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The Network Visibility Problem
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Social media is an attention economy where broadcasters are constantly competing for attention in their

followers’ feeds. Broadcasters are likely to elicit greater attention from their followers if their posts remain

visible at the top of their followers’ feeds for a longer period of time. However, this depends on the rate at

which their followers receive information in their feeds, which in turn depends on the broadcasters they

follow. Motivated by this observation and recent calls for fairness of exposure in social networks, in this

article, we look at the task of recommending links from the perspective of visibility optimization. Given a set

of candidate links provided by a link recommendation algorithm, our goal is to find a subset of those links

that would provide the highest visibility to a set of broadcasters. To this end, we first show that this problem

reduces to maximizing a nonsubmodular nondecreasing set function under matroid constraints. Then, we

show that the set function satisfies a notion of approximate submodularity that allows the standard greedy

algorithm to enjoy theoretical guarantees. Experiments on both synthetic and real data gathered from Twitter

show that the greedy algorithm is able to consistently outperform several competitive baselines.
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1 INTRODUCTION

Social media users are eager to gain new followers—to grow their audience—so, whenever they

decide to share a new story, it receives a greater amount of views, likes, and shares.At the same

time, users actually share quite a portion of their followers and, as a consequence, they are con-

stantly competing with each other for attention [3, 15], which becomes a scarce commodity of

great value [11]. In this context, recent empirical studies have shown that stories at the top of a

user’s feed are more likely to be noticed and consequently liked or shared [18, 19, 27].

The above empirical findings have motivated the recently introduced when-to-post problem [20,

32, 34, 38, 39], which aims to help a user, a broadcaster, find the best times to share stories with her
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followers—the times when her stories would enjoy higher visibility and would consequently elicit

greater attention from her audience. While this line of work has shown great promise at helping

broadcasters increase their visibility, it assumes the links between broadcasters and followers are

given. However, these links are of great importance to the broadcasters’ visibility—they define

their audience. Motivated by this observation and recent calls for fairness of exposure in social

networks [5, 30], in this work, we look at the task of recommending links in social networks from

the perspective of visibility optimization.

Link recommendation has a rich history in the recommender systems literature [28]. However,

link recommendation algorithms have traditionally focused on maximizing the followers’ utility—

they recommend users to follow broadcasters whose posts may be found more interesting. This

uncompromising focus on the utility of the followers, rather than the utility of the broadcasters,

has been called into question as social media platforms are increasingly used as news sources.1, 2 In

this work, given a set of candidate links provided by a link recommendation algorithm, our goal is

to find a subset of those links that maximize the broadcasters’ utility, as measured by the visibility

their posts would achieve through that subset of links. Here, note that we aim to complement,

rather than substitute, traditional link recommendation algorithms maximizing the followers’

utility.

Our work. We approach the above problem from the perspective of temporal point processes

and nonsubmodular set function maximization, where we measure the visibility a broadcaster

achieves with respect to her followers as the number of stories posted by her that lie within the

top k positions in her followers’ feeds over time. A desirable property of this visibility measure,

which is also shared by similar visibility measures used in recent work [20, 34, 38, 39], is that

it can be easily extracted from real data without interventions—given any posting strategy for a

broadcaster, one can always measure the visibility she would achieve with respect to any set of

followers using a separate held-out set of the followers’ feeds.

More specifically, we represent users’ posts and feeds using the temporal point processes, which

characterize the continuous time interval between posts using intensity functions [1, 31]. Given a

set of broadcasters, we derive a formula that links the visibility they achieve with respect to their

followers to their posting intensities and the followers’ feed intensities due to other broadcasters.

Based on this formula, we make the following contributions:

(i) We show that the visibility satisfies a notion of approximate submodularity, α̌-submodularity

[40]. This notion is characterized by a key quantity, the inverse generalized curvature α̌ [6,

17, 26], which we are able to bound in our problem.

(ii) We show that the standard greedy algorithm [29] achieves a constant approximation factor

of (1 + 1/(1 − α̌ ))−1 at maximizing visibility under constraints on the number of edges per

broadcaster. More broadly, these guarantees hold for maximizing any nondecreasing α̌-sub-
modular function under matroid constraints.

(iii) We analyze the sample complexity of an empirical estimate of the visibility and show that,

given a sufficient number of samples, the greedy algorithm is guaranteed to find a set of

edges such that the broadcasters’ visibility is at least 0.5OPT /(1 + 1/(1 − α̌ )), where OPT is

the optimal value.

We believe the above contributions have implications beyond the specific problem we study here

because, to the best of our knowledge, the maximization of α̌-submodular functions under general

matroid constraints has not been studied. Finally, we experiment with both synthetic and real

1https://www.nytimes.com/2018/09/05/technology/lawmakers-facebook-twitter-foreign-influence-hearing.html.
2https://www.economist.com/business/2018/09/06/how-social-media-platforms-dispense-justice.
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data gathered from Twitter and show that the greedy algorithm is able to consistently outperform

several nontrivial baselines.

Further related work. In addition to previous work on the when-to-post problem, link recom-

mendation, and α̌-submodularity, our work also relates to set function maximization, network

manipulation, and fair ranking.

The problem of maximizing a nondecreasing set function emerges in a wide variety of important

real-world applications such as feature selection, sparse modeling, and experimental design, to

name a few. If the set function of interest is nondecreasing and satisfies a natural diminishing

property called submodularity,3 then the problem is well understood. For example, under a simple

cardinality constraint, it is known that the standard greedy algorithm enjoys an approximation

factor of (1−1/e ) [29, 35].Moreover, this constant factor has been improved using the curvature [10,

36] of a submodular function. Under a general matroid constraint, a variation of the standard

greedy algorithm yields a 1/2-approximation [14] and, more recently, it has been shown that there

exist polynomial time algorithms that yield a (1 − 1/e )-approximation [7, 13].

However, there are many important applications where the corresponding set function is not

submodular. In this context, Bian et al. [4] have shown that, under a cardinality constraint, the

standard greedy algorithm enjoys an approximation factor of 1
α
(1 − e−γ α ), where γ is the sub-

modularity ratio [12] of the set function and α is the curvature of the set function. Very recently,

Harshaw et al. [16] have also shown that there is no polynomial algorithm with better guaran-

tees. However, the problem of maximizing a non-submodular nondecreasing set function subject

to a general matroid constraint has only been studied very recently by Chen et al. [9], who have

shown that a randomized version of the standard greedy algorithm enjoys an approximation factor

of (1+1/γ )−2. In our work, we further advance the state-of-the-art on non-submodular nondecreas-

ing set function by studying the maximization of α̌-submodular functions under general matroid

constraints.

In network manipulation [22–24, 33], the goal is to find a set of edges in a social network whose

addition (removal) can maximize (minimize) the spread of a contagion (e.g., a story, a disease). In

contrast, our goal is to find a set of edges whose addition can maximize social media users’ visi-

bility. Moreover, our algorithm enjoys theoretical guarantees while most algorithms for network

manipulation do not, except for one notable exception [21]. Finally, in fair ranking [2, 5, 30, 37],

the goal is to provide rankings under fairness constraints in terms of exposure allocation of the

information sources. In our work, we do not focus on providing rankings but recommending links

between the information sources, i.e., the broadcasters, and the end-users, i.e., the followers.

2 PROBLEM FORMULATION

In this section, we first revisit how to use the theory of temporal point processes [1, 31] to repre-

sent broadcasters and feeds in social and information networks [20, 38, 39]. Then, we define our

visibility measure and derive a relationship between this visibility measure and the intensity func-

tions of broadcasters and followers. Finally, we conclude with a statement of the network visibility

problem.

Representation of broadcasters and feeds. Given a directed network G = (V,E), we assume

any user u ∈ V can be a broadcaster, a follower, or both, each broadcaster can be followed by

multiple followers, and each follower can follow multiple broadcasters. Then, we represent the

broadcasting times of the users as a collection of counting processes denoted by a vector N (t ), in

3A set function F ( ·) is submodular iff it satisfies that F (A ∪ {v }) − F (A) ≥ F (B ∪ {v }) − F (B) for all A ⊆ B ⊂ V and

v ∈ V , where V is the ground set.
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which the ith dimension is the number of messages or stories broadcasted by user i up to time t ,
and characterize these counting processes using their corresponding intensities, i.e., E[dN (t )] =
μ(t ) dt . Moreover, given the adjacency matrix A ∈ {0, 1}n×n , where Ai j = 1 indicates that user

j follows user i , we can represent the times of the stories users receive in their feeds from the

broadcasters they follow as a sum of counting processes,ATN (t ), and calculate the corresponding
intensities as γ (t ) = AT μ(t ).
Finally, from the perspective of set of broadcasters B, it is useful to define EB as the set of their

outgoing edges, i.e., who follows them, and the counting processes M\B (t ) = ATN (t ) −AT
BN (t ),

in which the jth dimension, Mj\B (t ), represents the times of the stories user j receives due to

other broadcasters she follows and AB is a matrix composed of the rows of A corresponding to

the set of broadcasters B. For each of these counting processes, the intensity is given by γj\B (t ) =
γj (t ) −ATBμ(t ).
Definition of visibility. Given a broadcaster i and one of her followers j, we keep track of the

number of stories rK (t , i, j ) posted by i that are among the top K positions of j’s feed at time

t , which clearly depends on the feed ranking mechanism in the corresponding social network.

Here, for simplicity, we assume each user’s feed ranks stories in inverse chronological order,4 as

in previous work [20, 38, 39]. Then, given an observation time window [t0, tf ] and a deterministic

sequence of broadcasting events, we can define the deterministic top K visibility of broadcaster i
with respect to follower j as

TK (i, j ) :=
∫ tf

t0

rK (t , i, j )dt , (1)

which is the number of stories posted by i’s that are among the top K positions of j’s feed over

time. However, since the sequence of broadcasting events are generated from stochastic processes,

we will consider the expected value of the top K visibility instead, i.e.,

UK (i, j ) = E [TK (i, j )] =
∫ tf

t0

E [rK (t , i, j )]dt =

∫ tf

t0

K∑
k=1

дk (t , i, j )dt , (2)

where дk (t , i, j ) is the probability that a story posted by broadcaster i is at position k of follower

j’s feed at time t . Finally, given a set of broadcasters B, define their average top K visibility with

respect to their followers as

UK (EB ) =
∑

(i, j )∈EB

UK (i, j ) :=
∑
j ∈V
UK (EB , j ), (3)

where, with an overload of notation UK (EB , j ) =
∑

i ∈B : (i, j )∈EB UK (i, j ) and the argument EB
reminds that the visibility is a function of outgoing edges corresponding to the set of broadcasters

B, i.e., it is a function of who follows them. Here, note that, by using the linearity of expectation, we

can also writeUK (EB , j ) in terms of the number of stories rK (t ,EB , j ) posted by the broadcasters
that are among the top K positions of user j’s feed at time t and the probability дk (t ,EB , j ) that a
story posted by the broadcasters is at position k of user j’s feed at time t , i.e.,

UK (EB , j ) =
∫ tf

t0

E [rK (t ,EB , j )] =
∫ tf

t0

K∑
k=1

дk (t ,EB , j ), (4)

where we have again overloaded the notation for simplicity.

4At the time of writing, Twitter, Facebook, and Weibo allow choosing such an ordering.
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Computation of visibility. In this section, we aim to find an expression for the average top K
visibility of a set of broadcasters B with respect to their followers, given by Equation (3), in terms

of the intensity functions characterizing the broadcasters and the feeds.

To this end, we first compute the probability д1 (t ) = д1 (t , i, j ) that one story from a broadcaster

i with μi (t ) = μ (t ) is at the top of a follower j’s feed with γj\i = γ (t ) at time t . More specifically,

for д1 (t ), we can easily realize that our definition of visibility matches the one used by Karimi

et al. [20].5 Then, following their same line of reasoning, we have that д1 (t ) satisfies the following
equation:

д1 (t + dt ) = д1 (t ) (1 − γ (t )dt ) + (1 − д1 (t ))μ (t )dt . (5)

Then, by rearranging the terms and letting dt → 0, one finds that the probability satisfies the

following differential equation:

д′1 (t ) = −д1 (t ) (μ (t ) + γ (t )) + μ (t ).

Now, we can proceed with the induction step for дk (t ) = дk (t , i, j ) with k > 1. Here, note that

our definition of visibility differs from the one used by Karimi et al. for k > 1 and thus we cannot

directly follow their reasoning. However, by definition, we have that дk (t ) satisfies the following
equation:

дk (t + dt ) = дk−1 (t ) (μ (t ) + γ (t ))dt + дk (t ) (1 − μ (t ) − γ (t )dt ),

where each term relates to one of the two possible situations: (i) the story at position k − 1 of the
follower’s feedwas posted by broadcaster i (w.p.дk−1 (t )) and a broadcaster posts a story in [t , t+dt]
(w.p. (μ (t ) + γ (t ))); (ii) the story at position k of the follower’s feed was posted by broadcaster i
(w.p. дk (t )) and nobody posts a story in [t , t + dt] (w.p. (1 − μ (t ) − γ (t ))). Again, by rearranging

terms and letting dt → 0, it follows that:

д′k (t ) = (дk−1 (t ) − дk (t )) (μ (t ) + γ (t )). (6)

Perhaps surprisingly, we can find a closed form expression for дk (t ), given the following Lemma

(proven in Appendix 1):

Lemma 1. Given a broadcaster with intensity μ (t ) and one of her followers with feed intensity due

to other broadcasters γ (t ), the probability дk (t ) that a story posted by the broadcaster is at position k
of the follower’s feed at time t is given by

дk (t ) =

∫ t

0

Jk−1 (μ + γ ,τ , t )

(k − 1)! e−J (μ+γ ,τ ,t )μ (τ )dτ , (7)

where J (λ,τ , t ) =
∫ t
τ
λ(x )dx .

Next, we plug Equation (7) into rK (t ) = rK (t , i, j ), defined in Equation (2), and obtain

E [rK (t )] =

∫ t

0

⎡⎢⎢⎢⎢⎣
K∑
k=1

Jk−1 (μ + γ ,τ , t )

(k − 1)!

⎤⎥⎥⎥⎥⎦ e−J (μ+γ ,τ ,t )μ (τ )dτ = (K−1)!
∫ t

0

Γ (K , J (μ + γ ,τ , t )) μ (τ )dτ ,

where Γ(K ,x ) is the incomplete gamma function. Now, let FK (x ) = −
∑K−1

i=0 (K−i ) x i
i ! e
−x be the anti-

derivative of Γ(K ,x ). Then, using that
d J (μ+γ ,τ ,t )

dτ
= −(μ (τ ) + γ (τ )), J (μ + γ , t , t ) = 0, FK (0) = −K

5In Karimi et al. [20], visibility is defined as the probability that at least one story posted by i is among the K recent stories

in j ’s feed.
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and J (μ + γ , 0, t ) =
∫ t
0
μ (x ) + γ (x )dx = E[(ATN (t ))j ], we can simplify the above expression into:

E [rK (t )] = K + FK (E[(A
TN (t ))j ]) −

1

(K − 1)!

∫ t

0

Γ(K , J (μ + γ ,τ , t ))γ (τ )dτ . (8)

Finally, if we plug Equation (8) into Equation (2), then we obtain an expression for the average top

K visibility of broadcaster i with respect to follower j in terms of the intensity functions μ (t ) and
γ (t ):

UK (i, j ) = K (tf −t0)+
∫ tf

t0

FK
(
E[(ATN (t ))j ]

)
dt − 1

(K − 1)!

∫ tf

t0

∫ t

0

Γ(K , J (μ +γ ,τ , t ))γ (τ )dτdt .

(9)

Given a set of broadcasters B, we can proceed similarly as above and show that:

(i) The probability дk (t ,EB , j ) that a story posted by the broadcasters is at position k of user j’s
feed at time t is given by Equation (7) with γ (t ) = γj\B (t ) and μ (t ) =

∑
i ∈B : (i, j )∈EB μi (t ).

(ii) The average top K visibilityUK (EB , j ) of the broadcasters with respect to user j is given by

Equation (9) with γ (t ) = γj\B (t ) and μ (t ) =
∑

i ∈B : (i, j )∈EB μi (t ).

Finally, the above results allow us to write UK (EB ), given by Equation (3), in terms of intensity

functions characterizing the broadcasters and the feeds, as we were aiming for.

The network visibility problem. Let G = (V,E) be a directed network, where each node i ∈ V
has an intensity μi (t ). Then, given a set of candidate edgesW provided by a link recommendation

algorithm, withW∩E = ∅, and a set of broadcasters B ⊆ V , our goal is to find a subset of those

edges EB ⊆ W that maximizes the average top K visibility of the broadcastersUK (EB ) under a
given constraint on the number of edges per broadcaster, i.e.,

maximize
EB ⊆W

UK (EB )

subject to |{j ∈ V : (i, j ) ∈ EB}| ≤ ci , ∀i ∈ B, (10)

where ci is the maximum number of edges that broadcaster i can afford. Here, we assume that a

social media platform will charge broadcasters for each edge recommendation and, without loss

of generality, we assume that each edge recommendation has a cost of one unit to the broadcaster

and the followers are equally likely to follow the recommended broadcasters.

Finally, note that, in the above expression, we can rewrite the constraints as |B| partitionmatroid

constraints [25], i.e., |EB ∩ Wi, : | ≤ ci ∀i ∈ B, whereWi, : denotes the ground set of possible

outgoing edges from i .

3 ON THE THEORETICAL PROPERTIES OF VISIBILITY

In this section, we will show that, for a large family of intensity functions, the average top K
visibility satisfies α̌-submodularity [40], a notion of approximate submodularity.

Definition 2. A set function F :W → R is called α̌-submodular if, for any w ∈ W and subsets

A ⊆ B ⊆ W ,

F (A ∪ {w }) − F (A) ≥ (1 − α̌ ) [F (B ∪ {w }) − F (B)] , (11)

where the smallest α̌ ∈ [0, 1] such that the above inequality is true is called the inverse generalized
curvature [6, 17, 26].

Let {μi (t )}i ∈B be the intensities of a set of broadcasters B and {γi\B (t )}i ∈V be the users’ feed

intensities due to other broadcasters. Moreover, define inf (λ) = inf {λ(t ) | t ∈ (t0, tf )}, sup(λ) =
sup{λ(t ) | t ∈ (t0, tf )}. Then, we will assume that:

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 22. Publication date: September 2021.
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(i) All intensities are bounded above, i.e., sup(μi ) ≤ λmax, ∀i ∈ B and sup(γi\B ) ≤ λmax, ∀i ∈ V
with 0 < λmax < ∞.

(ii) The users’ feed intensities due to other broadcasters are bounded below, i.e., inf (γi\B ) ≥
λmin, ∀i ∈ V with 0 < λmin ≤ λmax.

Note that these assumptions are natural in most practical scenarios—the first assumption is satis-

fied if broadcasters post a finite number of stories per unit of time and the second assumption is

satisfied if, at any time, there is always a nonzero probability that a user’s feed receives a post from

the other broadcasters. Under these assumptions, it readily follows that, for any set EB of outgoing

edges from the broadcasters, the feed intensities γi (t ) are ξ -bounded, i.e., sup(γi ) ≤ ξ inf (γi ), with

ξ ≤ λmax

λmin
(1 + |W:,i |), and we can characterize the inverse generalized curvature α̌ of the average

top K visibility using the following Theorem and Corollary (proven in Appendix B):

Theorem 3. Suppose that, for any set EB , the feed intensities γi (t ) are ξ -bounded and

E[M\B (t0)] ≥ K − 1 + ζ
√
K − 1, (12)

for some positive real ζ , which simply states that t0 is large enough so the expected number of stories

posted by the other broadcasters by t0 in each feed is greater than the RHS. Then, the inverse generalized
curvature α̌ of the average top K visibilityUK (EB ), defined by Equation (3), satisfies that,

α̌ ≤ α̌∗ = 1 − 1

ξ �	
 6.154e2

1− 4e
7
4

ζ

ξ
√
K + 1��

. (13)

Corollary 4. The inverse generalized curvature of the average topK visibility is α̌ ≈ 1−Ω( 1

ξ 2
√
K
).

Moreover, we can tighten the upper bound α̌∗ given by Theorem 3 using the following Theorem

(proven in Appendix B) if we assume that, at each time t , the intensity function μi (t ) of each
broadcaster is lower than a fraction of each of her follower’s feed intensities. This is an assumption

that is likely to hold in practice, since the stories posted by a single broadcaster are typically a small

percentage of the stories her followers receive in their feeds over time.

Theorem 5. Suppose the conditions in Theorem 3 hold and, in addition,

μi (t ) ≤
γj\B (t )

ρ
√
K − 1

, ∀t ∈ [t0, tf ],∀i ∈ B,∀j ∈ V, (14)

where ρ > 0. Then, the inverse generalized curvature α̌ of the average top K visibility UK (EB )
satisfies that

α̌ ≤ α̌∗ = 1 − 1

ξ
�		


2e
7
4(

1− 4e
7
4

ζ

)
min{ρ,1}e

− 1
ρ2
ξ + 1

���
. (15)

Note that we can always find a constant ρ > 0 so Equation (14) is satisfied, however, the

term min{ρ, 1}e−
1

ρ2 will decrease drastically when ρ ≥ 1. Finally, by combining Theorems 3 and

Theorem 5, we obtain the following Corollary:

Corollary 6. Suppose the conditions in Theorem 5. Then, the inverse generalized curvature of the

average top K visibility is

α̌ ≈ 1 − Ω

(
1

ξ 2
max

{
1
√
K
, ρe
− 1

ρ2

})
. (16)

Moreover, if ρ ≥ 1, then α̌ ≈ 1 − Ω
(
1
ξ 2

)
.
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ALGORITHM 1: Standard greedy algorithm

Input: Ground setW , partition {Ni }ni=1 ofW , matroid collection {Ii }ni=1, set function F
Output: Set of items Sn
1: S0 ← ∅
2: for i = 1, . . . ,n do

3: S0i ← ∅,U
0
i ← ∅

4: for j = 1, . . . , |Ni | do % Proceed iteratively over partitions

5: v∗ ← argmax
v ∈Ni \U j−1

i
F (Si−1 ∪ S j−1i ∪ {v}) − F (Si−1 ∪ S j−1i ) % Find best item

6: U
j
i ← U

j−1
i ∪ {v∗} % Item is considered

7: if S
j−1
i ∪ {v∗} ∈ Ii then

8: S
j
i ← S

j−1
i ∪ {v∗} % Item is selected

9: end if

10: end for

11: Si ← Si−1 ∪ S |Ni |i
12: end for

13: return Sn

The above result implies that the larger the difference between the upper bound on the broad-

casters’ intensities and the lower bound on the user’s feed intensities due to other broadcasters,

the greater the inverse generalized curvature of the average top K visibility.

4 SOLVING THE NETWORK VISIBILITY PROBLEM

In this section, we first show that the standard greedy algorithm [29] (Algorithm 1) achieves an

approximation factor of (1+1/(1−α̌ ))−1 at maximizing nondecreasing α̌-submodular set functions

under nmatroid constraints. Finally, we conclude with a theoretical analysis of the complexity and

finite-sample robustness of the greedy algorithm.

The standard greedy algorithm. Given a ground setW , a partition {Ni }ni=1 ofW , a collection

of matroids {Ii }ni=1 with respect to each partition, and a nondecreasing set function F :W → R
with inverse generalized curvature α̌ , the greedy algorithm proceeds iteratively over the partitions

Ni . At each iteration, it considers the best item that provides the highest marginal gain, among the

set of items in the corresponding partition that have not yet been considered in previous iterations.

Then, it adds this item to the set of selected items if it does not violate the corresponding matroid

constraint. Algorithm 1 summarizes the greedy algorithm.

In the network visibility problem, defined by Equation (10),W is the ground set of possible

outgoing edges from the broadcasters inB, each partitionNi =Wi, : is the set of possible outgoing

edges from broadcaster i ∈ B, the constraint that each broadcaster i ∈ B can pick at most ci edges
is a type ofmatroid constraint—a cardinality constraint—overNi , and the set function F = UK (EB )
is nondecreasing (i.e., addingmore edges always provides positive gain) and its inverse generalized

curvature α̌ is given by Equations (13) or (15). Here, note that, in the first iterations, the greedy

algorithm may just connect broadcasters to followers with the lowest feed intensity. However, the

feed of these followers will increase its intensity as the greedy algorithm connects them to more

broadcasters and, as a consequence, in later iterations, the greedy algorithm may not necessarily

assign broadcasters to these followers anymore.

Approximation guarantees of the greedy algorithm.Ourmain result is the following theorem,

which shows that the greedy algorithm achieves an approximation factor of (1 + 1/(1 − α̌ ))−1

(proven in Appendix D):
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Theorem 7. Given a ground setW , a partition {Ni }ni=1 ofW , a collection of matroids {Ii }ni=1
with respect to each partition, and a nondecreasing set function F :W → R with inverse generalized

curvature α̌ . Then, the greedy algorithm returns a set S such that

F (S) ≥ OPT

1 + 1/(1 − α̌ ) ,

where OPT is the optimal value.

In the network visibility problem, the above theorem implies that the greedy algorithm provides

aO (ξ 2
√
K ) approximation factor. Moreover, we would like to highlight that the proof of the above

theorem differs significantly from that of Theorem 2.1 in Nemhauser [29], which is much more

involved. More specifically, in our proof, we cannot apply Proposition 2.2 in Nemhauser [29], be-

cause the decreasing monotonicity of the marginal gains of the added elements fails to hold in the

absence of the submodularity condition. As a result, our proof does not resort to linear program

duality and it is generalizable for the case of having an intersection of P matroids instead of just

one.

In comparison with the previous literature on the maximization of non-submodular nondecreas-

ing set functions under matroid constraints, the result most closely related to ours is by Chen

et al. [9], who have recently shown that a randomized version of the standard greedy algorithm

enjoys an approximation factor of (1+1/γ )−2, whereγ is the submodularity ratio [12]. However, to

the best of our knowledge, the maximization of α-submodular functions under matroid constraints

has not been analyzed before in the literature.

Computational complexity of the greedy algorithm. In the network visibility problem, de-

fined by Equation (10), the greedy algorithm (Algorithm 1) is computationally efficient.More specif-

ically, the computational complexity is given by the following Theorem (proven in Appendix E):

Theorem 8. In the network visibility problem, the greedy algorithm terminates in O (κ |B||V |),
where κ is the maximum time needed to evaluate the average top K visibility UK (EB , j ) for any
j ∈ V , B is the set of broadcasters andV is the set of users.

Robustness of the greedy algorithm. To solve the network visibility problem with the greedy

algorithm, we need to compute the average top K visibility, which depends on a set of unknown

intensities of the broadcasters and feeds. In practice, one could adopt a specific functional form

for these intensities and fit them using historical data, however, that could lead to poor estimates

of the visibility and, more importantly, it would be difficult to assess the impact of these empiri-

cal estimates on the approximation guarantees of the greedy algorithm. Instead, we will directly

estimate the average top K visibility using historical data.

Given a directed network G = (V,E), a set of broadcasters B ⊆ V with intensities {μi (t )}i ∈B ,
edges EB ⊆ E from the broadcasters to their followers, followers’ feed intensities due to other

broadcasters γj\B (t ), and n sequences of posts of length Δ = tf − t0, our empirical estimate of the

average top K visibilityU (EB , j ) of the broadcasters in user j’s feed is given by

Û (EB ) =
∑
j ∈V
Û (EB , j ) =

∑
j ∈V

∑K
i=1

∑n
�=1 Δ

(�)
i, j

n
, (17)

where Δ(�)
i, j is the amount of time that a post from the set of broadcasters B is at the ith position

of user j’s feed in realization �. Here, note that the empirical estimate does not explicitly depend
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on the intensities of the broadcasters and feeds and, given an arbitrary set of edges EB , one can
always measure the visibility they would reach without actual interventions. In contrast, measures

based on users’ reactions (e.g., number of likes, shares, and replies) are difficult to estimate from

real data, due to the presence of other confounding factors such as users’ influence, content, and

wording.

Further, we perform a formal analysis of the sample complexity of the above empirical estimate.

Let 0 ≤ y ≤ 1, then we can show that:

P{U (EB , j ) − yK (tf − t0) ≤ Û (EB , j ) ≤ U (EB , j ) + yK (tf − t0)} ≥ 1 − eZy−Qyn , (18)

where Zy and Qy are functions of, e.g., α , E[AT
j (N (tf ) − N (t0))],

βj = inf
t ∈(t0,tf )

μ (t )

μ (t ) + γj\B (t )
, ρ j = sup

t ∈(t0,tf )

μ (t )

μ (t ) + γj\B (t )
, and α .

However, for space constraints, we defer the details of this formal analysis to Appendix F. Finally,

given the above error bound, we characterize the approximation factor that the greedy algorithm

achieves if it uses these empirical estimates with the following Theorem (proven in Appendix G):

Theorem 9. Let the number of realizations n ≥ Zy+log
∑
i∈B |Wi, : |

δ

Qy
. Then, with probability at least

1 − δ , the greedy algorithm returns a set of edges EB such that

UK (EB ) ≥
OPT

1 + 1/(1 − α̌ ) − 4yK (tf − t0)
∑
i ∈B

ci .

5 EXPERIMENTS ON SYNTHETIC DATA

In this section, we evaluate the greedy algorithm (Algorithm 1) using synthetic data. To this end,

we first compare its performance with that of several competitive baselines and then validate its

robustness and scalability.

Experimental setup.Unless stated otherwise, we use (periodic) piece-constant intensities μi (t ) =∑T−1
k=0 μi,kI (t ∈ [tk , tk+1]) and γj\B (t ) =

∑T−1
j=0 γj,kI (t ∈ [tk , tk+1]) for the broadcasters and the

feeds, respectively, where T = 24 days is the period, tk+1 − tk = 1 day is the length of each

piece and, each piece, we pick μi,k and γj,k uniformly at random. Note that, for piece-constant

intensities, we are able to compute UK (EB , j ) analytically. We compare the performance of the

greedy algorithm with the same three heuristics as in the main section of the article,6 in which

each broadcaster picks ci feeds in turn and (i) it picks those with the lowest feed intensity
∫ T
0
γ (t )dt

by the time it chooses (CP), (ii) it picks those with the lowest visibilityUK by the time it chooses

(UP), and (iii) it picks those with the lowest value ofUK ×
∫ T
0
γ (t )dt (CUP). Here, we will run both

our greedy algorithm and the baselines using the true intensity values and then report the average

(theoretical) value of top K visibility, however, note that all can be run using empirical estimates

of the relevant quantities, i.e., UK using Equation (17) or
∫ T
0
γ (t )dt , using maximum likelihood

estimation.

Results. We first compare the performance of the greedy algorithm and all baselines in a setting

with 60 broadcasters and 600 feeds. Figure 1 summarizes the results, which show that the greedy

algorithm beats the baselines by large margins under different K and ξ values. We did experiment

with a wide range of parameter settings (e.g., K , ξ , T or ci ) and found that the greedy algorithm

6Initially, we also considered a trivial baseline that picks edges uniformly at random, however, its performance was not at

all competitive and we decided to omit it.
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Fig. 1. Average top K visibility achieved by the greedy algorithm (GP) and the three heuristics for a setting

with 60 broadcasters and 600 feeds. Panel (a) shows the average top K visibility, UK (EB ), for different K
values, where we sampled μi,k and γj,k from U [0.01, 0.1] and U [0.4, 50], respectively, and ci = 20. Panel

(b) shows the average top K visibility, normalized with respect to the visibility achieved by the greedy al-

gorithm, where we sampled μi,k and γj,k from U [0.01, 0.1] and U [0.05, 0.05] × ξ , respectively, K = 10 and

ci = 50.

Fig. 2. Robustness and running time of the greedy algorithm. Panel (a) compares the visibility achieved by

the solution EB (EB̂ ) provided by the greedy algorithm using the theoretical (empirical) visibility, where

we sampled μi,k and γj,k from U [0.001, 0.1] and U [0.05, 0.05 × ξ ], respectively, K = 10 and ci = 30. Panel

(b) shows the overall running time of the greedy algorithm using the theoretical (GP) and empirical (GP)

visibility, where we sampled μi,k and γj,k fromU [0.001, 0.1] andU [0.05, 0.05 × ξ ], K = 10, and ci = 30.

consistently beats the baselines. Next, we compare the visibility values achieved by the solution

EB the greedy algorithm provides using the theoretical visibility, given by Equation (9), against

the solution EB̂ it provides using the empirical visibility, given by Equation (17). Figure 2(a) sum-

marizes the results, which show that, in agreement with Theorem 9, the quality of the solution

the greedy algorithm provides using the empirical visibility converges to the one it provides using

the theoretical visibility. Finally, we compute the running time of the greedy algorithm against the

number of broadcasters. Figure 2(b) summarizes the results, which show that the running time is

linear in the number of broadcasters, also in agreement with Theorem 8. In additional experiments,

we also found that the running time is linear in the number of walls, superlinear with respect to

the number of pieces T and it is independent on the budget per broadcaster, however, for space

constraints, we do not include the corresponding plots.

6 EXPERIMENTS ON REAL DATA

In this section, we compare the performance of the greedy algorithm and several competitive

baselines using data gathered from Twitter.

Data description and experimental setup. We use data gathered from Twitter as reported in

previous work [8], which comprises profiles of 52 million users, 1.9 billion directed follow links

among these users, and 1.7 billion public tweets. The follow link information is based on a snapshot

taken at the time of data collection, in September 2009. Here, we focus on the tweets posted during
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Fig. 3. Average top K = 10 visibility achieved by the greedy algorithm, the three heuristics and the trivial

baseline using Twitter data. The solid horizontal line shows the median visibility and the box limits corre-

spond to the 25%–75% percentiles.

a two month period, from July 1, 2009, to September 1, 2009, to be able to consider the social graph

to be approximately static, sample a setA of 2, 000 users uniformly at random, record all the tweets

they posted. Then, for ci ∈ {10, 20, 40}, we repeat the following procedure 50 times:

1. we pick uniformly at random a set B ⊆ A of 80 users as broadcasters;

2. for each broadcaster i , we pick uniformly at random a setHi of 20 of their followers;

3. we record all tweets not posted by broadcasters in B in the feeds of the users inH = ∪iHi ;

and,

4. we run the greedy algorithm, three heuristic methods, and a trivial baseline that picks edges

uniformly at random and record the sets EB = {(i, j ) : i ∈ B, j ∈ H } each provides.

Under the three heuristics, each broadcaster picks ci feeds in turn and (i) it picks those with the

lowest feed intensity
∫ T
0
γ (t )dt by the time it chooses (CP), (ii) it picks those with the lowest

visibility UK by the time it chooses (UP), or (iii) it picks those with the lowest value of UK ×∫ T
0
γ (t )dt (CUP).
In each repetition of the above procedure, we use the tweets posted during the first month

to compute empirical estimates of the relevant quantities used by all methods, such as UK or∫ T
0
γ (t )dt , and we use the tweets posted during the second month to compute empirical estimates

ofUK achieved by each method.

Solution quality. Figure 3 summarizes the results by means of box plots, which show that the

greedy algorithm consistently beats all heuristics and the trivial baseline. Moreover, we did ex-

periment with other parameters settings (e.g., |B|, |H |, K , and ci ) and found our method to be

consistently superior to alternatives.

7 CONCLUSIONS

In this article, we have introduced the network visibility problem where, given a set of candidate

links provided by a link recommendation algorithm, the goal is to find the subset of those links that

maximize the average visibility a set of users achieve. Then, we have shown that the corresponding

objective function satisfies a notion of approximate submodularity, α̌-submodularity, which allows

the standard greedy algorithm to enjoy theoretical guarantees. Finally, using real data gathered

from Twitter, we have demonstrated that the greedy algorithm is able to consistently outperform

several baselines in practice.

Our work opens many venues for future work. For example, in this work, we have relied on

previous link recommendation algorithms to pick a set of candidate edges that followers may find

interesting. A natural next step is to design algorithms that jointly maximize the broadcasters’ and

followers’ utilities. Moreover, we have assumed each user’s feed ranks stories in inverse chrono-

logical order. It would be interesting to lift this assumption and allow for algorithmic feeds. In
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practice, different users may be more or less likely to follow the recommended broadcasters, there-

fore, it would be worthwhile to augment our algorithm to account for that uncertainty. In addition,

as some followers might have greater potential to amplify a broadcaster’s posts, it would be inter-

esting to weigh differently each follower’s contribution to the broadcasters’ utilities. Moreover,

it would be interesting to understand whether our approximation guarantees for α̌-submodular

function maximization under matroid constraints are tight. Finally, it would be interesting to find

other application domains where α̌-submodular functions emerge.

APPENDICES

A PROOF OF LEMMA 1

We prove this lemma by induction on k . For д0 (t ), we have the boundary condition д1 (0) = 0,

trivially, because the expected number of stories at position k = 1 is zero at the beginning of time.

Moreover, д1 (t ) satisfies the first order differential equation д
′
1 (t ) = −(μ (t ) +γ (t ))д1 (t ) + μ (t ) with

boundary condition д1 (0) = 0, which has the unique solution

д1 (t ) =

∫ t

0

e−
∫ t
τ
μ (x )+γ (x )dx μ (τ )dτ =

∫ t

0

e−J (μ+γ ,τ ,t )μ (τ )dτ ,

which proves the base of induction. Now, for дk (t ), we have the following recursive differential

equation:

д′k (t ) = (дk−1 (t ) − дk (t )) (μ (t ) + γ (t )).
Suppose we know the closed form formula

дk (t ) =

∫ t

0

Jk−1 (μ + γ ,τ , t )

(k − 1)! e−J (μ+γ ,τ ,t )μ (τ )dτ .

Then,дk (t ) is again satisfying a first-order differential equation with boundary conditionдi (0) = 0.

Thus, it suffices to show the closed form formula satisfies the above recursive differential equation.

According to Leibnitz formula for calculating differentials of integrals with non-constant limits,

д′k (t ) =
Jk−1 (μ + γ ,τ , t )

(k − 1)! e−J (μ+γ ,τ ,t )μ (τ )
�����
τ=t

τ=0

d

dt
(t ) +

∫ t

0

Jk−2 (μ + γ ,τ , t )

(k − 2)! e−J (μ+γ ,τ ,t )
d J

dt
μ (τ )dτ

−
∫ t

0

Jk−1 (μ + γ ,τ , t )

(k − 1)! e−J (μ+γ ,τ ,t )
d J

dt
μ (τ )dτ

= (дk−1 (t ) − дk (t )) (μ (t ) + γ (t )),

where d J
dt
= d

dt
(J (μ + γ ,τ , t )) and the last line follows from the fact that d J

dt
= μ (t ) + γ (t ). This

completes the step of induction.

B PROOF SKETCH OF THEOREMS 3 AND 5

To (upper) bound the inverse generalized curvature α̌ of the average top K visibility UK (EB ),
defined by Equation (3), we have to provide a α̌∗ ≥ α̌ such that, for any w ∈ W and subsets

A ⊆ B ⊆ W , it holds that

F (A ∪ {w }) − F (A) ≥ (1 − α̌∗) [F (B ∪ {w }) − F (B)] , (19)

The following Lemma lets us omit several sums and integrations that Equation (3) depends on

while deriving a bound for the inverse generalized curvature.

Lemma 10. Let {Fσ }σ ∈℘ be a family of set functions Fσ :W → R parametrized by σ , such that

for each fixed σ ∈ ℘ , Fσ is a set function with inverse generalized curvature α̌σ ≤ α̌∗. Then, the
following statements hold:
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— Suppose ℘ = (a,b) ⊆ R and F̃ (S ) =
∫ b
a
Fσ (S ) dσ for every subset S ⊆ V and the integral always

exists. Then, F̃ has inverse generalized curvature α̌ ≤ α̌∗.
— Suppose ℘ is a discrete set and F̃ (S ) =

∑
σ ∈℘ Fσ (S ). Then, F̃ has inverse generalized curvature

α̌ ≤ α̌∗.

In particular, for both cases introduced, if for each σ , Fσ is submodular, then F is submodular as well.

Proof. By the definition of inverse generalized curvature, ∀v ∈ V ,A ⊆ B, ∀σ :

Fσ (A ∪ {v}) − Fσ (A) ≥ (1 − α̌σ ) (Fσ (B ∪ {v}) − Fσ (B)) ≥ (1 − α̌∗) (Fσ (B ∪ {v}) − Fσ (B)). (20)

By integrating over both sides of Equation (20) over σ we get

F (A ∪ {v}) − F (A) ≥ (1 − α̌σ ) (F (B ∪ {v}) − F (B)) ≥ (1 − α̌∗) (F (B ∪ {v}) − F (B)),

which proves that F has inverse generalized curvature α̌ ≤ α̌∗. The proof for the second part

follows the same way by summing over σ ∈ ℘. �

More specifically, using the first statement of Lemma 10, to obtain an upper bound for the inverse

generalized curvature for UK (EB ), it is sufficient to obtain an upper bound for each UK (EB , j ),
which is a summation of three terms, as given by Equation (9). The first term, K (tf − t0), is a
constant and does not appear in the marginal gains {ρe }e ∈EB , therefore, it does not affect the

inverse generalized curvature. Using the second statement of Lemma 10, it is sufficient to obtain

an upper bound for the inverse generalized curvature of the second and third term separately.

The second term is the integration of the function FK in the time interval (t0, tf ). Therefore,
using the first statement of Lemma 10, it is sufficient to obtain an upper bound for the inverse

generalized curvature of the function FK for any t ∈ [t0, tf ]. Here, note that the function FK only

depends on the edges pointing at follower j, therefore, its ground setW:, j is the ground set of

possible outgoing edges from the broadcasters to j. Next, we will use the following Lemma to

show that FK is a submodular function and thus its inverse generalized curvature is α̌ = 1:

Lemma 11. Let F : W → R+, F (S) = f (c + G (S)) be a nonnegative set function, where f is

a concave function over R+, G is a nonnegative modular function overW , and c is a nonnegative

constant. Then, F is submodular.

Proof. According to Lemma 15 and by using the property of modular functions, for A ⊆ B and

v ∈ V

F (B ∪ {v}) − F (B) = f (c +G (B ∪ {v})) − f (c +G (B))

= f (c +G (B \A) +G (A ∪ {v})) − f (c +G (B \A) +G (A))

≤ f (c +G (A ∪ {v})) − f (c +G (A)) = F (A ∪ {v}) − F (A). �

By definition,

E[(ATN (t ))j ] =
∑

i ∈B : (i, j )∈EB

E[Ni (t )] +
∑

i�B : (i, j )∈E
E[Ni (t )].

For a fixed t , the above equation reveals that E[(ATN (t ))j ] is a sum of a modular function over

the groundsetW:, j of possible incoming edges to j and a constant. Moreover, FK is concave in R+,

since F ′′K (x ) = −
xK−1e−x

(K−1)! ≤ 0. Therefore, we can use Lemma 11 to conclude that FK (E[(ATN (t ))j ]) is

submodular over the groundsetW:, j . This means that an upper bound for the inverse generalized

curvature of the third term in Equation (9) will be an upper bound for the inverse generalized

curvature ofUK (EB ), on the grounds of Lemma 10.
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To upper bound the inverse generalized curvature of the third term, using the second statement

of Lemma 10, it is sufficient to provide an upper bound on the inverse generalized curvature of

−
∫ t

0

Γ(K , J (μ + γ ,τ , t ))γ (τ )dτ := Pj (EB ), (21)

where μ (τ ) =
∑

i ∈B : (i, j )∈EB μi (τ ) and γ (τ ) = γj\B (τ ). Here, note that the above function depends

on the edges EB through μ (τ ). Moreover,

J (μ + γ ,τ , t ) =

∫ t

τ

∑
i ∈B : (i, j )∈EB

μi (x )dx +

∫ t

τ

γj\B (x )dx ,

which reveals that J (μ+γ ,τ , t ) is the sum of a modular function over the groundsetW:, j of possible

incoming edges to j and a constant. Thus, if −Γ(K ,x ) was concave for x ∈ R+, then we could

combine the second statement of Lemma 10 and Lemma 11 to conclude that Pj (EB ) is submodular

overW:, j . Unfortunately, −Γ is convex on (0,K − 1) and concave on (K − 1,∞).
With this inmind, we define the time point 0 ≤ τ0 = τ0 (μ+γ , t ) ≤ t such that J (μ+γ ,τ0, t ) = K−1,

which will allow us to analyze the domains (0,K − 1) and (K − 1,∞) separately. Here, note that
such τ0 exists because J (μ + γ , t , t ) = 0,

J (μ + γ , 0, t ) =

∫ t

0

∑
i ∈B : (i, j )∈EB

μi (x ) + γj\B (x )dx ≥
∫ t

0

γj\B (x )dx

= E[Mj\B (t )] ≥ E[Mj\B (t0)] ≥ K − 1 + ζ
√
K − 1 ≥ K − 1,

using Equation (12) in Theorem 3, and J (μ +γ ,τ , t ) is a continuous (nonincreasing) function with

respect to τ .
The following Lemma (proven in Appendix C) introduces a key inequality to derive an upper

bound on the inverse generalized curvature of P (EB ).

Lemma 12. Let (V,E) be a directed network, B ⊆ V a set of broadcasters, EB , ẼB two possible

sets of outgoing edges for these broadcasters, such that EB ⊆ ẼB , j ∈ V a given user with feed

intensity due to other broadcasters γj\B (t ) = γ (t ),

μ (t ) =
∑

i ∈B:(i, j )∈EB

μi (t ) and μ̃ (t ) =
∑

i ∈B:(i, j )∈ẼB

μi (t )

be the intensities due to the broadcasters inB in user j’s feed, and assume the intensitiesγ (t ),γ (t )+μ (t )
and γ (t ) + μ̃ (t ) to be ξ -bounded. Consider a broadcaster i ∈ B with intensity μi (t ) = λ(t ), such that

(i, j ) � ẼB . Then, under the conditions of Theorem 3, it holds that

θ

[∫ t

0

Γ(K , J (μ + γ ,τ , t ))dτ −
∫ t

0

Γ(K , J (μ + γ + λ,τ , t ))dτ

]
≥
∫ t

0

Γ(K , J (μ̃ + γ ,τ , t ))dτ −
∫ t

0

Γ(K , J (μ̃ + γ + λ,τ , t ))dτ ,

(22)

where θ = θ1 =
6.154e2

1 − 4e
7
4

ζ

ξ
√
K + 1. (23)

Moreover, under extra condition of Theorem 5, Equation (22) also holds for

θ = θ2 =
2e

7
4(

1 − 4e
7
4

ζ

)
min{ρ, 1}e−

1

ρ2

ξ + 1. (24)
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With the above Lemma, we are now ready to derive an upper bound on the inverse generalized

curvature of Pj (EB ). Consider the same definitions and assumptions as in the above Lemma. Then,

Pj (EB ∪ {(i, j )}) − Pj (EB ) =
∫ t

0

(Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ + λ,τ , t )))γ (τ )dτ

≥ inf (γ )

∫ t

0

(Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ + λ,τ , t )))dτ

(25)
≥ inf (γ )

θ

∫ t

0

(Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t )))dτ

(26)
≥ inf (γ )

θ sup(γ )

∫ t

0

(Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t )))γ (τ )dτ

(27)
≥ 1

θξ

∫ t

0

(Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t )))γ (τ )dτ

= (1 − α̌ ) (Pj (ẼB ∪ {(i, j )}) − Pj (ẼB )),

where Equation (25) follows from the Lemma and Equation (27) follows from the ξ -boundedness
of γ . This result implies that α̌∗, defined in Equations (13) or (15), is an upper bound on the inverse

generalized curvature of Pj (EB ), thereby, it is an upper bound bound on that ofU (EB ) as well.

C PROOF OF LEMMA 12

We start by subtracting the left-hand side (LHS) and the right-hand side (RHS) of Equation (22)

and splitting the integration interval into subintervals (0,τ0) and (τ0, t ) with τ0 = τ0 (μ +γ , t ) such
that J (μ + γ ,τ0, t ) = K − 1:

LHS − RHS = Δ(0,τ0) + Δ(τ0, t ),

where

Δ(a,b) = θ

[∫ b

a

Γ(K , J (μ + γ ,τ , t ))dτ −
∫ b

a

Γ(K , J (μ + γ + λ,τ , t ))dτ

]
−

[∫ b

a

Γ(K , J (μ̃ + γ ,τ , t ))dτ −
∫ b

a

Γ(K , J (μ̃ + γ + λ,τ , t ))dτ

]
.

For τ ≤ τ0, we have that J (μ+γ ,τ , t ) ≥ K −1 using the fact that J (μ+γ ,τ , t ) is nonincreasing with
respect to τ . Moreover, note that the intensity μ̃ (t ) is the summation of μ (t ) with the intensity due

to broadcasters ẼB\EB . Therefore,

J (μ̃ + γ ,τ , t ) =

∫ t

τ

μ̃ (x ) + γ (x )dx ≥
∫ t

τ

μ (x ) + γ (x )dx = J (μ + γ ,τ , t ) ≥ K − 1.

In a similar way, we can conclude that J (μ + γ + λ,τ , t ), J (μ̃ + γ + λ,τ , t ) ≥ K − 1. Then, using

that the composite function Γ(K , J (μ + γ + λ,τ , t )) is convex in J for τ ≤ τ0 and, for any convex

function f , x ≥ x ′, and y ≥ 0, f (x ) − f (x + y) ≤ f (x ′) − f (x ′ + y) (refer to Lemma 15), it follows

that

Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ + λ,τ , t )) ≥ Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t )).
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Next, we can integrate the above equation and obtain that∫ τ0

0

Γ(K , J (μ + γ ,τ , t ))dτ −
∫ τ0

0

Γ(K , J (μ + γ + λ,τ , t ))dτ

≥
∫ τ0

0

Γ(K , J (μ̃ + γ ,τ , t ))dτ −
∫ τ0

0

Γ(K , J (μ̃ + γ + λ,τ , t ))dτ ,

which implies

Δ(0,τ0) ≥ (θ − 1)
(∫ τ0

0

Γ(K , J (μ + γ ,τ , t ))dτ −
∫ τ0

0

Γ(K , J (μ + γ + λ,τ , t ))dτ

)
≥ 0, (28)

using that Γ(K ,x ) is nonincreasing with respect to x and θ > 1. Unfortunately, Δ(τ0, t ) can be

negative. However, in the following, we will show that Δ(τ0, t ) ≥ −Δ(0,τ0).
Let d = J (λ,τ0, t ). First, note that, for τ ≤ τ0, J (λ,τ , t ) ≥ J (λ,τ0, t ) = d . Then, starting from

Equation (28), we have that

Δ(0,τ0) ≥ (θ − 1)
∫ J (μ+γ ,τ0,t )

J (μ+γ ,0,t )
[Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ + λτ , t ))]

dτ

d J (μ + γ ,τ , t )
d J (μ + γ ,τ , t )

= (θ − 1)
∫ J (μ+γ ,0,t )

K−1

1

μ (τ ) + γ (τ )
[Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ + λ,τ , t ))]d J (μ + γ ,τ , t )

≥ θ − 1
sup(μ + γ )

∫ J (μ+γ ,0,t )

K−1
[Γ(K , J (μ + γ ,τ , t )) − Γ(K , J (μ + γ ,τ , t ) + d )]d J (μ + γ ,τ , t )

=
θ − 1

sup(μ + γ )

∫ J (μ+γ ,0,t )

K−1
[Γ(K ,x ) − Γ(K ,x + d )]dx

=
θ − 1

sup(μ + γ )

⎡⎢⎢⎢⎢⎣
∫ J (μ+γ ,0,t )

K−1
Γ(K ,x )dx −

∫ J (μ+γ ,0,t )+d

K−1+d
Γ(K ,x )dx

⎤⎥⎥⎥⎥⎦
=

θ − 1
sup(μ + γ )

⎡⎢⎢⎢⎢⎣
∫ K−1+d

K−1
Γ(K ,x )dx −

∫ J ts (0)+d

J ts (0)
Γ(K ,x )dx

⎤⎥⎥⎥⎥⎦ .
Next, we can use the first statement of Lemma 16 (refer to Appendix H) to bound the second

integration term above and obtain that

Δ(0,τ0) ≥
θ − 1
sup(s )

�
1 − 4e
7
4

ζ
�
∫ K−1+d

K−1
Γ(K ,x )dx . (29)

Second, note that, for τ ≥ τ0, J (λ,τ , t ) ≤ d . Then, we have that

Δ(τ0, t ) ≥ −
(∫ t

τ0

Γ(K , J (μ̃ + γ ,τ , t ))dτ −
∫ t

τ0

Γ(K , J (μ̃ + γ + λ,τ , t ))dτ

)

= −
∫ J (μ̃+γ ,t,t )

J (μ̃+γ ,τ0,t )
[Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t ))]

dτ

d J (μ̃ + γ ,τ , t )
d J (μ̃ + γ ,τ , t )

= −
∫ J (μ̃+γ ,τ0,t )

0

1

μ̃ (τ ) + γ (τ )
[Γ(K , J (μ̃ + γ ,τ , t )) − Γ(K , J (μ̃ + γ + λ,τ , t ))]d J (μ̃ + γ ,τ , t )

≥ − 1

inf (μ̃ + γ )

∫ J (μ̃+γ ,τ0,t )

0

(Γ(K ,x ) − Γ(K ,x + d ))dx
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≥ − 1

inf (μ̃ + γ )

∫ ∞

0

(Γ(K ,x ) − Γ(K ,x + d ))dx

= − 1

inf (μ̃ + γ )

∫ d

0

Γ(K ,x )dx ≥ − ξ

sup(μ̃ + γ )

∫ d

0

Γ(K ,x )dx , (30)

where the last inequality follows from ξ -boundedness of the user’s feed intensity. Before we pro-

ceed further, note that, under the extra condition of Theorem 5, we can upper bound d as follows:

d = J (λ,τ0, t ) ≤
∫ t

τ0

λ(x )dx ≤
∫ t

τ0

γ (x )

ρ
√
K − 1

dx ≤
∫ t

τ0

μ (x ) + γ (x )

ρ
√
K − 1

dx =
1

ρ
√
K − 1

J (μ + γ ,τ0, t ) =

√
K − 1
ρ
,

and this enables us to use the third statement of Lemma 16.

Finally, combining Equations (29) and (30), where θ is given by either Equations (23) or (24)

together with the second or third statement of Lemma 16, depending on whether we have the

extra condition of Theorem 5, it follows that:

Δ(0,τ0) ≥
θ − 1
sup(s )

�
1 − 4e
7
4

ζ
�
∫ K−1+d

K−1
Γ(K ,x )dx ≥ ξ

sup(s̃ )

∫ d

0

Γ(K ,x )dx ≥ −Δ(τ0, t ),

which completes the proof of Lemma 12.

D PROOF OF THEOREM 7

Throughout the proof, given a set function F , we define the marginal gain function ρΩ of each

subset Ω ⊆ V as ρΩ(S) = F (S ∪ Ω) − F (S),∀S ⊆ V . Whenever Ω = {v} is a singleton, we use
the symbol ρv instead of ρ {v } for simplicity.

Let S be the greedy solution, T be the optimal set maximizing F overW . For ≤ i ≤ n and

1 ≤ j ≤ |Ni |, let Si = S∩ (N1∪· · ·∪Ni ),Ti = T ∩ (N1∪· · ·∪Ni ),U j
i be the first j elements inNi

that are considered in the greedy algorithm, and define T j
i = U

j
i ∩ T ,S

j
i = U

j
i ∩ S. Moreover,

define {sik }pik=1 and {tik }
qi
k=1

be the elements in Si −Si−1 and Ti −Ti−1, respectively, in order of their

consideration in the algorithm.

First, we show that |T j
i | ≤ |S

j
i |. According to the definition of the greedy algorithm, adding any

element fromU j
i \S

j
i to S

j
i violates the matroid constraint Ii (otherwise, that element should have

been picked by the greedy algorithm). Thus,U j
i ⊆ span(S j

i ), which implies rank(U j
i ) = rank(S j

i ).

Moreover, T j
i ⊆ U

j
i implies rank(T j

i ) ≤ rank(U j
i ), therefore, rank(T

j
i ) ≤ rank(S j

i ). However,

S j
i and T

j
i are both independent sets of matroid Ii , because S and T are both feasible solutions.

This implies rank(T j
i ) = |T j

i |, rank(S
j
i ) = |S

j
i |, proving our claim.

Then, our claim readily implies that, for each 1 ≤ i ≤ n, qi ≤ pi and also, for each 1 ≤ k ≤ qi ,
sik is considered in the greedy algorithm at some point before tik . This means that, at the point

that the greedy picks sik , tik does not have a higher marginal gain than sik , i.e.,

ρsik (Qik ) ≥ ρtik (Qik ), ∀1 ≤ i ≤ n , 1 ≤ k ≤ qi , (31)
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where Qik is the set of elements picked by the greedy until sik is picked (but not including sik
itself). Hence, we can write

F (T )
(32)
≤ F (S ∪ T ) = F (S) +

n∑
i=1

qi∑
k=1

ρtik (S ∪ Ti−1 ∪ {ti1, . . . , ti (k−1) })

(33)
≤ F (S) +

n∑
i=1

qi∑
k=1

1

1 − α̌ ρtik (Qik ) ≤ F (S) + 1

1 − α̌

n∑
i=1

qi∑
k=1

ρsik (Qik )

≤ F (S) + 1

1 − α̌

n∑
i=1

pi∑
k=1

ρsik (Qik ) =
(
1 +

1

1 − α̌

)
F (S),

where, in steps (32) and (33), we have used the monotonicity and α̌-submodularity property of F ,
respectively.

E PROOF OF THEOREM 8

For each broadcaster i ∈ B, we have to add its outgoing edge with the largest marginal gain and

repeat this ci times. However, picking an edge (i, j ) only changes the marginal gain of the edges

pointing towards user j, since UK (EB , j ) are independent. Hence, we can use the order statistics

algorithm to obtain the ci largest marginal gains, with a computational cost O ( |V |). Therefore,
the overall algorithm attains time complexity O (κ |B||V |).

F SAMPLE COMPLEXITY ANALYSIS

The following theorems provide error bounds for our empirical estimate of the average top K
visibility, given by Equation (17):

Theorem 13. Suppose that, at the beginning of each realization l , there are at least K posts in user

j’s feed and the average number of posts published in user j’s feed P = E[AT
j (N (tf )−N (t0))] ≥ e2+K .

Moreover, let

βj = inf
t ∈(t0,tf )

μ (t )

μ (t ) + γj\B (t )
and ρ j = sup

t ∈(t0,tf )

μ (t )

μ (t ) + γj\B (t )
,

where μ (t ) =
∑

i ∈B:(i, j )∈EB μi (t ) and all intensities be ξ -bounded. Then, it holds that

P{(1 − δ )U (EB , j ) ≤ Û (EB , j ) ≤ (1 + δ )U (EB , j )} ≥ 1 − eZ−Qn ,

where

Q = βj c̃
�	

√
1 +

δ

4ξ
c ′′ − 1��

2

and Z = ln(2max{− ln(0.1δβj ), e2P } + 1) + ln(K ),

with

ϵ = min
⎧⎪⎨⎪⎩

� P−12 �
ln(10) − ln(βjδ )

,
2

5e2

⎫⎪⎬⎪⎭ , c̃ = max

{
0.1βjδ ,

ϵ

2ξ
min

{
1,
e − 2
8e

δ

ξ

}}
,

c ′′ = e−(e
2+2) (e − 2) c̃

1
P−1

max
{√

ln
(
1
c̃

)
,
√
(e2 + 1)P

} .
Theorem 14. Suppose the conditions in Theorem 13 and let 0 ≤ y ≤ 1. Then, it also holds that:

P{U (EB , j ) − yK (tf − t0) ≤ Û (EB , j ) ≤ U (EB , j ) + yK (tf − t0)} ≥ 1 − eZy−Qyn ,
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where

Qy = c̃

(√
1 +

y

4ξ 2
c ′′ − 1

)2
and Zy = ln(2max{ln(10ξ ) − lny, e2P } + 1) + ln(K ),

with

ϵ = min
⎧⎪⎨⎪⎩

� P−12 �
ln(10ξ ) − lny ,

2

5e2

⎫⎪⎬⎪⎭ , c̃ = max

{
0.1

y

ξ
,

ϵ

2ξ
min

{
1,
e − 2
8e

y

ξ ρ j

}}
,

c ′′ = e−(e
2+2) (e − 2) c̃

1
P−1

max
{√

ln
(
1
c̃

)
,
√
(e2 + 1)P

} .
Before we proceed to prove the above two theorems, we introduce a set of definitions and nota-

tion. First, we rewrite our empirical estimate of the average topK visibility, given by Equation (17),

as

Û (EB , j ) =
K∑
i=1

∑n
�=1 Δ

(�)
i, j

n
=

K∑
i=1

Δi, j ,

where Δi, j =

∑n
�=1 Δ

(�)
i, j

n
and we define

γmin = inf
t ∈(t0,tf )

μ (t ) + γj\B (t ) and γmax = sup
t ∈(t0,tf )

μ (t ) + γj\B (t ).

Then, for r ∈ {1, 2, . . .}, we introduce the following definitions:

(i) P (�)
j,i,r is the r th story that user j receives in the ith position of her feed in the �th realization.

(ii) Y (�)
j,i,r is the time that story P (�)

j,i,r remains in the ith position and Yj,i,r =
∑n

�=1 Y
(�)
j,i,r

n
.

(iii) S (�)j,i,r is the amount of time between (t0, tf ) that story P (�)
j,i,r remains in the ith position if

P (�)
j,i,r has been shared by a broadcaster in B and zero otherwise, and S j,i,r =

∑n
�=1 S

(�)
j,i,r

n
.

(iv) E (�)
j,i,r indicates whether user j receives story P (�)

j,i,r sometime during (t0, tf ), i.e., E
(�)
j,i,r = 1

if user j receives the r th story in the ith position of her feed during (t0, tf ) and E (�)
j,i,r = 0

otherwise.

(v) W (�)
j,i,r indicates whether story P (�)

j,i,r is shared by a broadcaster in B, i.e.,W (�)
j,i,r = 1 if story

P (�)
j,i,r is shared by a broadcaster in B andW (�)

j,i,r = 0 otherwise.

Note that, given these definitions, it readily follows that

Δ(�)
i, j =

∞∑
r=1

S (�)j,i,r , Δi, j =

∞∑
r=1

S j,i,r .

Moreover, we further define the conditional random variable M (�)
j,i,r ∼ S (�)j,i,r | {E

(�)
j,i,r ,W

(�)
j,i,r }, the

probabilities qj,i,r = Pr{E (�)
j,i,r } and pj,i,r = Pr{W (�)

j,i,r |E
(�)
j,i,r }, and the average μ j,i,r = E[M

(�)
j,i,r ]. In

the remainder, we fix the indices i, j and, for simplicity, we omit them from all variables, including

βj , ρ j , and γj .
To prove Theorems 13 and 14, note that we have to bound the error for all Si ’s simultaneously.

To do so, we can think of resorting to a Chernoff bound, however, the challenge in doing so is that,

as r grows, the expectation of Sr ’s decrease, as qr ’s decrease drastically, and thus the Chernoff

bound becomes weaker as r grows. To overcome this, we will partition the indices r into three

part, defined by the following two critical indices:
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(i) r1 is the smallest index such that

qr1 ≤ c ′ =
β

2ρ
ϵ min

{
1,
e − 2
2e

λmin

λmax

δ

4

}
, (34)

where, according to Equation (64), q P−1
2
≥ 1

2 . Hence, since c
′ < 1

2 , we have that r1 >
P−1
2 .

(ii) r2 is the smallest index such that qr2 ≤ 0.1δβ .

Then, for the first part, we will bound the corresponding Sr ’s using a Chernoff bound. For the

second part, we will bound the corresponding Sr ’s with respect to the order of magnitudes of the

expectation of the first part, again using a Chernoff bound. For the third part, we will use standard

binomial distribution tail inequalities to bound their error independently. Now, we are ready to

state the proofs of both theorems, which rely on several technical lemmas from Appendix H.

F.1 Theorem 13

We distinguish two cases:

— Case r1 < r2. In this case, using Lemmas 24, 25, and 27, with δ = δ
4 in Lemma 25, we obtain

(note that Sr is actually S j,i,r that we have dropped the indexes j, i for simplicity of the notation):

P{Δi, j ≥ (1 + δ ) E[Δi, j ] or Δi, j ≤ (1 − δ ) E[Δi, j ]}

≤
r1−1∑
r=1

P{Sr ≤
(
1 − δ

4

)
E[Sr ] or Sr ≥

(
1 +

δ

4

)
E[Sr ]} + P

⎧⎪⎨⎪⎩
r2−1∑
r=r1

Sr ≥
δ

2
E[Δi, j ]

⎫⎪⎬⎪⎭
+ P

⎧⎪⎨⎪⎩
∞∑

r=r2

Sr ≥
δ

4
E[Δi, j ]

⎫⎪⎬⎪⎭
≤ (2r2 − 1) exp

�		
−βc
′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
���

≤
(
2max

{
ln

(
1

0.1δβ

)
, e2P

}
+ 1

)
exp

�		
−βc
′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� , (35)

where Equation (35) follows from Equation (78). In this case,

c̃ = max

{
0.1βjδ ,

ϵ

2

βj

ρ j
min

{
1,
e − 2
8e

δ

ξ

}}
≤max

{
0.1βjδ ,

ϵ

2

βj

ρ j
min

{
1,
e − 2
8e

δλmin

λmax

}}

=
ϵ

2

βj

ρ j
min

{
1,
e − 2
8e

δλmin

λmax

}
= c ′,

where we have used the assumption that r1 ≤ r2 and the fact that λmin

λmax
≥ 1

ξ
. Moreover, it can be

easily checked that the condition c̃ ≤ c ′ implies c ′′′ ≤ c ′′. Therefore, using the inequality given

by fourth statement of Lemma 23, we can substitute the quantities c ′ and c ′′ in Equation (35), by c̃
and c ′′′, respectively, which implies

P{Δi, j ≥ (1 + δ ) E[Δi, j ] or Δi, j ≤ (1 − δ ) E[Δi, j ]}

≤
(
2max

{
ln

(
1

0.1δ β

)
, e2P

}
+ 1

)
exp

�		
−βc̃
�	

√
1 +

λmin

λmax

δ

4
c ′′′ − 1��

2

n
��� , (36)
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where we have restored indexes i and j to emphasize the dependence of S over them. By summing

up the above inequalities for i = 1, . . . ,K , we obtain the desired result.

— Case r1 ≥ r2. In this case, there is no need in using index r1. Therefore, for 1 ≤ r ≤ r2, we bound
the error probability of each Sr using Theorem 22 and, for r > r2, we bound the error probability

of each Sr using Lemma 25.

First, note that for r < r2 we have qr ≥ 0.1δβ . Thus, according to Theorem 22, for r < r2,

P

{
Sr ≤

(
1 − δ

4

)
E[Sr ] or Sr ≥

(
1 +

δ

4

)
E[Sr ]

}
≤ 2 exp

�		
−0.1β
2δ �	

√
1 +

λmin

λmax

δ

4
c̄ − 1��

2

n
��� .

where c̄ = e−(e
2+2) (e − 2)

(0.1δ β )
1

P−1

max{
√
ln( 1

0.1δ β ),
√

(e2+1)P }
. Second, note that it does not make sense to pick

δ > 2
β
, because according to Equation (67), this would imply that S exceeds its maximum possible

value, which has probability zero. Thus, we can assume that δ ≤ 2
β
. Moreover, it is easy to check

the following inequality for a real positive x :

(
√
1 + x − 1)2 ≤ x .

Hence,

0.1β2δ �	

√
1 +

λmin

λmax

δ

4
c̄ − 1��

2

≤ 0.1β2δ
λmin

λmax

δ

4
c̄ ≤ δ

8
β,

which implies that

e−β
δ
8 n ≤ exp

�		
−0.1β
2δ �	

√
1 +

λmin

λmax

δ

4
c̄ − 1��

2

n
��� .

Thus,

P{S ≥ (1 + δ ) E[S] or S ≤ (1 − δ ) E[S]}

≤
r2−1∑
r=1

P

{
Sr ≤

(
1 − δ

2

)
E[Sr ] or Sr ≥

(
1 +

δ

2

)
E[Sr ]

}
+ P

⎧⎪⎨⎪⎩
∞∑

r=r2

Sr ≥
δ

2
E[S]

⎫⎪⎬⎪⎭
≤ (2r2 − 1) exp

�		
−0.1β
2δ �	

√
1 +

λmin

λmax

δ

4
c̄ − 1��

2

n
���

≤
(
2max

{
ln

(
1

0.1δβ

)
, e2P

}
+ 1

)
exp

�		
−0.1β
2δ �	

√
1 +

λmin

λmax

δ

4
c̄ − 1��

2

n
��� . (37)

In addition,

c̃ = max

{
0.1βjδ ,

ϵ

2

βj

ρ j
min

{
1,
e − 2
8e

δ

ξ

}}
≤max

{
0.1βjδ ,

ϵ

2

βj

ρ j
min

{
1,
e − 2
8e

δλmin

λmax

}}
= 0.1βjδ ,

which again implies that c ′′′ ≤ c̄ . Therefore, using the inequality given by fourth statement of

Lemma 23, we can substitute the quantities 0.1βδ and c̄ in Equation (37) by c̃ and c ′′′, respectively,
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which again implies the inequality given by Equation (36). As in the previous case, summing over

i = 1, . . . ,K completes the proof.

F.2 Theorem 14

By setting δ =
y

ρ j
in Theorem 13, (1 − δ )U (EB , j ) ≤ Û (EB , j ) ≤ (1 + δ )U (EB , j ) implies that

U (EB , j ) − yK (tf − t0) ≤ Û (EB , j ) ≤ U (EB , j ) + yK (tf − t0) based on the inequality given by

Equation (67). Substituting δ =
y

ρ j
in the bounds of Theorem 13 and using the relation

βj
ρ j
≤ ξ 2

(because μ (t ) and μ (t ) +γj\B (t ) are both ξ -bounded, their ratio can oscillate at most with ξ 2 order
of magnitude), we can write

Qy = Q = βj c̃

(√
1 +

y

4ξ ρ j
c ′′′ − 1

)2
= c̃ �	

√
βj +

yβj

4ξ ρ j
c ′′′ −

√
βj

��
2

≥ c̃ �	

√
1 +

yβj

4ξ ρ j
c ′′′ − 1��

2

≥ c̃

(√
1 +

y

4ξ 3
c ′′′ − 1

)2
,

where we have used the fourth statement of Lemma 23. Substituting δ =
y

ρ j
in the other equations

of Theorem 13 completes the proof.

G PROOF OF THEOREM 9

We adapt the proof of Theorem 7. Define S, S ji , Si , sik ,Qik with respect to the greedy with empir-

ical estimates—the empirical greedy. Let E (i )
B be the edges picked by the empirical greedy before

picking broadcaster i’s edges. Let E be the event that ∀i ∈ B,∀j : (i, j ) ∈ Wi, :,���Û (E (i )
B , j
)
−U

(
E (i )
B , j
) ��� ≤ yK (tf − t0). (38)

Then, we can apply union bounds and Equation (18) to conclude that

Pr{Eo } ≤ �

∑
i ∈B
|Wi, : |� eZy−Qyn ≤ δ , (39)

which implies that E happens with high probability. Moreover, ∀i ∈ B, 1 ≤ k ≤ ci , sik ’s empirical

marginal gain (when added to Qik ) is not less than that of tik , due to the selection rule of the

greedy algorithm. Consequently, given that E happens, by rewriting the empirical utilities in terms

of the theoretical ones based on the inequality in Equation (79), we can rewrite Equation (31) as

ρsik (Qik ) ≥ ρtik (Qik ) − 4yK (tf − t0). Then, we plug this expression into the proof of Theorem 7

and obtain:

F (T ) ≤ F (S) +
∑
i ∈B

ci∑
k=1

1

1 − α̌ ρtik (Qik )

≤ F (S) + 1

1 − α̌
∑
i ∈B

ci∑
k=1

(ρsik (Qik ) + 4yK (tf − t0))

=

(
1 +

1

1 − α̌

)
F (S) + 4

ζ
�

∑
i ∈B

ci�yK (tf − t0). (40)

To conclude, we divide both sides by 1 + 1
1−α̌ and use that

1
ζ

1
ζ
+1
≤ 1.
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H ADDITIONAL TECHNICAL LEMMAS

Lemma 15. Let f be a smooth function that is concave over domain (a,b). Let x ,y, z be real numbers

such that a ≤ x ,y,x + z,y + z ≤ b, x ≤ y, and z ≥ 0. Then f (y + z) − f (x + z) ≤ f (y) − f (x ).

Proof. We can write

f (y + z) − f (x + z) =

∫ y+z

x+z

f ′(t )dt ≤
∫ y

x

f ′(t )dt = f (y) − f (x ),

where the inequality follows from the fact that f is concave in (a,b), therefore, it has negative
derivative. �

Lemma 16. The following statements about the incomplete gamma function Γ(K ,x ) hold: We have

the following inequalities:

1. Let d ≥ 0 and K ≥ K − 1 + ζ
√
K − 1,

4e
7
4

ζ

∫ K−1+d

K−1
Γ(K ,x )dx ≥

∫ K+d

K
Γ(K ,x ) (41)

2. Let d ≥ 0, ∫ K−1+d
K

Γ(K ,x )dx∫ d
0
Γ(K ,x )dx

≥ 0.1625

e2
√
K

(42)

3. Let 0 ≤ d ≤
√
K−1
ρ

, ∫ K−1+d
K

Γ(K ,x )dx∫ d
0
Γ(K ,x )dx

≥ 1

2e
7
4

min{ρ, 1}e−
1

ρ2 (43)

Proof. The proof of this lemma relies on four inequalities for the Γ function and its antideriva-

tive FK that are given by Lemmas 17–20 (refer to the end of this Section).

First, we proceed to prove the first statement of the Lemma. For 0 ≤ u ≤ d , we can write

Γ(K ,K ′ + u)
Γ(K ,K − 1 + u) = eK−1−K

′
∑K−1
i=0

(K ′+u )i

i !∑K−1
i=0

(K−1+u )i
i !

≤ eK−1−K
′
(

K ′ + u
K − 1 + u

)K−1
= eK−1−K

′
(
1 +

K ′ − K + 1
K − 1 + u

)K−1

≤ eK−1−K
′ �	

(
1 +

K ′ − K + 1
K − 1 + u

) K−1+u
K ′−K+1 ��

K−1
K−1+u (K ′−K+1)

≤ eK−1−K
′
e−

K−1
K−1+u (K−1−K ′) = e

u
K−1+u (K−1−K ′) .

For u ≥
√
K − 1, we have u

K−1+u ≥
1

2
√
K−1

. Thus, for u ≥
√
K − 1,

Γ(K ,K ′ + u)

Γ(K ,K − 1 + u) ≤ e
1

2
√
K−1

(K−1−K ′) ≤ e−
ζ
2 ≤ 4e

7
4

ζ
. (44)

However, According to Lemmas 19 and 20, for u ≤
√
K − 1, we have

Γ(K ,K ′ + u)

Γ(K ,K − 1 + u) ≤
Γ(K ,K − 1 + ζ

√
K − 1)

Γ(K ,K − 1 +
√
K − 1)

≤
2
eζ

1

2e
11
4

=
4e

7
4

ζ
. (45)
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Integrating over Equations (44) and (45) for 0 ≤ u ≤ d completes the proof of the first part of

Lemma 16.

Next we prove the second part of Lemma 16. Define

G (d ) =
FK (K − 1 + d ) − FK (K − 1)

FK (d ) − FK (0)
=

∫ K−1+d
K

Γ(K ,x )dx∫ d
0
Γ(K ,x )dx

. (46)

If the function д(d ) = Γ(K,d )
Γ(K,K−1+d ) is increasing in the interval (0,d0), thenG is decreasing in (0,d0).

Based on this fact, we prove that ford ∈ (0, 1
e−1 (K−1)),д(d ) is increasing. To this end, we calculate

the derivative of д(d ):

д′(d ) =
−dK−1e−d

(K−1)! Γ(K ,K − 1 + d ) +
(K−1+d )K−1e−(K−1+d )

(K−1)! Γ(K ,d )

Γ2 (K − 1 + d ) .

Hence, condition д′(d ) ≥ 0 is equivalent to

Γ(K ,K − 1 + d )
Γ(K ,d )

≤ �

K−1
d
+ 1

e
�
K−1

.

However, note that for d ∈ (0, 1
e−1 (K − 1)),

�

K−1
d
+ 1

e
�
K−1

≥ �

K−1
d
+ 1

e
�
K−1

≥ 1 ≥ Γ(K ,K − 1 + d )
Γ(K ,d )

.

Therefore, with the definition

d̃ = argmindG (d ),

we conclude d̃ ≥ 1
e−1 (K − 1), which implies

G (d ) ≥ G (d̃ ) =
FK (K − 1 + d̃ ) − FK (K − 1)

FK (d̃ ) − FK (0)
≥

FK (K − 1 + 1
e−1 (K − 1)) − FK (K − 1)

FK (∞) − FK (0)

=
FK
(

e
e−1 (K − 1)

)
− FK (K − 1)

K
=
−FK (K − 1) −

(
−FK

(
e

e−1 (K − 1)
))

K
(47)

≥ −0.325FK (K − 1)
K

≥
−0.325

√
K

2e2

K
=

0.1625

e2
√
K
= Ω

(
1
√
K

)
, (48)

where we have used Lemmas 18 and 17 in Equation (47) and Equation (48), respectively. This

completes the proof for the second part.

To prove the last part, note that for x ≥ 0, Γ(K ,x ) is decreasing, and 0 ≤ Γ(K,x )
(K−1)! ≤ 1. Thus,

G (d ) =

∫ K−1+d
K−1

Γ(K,x )
(K−1)!dx∫ d

0

Γ(K,x )dx
(K−1)!

≥

∫ K−1+d
K−1

Γ(K,K−1+d )
(K−1)! dx∫ d

0

Γ(K,0)
(K−1)!dx

≥ dΓ(K ,K − 1 + d )
d

= Γ(K ,K − 1 + d ) ≥ 1

2e
7
4

min{ρ, 1}e−
1

ρ2 ,

where the last inequality follows from Lemma 20. The proof is complete. �

Lemma 17.

−FK (K − 1)
(K − 1)! ≥

√
K + 1

2e2
.
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Proof.

−FK (K − 1)
(K − 1)! =

K−1∑
k=0

(K − 1 − k ) (K − 1)
ke−(K−1)

k!
>

K−1∑
k=K−

√
K

(K − 1 − k ) (K − 1)
ke−(K−1)

k!

=

K−1∑
k=K−

√
K

(K − 1 − k ) (K − 1)...(k + 1)
(K − 1)K−1−k

(K − 1)K−1e−(K−1)
(K − 1)!

=

√
K∑

i=0

i
(K − 1)...(K − i )

(K − 1)i
(K − 1)K−1e−(K−1)

(K − 1)!

=
(K − 1)K−1e−(K−1)

(K − 1)!

√
K∑

i=0

i
(K − 1)...(K − i )

(K − 1)i
≥ (K − 1)K−1e−(K−1)

(K − 1)!

√
K∑

i=0

i
(K − i )i

(K − 1)i

=
(K − 1)K−1e−(K−1)

(K − 1)!

√
K∑

i=0

i
(
1 − i − 1

K − 1

)i
=

(K − 1)K−1e−(K−1)
(K − 1)!

√
K∑

i=0

i

⎡⎢⎢⎢⎢⎢⎣
(
1 − (i − 1)

K − 1

) K−1
i−1 −1

⎤⎥⎥⎥⎥⎥⎦
i (i−1)
K−i

≥ (K − 1)K−1e−(K−1)
(K − 1)!

√
K∑

i=0

ie−
i (i−1)
K−i ≥ (K − 1)K−1e−(K−1)

(K − 1)!

√
K∑

i=1

i

≥ (K − 1)K−1e−(K−1)

e2 (K − 1) (K−1)+
1
2 e−(K−1)

√
K (
√
K + 1)

2
≥
√
K + 1

2e2
. �

Lemma 18.

FK (K − 1) ≥ 1.49FK

( e

e − 1 (K − 1)
)
.

Proof. For the right-hand side, we can write

−
FK
(

e
e−1 (K − 1)

)
(K − 1)! =

K−1∑
i=0

(K − i )

(
e

e−1 (K − 1)
) i
e−

e
e−1 (K−1)

i!

≤
K−1∑
i=0

(K − i ) (K − 1)K−1−i
(

e
e−1 (K − 1)

) i
e−

e
e−1 (K−1)

(K − 1)!

≤
K−1∑
i=0

(K − i ) (K − 1)K−1−i
(

e
e−1 (K − 1)

) i
e−

e
e−1 (K−1)

√
2π (K − 1)K−1+ 1

2 e−(K−1)

=

K−1∑
i=0

(K − i )

(
e

e−1

) i
e−

1
e−1 (K−1)√

2π (K − 1)
=

K−1∑
i=0

K − i(
e

e−1

)K−1−i
(

e
e−1

)K−1
e−

1
e−1 (K−1)√

2π (K − 1)

=

(
e

e−1

)K−1
e−

1
e−1 (K−1)√

2π (K − 1)

K−1∑
i=0

(K − i )
(e − 1

e

)K−1−i

=

(
e

e−1

)K−1
e−

1
e−1 (K−1)√

2π (K − 1)

⎡⎢⎢⎢⎢⎢⎣
K

e−1
e
− 1

(e − 1
e

)K
+
1 −
(
e−1
e

)K
(
e−1
e
− 1
)2

⎤⎥⎥⎥⎥⎥⎦
≤

(
e

e−1

)K−1
e−

1
e−1 (K−1)√

2π (K − 1)
e2 =

e (ln(
e
e−1 )−

1
e−1 ) (K−1)√

2π (K − 1)
e2 ≤ e−0.12(K−1)√

2π (K − 1)
e2.
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For K ≤ 20, one can check the inequality using a computer program. For K > 20, according to

Lemma 17,

FK (K − 1)
(K − 1)! ≥

√
K + 1

2e2
≥
√
K

2e2
≥ 1.49

e−0.12(K−1)√
2π (K − 1)

e2 ≥ 1.49
FK
(

e
1−e (K − 1)

)
(K − 1)! ,

where the third inequality can be checked to be true for K > 20. Thus, the proof is complete. �

Lemma 19.

Γ(K ,K − 1 + ω
√
K − 1)

(K − 1)! ≤ 2

e
w−1.

Proof.

Γ(K ,K − 1 + ω
√
K − 1)

(K − 1)! =

K−1∑
i=0

(K − 1 + ω
√
K − 1)ie−(K−1+ω

√
K−1)

i!

≤
K−1∑
i=0

(K − 1)K−1−i (K − 1 + ω
√
K − 1)ie−(K−1+ω

√
K−1)

(K − 1)!

≤
K−1∑
i=0

(K − 1)K−1−i (K − 1 + ω
√
K − 1)ie−(K−1+ω

√
K−1)

e (K − 1)K−1+ 1
2 e−(K−1)

=
e−ω

√
K−1

e
√
K − 1

K−1∑
i=0

�
K − 1 + ω
√
K − 1

K − 1
�
i

=
e−ω

√
K−1

e
√
K − 1

K−1∑
i=0

(
1 +

ω
√
K − 1

) i

=
e−ω

√
K−1−1

√
K − 1

(
ω√
K−1
+ 1
)K
− 1

ω√
K−1

≤ e−ω
√
K−1−1

√
K − 1

(
ω√
K−1
+ 1
)K−1 (

ω√
K−1
+ 1
)

ω√
K−1

=
e−ω

√
K−1−1

√
K − 1

⎡⎢⎢⎢⎢⎣
(

ω√
K−1
+ 1
) √K−1

ω
⎤⎥⎥⎥⎥⎦
w
√
K−1 (

ω√
K−1
+ 1
)

ω√
K−1

≤ e−ω
√
K−1−1ew

√
K−1
(

ω
√
K − 1

+ 1

)
w−1 =

1

ew

(
ω

√
K − 1

+ 1

)
≤ 2

e
w−1.

�

Lemma 20. For t = ω
√
K − 1,

Γ(K ,K − 1 + t )
(K − 1)! ≥ 1

2e
7
4

min
{
1

ω
, 1
}
e−ω

2

.
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Proof. Define s = max{2, 2ω}. Then,

Γ(K ,K − 1 + t )
(K − 1)! =

K−1∑
k=0

(K − 1 + t )ke−(K−1+t )
k!

≥
K−1∑

k=K−
√
K
s

(K − 1 + t )ke−(K−1+t )
k!

=

√
K
s∑
i=0

(K − 1 + t )K−1−ie−(K−1+t )
(K − 1 − i )! =

√
K
s∑
i=0

(K − 1)...(K − i )
(K − 1 + t )i

(K − 1 + t )K−1e−(K−1+t )
(K − 1)!

≥ (K − 1 + t )K−1e−(K−1+t )
(K − 1)!

√
K
s∑
i=0

( K − i
K − 1 + t

) i

=
(K − 1 + t )K−1e−(K−1+t )

(K − 1)!

√
K
s∑
i=0

(
1 − i + t − 1

K − 1 + t

) i

=
(K − 1 + t )K−1e−(K−1+t )

(K − 1)!

√
K
s∑
i=0

�

(
1 − i + t − 1

K − 1 + t

) K−1+t
i+t−1 +1�

i (i+t−1)
k+2t+i−2

≥ (K − 1 + t )K−1e−(K−1+t )
(K − 1)!

√
K
s∑
i=0

e−
i (i+t−1)
k+2t+i−2 .

But according to the choice of s , we have

i (i + t − 1) ≤
√
K

s
�

√
K

s
+ ω
√
K − 1� = K

s2
+
ωK

s
−
√
K

s
.

For the case ω ≥ 1, we have s = 2ω,

K

s2
+
ωK

s
−
√
K

s
=

K

4ω2
+
K

2
−
√
K

2ω
≤ 3

4
K ≤ 3

4
(K + 2t + i − 2).

In the other case where ω ≤ 1, we have s = 2,

K

s2
+
ωK

s
−
√
K

s
=

K

4
+
ωK

2
−
√
K

2
≤ 3

4
K ≤ 3

4
(K + 2t + i − 2).

Hence, in both cases, we obtain

i (i + t − 1)
k + 2t + i − 2 ≤

3

4
.

Therefore,

Γ(K ,K − 1 + t )
(K − 1)! ≥ (K − 1 + t )K−1e−(K−1+t )

(K − 1)!

√
K
s∑
i=0

e−
3
4 ≥ (K − 1 + t )K−1e−(K−1+t )

e
√
K − 1(K − 1)K−1e−(K−1)

√
K

s
e−

3
4

≥ 1

s

(
1 +

t

K − 1

)K−1
e−te−

7
4 =

1

s
�

(
1 +

t

K − 1

) K−1
t +1�

t (K−1)
t+K−1

e−te−
7
4

≥ 1

s
e
t (K−1)
t+K−1 e−te−

7
4 =

e−
7
4

s
e−

t2

t+K−1 ≥ e−
7
4
1

2
min
{
1,

1

ω

}
e−

t2

K−1 =
1

2e
7
4

min
{
1,

1

ω

}
e−ω

2
.

�
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Lemma 21. Under the definitions in Section F, let P =
∫ tf
t0

μ (t ) + γj\B (t )dt , fM (�)
r

and F
M

(�)
r

be the

PDF and CDF functions of M (�)
r , respectively, and F̃

M
(�)
r
= 1 − F

M
(�)
r
. Then, ∀r ≥ 1 and 0 ≤ s ≤ λmin,

the following inequalities hold:

β ≤ pr ≤ ρ, (49)

F̃
M

(�)
r
(t ) ≤ e−λmint , (50)

1

λmin
≥ μr ≥

e−
i+r−1
P−1

√
i + r − 1

e−2
e

λmax
, (51)

E[esM
(�)
r ] − 1 − sμr ≤

s2

(λmin − s )λmin
, (52)

E[e−sM
(�)
r ] − 1 + sμr ≤

s2

(λmin + s )λmin
. (53)

Proof. We prove each statement in turn.

— First inequality (Equation (49)). First, we conditionW (�)
r on the time when P (�)

r is received.

pr = P{W (�)
r | E (�)

r } =
∫ tf

t0

P{W (�)
r | P (�)

r is received at time t}P{P (�)
r is received at time t | E (�)

r }dt

=

∫ tf

t0

μ (t )

μ (t ) + γj\B (t )
P{P (�)

r is received at time t | E (�)
r }dt .

Now the desired inequality follows from the fact that βj ≤ μ (t )
μ (t )+γj\B (t )

≤ ρ j .

— Second inequality (Equation (50)). First, we conditionM (�)
r on the time when P (�)

r is received.

Thus, for t0 ≤ t ≤ tf , we have

M (�)
r | {P (�)

r is received at time t}

∼ S (�)r | {P (�)
r is received at time t , E (�)

r , W
(�)
r }

∼ S (�)r | {P (�)
r is received at time t} = Ẽt ≤ Et ,

where Ẽt = min{Et ,T2 − t }, Et is an exponential-like random variable with CDF function

FEt (τ ) = 1 − e−
∫ τ
0
γ (t+x )dx ,

and the reason why we have an inequality is that we have a limit time tf and P (�)
r cannot occur

after tf . Therefore, the random variable S (�)r | {P (�)
r is received at time t} is bounded from above

by Et . Moreover, we have that

F̃Et (τ ) = e−
∫ τ
0
γ (t+x )dx ≤ e−tλmin ,

which implies that

P

{
M (�)

r ≥ t | P (�)
r is received at time t

}
≤ e−tλmin .

Then, forM (�)
r

P

{
M (�)

r ≥ t
}
=

∫ tf

t0

P

{
M (�)

r ≥ t | P (�)
r is received at time t

}
P

{
P (�)
r is received at time t | E (�)

r

}
dt

≤
∫ T2

T1

e−tλminP

{
P (�)
r is received at time t | E (�)

r

}
dt = e−tλmin ,
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which completes the proof.

— Third inequality (Equation (51)).We first prove the upper bound as follows:

μi =E[M
(�)
r ] =

∫ tf

t0

E[M (�)
r | P (�)

r is received at t]P{P (�)
r is received at t | E (�)

r }dt

≤
∫ tf

t0

1

λmin
P{P (�)

r is received at t | E (�)
r }dt =

1

λmin
.

Then, we proceed to prove the lower bound. Define Px to be a Poisson random variable with

parameter x . According to the definition of q′r

qr = P{Receiving at least i + r − 1 posts before time tf },
which corresponds to the tail distributions of PP (P{PP ≥ i + r − 1}). Moreover, define

q′r = P

{
Receiving at least i + r − 1 posts before time tf −

1

λmax

}
.

Thus, if we define

P ′ =

∫ tf − 1
λmax

t0

λ(x )dx ,

then we get

q′r = P{PP ′ ≥ i + r − 1}.
Now we claim that

μr ≥
q′r
qr

e−2
e

λmax
. (54)

To prove this claim, we proceed as follows: First, we write

qr μr = qr E
[
M

(�)
r

]
= E

[
1

{
E
(�)
r

}
M

(�)
r

]
≥ E

[
1

{
E
(�)
r , P

(�)
r is received before tf −

1

λmax

}
M

(�)
r

]
= P

{
E
(�)
r , P

(�)
r is received before tf −

1

λmax

}
E

[
M

(�)
r | E (�)r , P

(�)
r is received before tf −

1

λmax

]
= q′r E[M̃],

(55)

where we have named the last conditioned random variable as M̃ . Then, we again use the idea of

conditioning on the time when P (�)
r is received:

M̃ |
{
P
(�)
r is received at time t before tf −

1

λmax

}
= S

(�)
r |

{
P
(�)
r is received at time t before tf −

1

λmax

}
= Ẽt ,

where

Ẽt = min{Et ,T2 − t } ≥ min

{
Et ,

1

λmax

}
.

Therefore, it follows that

E

[
M̃ |
{
P (�)
r is received at time t before tf −

1

λmax

}]
≥ E[min{Et ,

1

λmax
}]

≥ E
[
1

{
Et ≤

1

λmax

}
Et

]
=

∫ 1
λmax

0

λ(τ )e−
∫ τ
0
λ (x )dxτdτ ≥

∫ 1
λmax

0

λmaxe
−τ λmaxτdτ

=
[
−τeτ λmax

] 1
λmax

0
+

∫ 1
λmax

0

e−τ λmaxdτ = − 1

λmax
e−1 +

1

λmax
− − 1

λmax
e−1 =

e − 2
e

1

λmax
.
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Hence,

E[M̃] =

∫ tf − 1
λmax

t0

E

[
M̃ | P (�)

r is received at t
]
P

{
P
(�)
r is received at t | P (�)

r is received before tf −
1

λmax

}
dt

≥
∫ tf − 1

λmax

t0

e − 2
e

1

λmax
P

{
P
(�)
r is received at t | P (�)

r is received before tf −
1

λmax

}
dt =

e − 2
e

1

λmax
.

(56)

Finally, if we apply Equation (56) to Equation (55), then we obtain the inequality given by

Equation (54). Next, we aim to prove that

q′r
qr
≥ e−

i+r−1
P−1

√
i + r − 1

. (57)

To this aim, we first note that

∫ tf

t0− 1
λmax

λ(x )dx ≤
∫ tf

t0− 1
λmax

λmax = 1,

which implies P ′ ≥ P − 1 and thus

q′r ≥ P{PP−1 ≥ i + r − 1}.

Moreover, we have that

P{PP−1 ≥ i + r − 1} ≥ P{PP−1 = i + r − 1} =
(P − 1)i+r−1e−(P−1)

(i + r − 1)! ,

and, according to the standard Chernoff bound for the Poisson tail,

qi = P{PP ≥ i + r − 1} ≤ e−P (eP )i+r−1

(i + r − 1)i+r−1 ,

Thus,

q′r
qr
≥

(P−1)i+r−1e−(P−1)
(i+r−1)!

e−P (eP )i+r−1

(i+r−1)i+r−1
≥

(P−1)i+r−1e−(P−1)
e
√
i+r−1(i+r−1)i+r−1e−(i+r−1)

e−P (eP )i+r−1

(i+r−1)i+r−1
=

(1 − 1
P )

i+r−1
√
i + r − 1

=

((
1 − 1

P

)P−1) i+r−1P−1

√
i + r − 1

≥ e−
i+r−1
P−1

√
i + r − 1

,

which proves Equation (57). Finally, we can combine Equations (54) and (57) to obtain the desired

lower bound, given by Equation (50).
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— Fourth inequality (Equation (52)). By definition, we have

E

[
esM

(�)
r

]
− 1 =

∫ ∞

0

f
M

(�)
r
(t )estdt − 1 =

∫ ∞

0

f
M

(�)
r
(t ) (est − 1)dt

=

[
−F̃

M
(�)
r
(t ) (est − 1)

]∞
0
+

∫ ∞

0

sF̃
M

(�)
r
(t )estdt =

∫ ∞

0

sF̃
M

(�)
r
(t )estdt .

Note that by integration by parts,

μr = E
[
M (�)

r

]
=

∫ ∞

0

t f
M

(�)
r
(t )dt =

[
− t F̃

M
(�)
r
(t )

]∞
0
−
∫ ∞

0

−F̃
M

(�)
r
dt =

∫ ∞

0

F̃
M

(�)
r
dt .

Therefore,

E

[
esM

(�)
r

]
− 1 − sμi =

∫ ∞

0

sF̃
M

(�)
r
(t )estdt − s

∫ ∞

0

F̃
M

(�)
r
(t )dt =

∫ ∞

0

sF̃
M

(�)
r
(t ) (est − 1)dt .

But note that est − 1 is positive in interval (0,∞). Therefore, according to Equation (50), it follows

that

E

[
esM

(�)
r

]
− 1 − sμi ≤

∫ ∞

0

se−λmint (est − 1) = s
( ∫ ∞

0

e−(λmin−s )t −
∫ ∞

0

e−λmintv
)

= s

(
1

λmin − s
− 1

λmin

)
=

s2

(λmin − s )λmin
.

— Fifth inequality (Equation (53)). By definition, we have

E

[
e−sM

(�)
r

]
− 1 =

∫ ∞

0

f
M

(�)
r
(t )e−stdt − 1 =

∫ ∞

0

f
M

(�)
r
(t ) (e−st − 1)dt

=

[
F̃
M

(�)
r
(t ) (e−st − 1)

]∞
0
−
∫ ∞

0

sF̃
M

(�)
r
(t )e−stdt = −

∫ ∞

0

sF̃
M

(�)
r
(t )e−stdt .

Therefore, similar to the proof of the previous statement,

E

[
e−sM

(�)
r

]
− 1 + sμi = −

∫ ∞

0

sF̃
M

(�)
r
(t )e−stdt + s

∫ ∞

0

F̃
M

(�)
r
(t )dt =

∫ ∞

0

sF̃
M

(�)
r
(t ) (1 − e−st )dt .

But note that 1 − e−st is positive in interval (0,∞). Therefore, according to Equation (50),

E

[
esM

(�)
r

]
− 1 − sμi ≤

∫ ∞

0

se−λmint (1 − e−st ) = s
(∫ ∞

0

e−λmint −
∫ ∞

0

e−(λmin+s )t

)

= s

(
1

λmin
− 1

λmin + s

)
=

s2

(λmin + s )λmin
. �

Theorem 22. Under the definitions in Section F, the following inequality holds:

P {Sr ≤ (1 − δ ) E[Sr ] or Sr ≥ (1 + δ ) E[Sr ]} ≤ 2e−qrpr (
√
λminδ μr+1−1)

2
n .

Proof. First, for δ ≥ 0, we prove

P{Sr ≥ (1 + δ ) E[Sr ]} ≤ e−qrpr (
√
1+λminδ μr−1)

2
n . (58)

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 22. Publication date: September 2021.



The Network Visibility Problem 22:33

The idea is to use themoment generating function ofM (�)
r and derive a Chernoff bound accordingly.

According to the Markov inequality,

P{Sr ≥ (1 + δ ) E[Sr ]} ≤
E

[
esSr

]
eE[s (1+δ )Sr ]

=
∏
�

E

[
esS

(�)
r

]
es (1+δ ) E[S

(�)
r ]
=

�			

E

[
esS

(�)
r

]
es (1+δ ) E[S

(�)
r ]

����
n

. (59)

However,

E

[
esS

(�)
r

]
=
(
1 − P

{
E (�)
r

}
P

{
W (�)

r | E (�)
r

})
e0 + P

{
E (�)
r

}
P

{
W (�)

r | E (�)
r

}
esM

(�)
r

= 1 + prqr

(
E

[
esM

(�)
r

]
− 1
)
≤ e

prqr

(
E[esM

(�)
r ]−1

)
.

Therefore,

P{Sr ≥ (1 + δ ) E[Sr ]} ≤ e
prqr

(
E

[
esM

(�)
r

]
−1−s (1+δ )μr

)
n
= e

(
prqr

(
E

[
esM

(�)
r

]
−1−s μr

)
−sprqr δ μr

)
n
.

Now, according to the inequality given by Equation (52),

P{Sr ≥ (1 + δ ) E[Sr ]} ≤ e
nqrpr

(
s2

(λmin−s )λmin
−sδ μr

)
. (60)

Here, we aim to find the optimal s that maximizes the function

д(s ) = qrpr

(
s2

(λmin − s )λmin
− sδμr

)
.

By taking derivatives and finding the roots of a third degree polynomial, the optimal s∗ is obtained
as

s∗ = �
1 − 1√
1 + λminδμr

� λ,
which results in

−
(√

1 + λminδμr − 1
)2
.

Hence,

P{Sr ≥ (1 + δ ) E[Sr ]} ≤ e−nqrpr (
√
1+λminδ μr−1)

2

.

Next, for 0 ≤ δ ≤ 1, we prove

P{Sr ≤ (1 − δ ) E[Sr ]} ≤ e−nqrpr (1−
√
1−λminδ μr )

2
n .

To do so, we start by writing

P{Sr ≥ (1 − δ ) E[Sr ]} ≤
E

[
e−sSr

]
eE[−s (1−δ )Sr ]

=
∏
�

E

[
e−sS

(�)
r

]
e−s (1−δ ) E[S

(�)
r ]
=

�			

E

[
e−sS

(�)
r

]
e−s (1−δ ) E[S

(�)
r ]

����
n

. (61)

However,

E

[
e−sS

(�)
r

]
= 1 + prqr

(
E

[
e−sM

(�)
r

]
− 1
)
≤ e

prqr

(
E

[
e−sM

(�)
r

]
−1
)
,

which gives

P{Sr ≤ (1 − δ ) E[Sr ]} ≤ e
nprqr

(
E

[
e−sM

(�)
r

]
−1+s (1−δ )μr

)
= e

nprqr

(
E

[
e−sM

(�)
r

]
−1+s μr

)
−nsprqr δ μr

.
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By plugging the inequality given by Equation (53) into the above equation, we obtain

P{Sr ≤ (1 − δ ) E[Sr ]} ≤ e
nqrpr

(
s2

(λmin+s )λmin
−sδ μr

)
.

Here, we aim to find the optimal s that maximizes the function

д(s ) = qrpr

(
s2

(λmin + s )λmin
− sδμr

)
.

Proceeding similarly as before, the optimal s∗ is

s∗ =

√
1

1 − λminδμr
− 1,

which results in

д(s∗) = (1 −
√
1 − λminδμr )

2.

Therefore,

P{Sr ≤ (1 − δ ) E[Sr ]} ≤ e−nqrpr (1−
√
1−λminδ μr )

2

.

Now, we proceed to prove the main inequality. If δ ≤ 1, according to the union bound

P{Sr ≤ (1 − δ ) E[Sr ] or Sr ≥ (1 + δ ) E[Sr ]} ≤ e−qrpr (
√
λminδ μr+1−1)

2
n + e−qrpr (1−

√
1−λminδ μr )

2
n ,

and, if δ ≥ 1, then the second probability becomes zero, which implies that

P{Sr ≤ (1 − δ ) E[Sr ] or Sr ≥ (1 + δ ) E[Si ]} ≤ e−qrpr (
√
λminδ μr+1−1)

2
n .

But it is easy to check that for an arbitrary real 0 ≤ x ≤ 1,
√
x + 1 − 1 ≤ 1 −

√
1 − x . (62)

Also note that according to the inequality given by Equation (51), for δ ≤ 1

0 ≤ λminδμr ≤ δ ≤ 1.

Therefore, we can use the inequality given by Equation (62) and conclude that for 0 ≤ δ ≤ 1,

e−qrpr (1−
√
1−λminδ μr )

2

≤ e−qrpr (
√
λminδ μr+1−1)

2

,

which completes the proof. �

Lemma 23. Under the definitions in Section F and the assumptions in Theorem 13, the following

statements hold:

1. For c ≤ 1 and r ≥ max{ln( 1
c
) − P , e2P }, we have

qr ≤ c . (63)

2. For j ≤ P−1
2 ,

qj ≥
1

2
, μ j ≥

e − 2
2e

1

λmax
. (64)

3. For 0 ≤ c ≤ 1, if qr > c, then

μr ≥
e−(e

2+2) (e − 2)
λmax

e−
ln( 1

c )
P−1

max
{√

ln
(
1
c

)
,
√
(e2 + 1)P

} . (65)
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4. Define the function f (x ,y) =
√
x + y −

√
x with domain R+2. Then, f is monotone decreasing

with respect to x and monotone increasing with respect to y.

5. Forψ ,w ≤ 1 such that
w (1−ψ )
1−ψw ≤ 0.43, we have

D (w | |ψw ) ≥ w

(
ln

(
1

ψ

)
− 1.31 (1 −w ) (1 −ψ )

1 −wψ

)
, (66)

wherew andψw in LHS represent the Bernoulli distributions (w, 1 −w ) and (ψw, 1 −ψw ).
6. For random variable S ,

β

2
(tf − t0) ≤ E[S] ≤ ρ (tf − t0). (67)

Proof. We prove each statement in turn.

— First statement (Equation (63)).According to a standard Chernoff bound for Poisson variables,

for x ≥ P ,

P{X ≥ x } ≤ e−P (eP )x

xx
.

Hence,

qr ≤
e−P (eP )max{ln( 1

c )−P,e
2P }(

max
{
ln
(
1
c

)
− P , e2P

})max{ln( 1
c )−P,e2P }

≤ e−P
(
1

e

) ln( 1
c )−P

= c .

— Second statement (Equation (64)). By definition, the number of posts X received in a realiza-

tion follow a Poisson distribution with parameter P . Then, according to a standard Chernoff bound

for Poisson tail, for j ≤ P ,

P{X ≥ j} ≥ 1 − e−P (eP ) j

j j
.

But note that, for f (j ) = ( eP
j
) j with j ≤ P we have

f ′(j ) =

(
1 +

j2

eP

)
ln

(
eP

j

)
≥ 0,

Thus, f is increasing with respect to j. Therefore, for j ≤ P−1
2 ≤

P
2 we get

P{X ≥ j} ≥ 1 − e−P (eP )
P
2(

P
2

) P
2

= 1 −
(
2

e

) P
2

≥ 1

2
,

for P ≥ 5. Hence, for j ≤ P
2 ,

qj ≥
1

2
.

This proves the first part. For the second part, it is enough to combine Equation (51) with the above

result for q′j , noting the fact that j ≤ P−1
2 ≤ P ′

2 , which implies q′j ≥
1
2 (the condition P ′ ≥ 5 also

implies that we should have P ≥ 6), i.e.,

μ j ≥
q′j

qj

e−2
e

λmax
≥ e − 2

2e

1

λmax
,

where we have also used the fact that qj ≤ 1.
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— Third statement (Equation (65)). By combining the assumption e2 +K ≤ P and Equation (63),

we have that r ≤ max{ln( 1
c
) − P , e2P }. Therefore, based on Equation (51), we have

μr ≥
e − 2
e

1

λmax

e−
i+r−1
P−1

√
i + r − 1

≥ e − 2
e

1

λmax

min

{
e−

K+ln( 1
c )−P−1
P−1 , e−(e

2+1)

}

max
{√

K + ln
(
1
c

)
− P − 1,

√
(e2 + 1)P

}

≥e − 2
e

1

λmax

min

{
e−

ln( 1
c )

P−1 , e−(e
2+1)

}

max
{√

ln
(
1
c

)
,
√
(e2 + 1)P

} ≥ e−(e
2+1) (e − 2)
eλmax

e−
ln( 1

c )
P−1

max
{√

ln
(
1
c

)
,
√
(e2 + 1)P

} .

— Fourth statement. For any (x ,y) ∈ R+2,

d f

dx
=

1

2
√
x + y

− 1

2
√
x
≤ 0,

d f

dy
=

1

2
√
x + y

≥ 0,

which completes the proof.

— Fifth statement (Equation (66)). Starting from the definition of cross-entropy, we have that:

D (w | |ψw ) = w ln

(
w

ψw

)
+ (1 −w ) ln

(
1 −w
1 −ψw

)
= w ln

(
1

ψ

)
+ (1 −w ) ln

(
1 − w (1 −ψ )

1 −ψw

)
.

But, for 0 ≤ x ≤ 0.43, it holds that

ln(1 − x ) ≥ −1.31x .

Hence,

D (w | |ψw ) ≥ w ln

(
1

ψ

)
− 1.31w (1 −w ) (1 −ψ )

1 −wψ w = w

(
ln

(
1

ψ

)
− 1.31 (1 −w ) (1 −ψ )

1 −wψ

)
.

— Sixth statement (Equation (67)). The idea is to calculate the expectation E[S] as follows:

E[S] =
∞∑
r=1

E

[
1

{
E (�)
r

}
1

{
W (�)

r

}
Sr

]
=

∞∑
r=1

P

{
E (�)
r

} ∫ ∞

0

tP
{
Sr = t | E (�)

r

}
P

{
W (�)

r | E (�)
r , Sr = t

}
.

(68)

But note that

P

{
W (�)

r | E (�)
r , Sr = t

}
=

∫ ∞

0

P

{
W (�)

r | P (�)
r is received at t,Yr = t

}
P

{
P (�)
r is received at t,W (�)

r , Sr = t
}

=

∫ ∞

0

P

{
W (�)

r | P (�)
r is received at t

}
P

{
P (�)
r is received at t | E (�)

r , Sr = t
}
,

and using the fact that our intensity function μ is at least a fraction β of the whole intensity given

any time, we have that

P{W (�)
r | P (�)

r is received at t} ≥ β .
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Therefore,

P

{
W (�)

r | E (�)
r , Sr = t

}
≥
∫ ∞

0

βP
{
P (�)
r is received at t | E (�)

r , Sr = t
}
= β . (69)

Then, by applying Equation (69) into Equation (68),

E[S] ≥
∞∑
r=1

P

{
E (�)
r

} ∫ ∞

0

tP
{
Sr = t | E (�)

r

}
β =

∞∑
r=1

qr β

∫ ∞

0

tP
{
Sr = t | E (�)

r

}
= β

∞∑
r=1

qr μr .

Note that the quantity
∑∞

r=1 qr μr is exactly the total amount of time that position i is occupied
between t0 and tf . According to our assumption, we know that with probability 1 all the positions

are occupied at time t0, which implies that
∑∞

r=1 qr μr = tf − t0 ≥ 1
2 (tf − t0). Hence,

E[Δi, j ] ≥
β

2
(tf − t0). (70)

The upper bound can be proved with exactly the same approach, using the inequality
∑∞

r=1 qr μr ≤
(tf − t0) instead. �

Lemma 24. For each r < r1,

P

{
Sr ≤

(
1 − δ

4

)
E[Sr ] or Sr ≥

(
1 +

δ

4

)
E[Sr ]

}
≤ 2 exp

�		
−βc
′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� ,

where

c ′′ = e−(e
2+2) (e − 2) c ′

1
P−1

max
{√

ln
(
1
c ′

)
,
√
(e2 + 1)P

} ,
and c ′ is defined by Equation (34).

Proof. Using Theorem 22, we can write

P

{
Sr ≤

(
1 − δ

4

)
E[Sr ] or Sr ≥

(
1 +

δ

4

)
E[Sr ]

}
≤ 2 exp

�	
−qrpr �

√
1 + λmin

δ

4
μr − 1�

2

n�� .
However, note that according to Lemma 65, we have μr ≥ c ′′

λmax
. Also, we know that pr ≥ β,qr ≥ c ′.

Hence, using the fourth statement of Lemma 23, we obtain our desired result. �

Lemma 25.

P

⎧⎪⎨⎪⎩
∞∑

r=r2

Sr ≥ δ E[S]
⎫⎪⎬⎪⎭ ≤ e−β

δ
2 n ≤ exp

�		
−βc
′ �	

√
1 +

λmin

λmax
δc ′′ − 1��

2

n
��� .

Proof. For 1 ≤ � ≤ n, Let E� an indicator function with value 1 if at least r2 stories are received
in realization s . Then, we know that E[E�] = qr2 ≤ 0.1δβ . Therefore, if we define the random

variable N (E) as the number of times that at least r2 stories are received, then we get that N (E) is
a binomial random variable with success probability qr2 . Hence, according to a standard Chernoff
tail bound for binomial distributions, it follows that:

P{N (E) ≥ nβδ } ≤ e−nD
(
nβδ
n | |qr2

)
= e−nD (βδ | |qr2 ) ≤ e−nD (βδ | |0.1δ β ) .
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But the exponent can be checked to be greater thanδβ according to Equation (66), using parameters

w = δβ andψ = 0.1. Therefore,

P{N (E) ≥ nβδ } ≤ e−nβδ . (71)

Now suppose we have N (E) ≤ nβδ . Then,

∞∑
i=i2

Si =
1

n

n∑
�=1

∞∑
i=i2

S (�)r ≤
(tf − t0)nβδ

n
= (tf − t0)βδ ≤ 2δ E[S], (72)

where the last inequality follows from Equation (67). Substituting δ by δ
2 we conclude that

P

⎧⎪⎨⎪⎩
∞∑

r=r2

Sr ≥ δ E[S]
⎫⎪⎬⎪⎭ ≤ P

{
N (E) ≥ nβ

δ

2

}
≤ e−nβ

δ
2 . (73)

Finally, note that

βc ′ �	

√
1 +

λmin

λmax
δc ′′ − 1��

2

≤ c ′
λmin

λmax
δc ′′ ≤ δ

2
β,

which completes the proof. �

Lemma 26. For r ≥ r1 and j ≤ P−1
2 ,

P

{
Sr ≥

ϵδ

2
E[S j ]

}
≤ exp

�		
−βc
′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� .

Proof. First, note that combining Equations (49) and (64), we have that pjqj ≥ β

2 . Therefore,

prqr ≤ ρ
β

2ρ
ϵ =

β

2
ϵ ≤ ϵpjqj . (74)

Second, note that according to Equation (64) and the definition of r1, we have that

ϵδ

4
E[S j ] =

ϵδ

4
pjqj E[Mj ] ≥

ϵδ

4
β
e − 2
4e

1

λmax
= ρ

1

λmin
ϵ
e − 2
4e

β

ρ

λmin

λmax

δ

4
≥ prqr E[Mr ] = E[Sr ].

(75)

Thus,

P

{
Sr ≥

ϵδ

2
E[S j ]

}
=P

{
Sr ≥

ϵδ

4
E[S j ] +

ϵδ

4
E[S j ]

}
≤ P
{
Sr ≥ E[Sr ] +

ϵδ

4
E[S j ]

}
.
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Then, according to Equations (58) and (74) and the fourth statement of Lemma 23, it follows that:

P

{
Sr ≥

ϵδ

2
E[S j ]

}
≤ exp

�		
−prqr
�	

√
1 + λmin

ϵδ

4

E[S j ]

E[Sr ]
μr − 1��

2

n
���

= exp
�		
−

�	

√
prqr + λmin

ϵδ

4

E[S j ]

E[Sr ]
μrprqr −

√
prqr

��
2

n
���

= exp
�	
− �

√
prqr + λmin

ϵδ

4
E[S j ] −

√
prqr �

2

n��
≤ exp

�	
− �

√
ϵpjqj + λmin

ϵδ

4
E[S j ] −

√
ϵpjqj�

2

n��
= exp

�	
−ϵpjqj �

√
1 + λmin

δ

4
E[S j ] − 1�

2

n��
≤ exp

�		
−ϵβ
1

2

�	

√
1 + λmin

δ

4

e − 2
2eλmax

− 1��
2

n
��� (76)

≤ exp
�		
−βc

′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� , (77)

where Equation (76) follows from Equations (64), and (77) follows from c ′′ ≤ e−2
2e , the fourth

statement of Lemma 23, and the fact that c ′ ≤ 1
2ϵ . �

Lemma 27.

P

⎧⎪⎨⎪⎩
r2−1∑

r=r1−1
Sr ≥

δ

2
E[S]

⎫⎪⎬⎪⎭ ≤ (r2 − r1) exp
�		
−βc

′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� .

Proof. We divide the indices in the range between r1 and r2 into � P−12 � groups A1, . . . ,A � P−12 �
,

and we assign each group to a particular index 1 ≤ j ≤ P−1
2 . Then, using Equation (63) for r2 − 1,

we get

r2 − 1 ≤max

{
ln

(
1

0.1βδ

)
, e2P

}
(78)

=

⌊P − 1
2

⌋
max

⎧⎪⎪⎨⎪⎪⎩
ln
(

1
0.1βδ

)
� P−12 �

,
P

� P−12 �
e2

⎫⎪⎪⎬⎪⎪⎭ ≤
⌊P − 1

2

⌋
max

⎧⎪⎪⎨⎪⎪⎩
ln
(

1
0.1βδ

)
� P−12 �

, 2.5e2
⎫⎪⎪⎬⎪⎪⎭ =

⌊P − 1
2

⌋
1

ϵ
,
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due to the fact that P ≥ 6. Moreover, eachAr has cardinality at most 1
ϵ
due to the fact that r2−r1

� P−12 �
≤

r2−1
� P−12 �

≤ 1
ϵ
. Therefore, we have ∀1 ≤ j ≤ P−1

2 ,
1
|Aj | ≥ ϵ . Hence, we can write

P

⎧⎪⎪⎨⎪⎪⎩
r2−1∑

r=r1−1
Sr ≥

δ

2
E[S]

⎫⎪⎪⎬⎪⎪⎭ ≤ P
⎧⎪⎪⎪⎨⎪⎪⎪⎩

r2−1∑
r=r1−1

Sr ≥
δ

2
E[

P−1
2∑

j=1

Sj ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤
� P−12 �∑
j=1

P

⎧⎪⎪⎨⎪⎪⎩
∑
r ∈Aj

Sr ≥
δ

2
E[Sj ]

⎫⎪⎪⎬⎪⎪⎭
≤
� P−12 �∑
j=1

∑
r ∈Aj

P

{
Sr ≥ ϵ

δ

2
E[Sj ]

}

≤ (r2 − r1) exp
�		
−βc

′ �	

√
1 +

λmin

λmax

δ

4
c ′′ − 1��

2

n
��� ,

where the last inequality follows from Lemma 26. �

Lemma 28. Let the number of realizationsn ≥ Zy+log
∑
i∈B |Wi, : |

δ

Qy
. Then, with probability at least 1−δ ,

the greedy algorithm returns a set of edges EB such that

UK (EB ) ≥
1

1
1−α̌ + 1

OPT − 4yK (tf − t0)
∑
i ∈B

ci .

Proof. We adapt the proof of Theorem 7. Define S, S ji , Si , sik ,Qik with respect to the greedywith

empirical estimates—the empirical greedy. Let E (i )
B be the edges picked by the empirical greedy

before picking broadcaster i’s edges. Let E be the event that ∀i ∈ B,∀j : (i, j ) ∈ Wi, :,���Û (E (i )
B , j
)
−U

(
E (i )
B , j
) ��� ≤ yK (tf − t0). (79)

Then, we can apply union bounds and Equation (18) to conclude that Pr{Eo } ≤(∑
i ∈B |Wi, : |

)
eZy−Qyn ≤ δ , which implies that E happens with high probability. Moreover,

∀i ∈ B, 1 ≤ k ≤ ci , sik ’s empirical marginal gain (when added to Qik ) is not less than that

of tik , due to the selection rule of the greedy algorithm. Consequently, given that E happens,

by rewriting the empirical utilities in terms of the theoretical ones based on the inequality in

Equation (79), we can rewrite Equation (31) as ρsik (Qik ) ≥ ρtik (Qik )−4yK (tf − t0). Then, we plug
this expression into the proof of Theorem 7 and obtain:

F (T ) ≤ F (S) +
∑
i ∈B

ci∑
k=1

1

1 − α̌ ρtik (Qik ) ≤ F (S) + 1

1 − α̌
∑
i ∈B

ci∑
k=1

(ρsik (Qik ) + 4yK (tf − t0))

=

(
1 +

1

1 − α̌

)
F (S) + 4

ζ
�

∑
i ∈B

ci�yK (tf − t0).

Then, we can divide both sides by 1 + 1
1−α̌ and use that

1
ζ

1
ζ
+1
≤ 1 to complete the proof. �
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