13 research outputs found

    A review on graphical evolutionary game for information diffusion on social networks

    Get PDF
    Purpose - With the recent development of science and technology, research on information diffusion has become increasingly important. Design/methodology/approach - To analyze the process of information diffusion, researchers have proposed a framework with graphical evolutionary game theory (EGT) according to the theory of biological evolution. Findings - Through this method, one can study and even predict information diffusion. Originality/value - This paper summarizes three existing works using graphical EGT to discuss how to obtain the static state and the dynamics of information diffusion in social network

    Influence Spread in Two-Layer Interdependent Networks: Designed Single-Layer or Random Two-Layer Initial Spreaders?

    Get PDF
    Influence spread in multi-layer interdependent networks (M-IDN) has been studied in the last few years; however, prior works mostly focused on the spread that is initiated in a single layer of an M-IDN. In real world scenarios, influence spread can happen concurrently among many or all components making up the topology of an M-IDN. This paper investigates the effectiveness of different influence spread strategies in M-IDNs by providing a comprehensive analysis of the time evolution of influence propagation given different initial spreader strategies. For this study we consider a two-layer interdependent network and a general probabilistic threshold influence spread model to evaluate the evolution of influence spread over time. For a given coupling scenario, we tested multiple interdependent topologies, composed of layers A and B, against four cases of initial spreader selection: (1) random initial spreaders in A, (2) random initial spreaders in both A and B, (3) targeted initial spreaders using degree centrality in A, and (4) targeted initial spreaders using degree centrality in both A and B. Our results indicate that the effectiveness of influence spread highly depends on network topologies, the way they are coupled, and our knowledge of the network structure — thus an initial spread starting in only A can be as effective as initial spread starting in both A and B concurrently. Similarly, random initial spread in multiple layers of an interdependent system can be more severe than a comparable initial spread in a single layer. Our results can be easily extended to different types of event propagation in multi-layer interdependent networks such as information/misinformation propagation in online social networks, disease propagation in offline social networks, and failure/attack propagation in cyber-physical systems

    The Network Visibility Problem

    Get PDF

    Overexposure-aware influence maximization

    Get PDF
    Viral marketing campaigns are often negatively affected by overexposure. Overexposure occurs when users become less likely to favor a promoted product, after receiving information about the product from too large a fraction of their friends. Yet, existing influence diffusion models do not take overexposure into account, effectively overestimating the number of users who favor the product and diffuse information about it. In this work, we propose the first influence diffusion model that captures overexposure. In our model, LAICO (Latency Aware Independent Cascade Model with Overexposure), the activation probability of a node representing a user is multiplied (discounted) by an overexposure score, which is calculated based on the ratio between the estimated and the maximum possible number of attempts performed to activate the node. We also study the influence maximization problem under LAICO. Since the spread function in LAICO is non-submodular, algorithms for submodular maximization are not appropriate to address the problem. Therefore, we develop an approximation algorithm which exploits monotone submodular upper and lower bound functions of spread, and a heuristic which aims to maximize a proxy function of spread iteratively. Our experiments show the effectiveness and efficiency of our algorithms

    Combating Fake News on Social Media: A Framework, Review, and Future Opportunities

    Get PDF
    Social media platforms facilitate the sharing of a vast magnitude of information in split seconds among users. However, some false information is also widely spread, generally referred to as “fake news”. This can have major negative impacts on individuals and societies. Unfortunately, people are often not able to correctly identify fake news from truth. Therefore, there is an urgent need to find effective mechanisms to fight fake news on social media. To this end, this paper adapts the Straub Model of Security Action Cycle to the context of combating fake news on social media. It uses the adapted framework to classify the vast literature on fake news to action cycle phases (i.e., deterrence, prevention, detection, and mitigation/remedy). Based on a systematic and inter-disciplinary review of the relevant literature, we analyze the status and challenges in each stage of combating fake news, followed by introducing future research directions. These efforts allow the development of a holistic view of the research frontier on fighting fake news online. We conclude that this is a multidisciplinary issue; and as such, a collaborative effort from different fields is needed to effectively address this problem
    corecore