metrics attained for the best predictor in this work and some of the most common 

ones in literature 

Figure 10 clearly shows that SVM is the most common algorithm applied in the field. As 

we observed in this work the reason is clear as they tend to perform really well. However, 

other ML algorithms are shown to be has good as SVM or even better, and should be 

applied in the future to structural bioinformatics studies. In particular, during this thesis 

we concluded that C5.0 seems especially indicated to HS detection. 

 

Figure 10. ML-based algorithms for HS detection based on the ones reviewed by Moreira et al. (10) as well as our other 

2 recent approaches (27, 28). 

4.2 SPOT-ON: WEB SERVER FOR HS PREDICTION 

In the current era of shared information, it is crucial that all methodologies, algorithms 

and scripts are free-available and easy to use for any researcher interested in the 

subject. Thus, we implemented our accurate predictor in a user-friendly web-server that 

serves a wide community of non-experts in ML. 

METRICS ALGORITHMS 

 
C5.0/UP-
SCALING 

c-forest/ 
up-scaling 

classes 
SBHD2 Robetta KFC2-A KF2-B CPORT 

 TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST 

AUROC 0.93 0.88 0.85 0.78 0.74 0.69 0.62 0.62 0.72 0.66 0.60 0.67 0.54 0.54 

Accuracy 0.99 0.88 0.93 0.80 0.70 0.71 0.66 0.66 0.76 0.71 0.70 0.73 0.49 0.49 

Sensitivity 0.98 0.91 0.93 0.76 0.70 0.70 0.38 0.29 0.57 0.53 0.26 0.28 0.55 0.54 

Specificity 0.99 0.84 0.93 0.82 0.70 0.71 0.85 0.88 0.85 0.81 0.93 0.96 0.45 0.47 

PPV 0.99 0.84 0.93 0.70 0.55 0.56 0.61 0.60 0.67 0.59 0.65 0.80 0.34 0.35 

NPV 0.98 0.91 0.93 0.86 0.82 0.82 0.68 0.67 0.79 0.77 0.71 0.72 0.66 0.66 

F1-score 0.99 0.88 0.93 0.73 0.62 0.62 0.47 0.39 0.62 0.56 0.37 0.42 0.42 0.42 
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4.2.1 Input 

A screenshot of the submission page can be seen in Figure 11. The interface requires 

the user to upload a 3D structure of the protein-protein complex in the Protein Data Bank 

(PDB) format (9) and a CONSURF (10, 11) conservation scores file for it. The 

conservation scores can be easily calculated at http://consurf.tau.ac.il/2016/. The user 

should also specify the chain identifiers of the two monomers. The choice of the chains 

that constitute monomer A or B is completely arbitrary. Instructions for all the input are 

available in the Help section in addition to popups in the submission page. The first step 

every SpotOn user needs to complete is to register with an email address of their choice, 

which is used to authenticate him/her during job submission. Although the server is freely 

available, registration is required since the user email is used for various notifications 

about the progress of the job. Upon successful job submission the user receives an email 

with the URL address where the output of the run will appear as soon as the analysis is 

complete. An additional email notification containing the URL of the results page is sent 

upon completion, informing the user of the success or failure of the run. 

 

Figure 11. Screenshot of the SpotOn server submission page. 

4.2.2 Output and Representation of the Results 

The main outputs of the server are the two tables that list the residues classified as HS 

and NS. Figure 12 illustrates the output for an example case (PDBid: 1Z7X (21)) and 

contains the list of residues predicted as HS. Any column can be used to sort the table. 
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This table along with the NS table are also made available as CSV files in the archive of 

the run that the user can download. The information contained in those two tables is also 

visualized in the form of a line plot (e.g. Figure 13) which provides pertinent information 

when the user hovers the cursor over it (chain identifier, name and index of each 

residue). This enables the user to quickly identify the residues that have been identified 

as HS. 

 

Figure 12. Example table of residues identified as Hot Spots along with their probabilities for the complex with PDBid 

1Z7X (21). Only the top 10 Hot-Spots are shown. 

 

Figure 13. Probability chart of an interface residue being a Hot Spot. Residues above the orange line at 0.50 are 

predicted as HS and those below as NS. Such a chart is presented to users on the results page. 

Finally, the result page provides a direct visualization of the identified HS within the 

interface of the complex in the form of pre-generated, publication quality views of the 

complex (Figure 14), that are outputs of the Chimera software (22).  
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Figure 14. Graphical output example of SpotOn server showing a view of the complex between ribonuclease inhibitor 

(blue ribbons) and ribonuclease (cyan ribbons), respectively, with a transparent surface representation (PDBid 1Z7X 

(21)). 

For each run, all generated results are provided as two gzipped archives, which the user 

can download from the provided links. The first contains all the graphical outputs of the 

program: Chimera images, a static version of the plot described above as well as similar 

plots that display the probability of a residue being a HS for the entire molecule, broken 

down by chain identifier. The second archive contains all the text outputs: the CSV file 

that details all the features (refer to the method paper for details (8)) for the interfacial 

residues, and the CSV files of the two tables of the results page. 

4.2.3 Implementation 

The SpotOn server runs alongside the other servers of our group on a local Linux cluster. 

The backend is implemented in Python and R, but also makes use of external programs, 

including VMD (18), BLAST (19, 20) and Chimera (22) during the analysis. It makes use 

of the Flask micro-framework for web development and, in addition to the standard 

languages of the web (HTML, CSS, JS), utilizes the charting library D3.js (22) for the 

interactive plots in the results page. All scripts are available on Github 

(http:github.com/haddocking). Documentation is kept up-to-date and support is offered 
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via spoton.csbserver@gmail.com and the BioExcel support forum 

(http://ask.bioexcel.eu). Calculations submitted by users are anonymous and output data 

to separate directories with randomly generated 12-character key names. Results are 

kept on the server for 2 weeks. The server workflow is illustrated in Figure 15.  If any 

errors occur at any point of the pipeline illustrated in this figure the analysis will be 

terminated and an email will be sent to the user prompting them to review the output of 

the program. Submissions from users are processed in parallel with a maximum number 

of 15 jobs running simultaneously. Every user is limited to 3 concurrent runs. Typical 

runtimes for a prediction range between 30 and 90 minutes. 

 

Figure 15. Workflow chart of the entire SpotOn pipeline. 

Each box corresponds to a step in the pipeline and the horizontal bars at the bottom of 

the image indicate the environment in which this step takes place. At the very beginning, 

the user is required to upload the PDB file and the Consurf output for the same molecule, 

in addition to defining the two monomers of the interface. After the credentials of the user 

have been checked and the input data validated, the web server creates the run directory 

with all the necessary files. Should the data be badly formatted or the user not recognized 

as a registered user of SpotOn a helpful message will be displayed on screen indicating 

the problem. The master node of the Linux cluster where SpotOn is hosted monitors the 

directory where the run folders are located and if the global maximum number of SpotOn 

jobs or the number of jobs the particular user has submitted hasn’t exceeded the limits 

defined in the Implementation paragraph, the analysis is submitted to the queue. 

Depending on the load of the system at the time of submission, the analysis might start 
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immediately or with a small delay. The user is notified as soon as the job starts running. 

The actual run takes place in one of the working nodes of the cluster and as soon as it 

is finished, the master node submits another job for the generation of the chimera images 

based on the results of the analysis. At the same time the result archives are generated 

on the master node and the user is notified of the job completion via email. With the 

exception of the chimera images, the rest of the elements of the page are generated by 

the client in real time. 
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5 CONCLUSIONS AND FUTURE WORK 

Most biological processes within the cell involve the coupling of proteins to form stable 

complexes able to interact with other proteins or complexes, and activating various 

cellular pathways. It is fundamental to attain a faithful picture of all interactions made by 

these complexes to be able to understand high level cellular organization.  

In recent years ML has been proven to be crucial to capture protein function from a vast 

majority of biomolecular data resources and has become widely used in a variety of 

areas due to its reduced application time and high performance. Over the past years a 

few algorithms have been applied for the specific problem in this study: the detection of 

HS at PPIs (19, 26-37). However, dataset selection and treatment as well as 

performance estimation proven to be major challenges in the application of ML to the 

field. To advance these application it was necessary to compare the performance of 

various algorithms and different data extraction techniques and propose a more general 

methodology. Some classifiers (linear discriminant analysis or generalized linear 

models) come from statistics, others come from data mining (tree-based) and some are 

connectionist approaches (such as neural networks), and all can behave differently when 

applied to different databases. So, the look for the best classifier for this particular subject 

is crucial, as the No-Free-Lunch Theorem from Wolpert  (74) states: “The best classifier 

may not be the same for all the datasets”.  

We evaluated 54 classifiers arising from different families and compared their 

performance in 6 different pre-processing sets. These classifiers were subjected to 

hierarchical clustering and grouped in 5 different clusters. We have compared the 

algorithms’ performance in each cluster and chosen the best of each for a global 

comparison. The classifiers tested were implement in the caret package, which uses an 

automatically way of parameterizing them. Caret’s in-build function allows parameter 

tuning and selects the values that maximize the AUROC according to the validation 

selected (in this case a 10 repeat 10-fold cross-validation). So, every single one of them 

was tuned to be best possible choice of parameters. Various gave meaningful AUROC 

values in the range of 0.78 to 0.88, which were especially high if all features were 

considered (without PCA feature reduction). From a broad perspective the attained 

accuracy increase is clearly visible when compared to other reported methods. At the 

end, we chose a C5.0 rule-base algorithm with 20 boosting interactions and no 

winnowing of features that gave an AUROC value of 0.88 in the independent test set.  
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The values in the independent test were also very high compared to the ones currently 

reported in the literature, and surpassing all the other methods tested in this study, 

including the one achieved at the beginning of the work (Table 4). One important aspect 

that seemed to improve the results compared to our previous approaches (such as 

SBHD (26)) was the use of in-build R techniques to balance the training data: up-scaling 

of the data led to a substantial improvement of the F1-score and to a decrease of the 

FPR to about 0.19 on the independent test set. Also, the use of more sequence-related 

features improve the AUROC value from 0.78 (28) to 0.88 in the latest model. In this 

particular classifier, the first 9 features with higher importance were all sequence-based 

and one structural that had already been used in previous versions of our algorithm. In 

conclusion, we were thus able to train an accurate and robust predictor using C5.0 

learning method, and up-sampling of the minor class (HS) for dataset balance. These 

new methods can now be widely applied to the detection of HS in protein-protein 

interfaces by use of the web-server that we have developed: SpotON. 

SpotOn is an easy to use, publicly accessible web server that enables accurate Hot-Spot 

identification for protein-protein complexes, with minimal input requirements. The 

method behind it is robust and is arguably the most accurate to date. A successful run 

will present the user with meaningful results displayed in a user-friendly interactive format 

that should be equally useful to experts in the field of computational structural biology as 

well as less computationally trained researchers. SpotOn is part of a family of widely-

used web portals operated by the Utrecht group (71, 75, 76) in the general area of 

biomolecular interaction. As such it is part of services for which we aim at ensuring a 

high reliability and availability. The ML algorithm behind the webserver is still the one 

that we recently published (28) but will be updated with the new model developed during 

the remaining part of this master’s thesis.  

The work presented here serves as proof of concept about the importance of application 

of ML in the Bioinformatics field. The use of these techniques to other relevant biological 

problems such as the construction of 3D structures of protein-protein complexes will 

allow to go beyond the understanding of the function of individual proteins to the 

understanding of group proteins and various other iterators, and ultimately to the 

understanding of the biological pathways. We have now open up this window of 

opportunity and knowledge, and we intent to explore it in future works. 
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7 ANNEXES 
Table SI - 1. Table SI 1: ΔΔGbinding experimental values/HS-NS classification for the residues at our dataset. 

COMPLEX CPX_PDBID REFERENCE 
MUTATION 

RESIDUE CHAIN ΔΔG 

Ribonuclease Inhibitor/ 

Angiogenin 

1A4Y [1] TRP 261 0.10 

TRP 263 1.20 

SER 289 0.00 

TRP 318 1.50 

LYS 320 -0.30 

GLU 344 0.20 

TRP 375 1.00 

GLU 401 0.90 

TYR 434 3.30 

ASP 435 3.50 

TYR 437 0.80 

ARG 457 -0.20 

ILE 459 0.70 

ARG 5 2.30 

HIS 8 0.90 

GLN 12 0.30 

HIS 13 -0.30 

ARG 31 0.20 

ARG 32 0.90 

ASN 68 0.20 

HIS 84 0.20 

TRP 89 0.20 

GLU 108 -0.30 

HIS 114 0.65 

Tissue Factor/Fab(5G9) 1AHW [2] TYR 156 4.00 

THR 167 0.00 

THR 170 1.00 

LEU 176 1.00 

ASP 178 -0.50 

THR 197 1.30 

VAL 198 -0.30 

Barnase/barnstar 1BRS [3] LYS 27 5.40 

ARG 59 5.20 

GLU 60 -0.20 

GLU 73 2.80 

ARG 87 5.50 

HIS 102 6.00 

TYR 29 3.40 

ASP 35 4.50 
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ASP 39 7.70 

THR 42 1.80 

GLU 76 1.30 

E. Coli colicin E9 dnase 
domain/ cognate 
immunity protein IM9 

 

1BXI [4] CYS 23 0.92 

ASN 24 0.14 

THR 27 0.73 

SER 28 0.17 

SER 29 0.96 

GLU 30 1.14 

LEU 33 3.42 

VAL 34 2.58 

VAL 37 1.66 

THR 38 0.90 

GLU 41 2.08 

SER 48 0.01 

GLY 49 1.49 

SER 50 2.19 

ASP 51 5.92 

TYR 55 4.63 

PRO 56 1.24 

Bovine  alpha-
chymotrypsin/BPTI 

1CBW [5] THR 11 0.20 

LYS 15 2.00 

ARG 17 0.50 

ILE 19 0.10 

VAL 34 0.00 

ARG 39 0.20 

Factor VIIA/Tissue factor 1DAN [6] LYS 15 -0.40 

THR 17 0.10 

ASN 18 0.20 

LYS 20 2.60 

THR 21 -0.20 

ILE 22 0.70 

GLU 24 0.70 

LYS 41 -0.04 

SER 42 -0.05 

ASP 44 0.70 

LYS 46 0.25 

SER 47 0.05 

LYS 48 0.40 

PHE 50 0.40 

ASP 58 2.18 

LYS 68 -0.10 

IgG1-kappa D1.3 Fv/E5.2 
Fv 

1DVF [7] HIS 30 1.70 

TYR 32 2.00 

TYR 49 1.70 

TYR 50 0.70 

TRP 92 0.30 

SER 93 1.20 

THR 30 0.90 
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TYR 32 1.80 

TRP 52 4.20 

ASP 54 4.30 

ASN 56 1.20 

ASP 58 1.60 

GLU 98 4.20 

ARG 99 1.90 

alpha-
thrombin/thrombomodulin 

1DX5 [8] ILE 24 NS 

LYS 235 NS 

PHE 34 2.60 

LYS 36 NS 

PRO 37 NS 

GLN 38 NS 

GLU 39 NS 

LEU 65 NS 

ARG 67 3.4 

THR 74 NS 

ARG 75 NS 

TYR 76 3.00 

GLU 80 HS 

LYS 81 NS 

ILE 82 2.6 

MET 84 0.3 

LYS 110 0.00 

HIV gp120/CD4 1GC1 [9] SER 23 0.29 

GLN 25 0.03 

HIS 27 0.28 

LYS 29 0.59 

ASN 32 0.18 

GLN 33 0.10 

LYS 35 0.32 

GLN 40 -0.41 

SER 42 0.00 

LEU 44 1.04 

THR 45 -0.15 

ASN 52 0.70 

ARG 59 1.16 

SER 60 -0.09 

ASP 63 -0.32 

GLN 64 0.44 

GLU 85 1.31 

Subtype N9 
neuraminidase/Antibody 
NC10 

1NMB [10] ASP 56 2.80 

TYR 99 2.13 

THR 93 0.30 

IgG1-kappa D1.3 Fv/HEW 
lysozyme 

1VFB [11] HIS 30 0.80 

TYR 32 1.30 

TYR 49 0.80 

TYR 50 0.40 

THR 53 -0.23 
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TRP 92 2.70 

SER 93 0.30 

THR 30 0.10 

TYR 32 0.50 

TRP 52 0.40 

ARG 99 0.10 

ASP 100 3.10 

TYR 101 4.00 

ASP 18 0.30 

ASN 19 0.30 

TYR 23 0.40 

SER 24 0.80 

LYS 116 0.70 

THR 118 0.80 

ASP 119 1.00 

VAL 120 0.90 

GLN 121 2.90 

ILE 124 1.20 

ARG 125 1.80 

LEU 129 0.20 

HyHEL-10/HEW Lysozyme 3HFM [12] SER 31 0.20 

ASP 32 2.00 

TYR 33 6.00 

TYR 50 7.50 

TYR 53 3.29 

TYR 58 1.70 

TYR 20 5.00 

ARG 21 1.00 

TRP 63 0.30 

ARG 73 -0.20 

LEU 75 1.25 

THR 89 0.00 

ASN 93 0.60 

LYS 96 7.00 

LYS 97 6.00 

SER 100 0.25 

ASP 101 1.02 

HIS 15 -0.50 

ASN 31 5.25 

ASN 32 5.20 

TYR 50 4.60 

GLN 53 1.00 

TYR 96 2.80 

Protein A/Z/IgG1 MO61 Fc 1FC2 [13] ASN 147 0.60 

ILE 150 2.20 

LYS 154 1.20 

Ribonuclease 
A/Ribonuclease inhibitor 

1DFJ [14] GLU 202 1.00 

TRP 257 1.30 

TRP 259 2.20 
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GLU 283 1.30 

SER 285 0.80 

TRP 314 1.00 

LYS 316 1.30 

GLU 340 1.60 

GLU 397 1.30 

TYR 430 5.90 

ASP 431 3.60 

TYR 433 2.60 

ARG 453 0.80 

GLU 202 1.00 

TRP 257 1.30 

Integrin alpha2 I 
domain/collagen 

1DZI [15] ASN 154 NS 

TYR 157 NS 

GLN 215 HS 

ASP 219 NS 

LEU 220 NS 

THR 221 HS 

GLU 256 NS 

HIS 258 NS 

BMP-2/BMP receptor IA 
extracellular domains 

1ES7 [16] PHE 49 NS 

PRO 50 NS 

VAL 26 NS 

TRP 31 HS 

NIDOGEN-1/PERLECAN 
IG3 

1GL4 [17] ARG 403 NS 

ASP 427 HS 

HIS 429 HS 

TYR 431 HS 

TYR 440 NS 

GLU 616 HS 

ARG 620 HS 

MazE (antidote)/ MazF 
(toxin) 

1UB4 [18] PHE 453 NS 

LEU 455 HS 

LEU 458 HS 

IGG1 FC/ streptococcal 
protein G 

1FCC [19] THR 25 0.24 

GLU 27 >4.90 

LYS 28 1.30 

LYS 31 3.50 

ASN 35 NS 

ASP 40 0.30 

GLU 42 0.40 

TRP 43 3.80 

Oligomerization domain of 
P53 

3SAK [20] GLU 8 NS 

PHE 10 HS 

THR 11 NS 

LEU 12 HS 

GLN 13 NS 

ILE 14 HS 

ARG 15 NS 
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ARG 17 NS 

PHE 20 HS 

PHE 23 HS 

LEU 26 HS 

ASN 27 NS 

LEU 30 HS 

ASP 34 NS 

Factor VIIA/Tissue factor 1FAK [21] ASN 37 NS 

LYS 41 NS 

SER 42 NS 

ASP 44 NS 

TYR 94 NS 

LYS 15 -0.40 

THR 17 0.10 

ASN 18 0.20 

LYS 20 2.60 

ILE 22 1.70 

GLU 24 NS 

SER 47 0.10 

LYS 48 0.40 

PHE 50 0.40 

ASP 58 2.50 

GLU 128 0.10 

LEU 133 0.10 

ARG 135 0.50 

PHE 140 1.30 

THR 203 0.10 

 VAL 207 NS 

Subtilisin BPN' 
precursor/chymotrypsin 
inhibitor 2 

1TM1 [22] THR 58 2.64 

MET 59 1.02 

GLU 60 2.98 

TYR 61 2.57 

ARG 62 1.25 

ARG 65 3.40 

ARG 67 2.99 

VAL 70 0.02 

Interleukin-4/Interleukin-4 
receptor alpha chain 

1IAR [23] ILE 5 0.22 

THR 6 1.17 

GLN 8 -0.10 

ILE 11 -0.22 

THR 13 0.07 

ASN 15 0.97 

SER 16 -0.03 

GLU 19 -0.18 

LYS 77 -0.32 

GLN 78 0.15 

ARG 81 0.12 

PHR 82 0.48 

LYS 84 -0.90 
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ARG 85 0.34 

ARG 88 0.42 

ASN 89 3.74 

TRP 91 1.55 

14.3.D T cell antigen 
receptor/Staphylococcal 
enterotoxin C3 

1JCK [24] THR 20 1.65 

TYR 26 1.77 

ASN 60 1.64 

TYR 90 2.89 

VAL 91 2.22 

LYS 103 0.67 

PHE 176 2.13 

Growth factor receptor-
bound protein 2/Vav 
proto-oncogene 

1GCQ [25] PRO 595 0.76 

PRO 608 1.31 

PRO 609 0.12 

PRO 657 0.08 

Cyclophilin A/HIV-1 
capsid 

1AK4 [26] PRO 485 2.44 

VAL 486 2.35 

HIS 487 2.36 

GLY 489 3.43 

PRO 490 3.52 

ILE 491 1.60 

PRO 493 2.04 

ATF-urokinase receptor 2I9B [[27] ARG 137 -0.29 

LYS 139 0.67 

ARG 142 0.36 

HIS 143 0.66 

ARG 145 0.41 

Lyzozyme C/inhibitor 1UUZ [28] CYS 64 0.65 

Mlc/ EIICB 3BP8 [29] PHE 136 0.71 

IMME2/ E9 DNASE 2WPT [30] GLU 30 1.73 

VAL 37 3.79 

GLU 41 4.48 

SER 50 2.42 

PRO 56 2.92 

ARG 54 0.87 

ASN 72 0.70 

SER 74 -0.13 

ASN 75 1.25 

SER 77 -0.46 

SER 78 -0.09 

SER 84 -0.07 

PHE 86 1.05 

THR 87 0.38 

GLN 92 0.38 

LYS 97 0.65 

VAL 98 0.26 

Cytochrome C 
peroxidase/Cytochrome C 

2PCC [31] ASP 34 -0.89 

VAL 197 2.09 

GLU 290 6.18 
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LYS 87 0.90 

JEL42 FAB/HPR 2JEL [[32] THR 62 0.00 

GLU 68 0.41 

GLU 70 2.72 

HIS 76 -0.41 

GLU 83 0.00 

Nuclease A/inhibitor 2O3B [33] GLU 24 5.45 

GLN 74 3.22 

TRP 76 4.06 

Profilin/beta-Actin 2BTF [34] PHE 59 4.27 

LYS 125 0.00 

UCHL3/UbVME 1XD3 [35] LYS 6 1.64 

LEU 8 2.10 

GLU 24 1.59 

LYS 27 0.46 

ASP 39 1.34 

ILE 44 2.47 

GLU 51 -0.24 

ASP 52 -0.06 

ASP 58 -0.41 

TSG101(UEV)/ ubiquitin 1S1Q [36] VAL 43 0.67 

PHE 44 0.20 

ASN 45 1.23 

ASP 46 0.96 

TRP 75 0.27 

PHE 88 0.77 

RALGDS/ RAS 1LFD [37] ARG 20 1.13 

LYS 32 1.32 

LYS 48 0.26 

ASP 51 -0.58 

LYS 52 1.17 

ASP 56 -0.28 

GLU 57 -0.25 

TGF-BETA3/ TBR-2 1KTZ [38] ARG 25 1.48 

ARG 94 2.87 

LEU 27 2.26 

PHE 30 3.41 

ASP 32 1.96 

ASN 47 0.72 

SER 49 0.78 

ILE 50 2.33 

THR 51 1.95 

SER 52 0.66 

ILE 53 1.81 

GLU 55 1.66 

VAL 62 1.09 

GLU 75 1.52 

VAL 77 0.86 

HIS 79 0.74 
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PHE 110 1.37 

MET 112 1.31 

ASP 118 1.26 

GLU 119 1.93 

ILE 125 0.98 

AML1/CBF-BETA 1H9D [39] ARG 3 1.16 

VAL 4 1.40 

GLY 61 2.07 

GLN 67 1.36 

LEU 103 0.94 

ASN 104 2.29 

Chemotaxis protein 
Chey/Chea 

1FFW [40] GLU 171 0.71 

GLU 178 0.64 

HIS 181 0.03 

ASP 202 -0.07 

ASP 207 0.10 

CYS 213 0.20 

PHE 214 3.63 

ILE 216 0.43 

MT-SP1/ S4 FAB 3NPS [41] GLN 38 0.03 

ILE 41 0.64 

ARG 87 -0.15 

PHE 94 1.59 

ASN 95 0.25 

ASP 96 1.50 

PHE 97 0.46 

THR 98 0.72 

HIS 143 1.87 

GLN 145 0.29 

TYR 146 1.77 

THR 150 0.17 

GLU 169 0.61 

GLN 177 -0.06 

GLN 175 0.74 

ASP 217 1.46 

ARG 222 -0.08 

LYS 224 -0.10 

Beta-trypsin/BPTI 2FTL [42] GLY 12 4.37 

LYS 15 10.36 

ILE 18 5.00 

GLY 36 2.01 

RNASE 1/RNASE inhibitor 1Z7X [43] GLU 206 1.01 

TRP 261 1.33 

TRP 263 2.20 

GLU 287 1.32 

SER 289 0.81 

TRP 318 0.99 

LYS 320 1.32 

GLU 344 1.56 
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TRP 375 1.66 

GLU 401 1.30 

TYR 434 5.93 

ASP 435 3.65 

TYR 437 2.61 

ARG 457 0.84 

ILE 459 0.34 

Human leukocyte 
elastase/OMTKY3 

1PPF [44] LYS 13 0.75 

PRO 14 -0.12 

THR 17 3.18 

LEU 18 1.01 

GLU 19 1.20 

TYR 20 3.20 

ARG 21 0.21 

GLY 32 0.26 

ASN 36 -1.64 

Proteinase B/OMTKY3 3SGB [45] LYS 13 -2.56 

PRO 14 -0.19 

THR 17 3.40 

LEU 18 2.96 

GLU 19 1.02 

TYR 20 1.94 

ARG 21 0.05 

GLY 32 1.29 

ASN 36 0.33 

Efb-C / C3d 2GOX [46] ARG 131 2.25 

ASN 138 1.57 

Interstitial 
collagenase/Metalloprotei
nase inhibitor 1 

2J0T [47] VAL 4 0.00 

SER 68 2.11 

THR 2 4.29 

MET 66 1.64 

Bone morphogenetic 
protein 2/ Crossveinless 2 

3BK3 [48] LEU 1 0.00 

ILE 2 1.04 

ILE 18 0.49 

ILE 21 1.31 

ILE 27 1.26 

Membrane-type serine 
protease 1/BPTI 

1EAW [49] GLN 38 -0.52 

ILE 41 -0.82 

ILE 60 -0.19 

ASP 60A -0.17 

ASP 60B 1.50 

ARG 60C 0.59 

PHE 60E -0.43 

ARG 60F 0.23 

TYR 60G -0.08 

ARG 87 -0.15 

PHE 94 0.73 

ASN 95 0.31 

ASP 96 0.65 
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PHE 97 0.89 

THR 98 0.25 

HIS 143 -0.01 

GLN 145 0.31 

TYR 146 0.50 

THR 150 0.09 

LEU 153 0.50 

GLU 169 0.70 

GLN 174 0.56 

GLN 175 -0.13 

ASP 217 2.23 

GLN 221A 0.14 

ARG 222 -0.09 

LYS 224 0.48 

Membrane-type serine 
protease 1/E2 Fab 

3BN9 [50] GLN 38 -0.42 

ILE 41 0.00 

ILE 60 0.84 

ASP 60a 0.42 

ASP 60b 0.31 

ARG 60c -0.04 

PHE 60e -0.04 

ARG 60f -0.07 

TYR 60g 0.02 

ARG 87 -0.16 

PHE 94 0.64 

ASN 95 0.77 

THR 98 1.13 

HIS 143 0.09 

GLN 145 0.13 

TYR 146 1.08 

THR 150 0.29 

LEU 153 0.34 

GLU 169 0.37 

GLN 174 -0.03 

GLN 175 2.51 

ASP 217 0.57 

GLN 221a 0.71 

ARG 222 -0.09 

LYS 224 0.78 

HyHEL-63 Fab/HEW 
Lysozyme 

1DQJ [51] TYR 20 3.29 

ARG 21 1.21 

LYS 97 3.52 

ASP 101 1.45 

TRP 62 0.76 

TRP 63 1.35 

LEU 75 1.45 

THR 89 0.84 

ASN 93 0.65 

LYS 96 6.16 
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LYS 97 3.52 

SER 100 0.78 

ASP 101 1.30 

ASN 31 2.01 

ASN 32 4.09 

TYR 50 2.68 

SER 91 1.43 

TYR 96 1.14 

ASP 32 2.01 

TYR 33 5.52 

TYR 50 6.89 

TYR 53 1.18 

TRP 98 4.93 

SHV-1 beta-
lactamase/BLIP 

2G2U [52] GLU 31 0.65 

SER 35 -0.95 

PHE 36 2.76 

SER 39 -0.96 

HIS 41 1.72 

GLY 48 -0.43 

TYR 50 -2.07 

TYR 51 -0.63 

TYR 53 2.30 

SER 71 -0.51 

GLU 73 -1.98 

LYS 74 -0.22 

TRP 112 0.96 

SER 113 -0.61 

GLY 141 -0.41 

PHE 142 0.28 

TYR 143 -1.85 

ARG 144 -0.34 

HIS 148 1.12 

TRP 150 1.78 

ARG 160 0.67 

TRP 162 0.53 

SER 12 1.90 

THR 10 2.05 

ILE 13 3.51 

Bovine alpha-
chymotrypsin/Turkey 
ovomucoid third domain 

1CHO [53] GLY 32 -0.77 

THR 17 4.32 

LEU 18 4.93 
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Table SI - 2. Statistical measures of ML algorithms applied to HS detection. 

Scaled  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.86 0.94 0.94 0.95 0.94 0.94 0.06 0.06 0.94 

 bagEarthGCV 0.96 0.96 0.96 0.96 0.96 0.96 0.04 0.04 0.96 

 bagFDA 0.88 0.90 0.91 0.89 0.89 0.91 0.11 0.09 0.90 

 bagFDAGCV 0.95 0.94 0.94 0.94 0.94 0.94 0.06 0.06 0.94 

 parRF 0.80 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 wsrf 0.87 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

Cluster II           

 C5.0 0.88 0.97 0.94 1.00 1.00 0.95 0.00 0.06 0.97 

 C5.0Rules 0.89 0.97 0.96 0.99 0.99 0.96 0.01 0.04 0.97 

 C5.0Tree 0.91 0.97 0.94 1.00 1.00 0.95 0.00 0.06 0.97 

 ctree 0.93 0.90 0.9 0.91 0.90 0.90 0.10 0.10 0.90 

 evtree 0.85 0.92 0.91 0.94 0.93 0.91 0.07 0.09 0.92 

 fda 0.88 0.90 0.91 0.90 0.89 0.91 0.11 0.09 0.90 

 gbm 0.94 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 LogitBoost 0.93 0.99 0.99 0.98 0.98 0.99 0.02 0.01 0.99 

Cluster III           

 avNNet 0.84 0.97 0.97 0.97 0.97 0.97 0.03 0.03 0.97 

 glm 0.76 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 glmboost 0.92 0.90 0.91 0.90 0.89 0.91 0.11 0.09 0.90 

 multinom 0.79 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 nb 0.50 0.80 0.74 0.85 0.82 0.78 0.18 0.26 0.78 
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 ORFlog 0.81 0.87 0.81 0.93 0.91 0.84 0.09 0.19 0.86 

 ORFpls 0.85 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 ORFridge 0.85 0.98 0.98 0.99 0.99 0.98 0.01 0.02 0.98 

 ORFsvm 0.88 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 plr 0.90 0.98 0.98 0.98 0.98 0.98 0.02 0.02 0.98 

Cluster IV           

 svmLinear 0.91 0.97 0.98 0.97 0.97 0.98 0.03 0.02 0.97 

 svmLinear2 0.91 0.96 0.97 0.95 0.95 0.97 0.05 0.03 0.96 

 svmPoly 0.81 0.95 0.95 0.95 0.95 0.95 0.05 0.05 0.95 

 svmRadial 0.80 0.78 0.73 0.84 0.8 0.77 0.2 0.27 0.77 

 svmRadialCost 0.80 0.78 0.73 0.84 0.8 0.77 0.2 0.27 0.77 

 svmRadialWeigh
ts 0.80 0.75 0.88 0.62 0.68 0.85 0.32 0.12 0.77 

Cluster V           

 dwdPoly 0.91 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 dwdRadial 0.88 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 hdda 0.80 0.79 0.72 0.85 0.81 0.77 0.19 0.28 0.77 

 lda 0.90 0.93 0.91 0.96 0.95 0.92 0.05 0.09 0.93 

 lda2 0.90 0.93 0.91 0.96 0.95 0.92 0.05 0.09 0.93 

 pda 0.90 0.93 0.91 0.96 0.95 0.92 0.05 0.09 0.93 

 stepLDA 0.85 0.82 0.85 0.79 0.79 0.85 0.21 0.15 0.82 

 stepQDA 0.83 0.82 0.87 0.77 0.78 0.86 0.22 0.13 0.82 
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Table SI - 3. Statistical measures of ML algorithms applied to HS detection upon up-sampling of minor class. 

ScaledUp  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.88 0.96 0.94 0.97 0.97 0.94 0.94 0.06 0.96 

 bagEarthGCV 0.96 0.96 0.96 0.96 0.96 0.96 0.04 0.04 0.96 

 bagFDA 0.88 0.94 0.94 0.94 0.94 0.94 0.06 0.06 0.94 

 bagFDAGCV 0.95 0.94 0.94 0.94 0.94 0.94 0.06 0.06 0.94 

 parRF 0.81 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 Ranger 0.81 1.00 1.00 0.99 0.99 1.00 0.01 0.00 1.00 

 Wsrf 0.88 1.00 1.00 0.99 0.99 1.00 0.01 0.00 1.00 

Cluster II           

 C5.0 0.91 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0Rules 0.90 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 C5.0Tree 0.93 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 Ctree 0.93 0.90 0.90 0.91 0.91 0.90 0.09 0.10 0.90 

 Evtree 0.86 0.92 0.93 0.92 0.92 0.93 0.08 0.07 0.92 

 Fda 0.88 0.88 0.91 0.86 0.86 0.90 0.09 0.09 0.88 

 Gbm 0.95 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 LogitBoost 0.93 0.98 0.99 0.96 0.97 0.99 0.03 0.01 0.98 

Cluster III           

 avNNet 0.84 0.97 0.97 0.96 0.96 0.97 0.04 0.03 0.97 

 Glm 0.78 0.63 0.65 0.60 0.62 0.63 0.38 0.35 0.64 

 glmboost 0.92 0.90 0.90 0.90 0.90 0.90 0.10 0.10 0.90 

 multinom 0.80 0.98 0.99 0.98 0.98 0.99 0.02 0.01 0.98 
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 Nb 0.50 0.80 0.76 0.84 0.82 0.78 0.18 0.24 0.79 

 ORFlog 0.83 0.88 0.84 0.92 0.91 0.85 0.09 0.16 0.87 

 ORFpls 0.86 0.99 0.97 1.00 1.00 0.97 0.00 0.03 0.99 

 ORFridge 0.86 0.99 0.98 1.00 1.00 0.98 0.00 0.02 0.99 

 ORFsvm 0.89 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

 Plr 0.91 0.98 0.99 0.98 0.98 0.99 0.02 0.01 0.98 

Cluster IV           

 svmLinear 0.92 0.98 0.98 0.97 0.97 0.98 0.03 0.02 0.98 

 svmLinear2 0.92 0.96 0.96 0.95 0.95 0.96 0.05 0.04 0.96 

 svmPoly 0.81 0.95 0.95 0.95 0.95 0.95 0.05 0.05 0.95 

 svmRadial 0.80 0.78 0.76 0.81 0.8 0.77 0.2 0.24 0.78 

 svmRadialCost 0.80 0.79 0.77 0.8 0.79 0.78 0.21 0.23 0.78 

 svmRadialWeigh
ts 0.80 0.72 0.97 0.46 0.64 0.95 0.36 0.03 0.77 

Cluster V           

 dwdRadial 0.89 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 Hdda 0.78 0.79 0.73 0.85 0.83 0.76 0.17 0.27 0.78 

 Lda 0.90 0.94 0.93 0.94 0.94 0.93 0.06 0.07 0.94 

 lda2 0.90 0.94 0.93 0.94 0.94 0.93 0.06 0.07 0.94 

 Pda 0.90 0.94 0.93 0.94 0.94 0.93 0.06 0.07 0.94 

 stepLDA 0.84 0.82 0.86 0.79 0.80 0.85 0.20 0.14 0.83 

 stepQDA 0.83 0.82 0.90 0.75 0.78 0.87 0.11 0.11 0.83 
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Table SI - 4. Statistical measures of ML algorithms applied to HS detection and down-sampling of major class. 

ScaledDown  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.88 0.95 0.94 0.96 0.96 0.95 0.06 0.06 0.95 

 bagEarthGCV 0.95 0.95 0.96 0.95 0.95 0.96 0.05 0.04 0.95 

 bagFDA 0.88 0.94 0.95 0.94 0.94 0.95 0.06 0.05 0.95 

 bagFDAGCV 0.95 0.94 0.95 0.93 0.93 0.95 0.07 0.05 0.94 

 parRF 0.79 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ranger 0.79 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

 wsrf 0.87 1.00 1.00 0.99 0.99 1.00 0.01 0.00 1.00 

Cluster II           

 C5.0 0.88 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0Rules 0.88 0.98 0.99 0.98 0.98 0.99 0.02 0.01 0.98 

 C5.0Tree 0.90 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 ctree 0.90 0.89 0.85 0.94 0.93 0.86 0.07 0.15 0.89 

 evtree 0.84 0.88 0.86 0.91 0.90 0.86 0.10 0.14 0.88 

 fda 0.88 0.91 0.92 0.91 0.91 0.92 0.09 0.08 0.92 

 gbm 0.94 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 LogitBoost 0.93 0.98 0.98 0.99 0.99 0.98 0.01 0.02 0.98 

Cluster III           

 avNNet 0.84 0.97 0.97 0.98 0.98 0.97 0.02 0.03 0.97 

 glm 0.76 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 glmboost 0.92 0.90 0.91 0.90 0.90 0.91 0.10 0.09 0.90 

 multinom 0.79 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 
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 nb 0.50 0.80 0.73 0.87 0.85 0.77 0.15 0.27 0.79 

 ORFlog 0.80 0.87 0.81 0.93 0.92 0.83 0.08 0.19 0.86 

 ORFpls 0.84 0.98 0.97 0.99 0.99 0.97 0.01 0.03 0.98 

 ORFridge 0.83 0.99 0.98 1.00 1.00 0.98 0.00 0.02 0.99 

 ORFsvm 0.88 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

 plr 0.89 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

Cluster IV           

 svmLinear 0.91 0.98 0.98 0.97 0.97 0.98 0.03 0.02 0.98 

 svmLinear2 0.91 0.96 0.97 0.96 0.96 0.97 0.04 0.03 0.96 

 svmPoly 0.79 0.95 0.95 0.94 0.95 0.95 0.05 0.05 0.95 

 svmRadial 0.79 0.77 0.78 0.76 0.77 0.78 0.23 0.22 0.78 

 svmRadialCost 0.79 0.77 0.78 0.77 0.77 0.78 0.23 0.22 0.77 

 svmRadialWeigh
ts 0.79 0.75 0.90 0.61 0.70 0.85 0.30 0.10 0.78 

Cluster V           

 dwdPoly 0.90 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 dwdRadial 0.88 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 hdda 0.81 0.78 0.73 0.84 0.82 0.76 0.18 0.27 0.77 

 lda 0.90 0.94 0.92 0.95 0.95 0.92 0.05 0.08 0.94 

 lda2 0.89 0.94 0.92 0.95 0.95 0.92 0.05 0.08 0.94 

 pda 0.90 0.93 0.92 0.95 0.95 0.92 0.05 0.08 0.93 

 stepLDA 0.85 0.83 0.86 0.79 0.80 0.85 0.20 0.14 0.83 

 stepQDA 0.84 0.81 0.91 0.72 0.76 0.89 0.24 0.09 0.83 



      
Hot-Spot Classification 

83 

 

 
Table SI - 5. Statistical measures of ML algorithms applied to HS detection upon PCA. 

PCA  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.72 0.82 0.76 0.87 0.85 0.79 0.15 0.24 0.80 

 bagEarthGCV 0.83 0.81 0.79 0.83 0.81 0.81 0.19 0.21 0.80 

 bagFDA 0.72 0.82 0.76 0.88 0.85 0.79 0.15 0.24 0.80 

 bagFDAGCV 0.82 0.82 0.77 0.88 0.85 0.80 0.15 0.23 0.81 

 parRF 0.82 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ranger 0.23 0.01 0.02 0.01 0.02 0.01 0.98 0.98 0.02 

 wsrf 0.82 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

Cluster II           

 ada 0.77 0.95 0.92 0.97 0.97 0.93 0.03 0.08 0.94 

 adaboost 0.83 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0 0.72 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0Rules 0.72 0.90 0.90 0.91 0.91 0.90 0.09 0.10 0.90 

 C5.0Tree 0.73 0.97 0.97 0.97 0.97 0.97 0.03 0.03 0.97 

 ctree 0.72 0.81 0.77 0.85 0.83 0.80 0.17 0.23 0.80 

 evtree 0.72 0.83 0.77 0.88 0.86 0.80 0.14 0.23 0.81 

 fda 0.71 0.79 0.78 0.80 0.79 0.80 0.21 0.22 0.79 

 gamboost 0.80 0.80 0.73 0.87 0.84 0.78 0.16 0.27 0.78 

 gbm 0.78 0.99 0.98 0.99 0.99 0.98 0.01 0.02 0.99 

 J48 0.66 0.98 0.98 0.97 0.97 0.98 0.03 0.02 0.98 

 LogitBoost 0.72 0.87 0.86 0.88 0.87 0.87 0.13 0.14 0.86 
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Cluster III           

 avNNet 0.79 0.94 0.91 0.97 0.96 0.92 0.04 0.09 0.94 

 glm 0.74 0.84 0.82 0.86 0.85 0.84 0.15 0.18 0.83 

 glmboost 0.78 0.77 0.76 0.79 0.77 0.78 0.23 0.24 0.76 

 multinom 0.82 0.84 0.82 0.86 0.85 0.84 0.15 0.18 0.83 

 nb 0.72 0.82 0.74 0.90 0.88 0.79 0.12 0.26 0.80 

 ORFlog 0.84 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ORFpls 0.83 0.99 0.99 1.00 1.00 0.99 0.00 0.01 0.99 

 ORFridge 0.84 1.00 0.99 1.00 1.00 0.99 0.00 0.01 1.00 

 ORFsvm 0.83 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 plr 0.82 0.84 0.81 0.86 0.84 0.83 0.16 0.19 0.83 

Cluster IV           

 svmLinear 0.81 0.82 0.75 0.90 0.87 0.79 0.13 0.25 0.80 

 svmLinear2 0.80 0.82 0.77 0.86 0.84 0.80 0.16 0.23 0.80 

 svmPoly 0.81 0.89 0.86 0.92 0.91 0.88 0.09 0.14 0.89 

 svmRadial 0.80 0.77 0.70 0.84 0.80 0.75 0.20 0.30 0.74 

 svmRadialCost 0.80 0.77 0.69 0.84 0.80 0.74 0.20 0.31 0.74 

 svmRadialWeigh
ts 0.80 0.75 0.90 0.61 0.68 0.86 0.32 0.10 0.78 

Cluster V           

 amdai 0.81 0.80 0.76 0.84 0.82 0.79 0.21 0.24 0.79 

 dwdPoly 0.81 0.87 0.82 0.91 0.89 0.85 0.11 0.18 0.86 

 dwdRadial 0.80 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 hdda 0.79 0.77 0.72 0.82 0.79 0.76 0.21 0.28 0.75 

 lda 0.81 0.80 0.76 0.84 0.82 0.79 0.18 0.24 0.79 

 lda2 0.81 0.80 0.76 0.84 0.82 0.79 0.18 0.24 0.79 
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 loclda 0.69 0.94 0.92 0.96 0.96 0.93 0.04 0.08 0.94 

 pda 0.81 0.80 0.76 0.84 0.82 0.79 0.18 0.24 0.79 

 qda 0.76 0.79 0.61 0.95 0.92 0.73 0.08 0.39 0.74 

 rda 0.77 0.80 0.76 0.84 0.82 0.79 0.18 0.24 0.79 

 stepLDA 0.70 0.68 0.51 0.84 0.74 0.65 0.26 0.49 0.60f 

 stepQDA 0.71 0.67 0.43 0.90 0.79 0.63 0.21 0.57 0.55 
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Table SI - 6. Statistical measures of ML algorithms applied to HS detection upon PCA and up-sampling of minor class. 

PCAUp  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.72 0.81 0.80 0.82 0.82 0.81 0.18 0.20 0.81 

 bagEarthGCV 0.83 0.82 0.80 0.84 0.83 0.81 0.17 0.20 0.82 

 bagFDA 0.72 0.81 0.80 0.81 0.81 0.80 0.19 0.20 0.81 

 bagFDAGCV 0.83 0.82 0.80 0.84 0.83 0.81 0.17 0.20 0.81 

 parRF 0.84 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 Ranger 0.84 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 Wsrf 0.84 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

Cluster II           

 Ada 0.78 0.96 0.94 0.97 0.97 0.94 0.03 0.06 0.96 

 adaboost 0.85 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0 0.73 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0Rules 0.74 0.87 0.93 0.82 0.84 0.92 0.16 0.07 0.88 

 C5.0Tree 0.75 0.91 0.95 0.87 0.88 0.95 0.12 0.05 0.91 

 Ctree 0.77 0.87 0.86 0.88 0.87 0.86 0.13 0.14 0.87 

 Evtree 0.72 0.83 0.81 0.85 0.84 0.82 0.16 0.19 0.83 

 Fda 0.62 0.77 0.75 0.80 0.79 0.76 0.21 0.25 0.77 

 gamboost 0.80 0.78 0.76 0.81 0.80 0.77 0.20 0.24 0.78 

 Gbm 0.81 0.98 0.98 0.98 0.98 0.98 0.02 0.02 0.98 

 J48 0.70 0.97 0.97 0.98 0.98 0.97 0.02 0.03 0.97 

 LogitBoost 0.75 0.89 0.93 0.85 0.86 0.93 0.14 0.07 0.89 
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Cluster III           

 avNNet 0.80 0.96 0.94 0.97 0.97 0.94 0.03 0.06 0.96 

 Glm 0.73 0.77 0.76 0.78 0.77 0.76 0.23 0.24 0.77 

 glmboost 0.79 0.78 0.78 0.77 0.77 0.78 0.23 0.22 0.78 

 multinom 0.83 0.83 0.81 0.85 0.84 0.82 0.16 0.19 0.83 

 Nb 0.72 0.82 0.74 0.89 0.87 0.78 0.13 0.26 0.80 

 ORFlog 0.86 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ORFpls 0.85 1.00 0.99 1.00 1.00 0.99 0.00 0.01 1.00 

 ORFridge 0.85 1.00 0.99 1.00 1.00 0.99 0.00 0.01 1.00 

 ORFsvm 0.85 0.99 0.99 1.00 1.00 0.99 0.00 0.01 0.99 

 Plr 0.83 0.83 0.81 0.85 0.84 0.82 0.16 0.19 0.83 

Cluster IV           

 svmLinear 0.83 0.82 0.80 0.85 0.84 0.81 0.16 0.20 0.82 

 svmLinear2 0.82 0.82 0.78 0.87 0.85 0.80 0.15 0.22 0.81 

 svmPoly 0.82 0.94 0.95 0.93 0.93 0.95 0.07 0.05 0.94 

 svmRadial 0.81 0.78 0.75 0.80 0.79 0.76 0.21 0.25 0.77 

 svmRadialCost 0.80 0.79 0.78 0.80 0.80 0.78 0.20 0.22 0.79 

 svmRadialWeigh
ts 0.80 0.77 0.92 0.61 0.70 0.89 0.30 0.08 0.80 

Cluster V           

 Amdai 0.82 0.8 0.77 0.83 0.82 0.78 0.18 0.23 0.79 

 dwdPoly 0.82 0.81 0.78 0.84 0.83 0.79 0.17 0.22 0.80 

 dwdRadial 0.82 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 Hdda 0.79 0.74 0.76 0.72 0.73 0.75 0.27 0.24 0.75 

 Lda 0.82 0.80 0.77 0.83 0.82 0.78 0.18 0.23 0.79 

 lda2 0.83 0.80 0.77 0.83 0.82 0.78 0.18 0.23 0.79 



      
Hot-Spot Classification 

88 

 

 

  

 Loclda 0.72 0.94 0.93 0.95 0.95 0.93 0.05 0.07 0.94 

 Pda 0.82 0.80 0.77 0.83 0.82 0.78 0.18 0.23 0.79 

 Qda 0.78 0.79 0.63 0.95 0.92 0.72 0.08 0.37 0.75 

 Rda 0.77 0.80 0.77 0.83 0.82 0.78 0.18 0.23 0.79 

 stepLDA 0.66 0.67 0.52 0.82 0.74 0.63 0.26 0.48 0.61 

 stepQDA 0.69 0.69 0.57 0.81 0.76 0.66 0.24 0.43 0.65 
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Table SI - 7. Statistical measures of ML algorithms applied to HS detection upon PCA and down-sampling of major class. 

PCADown  METRICS 

Cluster I Algorithms AUROC Accuracy TPR TNR PPV NPV FDR FNR F1-score 

 bagEarth 0.72 0.82 0.81 0.83 0.83 0.81 0.17 0.19 0.82 

 bagEarthGCV 0.81 0.81 0.8 0.82 0.81 0.80 0.19 0.20 0.80 

 bagFDA 0.71 0.81 0.78 0.84 0.83 0.79 0.17 0.22 0.80 

 bagFDAGCV 0.81 0.81 0.79 0.83 0.83 0.8 0.17 0.21 0.81 

 parRF 0.82 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ranger 0.23 0.01 0.02 0.01 0.02 0.01 0.98 0.98 0.01 

 wsrf 0.81 0.99 1.00 0.99 0.99 1.00 0.01 0.00 0.99 

Cluster II Cluster II          

 ada 0.74 0.97 0.96 0.98 0.98 0.96 0.02 0.04 0.97 

 adaboost 0.82 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0 0.70 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 C5.0Rules 0.70 0.94 0.91 0.98 0.98 0.91 0.02 0.09 0.94 

 C5.0Tree 0.71 0.99 0.99 0.98 0.98 0.99 0.02 0.01 0.99 

 ctree 0.74 0.82 0.82 0.82 0.82 0.82 0.18 0.18 0.82 

 evtree 0.68 0.73 0.77 0.69 0.71 0.75 0.29 0.23 0.74 

 fda 0.59 0.77 0.74 0.80 0.78 0.75 0.22 0.26 0.76 

 gamboost 0.78 0.78 0.76 0.81 0.8 0.77 0.20 0.24 0.78 

 gbm 0.77 0.98 0.98 0.98 0.98 0.98 0.02 0.02 0.98 

 J48 0.69 0.93 0.88 0.99 0.99 0.89 0.01 0.12 0.93 

 LogitBoost 0.71 0.88 0.82 0.95 0.94 0.84 0.06 0.18 0.88 
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Cluster III Cluster III          

 avNNet 0.78 0.94 0.94 0.94 0.94 0.94 0.06 0.06 0.94 

 glm 0.82 0.84 0.83 0.84 0.84 0.84 0.16 0.17 0.84 

 glmboost 0.78 0.77 0.76 0.79 0.77 0.78 0.23 0.24 0.76 

 multinom 0.82 0.84 0.82 0.86 0.86 0.83 0.14 0.18 0.84 

 nb 0.72 0.82 0.74 0.90 0.88 0.79 0.12 0.26 0.80 

 ORFlog 0.82 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 ORFpls 0.82 0.99 0.99 1.00 1.00 0.99 0.00 0.01 0.99 

 ORFridge 0.83 0.99 0.99 1.00 1.00 0.99 0.00 0.01 0.99 

 ORFsvm 0.82 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.99 

 plr 0.82 0.84 0.81 0.86 0.84 0.83 0.16 0.19 0.82 

Cluster IV Cluster IV          

 svmLinear 0.81 0.82 0.75 0.90 0.87 0.79 0.13 0.25 0.80 

 svmLinear2 0.80 0.82 0.77 0.86 0.84 0.80 0.16 0.23 0.80 

 svmPoly 0.81 0.89 0.86 0.92 0.91 0.88 0.09 0.14 0.89 

 svmRadial 0.80 0.77 0.70 0.84 0.80 0.75 0.20 0.30 0.74 

 svmRadialCost 0.80 0.77 0.69 0.84 0.80 0.74 0.20 0.31 0.74 

 svmRadialWeigh
ts 0.80 0.75 0.90 0.61 0.68 0.86 0.32 0.10 0.78 

Cluster V Cluster V          

 amdai 0.80 0.80 0.77 0.82 0.81 0.78 0.19 0.23 0.79 

 dwdPoly 0.80 0.87 0.83 0.91 0.90 0.84 0.10 0.17 0.86 

 dwdRadial 0.78 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 

 hdda 0.79 0.78 0.75 0.8 0.79 0.76 0.21 0.25 0.77 

 lda 0.80 0.8 0.77 0.82 0.81 0.78 0.19 0.23 0.79 

 lda2 0.81 0.8 0.77 0.82 0.81 0.78 0.19 0.23 0.79 
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 loclda 0.75 0.94 0.92 0.96 0.96 0.92 0.04 0.08 0.94 

 pda 0.80 0.80 0.77 0.82 0.81 0.78 0.19 0.23 0.79 

 qda 0.76 0.80 0.63 0.96 0.94 0.72 0.06 0.37 0.75 

 rda 0.76 0.80 0.77 0.82 0.81 0.78 0.19 0.23 0.79 

 stepLDA 0.67 0.66 0.49 0.82 0.74 0.62 0.26 0.51 0.59 

 stepQDA 0.68 0.69 0.65 0.73 0.71 0.68 0.29 0.35 0.68 
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Abstract: Understanding protein-protein interactions is a key challenge in biochemistry. In this work,
we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from
their native complex structure compared to previous published Machine Learning (ML) techniques.
Our model is trained on a large number of complexes and on a significantly larger number of different
structural- and evolutionary sequence-based features. In particular, we added interface size, type of
interaction between residues at the interface of the complex, number of different types of residues
at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used
twenty-seven algorithms from a simple linear-based function to support-vector machine models with
different cost functions. The best model was achieved by the use of the conditional inference random
forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with
up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73,
a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.

Keywords: protein-protein interfaces; hot-spots; machine learning; Solvent Accessible Surface Area
(SASA); evolutionary sequence conservation

1. Introduction

Among all of the cellular components of living systems, proteins are the most abundant and
the most functionally versatile. The specific interactions formed by these macromolecules are
vital in a wide-range of biological pathways [1]. Protein-protein interactions involved in both
transient and long-lasting networks of specific complexes play important roles in many biological
processes [2–4]. Characterizing the critical residues involved in these interactions by both experimental
and computational methods is therefore crucial to a proper understanding of living systems.
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Furthermore, only by gaining a complete understanding at atomistic detail can new methods be
developed to modulate their binding [5,6].

Protein-protein interfaces often involve a large number of residues. However, it is generally
recognized that small regions of a few residues, termed “Hot-Spots (HS)”, are essential for maintaining
the integrity of the interface. The development of techniques to identify and characterize protein-based
interfaces has become widespread. Experimental Alanine Scanning Mutagenesis (ASM) continues to
be a valuable technique for both detecting and analyzing protein-binding interfaces. The contribution
of a residue to the binding energy is measured by the binding free energy difference (∆∆Gbinding)
between the wild-type (WT) and mutant complex upon mutation of a specific residue to alanine [7].
Bogan and Thorn [8] defined the residues with ∆∆Gbinding ě 2.0 kcal¨mol´1 as HS; and the residues
with ∆∆Gbinding < 2.0 kcal¨mol´1 as Null-Spots (NS). Experimental methods for identifying HS
are based on molecular biology techniques that are accurate, but still complex, time-consuming
and expensive [9]. Highly efficient computational methods for predicting HS can provide a viable
alternative to experiments. Molecular Dynamics (MD) simulations can be used to predict changes in
the binding strength of protein complexes by calculating the free energy difference from an initial to a
final state [10,11]. However, due to the complexity and typical large size of protein-protein complexes,
these methods are still computationally expensive. Recently, machine learning approaches trained on
various features of experimentally-determined HS residues have been developed in order to predict
HS in new protein complexes [6,12–14].

In previous work, we have investigated feature-based methods combining Solvent Accessible
Surface Area (SASA) descriptors calculated from static structures and MD ensembles and trained
predictors using a Support Vector Machine (SVM) algorithm [15]. However, we only applied these to a
small number of complexes, and the prediction performance was hampered by a high number of false
positives. More recently, we added an extra feature (residue evolutionary sequence conservation) on a
significantly larger dataset. In that study, we explored additional Machine Learning (ML) techniques,
which led us to develop a more accurate and time-efficient HS detection methodology. This resulted
in new HS predictor models for both protein-protein and protein-nucleic acid interactions, and we
implemented the best performing models into two web tools [14].

In this study, we significantly expand both the number of studied protein-protein complexes
and the number of 3D complex structure-based features used for prediction, including: interface size,
the type of interaction between residues at the interface of the complex and the number of different
types of residues at the interface. To the evolutionary sequence-based features, we added the
Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We have further tested a total
of 27 algorithms from a simple linear-based function to support-vector machine models with different
cost functions. The best predictor, based on a conditional inference random forest (c-forest) algorithm,
achieves an overall performance characterized with an F1-score of 0.73, an accuracy of 0.80, a sensitivity
of 0.76 and a specificity of 0.82. To the best of our knowledge, these values are higher than all other
available prediction techniques.

2. Results

In the current study, we have used the Classification And Regression Training (Caret) Package [16]
from the R software [17], which provides a unified interface with a large number of built-in classifiers,
in order to train an HS predictor. The dataset used for this purpose includes 545 amino acids
from 53 complexes (140 HS and 405 NS). We calculated the percentage of the different types of
amino acids within the NS set (Ser: 7.4; Gly: 1.5; Pro: 2.0; Val: 3.2; Leu: 2.7; Ile: 5.2; Met: 1.0;
Cys: 0.7; Phe: 4.7; Tyr: 5.9; Trp: 4.9; His: 4.4; Lys 8.9; Arg: 10.6; Gln: 5.4; Asn: 6.2; Glu: 9.9; Asp: 7.2;
Thr: 8.1) and within the HS set (Ser: 2.1; Gly: 2.9; Pro: 2.9; Val: 3.6; Leu: 7.1; Ile: 4.3; Met: 0.0; Cys: 0.0;
Phe: 6.4; Tyr: 20.0; Trp: 5.7; His: 2.1; Lys 7.1; Arg: 6.4; Gln: 2.1; Asn: 5.0; Glu: 7.1; Asp: 10.7; Thr: 4.3).
For both sets, there is a natural expected tendency for a higher percentage of large hydrophobic or
charged residues at the interfaces, in particular Tyr. Although different patterns could influence the
training of a robust classifier, we have previously successfully constructed models that were bias-free
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for all different amino acids [14]. We randomly split this dataset (see for details Supplementary
Information Table S1) into a training set consisting of 70% of data (382 mutations) and an independent
test set (163 mutations, 30%). This is a standard division scheme demonstrated to give a good result.
All 27 classification models (listed in the Methods Section) were tested using 10-fold cross-validation
repeated 10 times in order to avoid overfitting and to obtain the model’s generalization error.
This means that the training set was split randomly into ten isolated parts, using nine of the ten
parts to train the model and taking the remaining fold of data to test the final performance of the
model. This process was repeated ten times. The performance of the five best algorithms for each
tested condition was independently evaluated on the test set to ensure an unbiased assessment of the
accuracy of the final model.

The 79 features used in this work have different scales (i.e., the range of the raw data varies
significantly), and therefore, we have performed feature normalization or data standardization of the
predictor variables at the training set by centering the data, i.e., subtracting the mean and normalizing
it by dividing by the standard deviation. The same protocol was followed for the test set taking into
account the use of the training mean and standard deviation to ensure a good estimation of the model
quality and generalization power. As we have a high-dimensional dataset (79 features), we have also
applied Principal Components Analysis (PCA) to reduce the dimensionality of the data. PCA works by
establishing an orthogonal transformation of the data to convert a set of possible correlated variables
into a set of linearly-uncorrelated ones, the so-called principal components.

One of the main concerns when applying classification to the detection of HS is the natural
imbalance of the data. As expected, the number of HS is lower than the number of NS at a
protein-protein interface, as indicated by the presence of 185 HS and 360 NS in the main dataset.
In ML classification methods, the disparity of the frequencies of the observed classes may have a very
negative impact on the models’ performance. To overcome this problem, we have tried two different
subsampling techniques for the training set: down-sampling and up-sampling. In the first, there is
a random sub-setting of all classes at the training set with their class frequency matching the least
prevalence class (HS), whereas in the up-sampling, the opposite is happening with random sampling
(with the replacement) of the minority class (HS) to reach the same size as the majority class (NS).
Different conditions were thus established: (i) Scaled; (ii) Scaled Up; (iii) Scaled Down; (iv) PCA;
(v) PCA Down; and (vi) PCA Up. Various statistical metrics (described in detail in the Methods Section)
were adopted to evaluate the performance of the algorithms tested: Area Under the Receiver Operator
Curve (AUROC), accuracy, True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive
Value (PPV), False Positive Rate (FPR), False Negative Rate (FNR) and F1-score. Figure 1 illustrates the
workflow followed in this study.Int. J. Mol. Sci. 2016, 17, 1215 4 of 15 
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The results for the training set for the best five algorithms for each of the six conditions studied
are listed in Table 1. All statistical metrics obtained for the complete set of algorithms can be found
in Supplementary Information Table S2, in which a more straightforward comparison by type of
method can be made. The best classifiers seem to be almost constant in all six different pre-processing
conditions, including one neuronal network (avNNET: model averaged Neural Network) and two
tree-based methods (C5.0 Tree, C5.0 Rules). The fourth and fifth classifiers vary from nnet (neuronal
network), to c-forest, GBM (stochastic gradient boosting machine) and svmRadialSigma (support
vector machines with the Radial basis function kernel). The up-sampling of the HS class seems
to improve the classifier performance presenting AUROC values higher than 0.80 in the majority
of the cases.

Table 1. Statistical metrics attained for five algorithms with top performance for each of the studied
conditions for the training set.

Pre-Processing Metrics Algorithms

Scaled

Nnet avNNET C5.0 Tree C5.0 Rules svmRadialSigma
AUROC 0.52 0.65 0.77 0.72 0.78
Accuracy 0.92 0.94 0.96 0.92 0.91
Sensitivity 0.92 0.88 0.88 0.85 0.80
Specificity 0.91 0.98 1.00 0.96 0.97
PPV 0.86 0.95 0.99 0.92 0.93
NPV 0.95 0.94 0.94 0.92 0.89
FPR 0.09 0.02 0.00 0.04 0.03
F1-score 0.89 0.92 0.93 0.89 0.86

Scaled_Down

c-Forest avNNET C5.0Tree C5.0Rules GBM
AUROC 0.79 0.70 0.73 0.71 0.80
Accuracy 0.91 0.95 0.96 0.90 1.00
Sensitivity 0.93 0.96 0.96 0.89 0.99
Specificity 0.90 0.93 0.95 0.91 1.00
PPV 0.90 0.93 0.95 0.9 1.00
NPV 0.92 0.96 0.96 0.89 0.99
FPR 0.1 0.07 0.05 0.09 0
F1-score 0.91 0.95 0.96 0.9 1.00

Scaled_Up

c-Forest avNNET C5.0Tree C5.0Rules GBM
AUROC 0.85 0.75 0.85 0.82 0.84
Accuracy 0.93 0.94 0.98 0.95 0.98
Sensitivity 0.93 0.96 0.99 0.96 0.97
Specificity 0.93 0.92 0.97 0.94 0.99
PPV 0.93 0.92 0.97 0.94 0.99
NPV 0.93 0.96 0.99 0.95 0.97
FPR 0.07 0.08 0.03 0.06 0.01
F1-score 0.93 0.94 0.98 0.95 0.98

PCA

nnet avNNET C5.0Tree C5.0Rules svmRadialSigma
AUROC 0.69 0.75 0.61 0.59 0.76
Accuracy 1.00 0.99 0.98 0.92 0.91
Sensitivity 1.00 0.97 0.98 0.91 0.76
Specificity 1.00 1.00 0.98 0.93 0.99
PPV 1.00 0.99 0.96 0.89 0.97
NPV 1.00 0.98 0.99 0.95 0.88
FPR 0 0 0.02 0.07 0.01
F1-score 1.00 0.98 0.97 0.90 0.85

PCA_Down

nnet avNNET C5.0Tree C5.0Rules svmRadialSigma
AUROC 0.70 0.78 0.67 0.67 0.75
Accuracy 0.87 0.91 0.97 0.91 0.91
Sensitivity 0.88 0.88 0.96 0.96 0.88
Specificity 0.87 0.93 0.99 0.87 0.93
PPV 0.87 0.92 0.99 0.88 0.93
NPV 0.88 0.89 0.96 0.95 0.89
FPR 0.13 0.07 0.01 0.13 0.07
F1-score 0.87 0.90 0.97 0.92 0.91

PCA_Up

nnet avNNET C5.0Tree C5.0Rules svmRadialSigma
AUROC 0.75 0.82 0.80 0.78 0.80
Accuracy 0.95 0.98 0.98 0.96 0.94
Sensitivity 0.94 0.97 0.99 0.96 0.92
Specificity 0.96 0.99 0.98 0.96 0.95
PPV 0.96 0.99 0.98 0.96 0.95
NPV 0.94 0.97 0.99 0.96 0.92
FPR 0.04 0.01 0.02 0.04 0.05
F1-score 0.95 0.98 0.98 0.96 0.94

avNNET: model averaged Neural Network; C5.0 Rules (single C5.0 Ruleset); C5.0 Tree (single C5.0 Tree); c-forest
(conditional inference random forest); GBM (stochastic gradient boosting machine); nnet (neuronal network);
svmRadialSigma (support vector machines with the Radial basis function kernel); Positive Predictive Value
(PPV); Negative Predictive Value (NPV); False Positive Rate (FPR).

The performance of a classifier on the training set from which it was constructed gives a poor
estimate of its accuracy in new cases. Furthermore, overfitting on algorithms without regularization
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terms (such as decision trees and neural networks) is harder to address on the training set. Therefore,
the true predictive accuracy of the classifier was estimated on a separate test set corresponding to
30% of the main dataset. Table 2 summarizes the performance on the independent test set for the best
classifiers shown in Table 1.

Table 2. Statistical metrics attained for 5 algorithms with the top performance for each of the studied
conditions for the independent test set.

Pre-Processing Metrics Algorithms

Scaled

Nnet avNNET C5.0 Tree C5.0 Rules svmRadialSigma
AUROC 0.71 0.68 0.68 0.72 0.70
Accuracy 0.74 0.71 0.71 0.74 0.73
Sensitivity 0.57 0.57 0.5 0.60 0.55
Specificity 0.83 0.79 0.83 0.82 0.83
PPV 0.65 0.6 0.62 0.65 0.64
NPV 0.78 0.77 0.75 0.79 0.77
FPR 0.43 0.43 0.4 0.4 0.45
F1-score 0.61 0.58 0.55 0.62 0.59

Scaled_Down

c-forest avNNET C5.0 Tree C5.0 Rules GBM
AUROC 0.75 0.68 0.63 0.71 0.73
Accuracy 0.76 0.69 0.64 0.72 0.75
Sensitivity 0.79 0.71 0.67 0.76 0.74
Specificity 0.74 0.69 0.62 0.70 0.75
PPV 0.63 0.55 0.49 0.59 0.62
NPV 0.87 0.81 0.77 0.84 0.84
FPR 0.21 0.29 0.33 0.24 0.26
F1-score 0.7 0.62 0.57 0.66 0.68

Scaled_Up

c-forest AvNNET C5.0 Tree C5.0 Rules GBM
AUROC 0.78 0.73 0.65 0.70 0.80
Accuracy 0.80 0.75 0.69 0.73 0.82
Sensitivity 0.76 0.66 0.48 0.59 0.76
Specificity 0.82 0.80 0.80 0.81 0.85
PPV 0.70 0.64 0.57 0.63 0.73
NPV 0.86 0.81 0.74 0.78 0.86
FPR 0.24 0.34 0.52 0.41 0.24
F1-score 0.73 0.65 0.52 0.61 0.75

PCA

Nnet avNNET C5.0 Tree C5.0 Rules svmRadialSigma
AUROC 0.65 0.73 0.68 0.71 0.71
Accuracy 0.67 0.75 0.7 0.74 0.74
Sensitivity 0.60 0.60 0.66 0.67 0.52
Specificity 0.71 0.84 0.72 0.77 0.86
PPV 0.54 0.67 0.57 0.62 0.67
NPV 0.77 0.79 0.79 0.81 0.76
FPR 0.4 0.4 0.34 0.33 0.48
F1-score 0.57 0.64 0.61 0.64 0.58

PCA_Down

Nnet avNNET C5.0 Tree C5.0 Rules svmRadialSigma
AUROC 0.70 0.68 0.59 0.61 0.69
Accuracy 0.71 0.69 0.61 0.63 0.70
Sensitivity 0.76 0.71 0.55 0.60 0.72
Specificity 0.68 0.69 0.64 0.64 0.69
PPV 0.56 0.55 0.46 0.48 0.56
NPV 0.84 0.81 0.72 0.74 0.82
FPR 0.24 0.29 0.45 0.4 0.28
F1-score 0.65 0.62 0.50 0.53 0.63

PCA_Up

Nnet avNNET C5.0 Tree C5.0 Rules svmRadialSigma
AUROC 0.67 0.75 0.56 0.61 0.69
Accuracy 0.7 0.77 0.59 0.63 0.71
Sensitivity 0.59 0.64 0.48 0.55 0.64
Specificity 0.76 0.84 0.65 0.68 0.75
PPV 0.58 0.69 0.43 0.48 0.59
NPV 0.77 0.81 0.69 0.73 0.79
FPR 0.41 0.36 0.52 0.45 0.36
F1-score 0.58 0.66 0.46 0.52 0.61

avNNet: model averaged Neural Network; C5.0 Rules (single C5.0 Ruleset); C5.0 Tree (single C5.0 Tree); c-forest
(conditional inference random forest); GBM (stochastic gradient boosting machine); nnet (neuronal network);
svmRadialSigma (support vector machines with the Radial basis function kernel).

From all of methods, c-forest, trained on the normalized up-scaling set, had the highest
performance metrics on both training and test sets. It was therefore chosen as a final model. In our
analysis of this classifier (Figure 2), we observed that the key features are structural ones: specifically,
relSASAi, ∆SASAi, the number of contacts established by the interfacial residues at 4 Å and the number
of LEU, VAL and HIS residues at the interface. All of these features were calculated using built-in
functions of the VMD package [18] and in-house scripts.
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of residues

To validate the accuracy of the best predictor, we performed the HS predictions with other
methods reported in the literature, such as Robetta [19], KFC2-A (Knowledge-based FADE and
Contacts) [20], KFC2-B [20] and CPORT (Consensus Prediction Of interface Residues in Transient
complexes)(not specialized in HS prediction, but instead, a protein-protein interface predictor) [21]
on the same training and test sets. The comparison among these ML methods (Table 3) demonstrates
that our new method achieves the best performance with F1-scores/AUROC values of 0.73/0.78 on
the test set against 0.39/0.62, 0.56/0.66, 0.42/0.67 and 0.43/0.54 for Robetta, KFC2-A, KFC2-B and
CPORT, respectively.

Table 3. Comparison of the statistical metrics attained for the best predictor in this work and some of
the most common ones in the literature.

Perfomance

Algorithms

c-Forest/
Up-Scaling

Classes
SBHD2 Robetta KFC2-A KFC2-B CPORT

Training Test Training Test Training Test Training Test Training Test Training Test

AUROC 0.85 0.78 0.74 0.69 0.62 0.62 0.72 0.66 0.60 0.67 0.54 0.54
Accuracy 0.93 0.80 0.70 0.71 0.66 0.66 0.76 0.71 0.70 0.73 0.49 0.49
Sensitivity 0.93 0.76 0.70 0.70 0.38 0.29 0.57 0.53 0.26 0.28 0.55 0.54
Specificity 0.93 0.82 0.70 0.71 0.85 0.88 0.85 0.81 0.93 0.96 0.45 0.47

PPV 0.93 0.70 0.55 0.56 0.61 0.60 0.67 0.59 0.65 0.80 0.34 0.35
NPV 0.93 0.86 0.82 0.82 0.68 0.67 0.79 0.77 0.71 0.72 0.66 0.66

F1-score 0.93 0.73 0.62 0.62 0.47 0.39 0.62 0.56 0.37 0.42 0.42 0.42

3. Discussion

Machine learning is an area of artificial intelligence that is data driven with a focus on the
development of computational techniques for making inferences or predictions. It has become widely
used in a variety of areas due to its reduced application time and high performance. Over the past
few years, a few algorithms have been applied for the specific problem in this study: the detection of
hot-spots at protein-protein interfaces [13–15,22–35].
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Here, neural networks and tree-based methods were highlighted as some of the high performance
classifiers. Neural networks are inspired by biological nervous systems transmitting the information
by a vast network of interconnecting processing elements (neurons). Decision trees organize the
knowledge extracted from a hierarchy by using simple tests over the features of the training set.
Both have been shown in the past to be promising ML algorithms in the bioinformatics field. Random
forests were also shown to be able to predict the impact of each variable in high dimensional problems
even in the presence of complex interactions [36]. In particular, c-forest [36], an implementation
of the random forest and bagging ensemble method that uses conditional inference trees as base
learners, achieved the top performance (Table 2) with a high F1-score of 0.93 on the training set using
a 10 repeated 10-fold cross-validation. The values in the independent test (F1 score 0f 0.73) were
also very high compared to the ones currently reported in the literature and surpassing all of the
other methods tested in this study (Table 3; SBHD (Sasa-Based Hot-spot Detection) 0.61, Robetta 0.39,
KFC2-A 0.56, KFC2-B 0.42 and CPORT 0.42). One important aspect that seemed to improve the
results compared to our previous approaches (SBHD) was the use of in-built R techniques to balance
the training data: up-scaling of the data led to a substantial improvement of the F1-score and to a
decrease of the FPR to about 0.19 on the independent test set. In this particular classifier, the first seven
features with higher importance were all structure-based: two already used in previous versions of
our algorithm (∆SASAi and relSASAi, check Material and Methods) and five new ones (the number of
residues at a 4 Å distance and the number of LEU, VAL, HIS and PRO residues at the interface).
The PSSM value for the TYR residues, one of the most common residues as HS, was the first
genomic-based feature to be ranked as important.

4. Material and Methods

4.1. Dataset Construction

We constructed a database of complexes by combining information from the Alanine Scanning
Energetics database (ASEdb) [37], the Binding Interface Database (BID) [38] and the SKEMPI (Structural
database of Kinetics and Energetics of Mutant Protein Interactions) [39] and PINT (Protein-protein
Interactions Thermodynamic Database) [40] databases, which provide both experimental ∆∆Gbinding
values for interfacial residues and tridimensional (3D) X-ray structure information. The protein
sequences were filtered to ensure a maximum of 35% sequence identity for at least one protein in
each interface. Crystal structures were retrieved from the Protein Data Bank (PDB) [41], and all water
molecules, ions and other small ligands were removed. Our final dataset consists of 545 mutations
from 53 different complexes.

4.2. Sequence/Structural Features

From a structural point of view, we compiled 12 previously-used different SASA descriptors
for all interfacial residues [14,15]: (i) compSASAi, the solvent accessible surface area of residue i in
the complex form; (ii) monSASAi, the residue SASA in the monomer form; (iii) ∆SASAi, the SASA
difference upon complexation (Equation (1)); (iv) relSASAi, the ratio between ∆SASA for each residue
and the monSASAi value for the same residue (Equation (2)). A further four features (comp/resSASAi,
mon/resSASAi, ∆/resSASAi and rel/resSASAi), defined by Equations (3)–(6), were determined applying
amino acid standardization by dividing the previous features by the average protein resSASAr values as
determined by Miller and colleagues [42,43], with r being the respective residue type. Four additional,
amino-acid standardized features were calculated by replacing the values determined by Miller by
our own protein averages aveSASAr for each amino acid type in its respective protein: comp/aveSASAi,
mon/aveSASAi, ∆/aveSASAi and rel/aveSASAi, defined in Equations (7)–(10).

∆SASAi “
ˇ

ˇ

ˇcompSASAi ´monSASAi

ˇ

ˇ

ˇ
(1)

relSASAi “
∆SASAi

monSASAi
(2)
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comp{resSASAi “
compSASAi

resSASAr
(3)

mon{resSASAi “
monSASAi

resSASAr
(4)

∆{resSASAi “
∆SASAi

resSASAr
(5)

rel{resSASAi “
relSASAi

resSASAr
(6)

comp{aveSASAi “
compSASAi

aveSASAr
(7)

mon{aveSASAi “
monSASAi

aveSASAr
(8)

∆{aveSASAi “
∆SASAi

aveSASAr
(9)

rel{aveSASAi “
relSASAi

aveSASAr
(10)

As the SASA features described in Equations (3)–(10) are rather small, the results presented here
were multiplied by a factor of 103.

We further introduced two features directly related to the size of the interface: the total number
of interfacial residues and the ∆SASAtotal (sum of the ∆SASAi of all residues at the protein-protein
binding interfaces). Twenty other features were added by splitting the total number of interface
residues into the 20 amino acid types. Four contact features were also calculated: (i) the number of
protein-protein contacts within 2.5 Å and (ii) 4.0 Å distance cut-offs, respectively; (iii) the number of
intermolecular hydrogen bonds; and (iv) the number of intermolecular hydrophobic interactions.
In-house scripts using the VMD molecular package [18] were used for all of these calculations.
We used in total 38 structural features in our study.

To utilize evolutionary sequence conservation information, we used the ConSurf server [44] that
calculates a conservation score for each amino acid at an interfacial position for a complex, based on
known sequences in different organisms. We also computed, PSSM using BLAST [45,46], as well as
the weighted observed percentages, introducing them as 40 new features for all interfacial residues.
Positive values in this matrix appear for substitutions more frequent than expected by random chance,
and negative values indicate that the substitution is not frequent. Therefore, a total of 41 evolutionary
sequence-related features were added to the structural features, resulting in 79 features in total for
this study.

4.3. Machine Learning Techniques

We first pre-processed the dataset by eliminating missing values or NZV (Near Zero Variance)
features. Next, as mentioned in the Results section, we normalized the dataset and performed PCA.
The algorithms tested were: avNNet (model averaged Neural Network); bagEarth (bagged MARS
(multivariate adaptive regression splines)); bagEarthGCV Bagged MARS using gCV pruning; bagFDA
(bagged Flexible Discriminant Analysis); C5.0Rules (single C5.0 Ruleset); C5.0Tree (single C5.0 Tree);
c-forest (conditional inference random forest); ctree (conditional inference tree); ctree2 (conditional
inference tree); earth (multivariate adaptive regression spline); fda (flexible discriminant analysis);
gaussprLinear (Gaussian process); GBM (stochastic gradient boosting machine); gcvEarth (multivariate
adaptive regression splines); hdda (high dimensional discriminant analysis); knn (k-nearest neighbors);
lda (linear discriminant analysis); lda2 (linear discriminant analysis); multinom (penalized multinomial
regression); nnet (neuronal networks); nb (naive Bayes); pda2 (penalized discriminant analysis);
svmLinear (Support Vector Machines with Linear Kernel); svmLinear2 (Support Vector Machines
with Linear Kernel); svmPoly (Support Vector Machines with Polynomial Kernel); svmRadial
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(support vector machines with the Radial basis function kernel); svmRadialCost (support vector
machines with the Radial basis function kernel); svmRadialSigma (support vector machines with the
Radial basis function kernel); svmRadialWeights (support vector machines with class Weights).

The validity and performance of the various methods was determined by measuring the Area
Under the Receiver Operator Curve (AUROC), the accuracy (Equation (11)), True Positive Rate
(TPR/recall/sensitivity, Equation (12)), True Negative Rate (TNR/specificity, Equation (13)), Positive
Predictive Value (PPV/Precision, Equation (14)), Negative Predictive Value (NPV) (Equation (15)),
False Positive Rate (FPR/fall-out, Equation (16)), False Negative Rate (FNR, Equation (17)) and F1-score
(Equation (18)) over our dataset.

Accuracy “
TP` TN

TP` FP` FN` TN
(11)

TPR “
TP

TP` FN
(12)

TNR “
TN

FP` TN
(13)

PPV “
TP

TP` FP
(14)

NPV “
FP

FP` TN
(15)

FPR “
FP

FP` TN
“ 1´ TNR (16)

FNR “
FN

TP` FN
“ 1´ TPR (17)

F1 score “
2TP

2TP` FP` FN
(18)

In the equations above, TP stands for True Positive (predicted hot-spots that are actual hot-spots),
FP stands for False Positive (predicted hot-spots that are not actual hot-spots), FN stands for False
Negative (non-predicted hot-spots that are actual hot-spots) and TN stands the True Negatives
(correctly-predicted null-spots).

4.4. Comparison with Other Software

We compared our results with some of the common methods in the literature: Robetta [19],
KFC2-A [20] and KFC2-B [20] and CPORT [21].

5. Conclusions

In conclusion, we were thus able to train an accurate and robust predictor using c-forest, a
random forest ensemble learning method, and up-sampling of the minor class (HS) for dataset balance.
This new method can now be widely applied to the detection of HS in protein-protein
interfaces. The code is available upon request, will be implemented as a web-server in the near
future and made available for the scientific community at the HADDOCK GitHub repository
(http:github.com/haddocking).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/8/1215/s1.
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  Abstract- We present SpotOn, a web server that implements a robust 

algorithm to identify and classify interfacial residues as Hot-Spots 

(HS) and Null-Spots (NS) with a demonstrated accuracy of 0.80 on 

an independent test set. The predictor was developed using a random 

forest ensemble learning algorithm with up-sampling of the minor 

class and was trained on a large number of complexes and on a high 

number of different structural- and evolutionary sequence-based 

features. The SpotOn web interface, which required as input a protein 

structure in PDB format and a CONSUR files, is freely available at: 

http://milou.science.uu.nl/cgi/servicesdevel/SPOTON/spoton/.  

. 
 

I. INTRODUCTION 
 
  The human interactome consists of more than 400.000 

protein-protein interactions (PPIs), which are fundamental for 

a wide-range of biological pathways (1-3). Interactome-level 

descriptions of molecular function are becoming crucial for a 

detailed picture and understanding of the nature of complex 

traits and diseases (4). Characterizing the critical residues 

involved in these interactions, which can be performed by 

experimental or computational methods, is therefore crucial 

for fine tuning PPIs. Furthermore, only through gaining an 

atomistic-level detail of PPIs can we develop new methods 

and drugs that modulate their binding (4, 5). Critical for the 

understanding of PPIs has been the discovery that the driving 

forces for protein coupling are not evenly distributed across 

their surfaces: Instead, typically a small set of residues 

contribute to binding the most, which are – the so called Hot-

Spots (HS). These have been defined as the residues which, 

upon alanine mutation, generate a binding free energy 

difference (ΔΔGbinding ) ≥2.0 kcal/mol. Oppositely, Null-spots 

(NS) corresponds to the residue with a ΔΔGbinding lower than 

2.0 kcal/mol when mutated to alanine (4). 

Experimental methods for identifying HS are based on 

molecular biology techniques that are accurate but still 

complex, time-consuming and expensive. The necessity of 

expressing and purifying each individual protein before 

measurement lead to low-throughput of these techniques, 

which is is a major bottleneck in HS identification (6). Highly 

efficient computational methods for HS prediction can 

therefore provide a viable alternative to experiment. Statistical 

and Machine-Learning-based (ML) methods are now highly 

attractive approaches for computational biology as they can be 

utilized in large scales at relatively low computational costs 

(7, 8). For the last few years we have been developing new 

tools and methodologies to accurate predict HS. The initial 

database used by Martins et al. (9) to train their first predictor 
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consisted of 15 complexes with a total of 248 interfacial 

residues and was subsequently extended (8, 10). Our current 

database includes 53 non-redundant protein complexes with 

alanine scanning mutagenesis data, genetic conservation 

scores and three dimensional (3D) crystallographic structures, 

for a total of 545 mutations. It was derived from the Alanine 

Scanning Energetics database (11), the Binding Interface 

Database (12) and the PINT (13) and SKEMPI (14) databases.   

Initially, we took into account only 12 solvent accessible 

surface area (SASA)-related features (9), considering mainly 

the monomer and complex SASA values and comparing them 

between with each other and with standard SASA values for 

each amino acid according to Miller et al. (15). The different 

SASA-related features submitted to a Support Vector Machine 

(SVM) algorithm demonstrated the importance of occlusion of 

HS to the solvent. The following step (10) consisted on 

gathering evolutionary conservation scores from CONSURF 

(16, 17)  for individual amino acids and using them along the 

already established SASA relations, as well as a higher 

number of Machine Learning algorithms. Lastly (8), besides 

the already mentioned features, a considerable number of 

additional features were included: two regarding the size of 

the interface (total number of interfacial residues and total 

difference of monomer and complex SASA values), four 

regarding the contact (number of protein-protein contacts 

within 2.5 Å and 5.0 Å, the number of intramolecular 

hydrogen bonds and the number of intermolecular 

hydrophobic interactions, calculated using VMD  (18)), 20 

related to the residue’s percentage at PPIs and 40 regarding 

the protein sequence (PSSM scores for each amino acid, 

calculated using BLAST (19, 20), as well as their weighted 

percentages), amounting to a total of 79 features. From the 

several ML algorithms analysed, which consisted of variations 

of, among others, SVMs, neural networks, random forests, 

multinomial regressions and naïve Bayes, the top performing 

ML algorithm was found to be c-forest, a random forest 

implementation with a bagging ensemble which features 

conditional inference trees as base learners. This was assessed 

through its F1 score (which can be seen in equation 1, with TP 

as true positives, FP as false positives and FN as false 

negatives) using a 10 repeated 10-fold cross-validation.  

F1	score = 	 *+,
*+,-.,-./                  (1) 

 

The method showed a F1-score 0.73 larger than those reported 

in the literature so far. The predictor is now implemented in a 

new and user-friendly web-server, “SpotOn” (hot SPOTs ON 

protein complexes), that is freely available at: 

http://milou.science.uu.nl/cgi/servicesdevel/SPOTON/spoton/   

II. DESCRIPTION OF THE WEB SERVER 

Input 

A screenshot of the submission page can be seen in Figure 1. 

The interface requires the user to upload a 3D structure of the 

protein-protein complex in the Protein Data Bank (PDB) 

format (9) and a CONSURF (10, 11) conservation scores file 

for it. The conservation scores can be easily calculated at 

http://consurf.tau.ac.il/2016/. The user should also specify the 

chain identifiers of the two monomers. The choice of the 

chains that constitute monomer A or B is completely arbitrary. 

Instructions for all the input are available in the Help section 

in addition to popups in the submission page. 

 

Figure 1: Screenshot of the SpotOn server submission page. 
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Output and representation of the results 

The first step every SpotOn user needs to complete is to 

register with an email address of their choice, which is used to 

authenticate them during job submission. Although the server 

is freely available, registration is required since the user email 

is used for various notifications about the progress of the job. 

Upon successful job submission the user receives an email 

with the URL address where the output of the run will appear 

as soon as the analysis is complete. An additional email 

notification containing the URL of the results page is sent 

upon completion, informing the user of the success or failure 

of the run. 

The main outputs of the server are the two tables that list the 

residues classified as HS and NS. Figure 2 illustrates the 

output for an example case (PDBid: 1Z7X (21)) and contains 

the list of residues predicted as HS. Any column can be used 

to sort the table. This table along with the NS table are also 

made available as CSV files in the archive of the run that the 

user can download. The information contained in those two 

tables is also visualized in the form of a line plot (e.g. Figure 

3) which provides pertinent information when the user hovers 

the cursor over it (chain identifier, name and index of each 

residue). This enables the user to quickly identify the residues 

that have been identified as HS. 

 

Figure 2: Example table of residues identified as Hot Spots along with their 

probabilities for the complex with PDBid 1Z7X (21). Only the top 10 Hot-

Spots are shown. 

 
Figure 3: Probability chart of an interface residue being a Hot Spot. Residues 

above the orange line at 0.50 are predicted as HS and those below as NS. Such 

a chart is presented to users on the results page. Hovering over a point in this 

plot will reveal additional information about the residue as shown in the top 

left of the image. 

Finally, the result page provides a direct visualization of the 

identified HS within the interface of the complex in the form 

of pre-generated, publication quality views of the complex 

(Figure 4), that are outputs of the Chimera software (22).  

 

Figure 4: Graphical output example of SpotOn server showing  a view of the 

complex (PDBid 1Z7X (21)) between ribonuclease inhibitor (blue ribbons) 

and ribonuclease (cyan ribbons), respectively, with a transparent surface 

representation. Spheres represent interface residues and the HS are in orange. 

 

For each run, all generated results are provided as two gzipped 

archives, which the user can download from the provided 

links. The first contains all the graphical outputs of the 

program: the Chimera images, a static version of the plot 

described above as well as similar plots that display the 

probability of a residue being a HS for the entire molecule, 

broken down by chain identifier. The second archive contains 

all the text outputs: the CSV file that details all the features 

(refer to the method paper for details (8)) for the interfacial 

residues, and the CSV files of the two tables of the results 

page. 
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Implementation 

The SpotOn server runs alongside the other servers of our 

group (available at http://milou.science.uu.nl) on a local Linux 

cluster. The backend is implemented in Python and R, but also 

makes use of external programs, including VMD (18) BLAST 

(19, 20) and Chimera (22) during the analysis. It makes use of 

the Flask microframework for web development and, in 

addition to the standard languages of the web (HTML, CSS, 

JS), utilizes the charting library D3.js (22) for the interactive 

plots in the results page. All scripts are available on Github 

(http:github.com/haddocking). Documentation is kept up-to-

date and support is offered via spoton.csbserver@gmail.com 

and the BioExcel support forum (http://ask.bioexcel.eu). 

Calculations submitted by users are anonymous runs on 

separate directories with randomly generated 12-character key 

names. Results are kept on the server for 2 weeks. The server 

workflow is illustrated in Figure 5. If any errors occur at any 

point of the pipeline illustrated in this figure the analysis will 

be terminated and an email will be sent to the user prompting 

them to review the output of the program. Submissions from 

users are processed in parallel with a maximum number of 15 

jobs running simultaneously. Every user is limited to 3 

concurrent runs. Typical runtimes for a prediction range 

between 30 and 90 minutes. 

User	DB
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Figure 4: Workflow chart of the entire SpotOn pipeline. Each box corresponds 

to a step in the pipeline and the horizontal bars at the bottom of the image 

indicate the environment in which this step takes place. At the very beginning, 

the user is required to upload the PDB file and the Consurf output for the 

same molecule in addition to defining the two monomers of the interface. 

After the credentials of the user have been checked and the input data 

validated, the web server will generate the run directory with all the necessary 

files. Should the data be badly formatted or the user not recognized as a 

registered user of SpotOn a helpful message will be displayed on screen 

indicating the exact problem. The master node of the Linux cluster where 

SpotOn is hosted monitors the directory where the run folders are located and 

if the global maximum number of SpotOn jobs or the number of jobs the 

particular user has submitted has not exceeded the limits defined in the 

Implementation paragraph, the analysis is submitted to the queue. Depending 

on the load of the system at the time of submission, the analysis might start 

running immediately or with a small delay. The user is notified as soon as the 

job starts running. The actual run takes place in one of the working nodes of 

the cluster and as soon as it is finished, the master node submits another job 

for the generation of the chimera images based on the results of the analysis. 

At the same time the result archives are generated on the master node and the 

user is notified of the job completion via email. With the exception of the 

chimera images, the rest of the elements of the page are generated by the 

client in real time. 

 

 

3. CONCLUSIONS AND FUTURE DEVELOPMENT 

SpotOn is an easy to use, publicly accessible web server that 

enables accurate Hot-Spot identification for protein-protein 

complexes, with minimal input requirements. The method 

behind it is robust and is arguably the most accurate to date. A 

successful run will present the user with meaningful results 

displayed in a user-friendly interactive formats that should be 

equally useful to experts in the field of computational 

structural biology as well as less computationally trained 

researchers. 

SpotOn is part of a family of widely-used web portals 

operated by the Utrecht group in the general area of 

biomolecular interaction. As such it is part of services for 

which we aim at ensuring a high reliability and availability. 

The ML algorithm behind the webserver will be updated as 

new, more accurate models will be developed.  
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