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Abstract. Classical combinatorial fault trees can be used to assess combinations
of failures but are unable to capture sequences of faults, which are important in
complex dynamic systems. A number of proposed techniques extend fault tree
analysis for dynamic systems. One of such technique, Pandora, introduces tem-
poral gates to capture the sequencing of events and allows qualitative analysis of
temporal fault trees. Pandora can be easily integrated in model-based design and
analysis techniques. It is, therefore, useful to explore the possible avenues for
quantitative analysis of Pandora temporal fault trees, and we identify Bayesian
Networks as a possible framework for such analysis. We describe how Pandora
fault trees can be translated to Bayesian Networks for dynamic dependability
analysis and demonstrate the process on a simplified fuel system model. The con-
version facilitates predictive reliability analysis of Pandora fault trees, but also
opens the way for post-hoc diagnostic analysis of failures.

1 Introduction

Fault Tree Analysis (FTA) is a well-established and widely used method for evaluat-
ing system reliability which utilizes graphical representation based on Boolean logic
to show logical connections between different faults and their causes [16]. FTA is a
deductive analysis method, which means analysis starts with a system failure known
as the top event and works backwards to determine its root causes. From a fault tree,
it is possible to understand how combinations of failures of different components or
certain environmental circumstances can lead to system failure. Qualitative analysis of
fault trees are performed by reducing them to minimal cut sets (MCSs) which are the
smallest combinations of failure events that are necessary and sufficient to cause system
failure.

Increasingly, systems are getting more complex and their behaviour is becoming
more dynamic as the behaviour of the system changes, functions and their failure modes
vary, as do the flows between components of the architecture and the potential devia-
tions of those flows. Due to this complex behaviour and the many possible interactions
between the components, assessing the effects of combinations of failure events is not
enough by itself to capture the system failure behaviour; in addition, understanding
the order in which they fail is also required for a more accurate failure model. How-
ever, classical combinatorial fault trees are unable to capture this sequence-dependent
dynamic behaviour [3, 5].



To overcome this limitation, a number of dynamic analysis techniques have been
introduced, such as Dynamic Fault Trees (DFTs) [6] and Pandora temporal fault trees
(TFTs) [18]. DFTs are traditionally analysed by translating them into Markov chains
(MCs), but the major shortcoming of a Markov model is that for large and complex
systems, it becomes very large and complicated and therefore difficult to construct and
analyse. Alternatives have also been proposed, such as an algebraic framework to model
dynamic gates of DFTs; this allows qualitative [11] and quantitative [12] analysis of
DFTs.

Pandora introduces temporal gates to capture sequence-dependent behaviour and
provides temporal logic to allow qualitative analysis. This technique can be used to de-
termine minimal cut sequences (MCSQs) of temporal fault trees, which are the smallest
sequences of events that are necessary to cause the top events, analogous to minimal
cut sets of conventional fault trees. As temporal expressions are usually complex when
compared to Boolean expressions, temporal laws can be used to minimise the expres-
sions and therefore reduce complexity [17]. Like DFTs, Pandora temporal fault trees
can also be solved by mapping them into MCs, but again this can lead to issues with the
state-space explosion problem.

Bayesian Networks (BNs) have previously been used in the analysis of combina-
torial fault trees, e.g. in [1]. They offer a number of advantages, alleviating some of
the typical constraints of FTs, e.g. the need for statistical independence of events and
exponential distributions of failure rate of events. They also allow both predictive and
diagnostic analysis [13]. BNs can also be used to help minimise the state-space ex-
plosion problem by allowing compact representation of temporal dependencies among
the system components and sequence-dependent failure behaviours [10], which has led
to their use for analysing DFTs [2, 14]. However, so far no attempts have been made
to use BNs to solve Pandora temporal fault trees. One of the advantages of Pandora
is that it can be integrated well in model based design and analysis techniques. It has
been shown, for instance in [17], that Pandora expressions incorporating sequence op-
erators can be used to describe the local failure logic of components and then synthesis
into temporal fault trees from systems models, e.g. expressed in popular notations such
as SysML, EAST-ADL, AADL or Matlab Simulink, where models have been anno-
tated with Pandora expressions. The principle has been shown within the HiP-HOPS
model-based safety analysis tool, which has been connected experimentally to several
commonly used modelling notations. Given the increasing importance of model-based
design and analysis, and the potential use of Pandora in this context, we believe that
it is both theoretically and practically useful to explore possible avenues for improved
analysis of Pandora temporal fault trees. Therefore, in this paper, we show how the BNs
can also be used to solve Pandora temporal fault trees, and thus enable us to perform
quantitative analysis of Pandora TFTs focusing on prediction of reliability.

The rest of paper is organized as follows: Section 2 presents the fundamentals of
Pandora temporal fault trees. The basic concepts of Bayesian Networks are presented
in Section 3. Section 4 describes the method for converting Pandora temporal fault trees
into Bayesian Networks. The method is then illustrated by applying it to a case study in
Section 5. Finally, concluding remarks are presented in Section 6.



2 Introduction to Pandora temporal fault trees

2.1 Pandora temporal gates

Pandora extends conventional FTs by defining three temporal gates: Priority-AND (PAND),
Priority-OR (POR), and Simultaneous-AND (SAND). These gates allow analysts to
represent sequences or simultaneous occurrence of events as part of a fault tree.

Priority-AND (PAND): The Priority-AND (PAND) gate is not a new gate and has been
used in FTA as far back as the 1970s [8], and also features in the Dynamic Fault Tree
methodology. However, it was never properly defined for use in qualitative analysis,
resulting in ambiguous behaviour. In Pandora, therefore, the PAND gate is defined as
being true only if the following conditions are true:

• All input events occur
• Input events occur from left to right
• No input events occur simultaneously

The symbol ‘< ’ is used to represent the PAND gate in logical expressions, i.e., X < Y
means (X PAND Y) where X and Y are both failure events. The fault tree symbol of the
PAND gate is shown in Fig.1 (I).

Fig. 1. Pandora temporal gates. (I) PAND. (II) POR. (III) SAND

Priority-OR (POR): Like the PAND gate, the Priority-OR (POR) gate also defines a
sequence, but it specifies an ordered disjunction rather than an ordered conjunction. It is
used to indicate that one input event has priority and must occur first for the POR to be
true, but does not require all other input events to occur as well. The POR can therefore
be used to represent trigger conditions where the occurrence of the priority event means
that subsequent events may have no effect. The POR is true only if:

• Its left-most (priority) input event occurs



• No other input event occurs before the priority input event
• No other input event occurs at the same time as the priority input event

The symbol ‘|’ is used to represent the POR gate in logical expressions, thus X|Y means
(X POR Y) and the fault tree symbol of the POR gate is shown in Fig.1 (II).

Simultaneous-AND (SAND): The Simultaneous-AND or SAND gate is used to define
situations where an outcome is only triggered if two or more events occur simultane-
ously. For example, this can happen because of a common cause, or because the events
have a different effect if they occur approximately simultaneously as opposed to in a
sequence. It is true only if:

• All input events occur
• All the events occur at the same time

The symbol ‘&’ is used to represent the SAND gate in logical expressions and the fault
tree symbol of the SAND gate is shown in Fig.1 (III).

We further use ‘+’ to represent OR and ‘·’ to represent AND. The SAND gate has
the highest priority in a logical expression, then PAND, POR, AND, and OR. Therefore
P+Q&R<S|T is equivalent to P+(((Q&R)<S)|T).

2.2 Pandora temporal logic

As well as the three temporal gates, Pandora also defines a set of temporal laws that
describe the behaviour of the gates and how they relate to each other and to the standard
Boolean AND and OR gates. These laws can all be proved, e.g. with temporal truth
tables as in [18], and form the basis for qualitative analysis of Pandora’s temporal fault
trees, allowing reduction and minimisation of the expressions to obtain the minimal cut
sequences, or MCSQs.

Most important of these laws are the Completion Laws [18], which relate the tem-
poral gates to the Boolean gates:

• Conjunctive Completion Law: X·Y ⇔ X<Y + X&Y + Y<X
• Disjunctive Completion Law: X+Y ⇔ X|Y + X&Y + Y|X
• Reductive Completion Law: X ⇔ Y<X + X&Y + X|Y

2.3 Time representation in Pandora temporal fault trees

Pandora makes few assumptions about the model of time used in any particular system;
time can be interval or point-based, discrete or continuous, or some hybrid thereof.
The result is a flexible approach that can be adapted to both design-time exploration of
possible failures and run-time diagnosis of faults that have already occurred. Pandora
does impose three key restrictions, however:

• The model of time used must be linear, not branching;
• Events are persistent (i.e., once occurred, they remain in a ‘true’ state indefinitely)



• Events occur instantly (i.e., go from ’false’ to ’true’ with no delay).

As long as these restrictions are followed, there are only three possible temporal rela-
tions between two events: before, simultaneous, and after. These are all covered by the
temporal gates PAND, SAND, and POR introduced above. In Pandora, therefore, the
exact time at which an event occurs is not as important as the order in which the events
occur; all that matters is whether an event occurs before, after, or at the same time as
another event, as this is what defines the sequence.

3 Bayesian Networks

Bayesian Networks are based on a well-defined theory of probabilistic reasoning and
provide a graphical framework to represent uncertain knowledge in artificial intelli-
gence [15]. BNs consist of a qualitative part and a quantitative part. The qualitative part
is a directed acyclic graph of nodes and arcs, like the one shown in Fig.2. The nodes of
the graph represent the random variables (events) and arcs represent dependencies or
cause-effect relation among nodes.

Fig. 2. A Simple Bayesian Network

In Bayesian Network, a node X is said to be the parent of another node Y if there
is an arrow from node X to node Y, e.g. node A is a parent of node B in Fig.2. A node
without parent is known as a root node and node without a child is called a leaf node
e.g. node A is a root node and node C and D are leaf nodes in Fig.2.

The quantitative part of BNs consists of a prior probability table for each of the root
nodes and a conditional probability table (CPT) for each of the other nodes given the



status of their parents. For example, in Fig.2, the root node A has a prior probability
table which shows the probability of A being in any of the permissible states, e.g. P (A
= true) = 0.4. At the same time all other nodes have their own CPT. The CPT of a node
shows the probability of that node being in any of its permissible states given the states
of its parent nodes. For example, from the CPT of node D, we can see that the probabil-
ity of the node D be true given that its parent B is false is 0.98, i.e., P (D=true| B=false)
= 0.98. A set of conditional independence statements are the main consideration while
making BN models and conditional independence information can be obtained from
the BN model by employing the rules of d-separation [15]. The joint probability dis-
tribution of a set of random variables {X1, X2, X3, · · · , Xn} can be determined from
conditional independence assumptions and using a chain rule as explained in [15]:

P (X1, X2, · · · , Xn−1, Xn) =

n∏
i=1

P (Xi|Parent (Xi)) (1)

If A and B are two random events and evidence is found that event B has occurred,
then using the Bayes theorem, the posterior probability of event A on condition that B
has happened can be defined as:

P (A|B) =
P (B|A)P (A)

P (B)
(2)

where P (A) and P (B) are the prior probabilities of event A and B respectively.
BNs provide a robust probabilistic method of reasoning under uncertainty and they

are capable of combining different sources of information to provide a global assess-
ment of dependability attributes such as reliability and safety, therefore they have re-
ceived much attention in last decade in the area of dependability analysis [1, 9].

4 Conversion of Temporal Fault Trees into Bayesian Networks

In order to convert temporal fault trees into BNs, it is required to understand how Pan-
dora represents the sequencing of events. As mentioned earlier, in Pandora “the exact
time at which an event occurs is not important—the only thing that matters is when it
occurs relative to the other events, i.e. which comes first, which comes second, which
comes last etc.” [18]. Therefore, sequence values, an abstraction of the relative time at
which an event occurs are used in Pandora instead of a quantitative, absolute metric
of time. If an event has not occurred then that event is given a sequence value 0. If an
event has occurred then it is given a sequence value greater than 0 to indicate when it
occurred relative to other events, i.e., all sequence value greater than 0 represents log-
ical true, but the higher the value the later the events occurred, e.g. sequence value 1
means the event occurred first, 2 means it occurred second and so on. If two or more
events occur simultaneously, then they will have the same sequence value. These same
sequence values also make up the basis of temporal truth tables used in Pandora, as they
combine the truth state (true/false) with the relative time of occurrence for each event.
A temporal truth table showing the sequence values for each gate in Pandora given the
sequence values of each input event are provided below:



Table 1. Temporal Truth Table for all gates in Pandora

X Y X OR Y X AND Y X POR Y X PAND Y X SAND Y

0 0 0 0 0 0 0
0 1 1 0 0 0 0
1 0 1 0 1 0 0
1 1 1 1 0 0 1
1 2 1 2 1 2 0
2 1 1 2 0 0 0
2 2 2 2 0 0 2

The first step in the conversion process is to translate the Pandora TFT into an
equivalent discrete-time Bayesian Network, where each root node of the BN represents
a basic event of the TFT and each gate (including both Boolean and temporal gates) of
the TFT is represented as intermediate node. The root nodes must then each have a prior
probability table defined, while the intermediate nodes must each have a conditional
probability table (CPT) defined. The conversion of the TFT to BN is a simple one-to-
one mapping from basic events and gates to root and intermediate nodes in which the
original fault tree connections are maintained as parent/child relationships, but the prior
probability table and CPT are populated based on the failure probability distributions
of the basic events and the behaviour of the gates used in the temporal fault trees.

As the outcome of each temporal gate is dependent on the relative sequence values
of the events involved in those gates, we divide the mission time T into n intervals from
t=0 to t=T, where n must be at least equal to the number of events, following the similar
concept used in [2]. Each time interval represents a possible non-zero sequence value
used in Pandora, during which the state of an event may change from not occurred
(false) to occurred (true). At the beginning of the system operation, a component is
considered as not failed therefore given a sequence value 0 (i.e., the component is in
State 0) and this value remains the same until the component fails. If a component fails
in interval 1, then it will have the sequence value 1, and so on.

The value of the events in each interval can be treated as a specific state. If an event
is in State 0, then it means it has sequence value 0 (i.e., it did not occur). If an event is
in State 1, then it means it occurred in interval 1, and if it is in State 2, then it occurred
in interval 2, and so forth. This allows us to construct a CPT for all possible states of
the input events to a gate, showing the probability that the gate will be in a particular
state (i.e., has a given sequence value) depending on the states (sequence values) of the
input events.

Note that in Pandora the outcome of any gate can be either true or false but every
true value is associated with sequence information, i.e., the relative time at which the
gate becomes true. Therefore, the probability of a node representing a gate being in a
certain state given the state information of its parent nodes can either be 0 or 1. As an
example, let us consider a 2 input POR gate. For simplicity, we choose n=2 and thus
divide the mission time T into 2 intervals. This yields three possible states for each



event: state 0, in which an event does not occur at all during the mission time T; state
1, in which the event occurs in the interval [0, T/2], and state 2, in which the event
occurs in the interval [T/2, T]. Each state is then associated with a probability, namely
the probability of the event being in that state.

Fig.3 illustrates this example and shows the POR gate with two input events and its
equivalent BN, where the events are independent. In the BN, nodes X and Y represent
the independent events X and Y and their prior probability tables are populated from
the failure rate information of the component failure modes X and Y respectively.

Fig. 3. Two input POR gate and its equivalent BN

The arcs from node X and Y to node (X|Y) shows the dependency of the POR gate
outcome on its input events X and Y. The CPT shows the behaviour of the POR gate,
i.e., it is true if its left-most (priority) input event occurs and no other events occur
before or at the same as the priority event. A 1 in the State 0 column of the CPT means
the outcome of POR gate is false — i.e., that it has a 100% probability of not occurring
at all during the mission time T given those particular input states. Similarly, a 1 in the
State 1 column means that it has a 100% probability of occurring during interval 1 given
those particular inputs, and the same for State 2 and interval 2.

For example, we can say that the probability that the POR gate will be in State 0
given that event X is in State 1 and event Y is State 0 is 0, i.e., P( X POR Y= State 0 |
X= State1, Y= State 0 ) = 0. This is as we would expect, since the POR gate will have



the same sequence value as its priority event if the left-most (priority) event X occurs
and the other event Y does not occur. Instead, the POR outcome should be in State 1,
i.e. P( X POR Y= State 1 | X= State1, Y= State 0 ) = 1. This can also be seen in the
temporal truth table in Table 1: if X is 1 and Y is 0, then X POR Y should also be 1.
This procedure can be repeated for all the gates used in Pandora such that their CPTs
will resemble their equivalent temporal truth tables. It is possible to represent a TFT in
different logically equivalent forms. In our experiments, translation of equivalent TFTs
appear to produce equivalent BNs, although we have yet to prove this formally.

5 Case Study

To illustrate the idea of reliability analysis of dynamic systems by converting TFTs
into BNs, we use the case study of fault tolerant fuel distribution system of a ship, first
presented in [7] but reworked here, and shown in Fig.4.

Fig. 4. Fault tolerant fuel distribution system

Under ordinary operation, there are two primary fuel flows: Engine 1 gets fuel from
Tank 1 through Pump 1 (P1), and Engine 2 gets fuel from Tank 2 through Pump 2
(P2). Flowmeter 1 (F1) and Flowmeter 2 (F2) monitor the rate of fuel flow to Engine 1
and Engine 2 respectively and report it back to the Controller. On detecting insufficient
fuel flow to either of the engine, the Controller introduces dynamic behaviour to this
system by activating standby Pump 3 (P3) and redirecting fuel flow accordingly using
the valves V1-V4. For example, if insufficient fuel flow to Engine 1 is detected, then
the Controller can activate Pump 3 and open Valves 1 and 3 (V1 and V3), and thus fuel



flows to Engine 1 through Pump 3 instead of Pump 1. On the other hand if a problem
with fuel flow to Engine 2 is detected then Pump 3 will be activated and Valves 2 and
4 (V2 and V4) will be opened instead. Therefore, Pump 3 can take over the task of
either Pump 1 or Pump 2, but not both. A failure of both Pump 1 and Pump 2 will
cause at least one engine to be starved of fuel; for example, if Pump 1 fails and Pump
3 replaces it, then Pump 3 will no longer be available to replace Pump 2 if Pump 2
subsequently fails. This results in degraded propulsion functionality for the vessel, as
speed and manoeuvrability will be reduced.

Pandora temporal gates can be used to model the dynamic behaviour in this scenario
and helps to correctly capture the sequences of events that lead to failure. For simplicity,
internal failure of the engines themselves is left out of the scope of this analysis. The
Pandora temporal fault tree for the failure behaviour of Engine 1 of the fault tolerant
fuel distribution system was constructed via model-based synthesis from Pandora de-
scriptions of local failure logic of components and it is shown in Fig.5. As the failure of
Engine 1 and Engine2 are caused by the similar events in the opposite sequences, the
TFT of failure behaviour of Engine 2 looks almost identical except that P1 and P2 are
reversed, and so is omitted for brevity. The basic events in the following TFT are:

Fig. 5. TFT of failure behaviour of Engine 1



• P1/P2/P3 = Failure of Pump 1/2/3 (e.g. blockage or mechanical failure)
• V1/V3 = Failure of Valve 1/3 (e.g. blockage or stuck closed)
• S1 = Failure of Flowmeter 1 (e.g. sensor readings stuck high)
• CF = Failure of Controller

The TFT of Fig.5 is converted into a discrete-time BN following the procedure
described in Section 4, shown in Fig.6. Failure rates of all components are assumed to
be exponentially distributed and the values of the failure rates of each component are
shown in Table 2. The prior probability table of each root node is populated based on the
failure rate of corresponding component and the conditional probability tables of each
intermediate node are populated following the same procedure described in Section 4.

Fig. 6. Bayesian Network of failure behaviour of Engine 1

The computation for the system failure probability or unreliability using the BN is
performed using the modified version of the JavaBayes tool [4] considering mission
time T= 10000 hours. The probability of top event occurrence for different values of
n is shown Table 3. For comparison, an analytical technique [7] for solving the TFT
yields a value of 0.1353. We can see that as the value of n increases, the accuracy of
the approximation increases and the value of top event probability converges towards a
ceiling value.



Table 2. Failure rates of components of fuel distribution system

Component Failure rate/hour (λ)

Tanks 1.5E-5
Valve1 & Valve2 1E-5
Valve3 & Valve4 6E-6

Pump1 & Pump2 & Pump3 3.2E-5
Flowmeter Sensor 2.5E-6

Controller 5E-7

Table 3. Top event probability of redundant fuel distribution system

n Top Event Probability Average Execution Time (ms)

3 0.1114 15.6
4 0.1159 25.2
5 0.1187 40.6
6 0.1205 74.8
7 0.1218 149.6
8 0.1227 306.0
9 0.1235 493.0

10 0.1242 1011.2
12 0.1250 3070.0
15 0.1260 12879.4
17 0.1264 29162.8
20 0.1268 84889.0

Fig. 7. Changes in unreliability and average execution time with the change of value of n



Execution time is taken as an average over 5 runs for each value of n and increases
by a factor of approximately 1.6 for every additional interval, but it also results in greater
accuracy. Therefore, the value of n represents the tradeoff one can make between the
execution time and the accuracy. In this case, an acceptable tradeoff can be found at
value of n = 12 which could provide reasonable accuracy.

6 Conclusion

In this paper, we have discussed how a recent extension of fault tree analysis, Pandora,
allows capturing sequence dependent failure behaviour in dependability analysis. An
advantage of Pandora is that it is easily integrated in increasingly popular model-based
design and analysis techniques. In this paper we identified BNs as a potential framework
for improved solving of Pandora temporal fault trees. BNs provide a robust probabilis-
tic method of reasoning under uncertainty and they are capable of combining different
sources of information to provide a global assessment of dependability in terms of its
various attributes. We have presented a way of translating Pandora TFTs to BNs to
perform dynamic dependability analysis focusing on reliability and demonstrated the
process on an example case study. After mapping the TFTs into a BN, the BN model
was solved to perform predictive analysis to compute the top event probability, i.e. sys-
tem unreliability. The execution speed and precision of the results obtained from the
proposed BN model is dependent on the number time slots used to represent the mis-
sion time. Therefore, users can make a tradeoff between execution time and accuracy
by choosing the number of time intervals to model in the BN. At present, we have con-
sidered the system components as non-repairable, but in the future, we hope to extend
this work by considering reparability of components. At the same time we have a plan
to perform a numerical comparison between the performance of the BN-based solu-
tion to Pandora TFTs and other existing solution techniques, e.g. Markov chains. The
conversion presented in this paper also opens the road for demonstrating the ability for
post-hoc diagnostic analysis of failures in the context of Pandora-enabled model-based
dependability analysis, a process which involves calculating and updating the posterior
probability of nodes given observed evidence in other nodes.
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