6,600 research outputs found

    Reliability analysis of dynamic systems by translating temporal fault trees into Bayesian networks

    Get PDF
    Classical combinatorial fault trees can be used to assess combinations of failures but are unable to capture sequences of faults, which are important in complex dynamic systems. A number of proposed techniques extend fault tree analysis for dynamic systems. One of such technique, Pandora, introduces temporal gates to capture the sequencing of events and allows qualitative analysis of temporal fault trees. Pandora can be easily integrated in model-based design and analysis techniques. It is, therefore, useful to explore the possible avenues for quantitative analysis of Pandora temporal fault trees, and we identify Bayesian Networks as a possible framework for such analysis. We describe how Pandora fault trees can be translated to Bayesian Networks for dynamic dependability analysis and demonstrate the process on a simplified fuel system model. The conversion facilitates predictive reliability analysis of Pandora fault trees, but also opens the way for post-hoc diagnostic analysis of failures

    Causality and Temporal Dependencies in the Design of Fault Management Systems

    Get PDF
    Reasoning about causes and effects naturally arises in the engineering of safety-critical systems. A classical example is Fault Tree Analysis, a deductive technique used for system safety assessment, whereby an undesired state is reduced to the set of its immediate causes. The design of fault management systems also requires reasoning on causality relationships. In particular, a fail-operational system needs to ensure timely detection and identification of faults, i.e. recognize the occurrence of run-time faults through their observable effects on the system. Even more complex scenarios arise when multiple faults are involved and may interact in subtle ways. In this work, we propose a formal approach to fault management for complex systems. We first introduce the notions of fault tree and minimal cut sets. We then present a formal framework for the specification and analysis of diagnosability, and for the design of fault detection and identification (FDI) components. Finally, we review recent advances in fault propagation analysis, based on the Timed Failure Propagation Graphs (TFPG) formalism.Comment: In Proceedings CREST 2017, arXiv:1710.0277

    Uniform Strategies

    Get PDF
    We consider turn-based game arenas for which we investigate uniformity properties of strategies. These properties involve bundles of plays, that arise from some semantical motive. Typically, we can represent constraints on allowed strategies, such as being observation-based. We propose a formal language to specify uniformity properties and demonstrate its relevance by rephrasing various known problems from the literature. Note that the ability to correlate different plays cannot be achieved by any branching-time logic if not equipped with an additional modality, so-called R in this contribution. We also study an automated procedure to synthesize strategies subject to a uniformity property, which strictly extends existing results based on, say standard temporal logics. We exhibit a generic solution for the synthesis problem provided the bundles of plays rely on any binary relation definable by a finite state transducer. This solution yields a non-elementary procedure.Comment: (2012

    Intuitive querying of e-Health data repositories

    Get PDF
    At the centre of the Clinical e-Science Framework (CLEF) project is a repository of well organised, detailed clinical histories, encoded as data that will be available for use in clinical care and in-silico medical experiments. An integral part of the CLEF workbench is a tool to allow biomedical researchers and clinicians to query – in an intuitive way – the repository of patient data. This paper describes the CLEF query editing interface, which makes use of natural language generation techniques in order to alleviate some of the problems generally faced by natural language and graphical query interfaces. The query interface also incorporates an answer renderer that dynamically generates responses in both natural language text and graphics

    RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS

    Get PDF
    Failure diagnosis in large and complex systems is a critical task. In the realm of discrete event systems, Sampath et al. proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. In this thesis, we give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of 4th order in the number of states of the system and linear in the number of the failure types. In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling formalism introduced in [12] to model failure-prone systems. The results have been represented in [43]. An attractive feature of rule-based model is it\u27s compactness (size is polynomial in number of signals). A motivation for the work presented is to develop failure diagnosis techniques that are able to exploit this compactness. In this regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnosersynthesis is obtained by using predicates and predicate transformers. We demonstrate our approach by applying it to modeling and diagnosis of a part of the assembly-line. When the system is found to be not diagnosable, we use sensor refinement and sensor augmentation to make the system diagnosable. In this dissertation, a controller is also extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, only one controllable event from among the ones allowed by the supervisor for the assembly line in automaton models

    Process Mining of Programmable Logic Controllers: Input/Output Event Logs

    Full text link
    This paper presents an approach to model an unknown Ladder Logic based Programmable Logic Controller (PLC) program consisting of Boolean logic and counters using Process Mining techniques. First, we tap the inputs and outputs of a PLC to create a data flow log. Second, we propose a method to translate the obtained data flow log to an event log suitable for Process Mining. In a third step, we propose a hybrid Petri net (PN) and neural network approach to approximate the logic of the actual underlying PLC program. We demonstrate the applicability of our proposed approach on a case study with three simulated scenarios

    Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    Get PDF
    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons
    • …
    corecore