15,373 research outputs found

    Neural Network Operations and Susuki-Trotter evolution of Neural Network States

    Full text link
    It was recently proposed to leverage the representational power of artificial neural networks, in particular Restricted Boltzmann Machines, in order to model complex quantum states of many-body systems [Science, 355(6325), 2017]. States represented in this way, called Neural Network States (NNSs), were shown to display interesting properties like the ability to efficiently capture long-range quantum correlations. However, identifying an optimal neural network representation of a given state might be challenging, and so far this problem has been addressed with stochastic optimization techniques. In this work we explore a different direction. We study how the action of elementary quantum operations modifies NNSs. We parametrize a family of many body quantum operations that can be directly applied to states represented by Unrestricted Boltzmann Machines, by just adding hidden nodes and updating the network parameters. We show that this parametrization contains a set of universal quantum gates, from which it follows that the state prepared by any quantum circuit can be expressed as a Neural Network State with a number of hidden nodes that grows linearly with the number of elementary operations in the circuit. This is a powerful representation theorem (which was recently obtained with different methods) but that is not directly useful, since there is no general and efficient way to extract information from this unrestricted description of quantum states. To circumvent this problem, we propose a step-wise procedure based on the projection of Unrestricted quantum states to Restricted quantum states. In turn, two approximate methods to perform this projection are discussed. In this way, we show that it is in principle possible to approximately optimize or evolve Neural Network States without relying on stochastic methods such as Variational Monte Carlo, which are computationally expensive

    A Theory of Cheap Control in Embodied Systems

    Full text link
    We present a framework for designing cheap control architectures for embodied agents. Our derivation is guided by the classical problem of universal approximation, whereby we explore the possibility of exploiting the agent's embodiment for a new and more efficient universal approximation of behaviors generated by sensorimotor control. This embodied universal approximation is compared with the classical non-embodied universal approximation. To exemplify our approach, we present a detailed quantitative case study for policy models defined in terms of conditional restricted Boltzmann machines. In contrast to non-embodied universal approximation, which requires an exponential number of parameters, in the embodied setting we are able to generate all possible behaviors with a drastically smaller model, thus obtaining cheap universal approximation. We test and corroborate the theory experimentally with a six-legged walking machine. The experiments show that the sufficient controller complexity predicted by our theory is tight, which means that the theory has direct practical implications. Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure

    Neural Networks retrieving Boolean patterns in a sea of Gaussian ones

    Full text link
    Restricted Boltzmann Machines are key tools in Machine Learning and are described by the energy function of bipartite spin-glasses. From a statistical mechanical perspective, they share the same Gibbs measure of Hopfield networks for associative memory. In this equivalence, weights in the former play as patterns in the latter. As Boltzmann machines usually require real weights to be trained with gradient descent like methods, while Hopfield networks typically store binary patterns to be able to retrieve, the investigation of a mixed Hebbian network, equipped with both real (e.g., Gaussian) and discrete (e.g., Boolean) patterns naturally arises. We prove that, in the challenging regime of a high storage of real patterns, where retrieval is forbidden, an extra load of Boolean patterns can still be retrieved, as long as the ratio among the overall load and the network size does not exceed a critical threshold, that turns out to be the same of the standard Amit-Gutfreund-Sompolinsky theory. Assuming replica symmetry, we study the case of a low load of Boolean patterns combining the stochastic stability and Hamilton-Jacobi interpolating techniques. The result can be extended to the high load by a non rigorous but standard replica computation argument.Comment: 16 pages, 1 figur

    Training Restricted Boltzmann Machines on Word Observations

    Get PDF
    The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter
    • …
    corecore