10 research outputs found

    Étude en transport électrique d'une double boîte quantique latérale en silicium

    Get PDF
    Ce mémoire présente des résultats de caractérisation en transport électrique d’une double boîte quantique latérale en silicium de type MOSFET (transistor à effet de champ métal-oxyde-semi- conducteur). La double boîte permet d’isoler des électrons dans les trois dimensions, tout d’abord en formant un gaz bidimensionnel de porteurs de charge près de la surface du substrat sous l’effet d’une grille d’accumulation, puis en déplétant certaines régions du gaz d’électrons avec des grilles de déplétion en polysilicium. Le dispositif a été fabriqué aux Sandia National Laboratories par l’équipe de Malcolm S. Carroll. Les mesures en transport électrique suggèrent l’atteinte du régime à un seul électron à une température relativement élevée de 1.5 K. En effet, des mesures de diamants de Coulomb montrent un diamant associé à la région à zéro électron qui ne se referme pas pour des biais source-drain supérieurs à 30 meV. Il s’agit d’une forte indication que les boîtes quantiques ont bien été vidées, bien que le nombre exact d’électrons n’ait pas pu être confirmé directement par détection de charge. Le diagramme de stabilité obtenu à une température de 8 mK indique la formation d’une double boîte quantique lithographique très stable. Enfin, l’étude des triangles de conduction à fort biais source-drain dans les polarités positive et négative permet d’observer le phénomène du blocage de spin sous l’application d’un champ magnétique parallèle de 450 mT. Une séparation singulet-triplet de ~ 400 μeV en est extraite, indiquant possiblement une levée importante de la dégénérescence de vallée associée au silicium. Les résultats présentés dans ce mémoire constituent l’une des premières observations de l’isolation d’un seul électron dans une double boîte quantique en silicium de type MOSFET. Il s’agit aussi de la première observation du blocage de spin en transport dans ces dispositifs. Ces observations font partie des étapes initiales à réaliser pour obtenir des qubits de spin performants dans le silicium, un matériau pour lequel des longs temps de cohérence sont anticipés

    Fabrication de transistors mono-électroniques en silicium pour le traitement classique et quantique de l'information : une approche nanodamascène

    Get PDF
    Les transistors mono-électroniques (SETs) sont des dispositifs ayant un grand potentiel d'applications, comme la détection de charge ultra-sensible, la logique à basse consommation de puissance, la mémoire ou la métrologie. De plus, la possibilité de piéger un seul électron et de manipuler son état de spin pourrait permettre des applications en informatique quantique. Le silicium est un matériau intéressant pour fabriquer l'îlot d'un SET. Son gap semi-conducteur permet le fonctionnement du dispositif dans le régime à un seul électron ou trou et pourrait permettre d'étendre la plage d'opération du SET en température en augmentant l'énergie d'addition du diamant central de la valeur du gap. En outre, le silicium bénéficie de plus de quarante années d'expertise en microfabrication et d'une compatibilité avec la technologie métal-oxyde-semi-conducteur complémentaire (CMOS). Cependant, la fabrication de ces dispositifs fait face à de sérieuses limitations à cause de la taille nanométrique requise pour l'îlot. À ce jour, les procédés de fabrication proposés permettant l'opération à la température ambiante sont trop peu reproductibles pour permettre des applications à grande échelle. Dans ce mémoire de maîtrise, la fabrication de transistors mono-électroniques en silicium (Si-SETs) pour le traitement classique et quantique de l'information est réalisée avec un procédé nanodamascène. Le polissage chimico-mécanique (CMP) est introduit comme étape clef de la fabrication du transistor, permettant le contrôle au nanomètre près (nanodamascène) de l'épaisseur du transistor. Cet outil permet la fabrication de dispositifs ayant une géométrie auparavant impossible à réaliser et ouvre la porte à l'innovation technologique. De plus, un procédé de gravure du silicium par plasma à couplage inductif (ICP) est développé pour permettre la fabrication de nanostructures de silicium sur une nanotopographie alliant le nano et le 3D. Les Si-SETs fabriqués sont caractérisés à basse température et démontrent du blocage de Coulomb avec une énergie de charge de plus de 100 meV, soit quatre fois la température ambiante. De plus, le régime à un seul électron et les effets quantiques du confinement dans ce régime sont observés. Pour la première fois, le gap complet du silicium et les premiers diamants sont mesurés sur un dispositif fabriqué avec un procédé reproductible et industrialisable. Le diamant central voit son énergie d'addition augmentée de la valeur du gap du silicium, pour un total de plus de 1200 meV, soit 46 fois la température ambiante. Cette caractéristique pourrait ouvrir la porte à des applications en logique basse puissance dans un mode de transport à plusieurs électrons laissant circuler dix fois plus de courant dans l'état ouvert, tout en conservant le bas courant dans l'état fermé d'un SET

    Fabrication de résonateurs en niobium pour le traitement de l'information quantique avec des qubits de spin

    Get PDF
    Ce Mémoire traite des aspects expérimentaux de la réalisation de résonateurs supraconducteurs pour le transport de l’information quantique. Les avancées technologiques des dix dernières années et le développement de l’électrodynamique quantique en circuit ont permis de démontrer que les bits quantiques (qubits) supraconducteurs couplés à des résonateurs supraconducteurs sont capables d'effectuer des opérations quantiques très rapidement. Il y a maintenant un intérêt pour l’intégration de qubits de spin aux résonateurs afin de combiner leurs avantages avec ceux des qubits supraconducteurs. Dans ce contexte, il est nécessaire de fabriquer des résonateurs avec un champ magnétique critique élevé. Des couches minces de niobium ont été déposées par pulvérisation cathodique DC. On présente la caractérisation de la température critique et du champ magnétique critique à l’aide de mesures de résistivité et de susceptibilité magnétique. Une corrélation entre la résistivité, la température critique et le facteur de qualité des résonateurs fabriqués a été observée. Une analyse par spectroscopie de photoélectrons X d’un des échantillons a confirmé une quantité élevée d'impuretés dans le niobium. Des résonateurs en niobium avec des facteurs de qualité de 200 à ~4400 ont été fabriqués sur silicium et GaAs. À partir de la dépendance en température de la résonance, l’impédance de surface est décrite par le modèle Mattis-Bardeen et le modèle deux fluides. Les pertes observées à basse température sont attribuées à la résistance de surface résiduelle du niobium causée par la présence d’impuretés. On caractérise également la variation du facteur de qualité des résonateurs en fonction de l’intensité du champ magnétique et la puissance d'excitation. Les pertes et l’hystérésis observées sont décrites par la dynamique des vortex de flux magnétique dans le niobium. On détermine un champ magnétique critique pour le fonctionnement des résonateurs se trouvant entre 0.2 T et 0.6 T. Ces résultats montrent que les résonateurs fabriqués sont adéquats pour l’intégration de qubits de spins

    Développement d'une méthodologie extensible pour la détection de charges électriques uniques dans une boîte quantique par un pont capacitif cryogénique

    Get PDF
    Dans ce travail, une approche alternative à la détection de charge dans les boîtes quantiques ayant pour but d'améliorer l'extensibilité de ces dispositifs est examinée. Cette méthode alternative est basée sur l'utilisation d'un pont capacitif. Un tel circuit intégrant un transistor à effet de champ fonctionnel à température cryogénique a été caractérisé. Les étapes d'optimisation des différents paramètres de fonctionnement du circuit, comme sa capacité totale ou le gain du transistor, sont présentées. Les expériences de détection de charge effectuées sur un transistor monoélectronique à l'aide du circuit ont mené à la détection de signaux correspondant à des transitions de charge, même en l'absence de transport électrique dans le dispositif. Le signal observé diffère légèrement du signal attendu pour des raisons encore incertaines, mais ses dépendances envers les paramètres expérimentaux sont celles qui sont attendues. La sensibilité à la charge du dispositif est encore trop basse pour réaliser des mesures en un coup (single-shot). Toutefois, des améliorations subséquentes pourraient aller jusqu'à permettre le remplacement des détecteurs de charge actuels, ce qui aurait des impacts positifs sur l'extensibilité des dispositifs de boîte quantique. La capacité additionnelle du circuit à tracer des courbes de caractérisation capacité-tension cryogéniques est aussi démontrée, ce qui est intéressant pour la caractérisation détaillée de toute composante semi-conductrice cryogénique étant donné que les appareils de caractérisation habituels ne peuvent pas être utilisés dans ces conditions

    Dispositifs quantiques hybrides basés sur les systèmes de spins et les circuits supraconducteurs

    Get PDF
    L’ingénierie des systèmes hybrides met à profit des avantages combinés de systèmes quantiques distincts. Cette approche est maintenant reconnue comme étant primordiale pour les technologies quantiques. Cette thèse explore et réalise des dispositifs quantiques hybrides basés sur différents systèmes de spins et circuits supraconducteurs. Dans un premier temps, une approche permettant d’effectuer l’ingénierie du couplage entre un spin électronique et un résonateur est proposée. Cette approche a récemment été utilisée par la communauté pour démontrer le couplage cohérent entre un spin unique et un résonateur supraconducteur. De plus, la mise en évidence de la présence d’un couplage longitudinal promet d’offrir une nouvelle méthode de lecture non destructive pour les qubits de spins. Une nouvelle méthode de magnétométrie est également développée afin de déterminer les propriétés magnétiques des micro-aimants requis pour le couplage spin-résonateur. Par la suite, une plate-forme expérimentale développée pour les dispositifs hybrides est réalisée. La préservation d’un fort facteur de qualité de résonateurs supraconducteurs en présence d’un champ magnétique externe de plus de 3 T est ainsi démontrée. Cette plate-forme a de plus permis l’observation d’un nouveau mécanisme de couplage entre un ensemble de spins paramagnétiques et un résonateur supraconducteur. Ce couplage permet une méthode de lecture analogue à la lecture longitudinale et possède ainsi des applications pour la détection de la résonance de spin électronique. Finalement, un système hybride composé d’un qubit supraconducteur et d’une sphère de grenat de fer et d’yttrium est présenté. Ce système hybride a permis d’observer, pour la toute première fois, les quanta des excitations collectives de spins dans un ferro-aimant de taille macroscopique. Les résultats présentés dans cette thèse démontrent le potentiel des systèmes quantiques hybrides pour offrir de nouvelles fonctionnalités pour les technologies quantiques

    Electrodynamique quantique en circuit hybride avec un spin de trou dans le silicium

    No full text
    Coherent and strong coupling between photons and solid-state qubits, in the form of circuit quantum electrodynamics (QED), has been harnessed for two-qubit gates mediated by photons and high-fidelity quantum non-demolition readout, which are the building blocks of large-scale quantum computation. Recently, circuit QED has been extended to gate-defined semiconductor quantum dots. In this thesis, we develop a novel hybrid circuit QED architecture composed of a high-impedance superconducting microwave resonator and spins localized in silicon-MOS quantum dots. To control and measure the spin degrees of freedom, this hybrid system needs to operate at finite magnetic field. Consequently, we develop and characterize microwave resonators based on thin niobium nitride (NbN) films featuring a high kinetic inductance. We demonstrate high-impedance resonators with magnetic field resilience and low photon loss rates. We then co-integrate the NbN resonators on silicon spin qubit chips. With a hole confined in a double quantum dot (DQD), we report the first realization of a strong hole charge-photon interaction bordering the ultra-strong coupling regime. At finite magnetic field, putting the spin transition energy in resonance with the microwave cavity, we observe large vacuum Rabi mode splittings, signature of a strong spin-photon coupling. Our findings are well captured by the modelling of a hole DQD with different anisotropic Zeeman response in each dot and spin-orbit coupling dependent tunnel rates. We also find a sizeable spin-photon coupling when the hole is localized in the single quantum dot, in line with recent theoretical predictions. The different works presented in this manuscript pave the way for circuit QED with hole spins in gate-defined semiconductor quantum dots.Le couplage cohérent et fort entre les photons et les qubits basés sur des matériaux solides, sous la forme de l'électrodynamique quantique de circuit (en anglais circuit QED), a été exploité notamment pour les portes logiques à deux qubits et la lecture haute fidélité sans démolition d’état formant les blocs fondateurs du calcul quantique. Récemment, la circuit QED a été étendue aux boîtes quantiques semi-conductrices définies par des grilles. Dans cette thèse, nous développons une nouvelle architecture hybride de circuit QED composée d'un résonateur micro-onde supraconducteur à haute impédance et de spins localisés dans des boîtes quantiques en silicium-MOS. Afin de contrôler et mesurer les degrés de liberté du spin, ce système hybride doit s'opérer dans un champ magnétique fini. Par conséquent, nous développons et caractérisons les résonateurs micro-ondes formés dans un film mince de nitrure de niobium (NbN) comportant une haute cinétique inductance. Nous démontrons la résilience au champ magnétique et une faible perte de photons des résonateurs à haute impédance. Nous co-intégrons ensuite les résonateurs sur les puces des qubits de spin en silicium. Avec le confinement d'un trou dans une double boîte quantique (DQD), nous présentons la première démonstration d'une interaction forte entre une charge de trou et un photon à la limite du régime de couplage ultra-fort. Sous champ magnétique fini, nous observons des répulsions des états de Rabi du vide caractéristiques d'un couple fort spin-photon. Nos résultats sont bien capturés par la modélisation d'un trou dans une DQD avec une réponse anisotrope différente dans chaque boîte et des taux de tunnel dépendant du couplage spin-orbite. Nous trouvons également un couplage spin-photon conséquent lorsque le trou est localisé dans une boîte quantique unique, en accord avec les prédictions théoriques récentes. Ces différents travaux présentés dans ce manuscrit ouvrent la voie à un circuit QED avec des spins de trous dans une boîte quantique semi-conductrice définie par des grilles

    Electrodynamique quantique en circuit hybride avec un spin de trou dans le silicium

    No full text
    Coherent and strong coupling between photons and solid-state qubits, in the form of circuit quantum electrodynamics (QED), has been harnessed for two-qubit gates mediated by photons and high-fidelity quantum non-demolition readout, which are the building blocks of large-scale quantum computation. Recently, circuit QED has been extended to gate-defined semiconductor quantum dots. In this thesis, we develop a novel hybrid circuit QED architecture composed of a high-impedance superconducting microwave resonator and spins localized in silicon-MOS quantum dots. To control and measure the spin degrees of freedom, this hybrid system needs to operate at finite magnetic field. Consequently, we develop and characterize microwave resonators based on thin niobium nitride (NbN) films featuring a high kinetic inductance. We demonstrate high-impedance resonators with magnetic field resilience and low photon loss rates. We then co-integrate the NbN resonators on silicon spin qubit chips. With a hole confined in a double quantum dot (DQD), we report the first realization of a strong hole charge-photon interaction bordering the ultra-strong coupling regime. At finite magnetic field, putting the spin transition energy in resonance with the microwave cavity, we observe large vacuum Rabi mode splittings, signature of a strong spin-photon coupling. Our findings are well captured by the modelling of a hole DQD with different anisotropic Zeeman response in each dot and spin-orbit coupling dependent tunnel rates. We also find a sizeable spin-photon coupling when the hole is localized in the single quantum dot, in line with recent theoretical predictions. The different works presented in this manuscript pave the way for circuit QED with hole spins in gate-defined semiconductor quantum dots.Le couplage cohérent et fort entre les photons et les qubits basés sur des matériaux solides, sous la forme de l'électrodynamique quantique de circuit (en anglais circuit QED), a été exploité notamment pour les portes logiques à deux qubits et la lecture haute fidélité sans démolition d’état formant les blocs fondateurs du calcul quantique. Récemment, la circuit QED a été étendue aux boîtes quantiques semi-conductrices définies par des grilles. Dans cette thèse, nous développons une nouvelle architecture hybride de circuit QED composée d'un résonateur micro-onde supraconducteur à haute impédance et de spins localisés dans des boîtes quantiques en silicium-MOS. Afin de contrôler et mesurer les degrés de liberté du spin, ce système hybride doit s'opérer dans un champ magnétique fini. Par conséquent, nous développons et caractérisons les résonateurs micro-ondes formés dans un film mince de nitrure de niobium (NbN) comportant une haute cinétique inductance. Nous démontrons la résilience au champ magnétique et une faible perte de photons des résonateurs à haute impédance. Nous co-intégrons ensuite les résonateurs sur les puces des qubits de spin en silicium. Avec le confinement d'un trou dans une double boîte quantique (DQD), nous présentons la première démonstration d'une interaction forte entre une charge de trou et un photon à la limite du régime de couplage ultra-fort. Sous champ magnétique fini, nous observons des répulsions des états de Rabi du vide caractéristiques d'un couple fort spin-photon. Nos résultats sont bien capturés par la modélisation d'un trou dans une DQD avec une réponse anisotrope différente dans chaque boîte et des taux de tunnel dépendant du couplage spin-orbite. Nous trouvons également un couplage spin-photon conséquent lorsque le trou est localisé dans une boîte quantique unique, en accord avec les prédictions théoriques récentes. Ces différents travaux présentés dans ce manuscrit ouvrent la voie à un circuit QED avec des spins de trous dans une boîte quantique semi-conductrice définie par des grilles

    Hybrid circuit quantum electrodynamics with a hole spin in silicon

    No full text
    Le couplage cohérent et fort entre les photons et les qubits basés sur des matériaux solides, sous la forme de l'électrodynamique quantique de circuit (en anglais circuit QED), a été exploité notamment pour les portes logiques à deux qubits et la lecture haute fidélité sans démolition d’état formant les blocs fondateurs du calcul quantique. Récemment, la circuit QED a été étendue aux boîtes quantiques semi-conductrices définies par des grilles. Dans cette thèse, nous développons une nouvelle architecture hybride de circuit QED composée d'un résonateur micro-onde supraconducteur à haute impédance et de spins localisés dans des boîtes quantiques en silicium-MOS. Afin de contrôler et mesurer les degrés de liberté du spin, ce système hybride doit s'opérer dans un champ magnétique fini. Par conséquent, nous développons et caractérisons les résonateurs micro-ondes formés dans un film mince de nitrure de niobium (NbN) comportant une haute cinétique inductance. Nous démontrons la résilience au champ magnétique et une faible perte de photons des résonateurs à haute impédance. Nous co-intégrons ensuite les résonateurs sur les puces des qubits de spin en silicium. Avec le confinement d'un trou dans une double boîte quantique (DQD), nous présentons la première démonstration d'une interaction forte entre une charge de trou et un photon à la limite du régime de couplage ultra-fort. Sous champ magnétique fini, nous observons des répulsions des états de Rabi du vide caractéristiques d'un couple fort spin-photon. Nos résultats sont bien capturés par la modélisation d'un trou dans une DQD avec une réponse anisotrope différente dans chaque boîte et des taux de tunnel dépendant du couplage spin-orbite. Nous trouvons également un couplage spin-photon conséquent lorsque le trou est localisé dans une boîte quantique unique, en accord avec les prédictions théoriques récentes. Ces différents travaux présentés dans ce manuscrit ouvrent la voie à un circuit QED avec des spins de trous dans une boîte quantique semi-conductrice définie par des grilles.Coherent and strong coupling between photons and solid-state qubits, in the form of circuit quantum electrodynamics (QED), has been harnessed for two-qubit gates mediated by photons and high-fidelity quantum non-demolition readout, which are the building blocks of large-scale quantum computation. Recently, circuit QED has been extended to gate-defined semiconductor quantum dots. In this thesis, we develop a novel hybrid circuit QED architecture composed of a high-impedance superconducting microwave resonator and spins localized in silicon-MOS quantum dots. To control and measure the spin degrees of freedom, this hybrid system needs to operate at finite magnetic field. Consequently, we develop and characterize microwave resonators based on thin niobium nitride (NbN) films featuring a high kinetic inductance. We demonstrate high-impedance resonators with magnetic field resilience and low photon loss rates. We then co-integrate the NbN resonators on silicon spin qubit chips. With a hole confined in a double quantum dot (DQD), we report the first realization of a strong hole charge-photon interaction bordering the ultra-strong coupling regime. At finite magnetic field, putting the spin transition energy in resonance with the microwave cavity, we observe large vacuum Rabi mode splittings, signature of a strong spin-photon coupling. Our findings are well captured by the modelling of a hole DQD with different anisotropic Zeeman response in each dot and spin-orbit coupling dependent tunnel rates. We also find a sizeable spin-photon coupling when the hole is localized in the single quantum dot, in line with recent theoretical predictions. The different works presented in this manuscript pave the way for circuit QED with hole spins in gate-defined semiconductor quantum dots

    Electrodynamique quantique en circuit hybride avec un spin de trou dans le silicium

    No full text
    Coherent and strong coupling between photons and solid-state qubits, in the form of circuit quantum electrodynamics (QED), has been harnessed for two-qubit gates mediated by photons and high-fidelity quantum non-demolition readout, which are the building blocks of large-scale quantum computation. Recently, circuit QED has been extended to gate-defined semiconductor quantum dots. In this thesis, we develop a novel hybrid circuit QED architecture composed of a high-impedance superconducting microwave resonator and spins localized in silicon-MOS quantum dots. To control and measure the spin degrees of freedom, this hybrid system needs to operate at finite magnetic field. Consequently, we develop and characterize microwave resonators based on thin niobium nitride (NbN) films featuring a high kinetic inductance. We demonstrate high-impedance resonators with magnetic field resilience and low photon loss rates. We then co-integrate the NbN resonators on silicon spin qubit chips. With a hole confined in a double quantum dot (DQD), we report the first realization of a strong hole charge-photon interaction bordering the ultra-strong coupling regime. At finite magnetic field, putting the spin transition energy in resonance with the microwave cavity, we observe large vacuum Rabi mode splittings, signature of a strong spin-photon coupling. Our findings are well captured by the modelling of a hole DQD with different anisotropic Zeeman response in each dot and spin-orbit coupling dependent tunnel rates. We also find a sizeable spin-photon coupling when the hole is localized in the single quantum dot, in line with recent theoretical predictions. The different works presented in this manuscript pave the way for circuit QED with hole spins in gate-defined semiconductor quantum dots.Le couplage cohérent et fort entre les photons et les qubits basés sur des matériaux solides, sous la forme de l'électrodynamique quantique de circuit (en anglais circuit QED), a été exploité notamment pour les portes logiques à deux qubits et la lecture haute fidélité sans démolition d’état formant les blocs fondateurs du calcul quantique. Récemment, la circuit QED a été étendue aux boîtes quantiques semi-conductrices définies par des grilles. Dans cette thèse, nous développons une nouvelle architecture hybride de circuit QED composée d'un résonateur micro-onde supraconducteur à haute impédance et de spins localisés dans des boîtes quantiques en silicium-MOS. Afin de contrôler et mesurer les degrés de liberté du spin, ce système hybride doit s'opérer dans un champ magnétique fini. Par conséquent, nous développons et caractérisons les résonateurs micro-ondes formés dans un film mince de nitrure de niobium (NbN) comportant une haute cinétique inductance. Nous démontrons la résilience au champ magnétique et une faible perte de photons des résonateurs à haute impédance. Nous co-intégrons ensuite les résonateurs sur les puces des qubits de spin en silicium. Avec le confinement d'un trou dans une double boîte quantique (DQD), nous présentons la première démonstration d'une interaction forte entre une charge de trou et un photon à la limite du régime de couplage ultra-fort. Sous champ magnétique fini, nous observons des répulsions des états de Rabi du vide caractéristiques d'un couple fort spin-photon. Nos résultats sont bien capturés par la modélisation d'un trou dans une DQD avec une réponse anisotrope différente dans chaque boîte et des taux de tunnel dépendant du couplage spin-orbite. Nous trouvons également un couplage spin-photon conséquent lorsque le trou est localisé dans une boîte quantique unique, en accord avec les prédictions théoriques récentes. Ces différents travaux présentés dans ce manuscrit ouvrent la voie à un circuit QED avec des spins de trous dans une boîte quantique semi-conductrice définie par des grilles

    Théorie du blocage de Coulomb appliquée aux nanostructures semi-conductrices : modélisation des dispositifs à nanocristaux de silicium

    No full text
    The current breakthroughs in semiconductor nanostructure fabrication allows the emergence of innovative device concepts based on quantum mechanics as alternative to conventional CMOS transistors or memories. Among other things, the Coulomb blockade devices like single-electron transistors offer one of the most promising prospects. The modeling and simulation of single-electron structures are thus of first importance with a view to predicting and understanding the behavior of these new generation devices. In this context, this work is dedicated to the study of silicon quantum dots for Coulomb blockade applications. First, after having presented the state of the art, both theoretical and experimental, of Coulomb blockade devices, we are interested in the electronic structure of semiconductor quantum dots surrounded by silicon dioxide. This study leads us to develop a series of models for unbiased and biased quantum dots and, especially, a one-dimensional one able to describe spherically symmetric quantum dots within considerably reduced computation time. Moreover, the limitations of the effective mass approximation, a keystone of the models implemented, are evaluated using a molecular description of the silicon nanocrystals based on the method of linear combination of atomic orbitals. The second part of this work is more specifically centered on electronic transport under the Coulomb blockade regime. The description of the mechanisms of tunnel events is based on transfer Hamiltonian concept. Applied to the case of metallic and semiconductor Coulomb blockade devices (in particular to Metal-Insulator-Metal-Insulator-Metal and Metal-Insulator-Silicon Quantum Dot-Insulator-Metal structures), we have thus been able to implement a simulation software which only requires the knowledge of the fundamental physical parameters of the system.Dans la recherche de solutions innovantes assurant la pérennité de la micro-électronique sur silicium, qui devra faire face, dans quelques années, à des limites, tant technologiques que théoriques, les dispositifs à blocage de Coulomb à semi-conducteur ont su dévoiler des atouts plus que prometteurs. Ainsi, ces composants d'avant-garde, basés sur le caractère quantique de la charge électrique, offrent une alternative possible aux circuits CMOS, tout en restant compatibles avec les technologies actuelles. Parallèlement à leur mise au point, une étude théorique se révèle donc de première importance afin de prédire et comprendre le fonctionnement de ces dispositifs de nouvelle génération. Tel est l'objet de ce mémoire consacré à l'étude des boîtes quantiques en silicium dans le cadre d'une utilisation de type "blocage de Coulomb". Après un exposé de l'état de l'art, tant théorique qu'expérimental, en matière de composants à blocage de Coulomb, le présent travail se concentre d'abord sur l'étude des boîtes quantiques semi-conductrices (polarisées ou non) entourées d'oxyde en développant une série de modèles visant à décrire leur structure électronique. En particulier, la mise en oeuvre d'un modèle unidimensionnel capable de décrire des boîtes quantiques à symétrie sphérique se révèle très avantageux d'un point de vue du temps de calcul. Les limites de l'approximation de la masse effective, clé de voûte des modèles présentés sont, en outre, évaluées à l'aide d'une description moléculaire des nanocristaux de silicium en utilisant la méthode des combinaisons linéaires d'orbitales atomiques. La deuxième partie de ce travail de thèse est plus spécifiquement axée sur le transport des électrons par effet tunnel dans le cadre du blocage de Coulomb. La description des mécanismes de transfert de charges est basée sur le concept d'hamiltonien de transfert tunnel dont l'application au cas des composants à blocage de Coulomb métalliques et semi-conducteurs (plus particulièrement à des structures du type Métal-Isolant-Métal-Isolant-Métal ou Métal-Isolant-Boîte Silicium-Isolant-Métal) a permis la mise au point d'un simulateur reposant uniquement sur la connaissance des paramètres physiques fondamentaux du système
    corecore