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Viral marketing campaigns are often negatively affected by overexposure. Overexposure occurs when users

become less likely to favor a promoted product, after receiving information about the product from too large

a fraction of their friends. Yet, existing influence diffusion models do not take overexposure into account,

effectively overestimating the number of users who favor the product and diffuse information about it. In this

work, we propose the first influence diffusion model that captures overexposure. In our model, LAICO (Latency

Aware Independent Cascade Model with Overexposure), the activation probability of a node representing

a user is multiplied (discounted) by an overexposure score, which is calculated based on the ratio between

the estimated and the maximum possible number of attempts performed to activate the node. We also study

the influence maximization problem under LAICO. Since the spread function in LAICO is non-submodular,

algorithms for submodular maximization are not appropriate to address the problem. Therefore, we develop an

approximation algorithm which exploits monotone submodular upper and lower bound functions of spread,

and a heuristic which aims to maximize a proxy function of spread iteratively. Our experiments show the

effectiveness and efficiency of our algorithms.
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1 INTRODUCTION
Viral marketing campaigns are being performed over social networks, as a cost-effective and

efficient means of advertising a product to a large number of users. In these campaigns, a small set

of users diffuse information about the promoted product, with the aim of influencing (activating)
many other users (i.e., making these users favor the product) through word-of-mouth effects. The

influence diffusion process can be modeled by an influence diffusion model.

However, existing models (e.g., [9, 13, 20, 25, 33]) do not consider the impact of overexposure on
the influence diffusion process. Overexposure occurs when a viral marketing campaign becomes

too aggressive (i.e., too large a fraction of a user’s friends attempt to activate the user, making the

user bored or annoyed and less willing to diffuse information) [3, 18]. For example, consider a user,

Alice, whose friends tell her about a new fashion product. The probability that Alice favors the

product and tells others about it increases when more friends tell Alice about the product, but up to
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a certain point. When too large a fraction of Alice’s friends tell her about the product, Alice believes

that the product is no longer fashionable and, consequently, she becomes less likely to favor the

product and tell her friends about it [3]. For example, users become less likely to buy a DVD or

book after receiving “too” many recommendations from their friends through email, because they

perceive such recommendations as spam [23]. Similarly, players of social games become less willing

to join a game, after receiving requests from too large a fraction of their friends [18]. Overexposure

has also had a substantial negative impact on the growth of large-scale systems, including LinkedIn

[1] and the Plaxo contact manager [19].

Taking into account the impact of overexposure makes the influence diffusion models more

realistic and spread estimation more accurate. This is, in turn, crucial for addressing influence

maximization [24], a fundamental problem in viral marketing. In this problem, a social network is

typically modeled as a graph, whose nodes and edges correspond to users and their connections,

respectively, and the goal is to find a set of at most 𝑘 graph nodes (seeds) which would lead to

the largest expected number of activated nodes in the graph (spread), according to an influence

diffusion model.

Our work makes the following contributions:
1. LAICO modelWe incorporate overexposure into the well-known Latency Aware Independent

Cascade (LAIC) [25] influence diffusion model. This leads to a modified model, called LAICO (O for

Overexposure). The difference between LAIC and LAICO is that in LAICO the activation probability

of each node is multiplied (discounted) by the overexposure score of the node. We chose the LAIC

model as the basis for LAICO because it is time-aware, which is useful in practical applications,

and because it generalizes other models (e.g., [9, 20]).

The overexposure score of a node 𝑢 represents the probability that 𝑢 is not overexposed and acts

as a discount factor to the activation probability of𝑢. For example, when𝑢 has a small overexposure

score, it is more likely to be overexposed. Thus, its activation probability is multiplied with a small

number and is heavily reduced. The overexposure score of𝑢 is computed by: (I) calculating the ratio

between the estimated and maximum possible number of attempts to activate 𝑢, and (II) applying a

logistic function that gets as input the ratio and outputs the overexposure score of 𝑢.

For the calculation of the ratio, we note that in LAICO each in-neighbor of a node 𝑢 attempts to

activate 𝑢 with some probability. Thus, the number of attempts to activate 𝑢 cannot be computed

exactly and has to be estimated. In fact, Monte Carlo simulation can be used to derive a good

estimate. Yet, this strategy is inefficient because it needs a very large number of simulations [12].

Therefore, we propose a more efficient strategy that leads to similar estimates, as shown in our

experiments. Our strategy assumes that each in-neighbor of𝑢 is not activated by other in-neighbors.

This assumption allows modeling the probability that 𝑢 receives a certain number of activation

attempts as a Poisson binomial [40] distribution and using the mean of the distribution (i.e., the

expected number of attempts performed to activate 𝑢) as an estimate of the number of attempts

performed to activate 𝑢. Then, the ratio is calculated by normalizing (dividing) the estimate with

the maximum possible number of attempts to activate 𝑢 (i.e., the number of in-neighbors of 𝑢). The

normalization captures findings in marketing [6] and economics [3], suggesting that users with

more friends are accustomed to being exposed to information from more people, or they do not

pay attention to all the information they receive.

The logistic function that outputs the overexposure score of𝑢 is derived based on a user evaluation

study. The study is performed on a sample of users targeted by the viral marketing campaign as

follows: The users are shown viral content about the promoted product (e.g., an image or video)

and asked about the minimum ratio of activation attempts that would discourage them to diffuse

information about the product. Then, based on the user responses, a logistic regression function,
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which models the perception of a user’s overexposure as a function of the ratio of attempts to

activate them, is derived.
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Advertisement Logistic coefficients

𝛽0 𝛽1

1 1.61977 −5.00491
2 1.38144 −4.66672
3 1.39301 −4.931301
4 1.52203 −4.91809

(b)

Advertisement McFadden Nagelkerke

pseudo-𝑅2
pseudo-𝑅2

1 0.253 0.385

2 0.228 0.350

3 0.244 0.369

4 0.246 0.374

(c)

Fig. 1. (a) Logistic function, for each promoted product in our user evaluation study. (b) Coefficients 𝛽0 and 𝛽1
in the logistic function 1

1+e−(𝛽0+𝛽1 ·𝑥 ) for each promoted product in our user evaluation study, where 𝑥 denotes

the minimum ratio of activation attempts. (c) Pseudo-𝑅2 statistics indicating goodness-of-fit for each logistic
function [27].

Example 1. In Fig. 1a, we plot the logistic functions obtained from the responses of 476 social
network users, who we asked about four different products. The smallest ratio that users could input
was 1

100
. In Fig. 1b, we provide, for each function, the logistic regression coefficients, which depend on

the product, and in Fig. 1c the values of two pseudo-𝑅2 statistics, which confirm that the function is good
fit [27]. Each logistic function is used to compute the probability that a node is not overexposed (i.e., its
overexposure score), based on the ratio of activation attempts received by the node when information
about a product is diffused. For example, when information about Advertisement 2 is diffused, a node
with ratio 1

100
in Fig. 1a is not overexposed with probability about 0.8. This probability is computed by

giving as input the ratio 1

100
to the red logistic regression curve in Fig. 1a.

2. Algorithms for the IML problem The problem of Influence Maximization in the LAICO model

(𝐼𝑀𝐿) is fundamentally different from that in the LAIC model, because the spread function in

LAICO is non-monotone and non-submodular, as we show. Thus, the Greedy algorithm [32] does

not achieve the approximation ratio (1 − 1

e
) ≈ 63

100
that it achieves for monotone submodular

functions. Therefore, we identify additional properties of the spread function in LAICO and, based

on these properties, we design an approximation algorithm, called 𝐴𝑆𝐴, and an efficient heuristic,

called 𝐻𝑆𝑆 , to address the 𝐼𝑀𝐿 problem.

𝐴𝑆𝐴 is founded on the following property: (P1) The spread function in LAICO is lower-bounded

by a monotone, submodular function and upper-bounded by another monotone, submodular

function. The lower-bound (respectively, upper-bound) function assigns to each node the minimum

(respectively, maximum) overexposure score. We show that 𝐴𝑆𝐴 achieves an approximation ratio

M · (1 − 1

e
), whereM ≤ 1 is a factor that depends on how close are the bound functions to the

spread function. This result is due to P1, which allows exploiting the Sandwich Approximation
strategy [28]. We also show that𝐴𝑆𝐴 constructs a seed-set with spread at least 𝑐 ·𝑘 times larger than

that of applying Greedy [32] with the spread function of the LAICO model, where 𝑐 is a constant

that depends on the logistic regression function used in the overexposure score computation.
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𝐻𝑆𝑆 is founded on the following two properties: (P2) There is a proxy function for the spread

function in LAICO, which is constructed by utilizing the logarithm transformation and an upper

bound for submodular functions [17]. (P3) The proxy function can be approximately maximized

(in expectation), to produce a high-quality solution to the 𝐼𝑀𝐿 problem based on the effective and

efficient Sup-Sub procedure [17].
Our experiments show that the LAIC model overestimates spread, because it does not take

overexposure into account. Specifically, we show that the spread in LAIC is much higher than that

in LAICO, because many nodes have lower activation probabilities in the LAICO model, due to

overexposure. The experiments also show that our strategy for estimating the number of attempts

to activate a node is as effective as the Monte Carlo simulation based method but at least two

orders of magnitude more efficient. Furthermore, we experimentally show that𝐴𝑆𝐴 finds a solution

within 0.88 · (1− 1

e
) ≈ 55% of the optimal, while 𝐻𝑆𝑆 is less effective but more efficient and scalable

with respect to the size of seed-set and the size of the time window.

We note that our methodology for modeling overexposure can be directly used to incorporate

overexposure into the classical Independent Cascade (IC) model [20] and the Independent Cascade

with Meeting points (IC-M) model [9], which are special cases of the LAIC model. We also note

that the modeling of the probability that a node 𝑢 is not overexposed as a function of the ratio

of activation attempts to 𝑢 through a logistic regression function is of independent interest. For

example, such functions can be used to compare different viral marketing campaigns with respect to

how much they fatigue users, to predict whether certain nodes would become highly overexposed,

and to calculate statistics of practical interest, such as the expected number of overexposed nodes

for a campaign.

Paper organization The rest of the paper is organized as follows. Section 2 introduces some prelimi-

nary concepts and the LAIC model. Section 3 explains how we estimate the number of attempts to

activate a node and how we assign overexposure scores. Section 4 introduces our LAICO model

and the 𝐼𝑀𝐿 problem we aim to solve. Section 5 and 6 introduces our 𝐴𝑆𝐴 algorithm and the 𝐻𝑆𝑆

heuristic, respectively. In Section 7, we experimentally evaluate our approach. Section 8 discusses

related work, and Section 9 concludes the paper.

2 BACKGROUND
2.1 Preliminaries
Let 𝐺 (𝑉 , 𝐸) be a directed graph, where 𝑉 is a set of nodes and 𝐸 is a set of edges. The set of

in-neighbors of a node 𝑢 is denoted with 𝑛− (𝑢) and has size |𝑛− (𝑢) |, which is referred to as the

in-degree of 𝑢. The set of out-neighbors of 𝑢 is denoted with 𝑛+ (𝑢) and has size |𝑛+ (𝑢) |, which is

referred to as the out-degree of 𝑢.
Let𝑈 be a universe of elements and 2

𝑈
be its power set. A function 𝑓 : 2

𝑈 → R ismonotone (also
called non-decreasing), if 𝑓 (𝑋 ) ≤ 𝑓 (𝑌 ) for all subsets 𝑋 ⊆ 𝑌 ⊆ 𝑈 , and non-monotone otherwise.
A function 𝑓 : 2

𝑈 → R is non-negative if 𝑓 (𝑋 ) ≥ 0, for each subset 𝑋 ⊆ 𝑈 , and submodular
if it satisfies the diminishing returns property 𝑓 (𝑋 ∪ {𝑢}) − 𝑓 (𝑋 ) ≥ 𝑓 (𝑌 ∪ {𝑢}) − 𝑓 (𝑌 ), for all
𝑋 ⊆ 𝑌 ⊆ 𝑈 and any 𝑢 ∈ 𝑈 \ 𝑌 [22]. If the diminishing returns property holds with equality, then 𝑓

is modular. A function 𝑓 is supermodular if and only if −𝑓 is submodular [22]. A modular function

𝑓 is both submodular and supermodular.

The modular upper bound [17] of a submodular function 𝑔(𝑋 ) : 2𝑈 → R is a modular function

𝑔𝑌 (𝑋 ) = 𝑔(𝑌 ) +
∑

𝑢∈𝑋\𝑌
(𝑔 ({𝑢}) − 𝑔({ })) −

∑
𝑢∈𝑌\𝑋

(𝑔(𝑌 ) − 𝑔 (𝑌 \ 𝑢))

where the subset 𝑌 ⊆ 𝑈 is the parameter of 𝑔𝑌 (𝑋 ) and { } denotes the empty set.

, Vol. 1, No. 1, Article . Publication date: June 2020.



Overexposure-aware influence maximization 5

2.2 Latency Aware Independent Cascade (LAIC) model [25]
A popular influence diffusion model is the Independent Cascade (IC) model [14, 20]. In the IC model,

a node is either active or inactive, and a node that becomes active cannot become inactive. The

influence propagates at discrete time steps as follows: Each seed is active at time 𝑡 = 0 and attempts

to activate each of its out-neighbors at 𝑡 = 0 once. If multiple seeds have the same out-neighbor,

they all try to activate it in arbitrary order. At 𝑡 = 1, some out-neighbors of the seeds may become

active. These out-neighbors attempt to activate their own inactive out-neighbors at 𝑡 = 1, some of

the latter nodes may become active at 𝑡 = 2, and the process proceeds similarly until no new node

becomes active.

The LAIC model extends the IC model by accounting for the fact that the nodes may be activated

with delays. That is, in the LAIC model a node 𝑢 ′ that is activated at time 𝑡 and activates its

out-neighbor 𝑢 will not necessarily activate 𝑢 at time 𝑡 + 1, as in the IC model, but at time 𝑡 + 1 + 𝑖 ,
where 𝑖 ∈ [0, 𝛿] is a delay at most equal to a maximum delay threshold 𝛿 . In the LAIC model,

each edge (𝑢 ′, 𝑢) is associated with a probability vector𝑚((𝑢 ′, 𝑢)) = [𝑚0 ((𝑢 ′, 𝑢)), . . . ,𝑚𝛿 ((𝑢 ′, 𝑢))],
whose element𝑚𝑖 ((𝑢 ′, 𝑢)) denotes the probability that 𝑢 ′ activates 𝑢 with delay 𝑖 . The probability

vectors of edges are set based on the target population of the campaign [25]. Thus, it is easy to see

that when each delay 𝑖 is equal to 0, the LAIC model becomes equivalent to the IC model.

In the LAIC model, the probability that a seed-set 𝑆 activates a node 𝑢 at time 𝑗 is given by

𝑃𝐿𝐴𝐼𝐶 (𝑢, 𝑆, 𝑗). Similarly, the probability that 𝑆 activates 𝑢 within a time window [0, 𝑡] is given by

P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])=
∑

𝑗 ∈[0,𝑡 ] 𝑃𝐿𝐴𝐼𝐶 (𝑢, 𝑆, 𝑗). The spread of 𝑆 in [0, 𝑡] is computed as in Eq. 1:

𝜎𝐿𝐴𝐼𝐶 (𝑆, 𝑡) =
∑
𝑢∈𝑉
P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) (1)

The spread can be computed by an exact, dynamic programming algorithm [16] which considers

all simple paths that start from 𝑆 and activate a node with probability at least equal to a minimum

path probability threshold ℎ. This algorithm is much more efficient than the alternative Monte

Carlo simulation based method [25].

In the remaining of the paper, we use the subscript 𝐿𝐴𝐼𝐶 for the spread and activation probabilities

in the LAIC model and no subscript for the spread and activation probabilities in our LAICO model.

For example, 𝑃𝐿𝐴𝐼𝐶 (𝑢, 𝑆, 𝑗) denotes the probability that a seed-set 𝑆 activates a node 𝑢 at a time

point 𝑗 in the LAIC model, and 𝑃 (𝑢, 𝑆, 𝑗) denotes the probability that 𝑆 activates 𝑢 at a time point 𝑗

in the LAICO model.

3 MODELING OVEREXPOSURE
3.1 Estimating the number of attempts to activate a node
The number of attempts performed to activate a node 𝑢 in a time window [0, 𝑡] can be estimated

based on Monte Carlo simulation. For example, consider the Monte Carlo simulation algorithm

in [25], which computes the number of activated nodes for a seed-set 𝑆 and window [0, 𝑡] on
an appropriately constructed random subgraph of 𝐺 (𝑉 , 𝐸) in time 𝑂 ( |𝑉 | + |𝐸 |). By executing the

algorithm on 𝑅 different random subgraphs, we can estimate the spread 𝜎𝐿𝐴𝐼𝐶 (𝑆, 𝑡) as the average
number of activated nodes over all these subgraphs. The algorithm of [25] can be easily modified

to count the number of activated in-neighbors of any node 𝑢 in a random subgraph, which is

equal to the number of attempts performed to activate 𝑢 in [0, 𝑡] by its in-neighbors in the random

subgraph. The modified algorithm still needs 𝑂 ( |𝑉 | + |𝐸 |) time. Then, by executing the modified

algorithm on 𝑅 different random subgraphs, we can estimate the number of attempts performed to

activate 𝑢 in [0, 𝑡], as the average number of attempts over all 𝑅 random subgraphs. However, the

modified algorithm is inefficient, since 𝑅 needs to be large to derive good estimates (𝑅 = 20000 is

suggested in [25]). Thus, in the following, we present a more efficient method that is also fairly
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accurate, as shown in our experiments. The method estimates the number of attempts performed to

activate a node 𝑢 in [0, 𝑡] by directly using the activation probabilities of in-neighbors of 𝑢, which

are available when a dynamic programming algorithm [16] is used to compute the spread. The

benefit of our method is efficiency, since the dynamic programming algorithm is much faster than

Monte Carlo simulation [16].

Our method requires knowing the probability distribution of the number of attempts performed

to activate 𝑢 in a time window [0, 𝑡] (i.e., the probability that 𝑢 receives 𝑟 activation attempts, for

each possible 𝑟 ). Then, it uses the mean of the distribution (i.e., the expected number of attempts

in [0, 𝑡]) as an estimate of the true number of attempts. For simplicity of presentation, we first

consider the case in which all activation attempts occur at time point 𝑗 = 0 (i.e., in the window

[0, 0]). Then, we consider the general case in which the activation attempts occur at any time point

𝑗 in the window [0, 𝑡].

Activation attempts at a time point 𝑗 = 0 Let 𝑢𝑙 be an in-neighbor of 𝑢 that was activated at a time

point 𝑗 = 0 with probability 𝑃 (𝑢𝑙 , 𝑆, 𝑗). As it will be explained later, in LAICO 𝑢𝑙 tries to activate 𝑢

once, independently of the other in-neighbors that were activated at 𝑗 . Therefore, each activation

attempt by an in-neighbor 𝑢𝑙 , 𝑙 ∈ [1, |𝑛− (𝑢) |], is an independent Bernoulli trial with a potentially

different success probability 𝑃 (𝑢𝑙 , 𝑆, 𝑗), and the number of activation attempts to 𝑢 at 𝑗 = 0 is a sum

of independent Bernoulli trials. Consequently, the probability that 𝑢 receives a certain number of

activation attempts from its in-neighbors at 𝑗 = 0 is given by the Poisson binomial [40] distribution

with parameters 𝑃 (𝑢1, 𝑆, 𝑗), . . . , 𝑃 (𝑢 |𝑛− (𝑢) |, 𝑆, 𝑗).

Activation attempts at a time point 𝑗 in window [0, 𝑡] The difference from the case in which 𝑗 = 0

is that the event “an in-neighbor 𝑢𝑙 of 𝑢 was activated at a time point 𝑗 in [0, 𝑡]” depends on the

event “an in-neighbor 𝑢𝑚 of 𝑢 was activated at a time point 𝑗 ′ < 𝑗”, when there are paths from 𝑆 to

𝑢𝑙 that pass through 𝑢𝑚 . Similarly, the event “𝑢𝑙 was activated in the window [0, 𝑡]” may depend

on the event “𝑢𝑚 was activated in the window [0, 𝑡]”. Since there may be multiple paths from

𝑆 that pass through more than one in-neighbors of 𝑢, the computation of the probability that 𝑢

receives 𝑟 activation attempts in [0, 𝑡] is hard. However, the dependencies among these events do

not substantially affect the number of attempts to activate 𝑢, as shown in our experiments. Thus,

we make the following independence assumption: the events “the in-neighbors of 𝑢 were activated in
[0, 𝑡]” are mutually independent.
The assumption allows modeling the activation attempt by the in-neighbor 𝑢𝑙 of 𝑢 as an in-

dependent Bernoulli trial with success probability P(𝑢𝑙 , 𝑆, [0, 𝑡]), and modeling the number of

activation attempts to 𝑢 in [0, 𝑡] as a sum of independent Bernoulli trials. Consequently, we can

use the Poisson binomial distribution with parameters P(𝑢1, 𝑆, [0, 𝑡]), . . . ,P(𝑢 |𝑛− (𝑢) |, 𝑆, [0, 𝑡]) to
estimate the probability that 𝑢 receives 𝑟 activation attempts from its in-neighbors in [0, 𝑡]. This
probability is computed as in Eq. 2:

𝑃𝑝𝑜𝑖𝑏𝑖𝑛 (𝑌 = 𝑟 ) =
∑

𝐴⊆𝑛− (𝑢) : |𝐴 |=𝑟

∏
𝑢𝑙 ∈𝐴
P(𝑢𝑙 , 𝑆, [0, 𝑡])

∏
𝑢′
𝑙
∈𝑛− (𝑢)\𝐴

(
1 − P(𝑢 ′

𝑙
, 𝑆, [0, 𝑡])

)
(2)

where𝑌 is a random variable measuring the number of attempts to activate the node𝑢, 𝑃𝑝𝑜𝑖𝑏𝑖𝑛 is the

probability mass function (pmf) of the Poisson binomial distribution,𝐴 is a subset of 𝑟 in-neighbors

of 𝑢, and 𝑛− (𝑢) is the set of in-neighbors of 𝑢.
Then, the mean of the distribution 𝑃𝑝𝑜𝑖𝑏𝑖𝑛 represents the expected number of attempts to activate

𝑢 in a window [0, 𝑡], and it can be used as an estimate of the number of attempts to activate 𝑢 in

[0, 𝑡]. Our estimate is inspired by the use of the expected number of activated nodes in [0, 𝑡] as an
estimate of the true number of activated nodes in [0, 𝑡] [25]. The expected number of attempts to

activate 𝑢 in [0, 𝑡] is computed as

∑
𝑢𝑙 ∈𝑛− (𝑢) P(𝑢𝑙 , 𝑆, [0, 𝑡]).
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The computation results in an estimate that is close to that of Monte Carlo simulation, as shown

in our experiments. At the same time, the computation is also much more efficient than Monte

Carlo simulation. This is because it is based on the probabilities P(𝑢𝑙 , 𝑆, [0, 𝑡]), which are available

from the computation of spread in the LAICO model, instead of Eq. 2, which can be expensive as it

considers𝑂 (
( |𝑛− (𝑢) |

𝑟

)
) subsets of 𝑛− (𝑢) of size 𝑟 . The estimate of the number of attempts to activate

𝑢 in a window [0, 𝑡], when the seed-set is 𝑆 , is denoted with 𝑁
𝑆,𝑡
𝑢 and computed as illustrated in

Example 2.

Example 2. Fig. 2a shows the activation probabilities of the in-neighbors 𝑢1, 𝑢2, and 𝑢3 of a node
𝑢, when the seed-set is 𝑆 and the window is [0, 𝑡]. Fig. 2b shows the probability mass function (pmf)
of the Poisson binomial with parameters {0.6, 0.7, 0.5}. The mean of the pmf in Fig. 2b is equal to
0.6 + 0.7 + 0.5 = 1.8 and corresponds to the estimated number of activation attempts 𝑁𝑢

𝑆,𝑡
.

4

3 4

oints
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Fig. 2. (a) The in-neighbors of 𝑢 and their activation probabilities P(𝑢1, 𝑆, [0, 𝑡]) = 0.6, P(𝑢2, 𝑆, [0, 𝑡]) = 0.7,
and P(𝑢3, 𝑆, [0, 𝑡]) = 0.5, as well as the probability vector of each edge from an in-neighbor to 𝑢 (shown as an
edge weight). (b) The pmf of the Poisson binomial with parameters {0.6, 0.7, 0.5}.

3.2 Assigning overexposure scores
The overexposure score of a node 𝑢, for a seed-set 𝑆 and window [0, 𝑡], is:

O(𝑢, 𝑆, 𝑡) =
{
𝑅

(
�̃�

𝑆,𝑡
𝑢

)
, if 𝑁

𝑆,𝑡
𝑢 > 1

1, otherwise

(3)

where �̃�
𝑆,𝑡
𝑢 =

𝑁
𝑆,𝑡
𝑢

|𝑛− (𝑢) | is the ratio of the estimated number of activation attempts received by 𝑢

to the number of all possible activation attempts received by 𝑢 (note that the maximum value

of 𝑌 is |𝑛− (𝑢) |), and 𝑅(�̃� 𝑆,𝑡
𝑢 ) = 1

1+𝑒−(𝛽0+𝛽1 ·�̃�𝑆,𝑡
𝑢 ) is the logistic function with coefficients 𝛽0 and 𝛽1.

The coefficients are specified by the party performing the viral marketing campaign, based on

a user evaluation study, as explained in Introduction. A node 𝑢 with 𝑁
𝑆,𝑡
𝑢 ≤ 1 is considered not

overexposed (i.e., it has O(𝑢, 𝑆, 𝑡) = 1), because the node is unlikely to receive more than one

activation attempts and overexposure occurs when a user receives the diffused information at least

twice. For example, the overexposure score of each seed is 1. Clearly, it is straightforward to use a

threshold larger than 1, to specify nodes that are not considered overexposed, if desired.
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8 Grigorios Loukides, Robert Gwadera, and Shing-Wan Chang

4 LAICO MODEL AND PROBLEM DEFINITION
In our LAICOmodel, the activation probabilityP𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) of node𝑢 is multiplied (discounted)

by the overexposure scoreO(𝑢, 𝑆, 𝑡), where 𝑆 is a seed-set and [0, 𝑡] a window. That is, the activation
probability in LAICO is defined as P(𝑢, 𝑆, [0, 𝑡]) = P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡). The spread in

LAICO is defined as 𝜎 (𝑆, 𝑡) = ∑
𝑢∈𝑉 P(𝑢, 𝑆, [0, 𝑡]), and the probability that a node 𝑢 is activated at

a time point 𝑗 ∈ [0, 𝑡] is defined as 𝑃 (𝑢, 𝑆, 𝑗) = P(𝑢, 𝑆, 𝑗) − P(𝑢, 𝑆, 𝑗 − 1).

The IML problem Given a graph 𝐺 (𝑉 , 𝐸), a window [0, 𝑡], and a parameter 𝑘 , the influence

maximization problem in the LAICO model (IML) seeks to find a node subset 𝑆 ⊆ 𝑉 with size

|𝑆 | ≤ 𝑘 and maximum spread 𝜎 (𝑆, 𝑡).
The function 𝜎 (𝑆, 𝑡) for a window [0, 𝑡] is non-monotone, and it is neither submodular nor

supermodular, as illustrated in Example 3.

Example 3. Consider the graph of Fig. 3a and the window [0, 2]. Also, consider that the overexposure
score of each node 𝑢, for seed-set 𝑆 and window [0, 2], was computed using Eq. 3 with the logistic
function 1

1+𝑒−(𝛽0+𝛽1 ·�̃�𝑆,𝑡
𝑢 ) whose coefficients 𝛽0 = 1.61977 and 𝛽1 = −5.00491 were obtained by a user

evaluation study. The spread of different seed-sets in the window is shown in Fig. 3b, together with the
ratio �̃� 𝑆,2

𝑢4
and overexposure scoreO(𝑢4, 𝑆, 2) of𝑢4, when activated by one of the seed-sets 𝑆 . The function

𝜎 is non-monotone, since, for {𝑢1} ⊆ {𝑢1, 𝑢2}, it holds that 𝜎 ({𝑢1}, 2) = 5 > 𝜎 ({𝑢1, 𝑢2}, 2) = 2.6091.
The function 𝜎 is not submodular, because for {𝑢1, 𝑢2} ⊆ {𝑢1, 𝑢2, 𝑢3} ⊆ {𝑢1, . . . , 𝑢7} and 𝑢4 ∈
{𝑢1, . . . , 𝑢7}\{𝑢1, 𝑢2, 𝑢3}, it holds that 𝜎 ({𝑢1, 𝑢2}∪{𝑢4}, 2)−𝜎 ({𝑢1, 𝑢2}, 2) = 3.3909 < 𝜎 ({𝑢1, 𝑢2, 𝑢3}∪
{𝑢4}, 2) − 𝜎 ({𝑢1, 𝑢2, 𝑢3}, 2) = 3.869. In addition, 𝜎 is not supermodular, because for { } ⊆ {𝑢1} and
𝑢2 ∈ {𝑢1, . . . 𝑢7} \ {𝑢1}, it holds that 𝜎 ({𝑢2}, 2) − 𝜎 ({ }, 2) = 5 > 𝜎 ({𝑢1} ∪ {𝑢2}, 2) − 𝜎 ({𝑢1}, 2) =
−2.3909.

[1,0]

[1
,0
]

[1,
0]

u1 u4

u3

u2

u5
[1,0]

[1,0]

[1,0] u6

u7

(a)

Seed-set 𝑆 𝜎 (𝑆, 2) �̃�𝑆,2
𝑢4

O(𝑢4, 𝑆, 2)
{𝑢1 } 5 1/3 1

{𝑢2 } 5 1/3 1

{𝑢1,𝑢2 } 2.6091 2/3 0.1523

{𝑢1,𝑢2,𝑢3 } 3.131 3/3 0.0328

{𝑢1,𝑢2,𝑢4 } 6 2/3 1

{𝑢1,𝑢2,𝑢3,𝑢4 } 7 3/3 1

(b)

Fig. 3. (a) Example graph. The probability vector for each edge is shown as edge label. (b) The spread of
different seed-sets in the window [0, 2], as well as the estimated ratio �̃�𝑆,2

𝑢4
and overexposure score O(𝑢4, 𝑆, 2)

of the node 𝑢4, when it is activated by a seed-set 𝑆 of these seed-sets.

Since 𝜎 (𝑆, 𝑡) is non-submodular, IML cannot be approximated by algorithms for influence maxi-

mization in the LAIC model [16, 25], nor by adapting approximation algorithms [8, 30] for submod-

ular maximization. Since 𝜎 (𝑆, 𝑡) is non-supermodular, IML cannot be approximated with algorithms

for supermodular maximization (e.g., [38]).

5 𝐴𝑆𝐴 (APPROXIMATION ALGORITHM FOR IML BASED ON 𝑆𝐴)
This section presents our 𝐴𝑆𝐴 approximation algorithm for finding a seed-set 𝑆 with size at most 𝑘

and large spread 𝜎 (𝑆, 𝑡).𝐴𝑆𝐴 exploits the fact that the spread function 𝜎 (𝑆, 𝑡) satisfies the following
property:
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P1: 𝜎 (𝑆, 𝑡) is lower-bounded by a monotone, submodular function 𝜎L and upper-bounded by

another monotone, submodular function 𝜎U .

𝐴𝑆𝐴 executes Greedy three times, one with 𝜎 (𝑆, 𝑡), another with the function 𝜎L (𝑆, 𝑡), and a

third with the function 𝜎U (𝑆, 𝑡), and then returns the solution with the maximum 𝜎 (𝑆, 𝑡) among

the solutions obtained by the three executions of Greedy. Thus, 𝐴𝑆𝐴 is an adaptation of the 𝑆𝐴

strategy (see Appendix A).

In the following, we define the functions 𝜎L (𝑆, 𝑡) and 𝜎U (𝑆, 𝑡) and present their properties:

𝜎L (𝑆, 𝑡) =
∑
𝑢∈𝑉1

P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) +
∑

𝑢∈𝑉<1

(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(1)) (4)

𝜎U (𝑆, 𝑡) =
∑
𝑢∈𝑉1

P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) +
∑

𝑢∈𝑉<1

(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(0)) (5)

where 𝑉1 = {𝑢 ∈ 𝑉 | O(𝑢, 𝑆, 𝑡) = 1}, 𝑉<1 = {𝑢 ∈ 𝑉 | O(𝑢, 𝑆, 𝑡) < 1}, and 𝑅(1) (resp., 𝑅(0)) is
the minimum (resp., maximum) overexposure score of a node in 𝑉<1. That is, if the overexposure

score O(𝑢, 𝑆, 𝑡) of a node 𝑢 in 𝜎 (𝑆, 𝑡) = ∑
𝑢∈𝑉 [P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡)] is lower than 1, it is

replaced by the minimum overexposure score 𝑅(1) in 𝜎L (𝑆, 𝑡), and it is replaced by the maximum

overexposure score 𝑅(0) in 𝜎U (𝑆, 𝑡). Consequently, 𝜎L (𝑆, 𝑡) is a lower bound of 𝜎 (𝑆, 𝑡) and 𝜎U (𝑆, 𝑡)
is an upper bound of 𝜎 (𝑆, 𝑡). Note that the functions 𝜎L (𝑆, 𝑡) and 𝜎U (𝑆, 𝑡) are monotone submodular

because P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) is monotone submodular [25] and 𝑅(0) as well as 𝑅(1) are constants.
Thus, Property P1 holds.

We now discuss the effectiveness of 𝐴𝑆𝐴 in terms of finding a solution with good spread 𝜎 (𝑆, 𝑡).
First, we prove that 𝐴𝑆𝐴 offers the approximation guarantee in Eq. 6:

𝜎 (𝑆𝐴𝑆𝐴, 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡) ≥ max

{
𝜎 (𝑆U, 𝑡)
𝜎U (𝑆U, 𝑡)

,
𝜎L (𝑆∗𝐼𝑀𝐿

, 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡)

}
·
(
1 − 1

e

)
(6)

where 𝑆𝐴𝑆𝐴 (resp., 𝑆U ) is the seed-set returned by 𝐴𝑆𝐴 (resp. Greedy applied with 𝜎U ) and 𝑆
∗
𝐼𝑀𝐿

is the optimal solution to the IML problem. The proof of Eq. 6 easily follows from the use of the

𝑆𝐴 strategy [28] and is omitted. 𝐴𝑆𝐴 is effective (in the worst case captured by Eq. 6), when each

term in the max factor of Eq. 6 is close to 1. Note that the second term in the max factor is not

computable in polynomial time because it involves the optimal solution 𝑆∗
𝐼𝑀𝐿

. Yet, a slightly worse

bound, where only the first termM =
𝜎 (𝑆U ,𝑡 )
𝜎U (𝑆U ,𝑡 ) of the max factor is kept, can be computed. In our

experiments, we show thatM is larger than 0.88, implying that 𝐴𝑆𝐴 is very effective.

We also prove, in Theorem 1 below, that 𝐴𝑆𝐴 can be much more effective than applying Greedy
with the spread function 𝜎 , especially when 𝑘 is large. We refer to this variant of Greedy as𝐺𝑟𝐿𝐴𝐼𝐶𝑂 .

Specifically, Theorem 1 shows that the ratio between the spread of the seed-set constructed by 𝐴𝑆𝐴

and that of the seed-set constructed by 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 is at least 1, increases linearly with 𝑘 and depends

on the ratio between 𝑅(0) and 𝑅(1).

Theorem 1 (Ratio between spread of 𝐴𝑆𝐴 and 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 ). Let 𝑆𝐴𝑆𝐴 and 𝑆𝐺𝑟 be the seed-set
constructed by 𝐴𝑆𝐴 and by 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 , respectively, when applied to the same graph and with the same
𝑘 . It holds that

𝜎 (𝑆𝐴𝑆𝐴, 𝑡)
𝜎 (𝑆𝐺𝑟 , 𝑡)

≥
(
𝑅(0)
𝑅(1) −

𝑅(1)
𝑅(0)

)
· 𝑘 + 𝑅(1)

𝑅(0) ,

where 𝑅(1) and 𝑅(0) is the minimum and the maximum value of the logistic regression function 𝑅,
respectively.
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Proof. See Appendix B □

𝐴𝑆𝐴 performs 𝑂 ( |𝑉 | · 𝑘) function evaluations, since it evaluates each of the functions 𝜎L , 𝜎U ,
and 𝜎 that are executed in the algorithm 𝑂 ( |𝑉 | · 𝑘) times [28]. Each evaluation takes 𝑂 ( |𝑉 |2 · 𝑡)
time when computed based on [16] but the bound is pessimistic [16].

6 HSS (HEURISTIC FOR IML BASED ON SUP-SUB)
This section presents our 𝐻𝑆𝑆 heuristic for finding a seed-set 𝑆 with size at most 𝑘 and large spread

𝜎 (𝑆, 𝑡).𝐻𝑆𝑆 exploits the fact that 𝜎 (𝑆, 𝑡) can be transformed to a function 𝜎 (𝑆, 𝑡) that is a difference
of two submodular functions. The latter function is used to construct the proxy function of 𝜎 (𝑆, 𝑡)
which is approximately maximized by 𝐻𝑆𝑆 .

We first discuss the function 𝜎 (𝑆, 𝑡) and its properties in Section 6.1, and then discuss the proxy

function constructed from 𝜎 (𝑆, 𝑡) in Section 6.2. After that, we discuss the operation of the 𝐻𝑆𝑆

heuristic in Section 6.3.

6.1 The 𝜎 (𝑆, 𝑡) function and its properties
The function 𝜎 (𝑆, 𝑡) is defined in Eq. 7 below:

𝜎 (𝑆, 𝑡) =
∑
𝑢∈𝑉

ln (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) −
∑
𝑢∈𝑉
(− ln (O(𝑢, 𝑆, 𝑡))) (7)

and obtained by applying the logarithmic transformation to each non-zero term in square brackets

in the spread function 𝜎 (𝑆, 𝑡) = ∑
𝑢∈𝑉 P(𝑢, 𝑆, [0, 𝑡]) =

∑
𝑢∈𝑉 [P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡)] 1.

We now show that 𝜎 (𝑆, 𝑡) is a difference of two submodular functions. For this, we provide

Theorem 2 whose proof makes use of Lemma 1.

Lemma 1. The function O(𝑢, 𝑆, 𝑡) is non-increasing supermodular.

Proof. See Appendix C. □

Theorem 2 (𝜎 (𝑆, 𝑡) is a difference of submodular functions). In function 𝜎 (𝑆, 𝑡), the terms∑
𝑢∈𝑉 ln (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) and

∑
𝑢∈𝑉 (− ln (O(𝑢, 𝑆, 𝑡))) are submodular functions.

Proof. See Appendix D □

6.2 The proxy function of 𝜎 (𝑆, 𝑡)
The function 𝜎 (𝑆, 𝑡) is difficult to approximately maximize directly [17], due to the lemma below.

Lemma 2. The function 𝜎 (𝑆, 𝑡) for a window [0, 𝑡] is neither submodular nor supermodular.

Proof. See Appendix E. □

However, it can still be used to derive another function 𝜎𝑌 (𝑆, 𝑡) that is non-negative, non-
monotone submodular and thus can be approximately maximized.

The function 𝜎𝑌 (𝑆, 𝑡) is defined in Eq. 8:

𝜎𝑌 (𝑆, 𝑡) =
∑
𝑢∈𝑉
(ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, 𝑡))) − Ô𝑌 (𝑆, 𝑡) − |𝑉 | (ln(ℎ) + (𝑘 + 1) ln(𝑅(1))) (8)

where

1
Terms with P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡 ]) = 0 do not affect 𝜎 (𝑆, 𝑡 ) and are ignored.
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Ô𝑌 (𝑆, 𝑡) =
∑
𝑢∈𝑉
(− ln(O(𝑢,𝑌, 𝑡))) +

∑
𝑢′∈𝑆\𝑌

∑
𝑢∈𝑉
(− ln(O(𝑢, {𝑢 ′}, 𝑡)))

−
∑

𝑢′∈𝑌\𝑆

∑
𝑢∈𝑉
(− ln(O(𝑢,𝑌, 𝑡)) + ln(O(𝑢,𝑌 \ {𝑢 ′}, 𝑡))) . (9)

is the modular upper bound of

∑
𝑢∈𝑉 (− ln(O(𝑢, 𝑆, 𝑡))) with parameter 𝑌 ⊆ 𝑉 , ℎ is the minimum

path probability threshold, and 𝑅(1) is the maximum value of the logistic function 𝑅. Note that

to construct 𝜎𝑌 (𝑆, 𝑡), we simply replaced the overexposure term

∑
𝑢∈𝑉 (− ln(O(𝑢, 𝑆, 𝑡))) with its

modular upper bound and added the term |𝑉 | (ln(ℎ) + (𝑘 + 1) ln(𝑅(1))), which is equal to the

minimum value of

∑
𝑢∈𝑉
(ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, 𝑡))) − Ô𝑌 (𝑆, 𝑡), as proved in Appendix F.

We show in Theorem 3 that 𝜎𝑌 (𝑆, 𝑡) is non-negative, non-monotone submodular.

Theorem 3 (Properties of 𝜎𝑌 (𝑆, 𝑡)). The function 𝜎𝑌 (𝑆, 𝑡) for a subset 𝑌 ⊆ 𝑉 and window [0, 𝑡]
is: (I) non-negative, (II) non-monotone, and (III) submodular.

Proof. See Appendix F. □

This implies that 𝜎𝑌 (𝑆, 𝑡) can be approximately maximized by SubSample Greedy [30] (an

overview of SubSample Greedy can be found in Appendix G).

6.3 Operation of 𝐻𝑆𝑆 .
𝐻𝑆𝑆 uses, as a proxy function of the spread function 𝜎 (𝑆, 𝑡), the function 𝜎𝑌 (𝑆, 𝑡) with a suitable

seed-set as parameter 𝑌 . Furthermore, instead of applying SubSample Greedy once with the proxy

function, 𝐻𝑆𝑆 performs an iterative procedure similar to the Sup-Sub procedure [17] (see Appendix
H). Specifically, in each iteration, 𝐻𝑆𝑆 applies Subsample Greedy with a proxy function that has a

different seed-set as parameter 𝑌 . This iterative procedure allows obtaining a solution of larger

spread.

As can be seen from the pseudocode, 𝐻𝑆𝑆 works iteratively. In each iteration 𝑖 , it uses a proxy

function with a parameter that is the seed-set 𝑆𝑖−1 constructed in iteration 𝑖 − 1, with 𝑆0 = {}.
That is, in iteration 𝑖 , SubSample Greedy is applied with the proxy function 𝜎𝑆𝑖−1 (𝑆𝑖 , 𝑡) and finds a

seed-set 𝑆𝑖 . An iteration is performed as long as the relative improvement of the seed-set (with

respect to the proxy function) after an iteration is at least equal to a threshold 𝜙 ≥ 0, specified by

the party that performs the viral marketing campaign (step 7). After the loop in step 7 terminates,

𝐻𝑆𝑆 returns the best seed-set found over all iterations in terms of spread (steps 8 and 9). This is

needed because a seed-set with higher value in the proxy function may not necessarily have a

larger value of spread.

We now provide two observations, O1 and O2, to justify the effectiveness of 𝐻𝑆𝑆 :

(O1) In every iteration, 𝐻𝑆𝑆 approximately maximizes the proxy function in expectation: This is be-
cause, due to the use of Subsample Greedy, the expected valueE[𝜎𝑆𝑖−1 (𝑆𝑖 , 𝑡)], for the seed-set 𝑆𝑖
obtained in iteration 𝑖 > 0, is within

1

e
·(1− 1

e
) of the optimal solution argmax𝑆′⊆𝑉 , |𝑆′ | ≤𝑘 𝜎𝑆𝑖−1 (𝑆 ′, 𝑡).

(O2) An approximately maximum value in the proxy function implies large spread: This is because
𝐻𝑆𝑆 approximately maximizes the proxy function𝜎𝑆𝑖−1 (𝑆𝑖 , 𝑡) (in expectation), which results in
large 𝜎 (𝑆𝑖 , 𝑡) according to Lemma 3 below, since the term in square brackets in the inequality

of the lemma is independent of 𝑆𝑖 and∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

is small (see Section 7).
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Algorithm: HSS (Heuristic for IML based on Sup-Sub)
Input: Set of nodes 𝑉 of 𝐺 , parameter 𝑘 , window [0, 𝑡], minimum allowable relative improvement

threshold 𝜙

Output: Subset 𝑆𝑖 ⊆ 𝑉 of size |𝑆𝑖 | ≤ 𝑘

1 𝑖 ← 0 // Iteration counter

2 𝑆0 ← ∅ // Initialize bound parameter

3 𝑆1 ← 𝑉 // Initialize seed-set in iteration 1

4 do
5 𝑖 ← 𝑖 + 1
6 𝑆𝑖 ← Apply Subsample Greedy to approximately solve argmax𝑆⊆𝑉 , |𝑆 | ≤𝑘 {�𝜎𝑆𝑖−1 (𝑆, 𝑡)}
7 while �𝜎

𝑆𝑖−1 (𝑆𝑖 ,𝑡 )−�𝜎𝑆𝑖−2 (𝑆𝑖−1,𝑡 )�𝜎
𝑆𝑖−2 (𝑆𝑖−1,𝑡 )

≥ 𝜙

8 𝑆 ← seed-set 𝑆 𝑗 ∈ {𝑆0, . . . , 𝑆𝑖 } with maximum 𝜎 (𝑆 𝑗 , 𝑡)
9 return 𝑆

Lemma 3. For any seed-set 𝑆𝑖 and window [0, 𝑡], it holds that

𝜎 (𝑆𝑖 , 𝑡) ≥ 𝜎𝑆𝑖−1 (𝑆𝑖 , 𝑡) + [|𝑉 | (1 + ln(ℎ) + (𝑘 + 1) · ln(𝑅(1)))]

+
∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

,

where 𝑛 is an integer and |𝑉 | is the number of nodes in the graph.

Proof. See Appendix I. □

𝐻𝑆𝑆 performs an extra iteration only when the value of a seed-set in the proxy function becomes

sufficiently larger than the value of the seed-set constructed in the previous iteration (see step 7).

The goal is to construct a seed-set with larger value in the proxy function and hence larger spread,

due to observation O2. The stopping criterion guarantees that 𝐻𝑆𝑆 terminates (since an iteration

is not performed when 𝑆𝑖 has a lower value in the proxy function than 𝑆𝑖−1) [17].
𝐻𝑆𝑆 performs 𝑂 (𝐼 · |𝑉 |) proxy function evaluations, where 𝐼 is the number of iterations (in our

experiments, 𝐼 was at most 4), since Subsample Greedy performs 𝑂 ( |𝑉 |) function evaluations [30].

Recall that the number of function evaluations of𝐴𝑆𝐴 was𝑂 ( |𝑉 | ·𝑘) instead. Each evaluation takes

𝑂 ( |𝑉 |2 · 𝑡) time when computed based on [16] but the bound is pessimistic [16].

7 EXPERIMENTAL EVALUATION
In this section, we first demonstrate that our approach can efficiently produce a good estimate of

the number of attempts performed to activate a node 𝑢 and of its overexposure score. Then, we

show that, unlike our LAICO model, the LAIC model overestimates spread. After that, we evaluate

the effectiveness and efficiency of our 𝐻𝑆𝑆 and 𝐴𝑆𝐴 methods.

7.1 Baselines
Since no existing algorithms can deal with the IML problem (see Section 8), we compared our

methods against three baselines: 𝐺𝑟𝐿𝐴𝐼𝐶 , 𝐷𝑒𝑔, and 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 . 𝐺𝑟𝐿𝐴𝐼𝐶 is the Greedy algorithm with

the spread function 𝜎𝐿𝐴𝐼𝐶 (𝑆, 𝑡) which outperforms the methods and baseline heuristics in [25]

in terms of maximizing spread, as shown in [25]. 𝐷𝑒𝑔 [20] constructs a seed-set comprised of

the 𝑘 nodes with the largest out-degrees in the graph. 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 is the Greedy algorithm with the

non-submodular spread function 𝜎 (𝑆, 𝑡) (see Section 5). The Lazy Greedy (a.k.a CELF) [20, 29]

optimization was used in𝐺𝑟𝐿𝐴𝐼𝐶 , and in the part of𝐴𝑆𝐴where Greedy is applied with the monotone
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submodular bound functions 𝜎L and 𝜎U . Other optimizations are possible for this part too [24].

However, the bottleneck of 𝐴𝑆𝐴 is the part where Greedy is applied with the spread function 𝜎 .

Due to the non-submodularity of this function, this part cannot be optimized with Lazy Greedy or

other methods based on Reverse Influence Sets [39]. The results for 𝐻𝑆𝑆 are averages over 10 runs.

All algorithms were implemented by us in C++.

7.2 Datasets
All algorithms were applied to the real datasets in Table 1, which were used in [9, 16, 25]. 𝑃𝑂𝐿 is

available at http://www-personal.umich.edu/~mejn/ and all other datasets at http://snap.stanford.

edu/data. The probability vector of each edge (𝑢 ′, 𝑢) was set to P𝑢′ · 1

|𝑛− (𝑢) | , where P𝑢′ is a Poisson
distribution with a random mean 𝜆 ∈ [1, 20] as in [16, 25]. The default parameter values were 𝑘 = 5,

window size |𝑊 | = 10, maximum delay threshold 𝛿 = 10, minimum path probability threshold

ℎ = 5 · 10−3, and threshold 𝜙 = 10
−2
. The activation probabilities of nodes were calculated using

the (exact) dynamic programming method of [16].

Dataset |𝑉 | |𝐸 | avg in-degree max in-degree

Pol 1490 19090 11.9 305

WI 7115 103689 13.7 452

PH 34546 421578 24.3 846

EPIN 75879 508837 13.4 3079

Table 1. Characteristics of real datasets.

In addition, we used a synthetic dataset, referred to as 𝑆𝑌𝑁 , to evaluate the accuracy of estimating

the number of attempts 𝑁
𝑆,𝑡
𝑢 to activate a node 𝑢. The 𝑆𝑌𝑁 dataset was comprised of 10000 graphs.

Our objective was to create graphs exhibiting very strong dependencies among in-neighbors, to test

the independence assumption made by our approach. That is, to see how good is the estimate 𝑁
𝑆,𝑡
𝑢

when an in-neighbor of 𝑢 may be activated by other in-neighbors. In the 𝑆𝑌𝑁 dataset, each graph

has the following three layers: (I) the seed layer, comprised of nodes that are selected as seeds, (II)

the in-neighbors layer, comprised of the out-neighbors of seeds, and (III) the destination node layer,
comprised of a node 𝑢 that is the out-neighbor of the nodes in the in-neighbors layer. Also, each

graph has all possible edges: (I) from the seed layer to the in-neighbor layer, (II) between nodes

in the in-neighbor layer, and (III) from the in-neighbor layer to the destination layer. The edge

probability of an edge (𝑢 ′, 𝑢) was set to ( 1

|𝑛− (𝑢) | )
ℓ
, where ℓ was a randomly selected integer in [1, 𝐿]

for each edge between in-neighbors of the destination node and ℓ = 1 for each other edge. The

objective of the parameter 𝐿 is to emulate longer paths between in-neighbors, leading to weaker

dependencies among in-neighbors (and smaller activation probabilities for in-neighbors and for 𝑢).

Unless stated otherwise, the seed layer and the in-neighbors layer is comprised of 10 nodes each,

and the parameter 𝐿 was set to 3.

7.3 Experimental setup
Accuracy of estimating 𝑁 𝑆,𝑡

𝑢 We quantified the accuracy of estimating 𝑁
𝑆,𝑡
𝑢 , for a given graph, by

computing the Relative Error 𝑅𝐸𝑒𝑠𝑡 =
|𝑀𝑆,𝑡

𝑢 −𝑁𝑆,𝑡
𝑢 |

𝑀
𝑆,𝑡
𝑢

%, where𝑀
𝑆,𝑡
𝑢 is the number of activation attempts

to the node 𝑢, computed by Monte Carlo simulation. The simulation is based on the method of [25]

but instead of the activation probability node 𝑢 it records the number of activated in-neighbors of

𝑢 (see Section 3). Each simulation is repeated 20000 times following [25], and the average number

of activated in-neighbors number is used as𝑀
𝑆,𝑡
𝑢 . Clearly, a small 𝑅𝐸𝑒𝑠𝑡 implies that 𝑁

𝑆,𝑡
𝑢 is similar
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to the estimate 𝑀
𝑆,𝑡
𝑢 and, and hence the ratio �̃�

𝑆,𝑡
𝑢 =

𝑁
𝑆,𝑡
𝑢

|𝑛− (𝑢) | is similar to
𝑀

𝑆,𝑡
𝑢

|𝑛− (𝑢) | . We report the

average 𝑅𝐸𝑒𝑠𝑡 score over each graph in 𝑆𝑌𝑁 , referred to as𝐴𝑅𝐸𝑒𝑠𝑡 (Average Relative Error). Clearly

𝐴𝑅𝐸𝑒𝑠𝑡 quantifies the overall accuracy of our method in terms of estimating the number of activated

in-neighbors.

Accuracy of estimating O(𝑢, 𝑆, 𝑡) We quantified the accuracy of estimating the overexposure

score O(𝑢, 𝑆, 𝑡) of a node 𝑢 for a seed-set 𝑆 and window [0, 𝑡], by computing the Relative Error

𝑅𝐸𝑜𝑣 (𝑢, 𝑆, 𝑡) = |O𝑀 (𝑢,𝑆,𝑡 )−O(𝑢,𝑆,𝑡 ) |
O𝑀 (𝑢,𝑆,𝑡 ) , where O𝑀 (𝑢, 𝑆, 𝑡) is the overexposure score computed by Monte

Carlo simulation. That is, O𝑀 (𝑢, 𝑆, 𝑡) differs from O(𝑢, 𝑆, 𝑡) in that the former uses the estimate

𝑀
𝑆,𝑡
𝑢 instead of 𝑁

𝑆,𝑡
𝑢 in the computation of the logistic function 𝑅(); the function 𝑅() we used will

be discussed later. Again, each simulation was repeated 20,000 times. Clearly, a small 𝑅𝐸𝑜𝑣 (𝑢, 𝑆, 𝑡)
implies that O(𝑢, 𝑆, 𝑡) is similar to the estimate O𝑀 (𝑢, 𝑆, 𝑡) obtained by Monte Carlo simulation.

We evaluated 𝑅𝐸𝑜𝑣 using the real datasets. Specifically, for a given node 𝑢 and window [0, 𝑡], we
selected as seed-set 𝑆 a random subset of nodes from which there is at least one path to𝑢 of length 𝑡 .

Clearly, each node 𝑢 may be activated by a node in 𝑆 within [0, 𝑡]. The reason we selected the seed

nodes this way is to generate large activation graphs. Thus, for a node 𝑢, seed-set 𝑆 and window 𝑡 ,

we get a score 𝑅𝐸𝑜𝑣 (𝑢, 𝑆, 𝑡). Then, we repeat the process for different nodes and report the median

𝑅𝐸𝑜𝑣 . This is because the distribution of 𝑅𝐸𝑜𝑣 was skewed, due to the variability of the settings

we considered, and thus the median provided a more robust estimate than the average. The size

|𝑆 | of 𝑆 , the window size |𝑊 | = 𝑡 , and the node 𝑢 were parameters in our evaluation. The default

values were |𝑆 | = 15 and |𝑊 | = 3, and we selected each node 𝑢 with |𝑛− (𝑢) | ∈ [5, 100]. We chose

these default values, so that the Monte Carlo simulation method could terminate in reasonable

time. Note, we did not employ the Monte Carlo method directly into our algorithms for influence

maximization, because it was too computationally inefficient for that use in the tested settings (i.e.,

about four orders of magnitude slower than our method).

Logistic regression function We derived logistic regression functions based on our user study

(see Introduction) that was conducted on Amazon Mechanical Turk. Our sample was comprised

of 476 users, who were given a questionnaire with two images and two videos from recent, viral

marketing campaigns of popular brands (see Appendix J). Table 4 summarizes some important

statistics about our sample.

Gender Percentage

of respondents

Male 54.4%

Female 45.6%

(a)

Primary social Percentage

network of respondents

Facebook 67.0%

Instagram 13.7%

Twitter 12.0%

Other 7.3%

(b)

Number of friends in Percentage

Primary social network of respondents

[2, 100) 29.4%

[100, 250) 26.2%

[250, 500) 20.1%

[500, 10000) 22.5%

(c)

Fig. 4. Summary statistics for our sample: (a) Percentage of male and female respondents. (b) Social network
that is used most often, referred to as Primary social network. (c) Number of friends in the Primary social
network.

After analyzing the results of our user study, we obtained the four logistic functions whose

coefficients are shown in Fig. 1b. Each logistic function corresponds to a different advertisement.

To derive a logistic function for a product advertisement, we asked each user in our sample: “What

percentage of friends telling you to watch this advertisement makes you feel discouraged to buy

the product? For example if you have 100 friends in Facebook and you choose 20%, it means that
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you become discouraged to buy the product when 20 out of 100 of your friends post the picture

below on Facebook.”. Then, we constructed a set of 101 records {𝑟1, . . . , 𝑟101}, for each user. Each

record 𝑟𝑖 , 𝑖 ∈ [1, 101], is a tuple whose first attribute is equal to (𝑖 − 1)/100 and second attribute is

N, if (𝑖 − 1)/100 is less than the percentage selected by the user, and Y, otherwise. For example, if a

user selected 2%, their records will be {(0/100, N), (1/100, N), (2/100, Y), . . . , (100/100, Y)}. Clearly,
N indicates that the user does not feel overexposed, whereas Y indicates that they feel overexposed.

Next, we derived the logistic function for the product by using the R command glm() 2 on the

resultant dataset. The functions were validated using 10-fold cross validation, as well as using the

McFadden and the Nagelkerke pseudo-𝑅2
statistics [27]. As mentioned in Introduction, the logistic

function models the perception of a user’s overexposure as a function of the ratio of attempts to

activate the user, and then it is used to assign an overexposure score to any user (given a seed-set

and window). However, there are other possibilities, which we leave to future work. For example, it

is possible to assign an overexposure score to a user while taking into account the user’s profile. To

do this, one could first partition users into groups (e.g., based on their demographics and/or online

behavior [34]), build a different logistic function for each group, and then assign an overexposure

score to a user using the logistic function that was obtained for the user’s group.

We present results for the logistic function with coefficients 𝛽0 = 1.61977 and 𝛽1 = −5.00491,
which corresponds to Advertisement 1. The results with other logistic functions were similar

(omitted), since the logistic functions are quite similar (see Fig. 1a).

Execution environment All experiments ran on an Intel i7 at 2.8GHz with 16GB RAM.

7.4 Accuracy and efficiency of estimating the number of activation attempts 𝑁 𝑆,𝑡
𝑢

We examined the impact of parameters |𝑛− (𝑢) | (number of nodes in the in-neighbors layer of the

synthetic graphs), |𝑊 | (window size), and 𝐿 (exponent in the edge probability formula for edges

in the in-neighbor layer of the synthetic graphs) to the accuracy and efficiency of obtaining 𝑁
𝑆,𝑡
𝑢 .

Recall that the default values for |𝑛− (𝑢) |, |𝑊 |, and 𝐿 are 10, 10, and 3, respectively.
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Fig. 5. 𝑅𝐸𝑒𝑠𝑡 =
|𝑀𝑆,𝑡

𝑢 −𝑁𝑆,𝑡
𝑢 |

𝑀
𝑆,𝑡
𝑢

for a seed-set 𝑆 of size 10 and for varying (a) |𝑛−𝑢 |, (b) |𝑊 |, and (c) 𝐿.

Fig. 5a shows the 𝐴𝑅𝐸𝑒𝑠𝑡 scores for our method with varying number of in-neighbors |𝑛− (𝑢) |
of 𝑢 (i.e., number of nodes in the in-neighbors layer of the graphs of the 𝑆𝑌𝑁 dataset). The

𝐴𝑅𝐸𝑒𝑠𝑡 increases with |𝑛− (𝑢) |. This is because there are stronger dependencies between the in-

neighbors of 𝑣 when |𝑛− (𝑢) | is large. The reason is that, in the graph of the SYN dataset, all edges

2
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html
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between in-neighbors are present and thus a larger |𝑛− (𝑢) | leads to larger activation probabilities

of in-neighbors. Nevertheless, the 𝐴𝑅𝐸𝑒𝑠𝑡 is very low (average 3.5% and up to 5.5%) even when

|𝑛− (𝑢) | = 25 (i.e., when there are 25 in-neighbors of 𝑣 , each connected to all seeds). Fig. 5b shows

the 𝐴𝑅𝐸𝑒𝑠𝑡 scores for our method with varying |𝑊 |. 𝐴𝑅𝐸𝑒𝑠𝑡 increases with |𝑊 |. This is because
a larger window size leads to stronger dependencies between in-neighbors, since the activation

probabilities of in-neighbors get larger with the window size. Yet,𝐴𝑅𝐸𝑒𝑠𝑡 is again low (average 2.3%

and up to 2.8%). Fig. 5c shows that the 𝐴𝑅𝐸𝑒𝑠𝑡 scores for our method decrease as 𝐿 increases. This

is because a larger 𝐿 leads to weaker dependencies between in-neighbors (and smaller activation

probabilities for in-neighbors). Again, 𝐴𝑅𝐸𝑒𝑠𝑡 was low (average 3.2% and up to 9.0%) in all tested

cases.

Regarding efficiency, we note that our method was at least two orders of magnitude faster than
the Monte Carlo simulation method (see Section 3.1). This is because our method avoids the need

for a large number of costly simulations, being able to directly use the activation probabilities

that are available during spread computation using the dynamic programming method of [16].

Specifically, our method was over 2281, 3184, and 3122 times faster on average in the experiments

of Figs. 5a, 5b, and 5c, respectively.
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Fig. 6. 𝑅𝐸𝑜𝑣 (𝑢, 𝑆, 𝑡) = |O𝑀 (𝑢,𝑆,𝑡 )−O(𝑢,𝑆,𝑡 ) |
O𝑀 (𝑢,𝑆,𝑡 ) for varying (a) |𝑆 |, (b) |𝑛= (𝑢) |, and (c) |𝑊 |.

7.5 Accuracy and efficiency of estimating the overexposure score O(𝑢, 𝑆, 𝑡)
In this section, we show that our Poisson-binomial based estimation method can be used to obtain

similar overexposure scores to those obtained by the Monte Carlo simulation method in several

orders of magnitude less time.

Fig. 6a shows the median 𝑅𝐸𝑜𝑣 scores for our method with varying number of seeds |𝑆 |. The
average score over the values of |𝑆 | was 19.4%, 4.32%, 12.6%, and 16.4% for the Pol, WI, PH, and
EPIN dataset, respectively. The median 𝑅𝐸𝑜𝑣 score was 0 for |𝑆 | = 5 (i.e., our method on average

derived the same overexposure score as that of the Monte Carlo simulation method) and increased

with |𝑆 | by a level that depends on the dataset (very small for the largest dataset EPIN and larger

for the smallest dataset Pol). The difference between the datasets is attributed to their structure (Pol
is denser than EPIN ). Fig. 6b shows the median 𝑅𝐸𝑜𝑣 scores for our method with varying number

of in-neighbors |𝑛− (𝑢) |. The average score over the values of |𝑛− (𝑢) | was 15.3%, 19.5%, 12.0%, and
11.8% for the Pol, WI, PH, and EPIN dataset, respectively. Fig. 6c shows the median 𝑅𝐸𝑜𝑣 scores for

our method with varying window size |𝑊 |. The average score over the values of |𝑊 | was 18.2%,
0.63%, 14.1%, and 16.5% for the Pol, WI, PH, and EPIN dataset, respectively. These results show
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Fig. 7. Time needed for computing O𝑀 (𝑢, 𝑆, 𝑡) by the Monte Carlo simulation method and O(𝑢, 𝑆, 𝑡) by our
Poisson-binomial based estimation method, averaged over all nodes vs (a) |𝑆 |, (b) |𝑛− (𝑢) |, and (c) |𝑊 |, for the
EPIN dataset.

that our method performed consistently close to the Monte Carlo simulation method in terms of

estimating overexposure scores.

Figs. 7a, 7b, and 7c show that our estimation method was four orders of magnitude more efficient

than the Monte Carlo simulation method, for varying |𝑆 |, |𝑛− (𝑢) |, and |𝑊 |, respectively. They also

show that both methods needed more time as |𝑆 | or |𝑊 | increases, since the activation graphs for

the nodes get larger (i.e., there are more paths from 𝑆 to 𝑢).

Overall, the results of Figs. 6 and 7 suggest that, in fact, our estimation method can be used to

obtain similar overexposure scores to those of the Monte Carlo estimation method, while being

substantially more efficient, so that it can be used in our influence maximization algorithms.

7.6 Spread overestimation in the LAIC model
Fig. 8a shows that the spread in the LAIC model for all algorithms was on average 42% and up to

124% higher than the spread in the LAICO model. This suggests that LAIC overestimates spread,

since several nodes have lower activation probabilities in the LAICO model due to overexposure.

7.7 Effectiveness
We demonstrate that 𝐴𝑆𝐴 and 𝐻𝑆𝑆 find solutions with large spread for different parameters. Figs.

8b to 8e show that 𝐴𝑆𝐴 outperforms𝐺𝑟𝐿𝐴𝐼𝐶𝑂 for large 𝑘 values, which is consistent with Theorem

1. They also show that 𝐻𝑆𝑆 performs well, outperforming 𝐷𝑒𝑔 and 𝐺𝑟𝐿𝐴𝐼𝐶 by 84% and 73% on

average, respectively. 𝐻𝑆𝑆 was worse by 15% on average compared to 𝐴𝑆𝐴, which finds a solution

withinM · (1 − 1

e
) ≈ 55% of the optimal, whereM > 0.88 (see Fig. 9a).

𝐻𝑆𝑆 performs well because the proxy function 𝜎𝑆𝑖−1 (𝑆, 𝑡) is approximately equal to 𝜎 (𝑆, 𝑡) −
|𝑉 |, since the Taylor/Maclaurin remainder is small (see Lemma 3). Specifically, the normalized

Taylor/MacLaurin remainder

−∑𝑢∈𝑉
∑∞

𝑛=2
(1−P𝐿𝐴𝐼𝐶 (𝑢,𝑆, [0,𝑡 ]) ·O(𝑢,𝑆,𝑡 ))𝑛

𝑛

𝜎𝑆𝑖−1 (𝑆, 𝑡)
is less than 0.08, as shown in Fig. 9b. Fig. 9c shows that 𝐴𝑆𝐴 and 𝐻𝑆𝑆 outperform 𝐷𝑒𝑔 and 𝐺𝑟𝐿𝐴𝐼𝐶
for different window size values, by at least 74% on average. The spread increases with the window

size, because more paths are explored. Fig. 9d shows that𝐴𝑆𝐴 and𝐻𝑆𝑆 outperform 𝐷𝑒𝑔 and𝐺𝑟𝐿𝐴𝐼𝐶
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Fig. 8. (a) Relative error 𝑅𝐸 =
𝜎𝐿𝐴𝐼𝐶 (𝑆,𝑡 )−𝜎 (𝑆,𝑡 )

𝜎 (𝑆,𝑡 ) % for the seed-set 𝑆 found by each algorithm when 𝑘 = 50. (b)
to (e) Spread 𝜎 (𝑆, 𝑡) for the seed-set 𝑆 found by each algorithm vs seed-set size 𝑘 , for different datasets.

for different mean rate 𝜆, by at least 84% on average. The spread decreases with 𝜆 because the edge

probability vectors have smaller values.

7.8 Efficiency
We demonstrate the runtime of 𝐴𝑆𝐴 and 𝐻𝑆𝑆 with respect to different parameters. 𝐷𝑒𝑔 and𝐺𝑟𝐿𝐴𝐼𝐶
were much faster than 𝐴𝑆𝐴, while the runtime of 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 was very similar to that of 𝐴𝑆𝐴, so the

results of 𝐷𝑒𝑔, 𝐺𝑟𝐿𝐴𝐼𝐶 , and 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 are omitted. Figs. 9e and 10a show that 𝐻𝑆𝑆 is 2 orders of

magnitude faster than 𝐴𝑆𝐴 on average and that 𝐻𝑆𝑆 scales sublinearly with 𝑘 , while 𝐴𝑆𝐴 scales

subquadratically with 𝑘 . This finding is in line with the time-complexity results for 𝐴𝑆𝐴 and 𝐻𝑆𝑆 ,

which show that 𝐴𝑆𝐴 performs more function evaluations than 𝐻𝑆𝑆 (i.e., 𝑂 ( |𝑉 | · 𝑘) vs. 𝑂 ( |𝑉 | · 𝐼 ),
where 𝐼 was at most 4 in our experiments) when 𝑘 is larger. Also, by combining the results in Figs.

9e and 10a with those in Figs. 8c and 8d, which show that 𝐻𝑆𝑆 and 𝐴𝑆𝐴 achieve comparable results

in terms of spread, one can see that 𝐻𝑆𝑆 is a practical method to address the 𝐼𝑀𝐿 problem. Yet,

since 𝐻𝑆𝑆 is a heuristic and 𝐴𝑆𝐴 is more effective than 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 while having a similar runtime,

𝐴𝑆𝐴 is the preferred choice when guarantees for the quality of the solution to the 𝐼𝑀𝐿 problem

are needed.

Fig. 10b shows that 𝐻𝑆𝑆 is 5.2 times faster than 𝐴𝑆𝐴 on average and that both methods scale

sublinearly with the window size |𝑊 |. The runtime of both methods increases with |𝑊 |, because
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Fig. 9. (a) The termM = 𝜎 (𝑆U ,𝑡 )/𝜎U (𝑆U ,𝑡 ) in the approximation ratioM · (1− 1

e
) of 𝐴𝑆𝐴 vs 𝑘 . (b) Normalized

Taylor/MacLaurin remainder, defined as −
∑

𝑢∈𝑉
∑∞

𝑛=2

(1−P𝐿𝐴𝐼𝐶 (𝑢,𝑆,[0,𝑡 ]) ·O(𝑢,𝑆,𝑡 ) )𝑛
𝑛 /�𝜎

𝑆𝑖−1 (𝑆,𝑡 ) (see Lemma 4), vs 𝑘 for
all datasets. Spread 𝜎 (𝑆, 𝑡) vs (c) window size |𝑊 |, and (d) mean rate 𝜆. (e) Runtime vs 𝑘 for the𝑊𝐼 dataset.

the number of nodes that may be activated generally increases as |𝑊 | increases, which in turn

implies that the methods need more time to compute their objective functions (𝜎 for 𝐴𝑆𝐴 and 𝜎 ,

𝜎L and 𝜎U for 𝐼𝑆𝑆). The difference in the runtime of the algorithms is attributed to the fact that

𝐴𝑆𝐴 evaluates the spread function 𝜎 , while 𝐼𝑆𝑆 evaluates the proxy function 𝜎𝑆𝑖−1 , which is much

faster to compute. The reason that the proxy function 𝜎𝑆𝑖−1 is faster to compute, compared to 𝜎 , is

that it is based on the modular upper bound, which is computed efficiently [17] as it is based on

single nodes and a fixed parameter set (see Section 2.1).

Fig. 10c shows that 𝐻𝑆𝑆 is 2.6 times faster than 𝐴𝑆𝐴 on average when 𝜆 varies. The runtime

of both methods decreases when 𝜆 increases, because the edge probabilities become smaller and

thus more paths have path probability lower than ℎ and are pruned. Again, 𝐻𝑆𝑆 is faster than 𝐴𝑆𝐴

because it employs the proxy function 𝜎𝑆𝑖−1 instead of the spread function 𝜎 that is employed in

𝐴𝑆𝐴 and is more expensive to compute.

To sum up, 𝐻𝑆𝑆 is more efficient than 𝐴𝑆𝐴 for three reasons: (I) It selects seeds from a sample of

the graph nodes, which implies that it typically performs a smaller number of function evaluations.

(II) Its proxy function is computed much faster than the spread function used in 𝐴𝑆𝐴, and (III) it

needs at most 4 iterations to terminate. The difference is small for small 𝑘 and/or |𝑊 |, as well as
for large 𝜆. Thus, the benefit of 𝐻𝑆𝑆 is efficiency and that of 𝐴𝑆𝐴 is guaranteed quality, better than

𝐺𝑅𝐿𝐴𝐼𝐶𝑂 , with similar runtime to it.
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Fig. 10. Runtime vs (a) 𝑘 , (b) window size |𝑊 |, and (c) mean rate 𝜆, for the 𝑃𝐻 dataset. Impact of the minimum
path probability threshold ℎ on (d) spread and (e) runtime.

7.9 Impact of ℎ
Figs. 10d and 10e show that the spread for 𝐴𝑆𝐴 and 𝐻𝑆𝑆 decreased by less than 1.8%, when

ℎ ≤ 5 · 10−3 and substantially for larger ℎ values, while the runtime of both methods decreased as ℎ

increased. Similar trends were observed for the other datasets. Thus, setting ℎ = 5 · 10−3 offers a
good effectiveness/efficiency trade-off.

8 RELATEDWORK
Influence diffusion plays a key role in analytics [42, 43]. In the following, we review existing

works focusing on the three issues around influence diffusion that are also considered by our work:

activation probability modeling (Section 8.1), influence maximization (Section 8.2), and negative

aspects of information diffusion (Section 8.3).

8.1 Activation probability modeling
Several works [13, 23, 31, 36] considered the issue of modeling the activation probability of users.

The works of [23] and [31] used past interaction data from a recommendation website and

Twitter, respectively, to study a fundamental question in viral marketing: “What determines the

probability that a user is activated by their friends?”. They found that this probability is determined

by factors including the advertised product, information transmitted through channels that are

external to a social network (e.g., TV and newspapers), and number of received activation attempts

(e.g., product recommendations).
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The works of [13, 31, 36] studied how the activation probability of a user is affected by the number

of activation attempts. In [31, 36], this number is used to model the probability that a Twitter user

will diffuse information they receive. In [13], this number is used to learn an exponential function

that penalizes the activation probability of a node in the IC model.

Our work differs from the works of [13, 23, 31, 36] along three important dimensions. First, it

does not use past user interaction data but an evaluation study of a sample of users, targeted by the

viral marketing campaign. Second, our work derives a logistic function that penalizes the activation

probability of a node in the LAIC model. Third, our work uses the ratio between the estimated and

the maximum possible number of attempts performed to activate a user, which captures empirical

findings related to overexposure in marketing [6] and economics [3].

8.2 Influence maximization
Influence maximization is a key problem in viral marketing that has been studied extensively [24].

Typically, the problem is to select at most 𝑘 users who will influence the largest number of other

users, if they start a diffusion process which proceeds as specified by an influence diffusion model.

Influence diffusion models can be classified into time-unaware models [14, 15, 20], in which

information is diffused until no new node becomes active, and time-aware models [9, 25, 33], in

which information is diffused within a time window. Examples of time-unaware models are the

Independent Cascade (IM) model [14, 20] and the Linear Threshold (LT) model [15]. Examples

of time-aware models are the Independent Cascade with Meeting points (IC-M) model [9] and

the Latency Aware Independent Cascade (LAIC) model [25]. LAICO is a time-aware model that

is based on LAIC. However, LAICO differs from existing time-aware models in that it considers

overexposure and in that its spread function is not submodular, which prevents the use of methods

based on Greedy for influence maximization.

Several algorithms for influence maximization have been proposed [24]. These include heuristics

[10, 11, 13, 25] and approximation algorithms [20, 28, 29, 39]. For example, path-based heuristics

were proposed in [10, 11], an efficient algorithm that uses Reverse Influence Sets [7] to approximate

spread was proposed in [39], and the Sandwich Approximation strategy, which forms the basis

of our 𝐴𝑆𝐴 algorithm, was proposed in [28]. The Sandwich Approximation strategy was also

employed in [44], which considered the collective impact of subsets of the in-neighbors of a node

on its activation probability. Unlike ours, existing algorithms for influence maximization do not

consider overexposure (i.e., the negative impact on the activation probability of a user, as a function

of the ratio of the activation attempts the user receives).

8.3 Negative aspects of information diffusion
While no existing research considers overexposure, there is much research on other negative

aspects of information diffusion. First, we discuss works on influence maximization when some

users are negatively inclined towards the advertised product and do not diffuse information about

it. These works are the most similar to ours among those considered in this section, since they

consider influence maximization. Then, we discuss works beyond influence maximization. The

goal of these works is to block rumors who may negatively impact users when propagated, or to

prevent the influence of users who could be harmed by the diffused information (vulnerable users).
Influencemaximization with negatively inclined users. Two recent works [2, 45] consider an
influence maximization setting, in which some users are negatively inclined towards the advertised

product and will not diffuse information about it when they are activated.

The goal of [2] is to select at most 𝑘 users who will maximize the payoff of an advertised product,

if they start an information diffusion process. The payoff is a sum of terms, each contributed

by a user as follows: users who are informed about the product and are positively (respectively,
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negatively) inclined towards the product contribute a positive (respectively, negative) term, whereas

users who are not informed about the product contribute a zero term. The term of each user, as well

as whether the user will be positively or negatively inclined is decided before the diffusion process

starts. The set of informed users is calculated as follows: Initially, the selected 𝑘 users, who are

informed and positively inclined, inform their out-neighbors. Each out-neighbor is either positively

inclined and informs its own out-neighbors about the product, or it is negatively inclined and does

not inform its own out-neighbors about the product. The process ends when no newly informed

user is positively inclined towards the product. The work of [2] shows interesting NP-hardness

results for the problem but provides no algorithm for it.

The work of [45] is similar to [2] in that it aims to select 𝑘 users who will maximize the payoff,

if they start an information diffusion process, and in that whether a user is positively or negatively

inclined is decided before the diffusion process starts. However, [45] extends the IC model by

assuming that negatively inclined users do not attempt to influence others. Furthermore, [45]

proposes an approximation algorithm for the case where the number of negatively inclined users is

lower than 𝑘 .

We now summarize the main differences between the works of [2, 45] and our work:

• Meaning of “overexposure” : In [2] and [45], the term “overexposure” is used to describe the

negative impact to a business from diffusing information to negatively inclined users (e.g.,

higher-income users who will not purchase or advertise a cheap product [2]). On the contrary,

we use the term “overexposure” as in the marketing literature [3, 19], to describe the negative

impact to users as a result of receiving information about the same product from too large a

fraction of their friends.

• Diffusion model: In [2] and [45], the users must be categorized into positive and negative

inclined, before the diffusion process starts. Also, negatively inclined users do not attempt to

inform their out-neighbors about the product. On the contrary, we do not adopt such a user

categorization, and each influenced user in our model will attempt to influence all its inactive

out-neighbors. Furthermore, the models of [2] and [45] are time-unaware, unlike our model.

• Optimization objective: In [2] and [45], the optimization objective is to maximize the payoff of

the product, whereas in our work the objective is to maximize the spread. Also, the calculation

of payoff is fundamentally different from that of spread.

• Algorithms: In [2], no algorithm to deal with the problem of selecting at most 𝑘 users in a

way that maximizes the payoff is provided
3
. On the contrary, we provide an approximation

algorithm and a heuristic for our problem. The work of [45] provides an algorithm, under the

extended IC model it considers, for when there are fewer than 𝑘 negatively inclined users.

This algorithm is not applicable to our setting, since in our setting the information is diffused

according to the LAICO model and there are no negatively inclined users.

Rumor propagation. Rumor propagation can be minimized by blocking communication between

users [21], which corresponds to edge deletion, or by blocking users’ accounts [41], which corre-

sponds to node deletion. The goal in [21] is to select a subset of 𝑘 edges whose removal minimizes

the spread of a rumor. The authors of [21] proposed two problem formulations differing in the

employed measure of rumor spread and greedy approximation algorithms, for each formulation.

The goal in [41] is to minimize the spread of a rumor, by blocking users’ accounts, while ensuring

that the negative impact on user experience is still acceptable (i.e., other users still receive a useful

service). The impact on user experience is captured by a utility function which takes into account

3
Of note, [2] provides an algorithm for the case in which any number of users can be selected as seeds. This algorithm

solves a fundamentally different problem than our problem, under a different diffusion model. Thus, it is not an alternative

to our algorithms.
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the blocking time. The work of [41] proposed two algorithms to select user accounts to block (nodes

to delete); a greedy algorithm which selects all nodes at once, and a dynamic algorithm which

selects nodes to delete in rounds. These works are orthogonal to ours, as they do not consider

influence maximization or overexposure.

Limiting the activation probability of vulnerable users. The goal in [26] is to limit the acti-

vation probability of users who may be harmed by the diffused information, while preserving the

structure of the graph representing the social network. To achieve this, [26] proposes two methods;

a greedy approximation algorithm and a heuristic. Both methods aim to select a subset of edges to

delete from the graph, while preserving the PageRank of the graph. The work of [26] is orthogonal

to ours, as it does not consider influence maximization or overexposure.

9 CONCLUSION
Overexposure has negatively affected viral marketing campaigns. However, it is not considered

by existing influence diffusion models, which overestimate spread, and it can also have a negative

impact on the quality-of-service of systems [4]. In our work, we propose the LAICO influence

diffusion model that captures overexposure, based on the ratio between the estimated and the

maximum possible number of attempts to activate a user, as well as an approximation algorithm

and a heuristic for influence maximization under LAICO. Our experiments demonstrate that the

approximation algorithm is very effective but inefficient, for large 𝑘 and window size |𝑊 |, while
the heuristic trades-off effectiveness for efficiency and has a sublinear runtime in 𝑘 and in |𝑊 |.
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A RELATION BETWEEN 𝐴𝑆𝐴 AND THE SANDWICH APPROXIMATION (𝑆𝐴) STRATEGY
The 𝑆𝐴 strategy approximates the following problem: Given a non-negative non-submodular function

𝑓 : 2
𝑈 → R≥0, non-negative monotone submodular functions 𝑙𝑓 : 2

𝑈 → R≥0 and 𝑢𝑓 : 2
𝑈 → R≥0 such that

𝑙𝑓 (𝑆) ≤ 𝑓 (𝑆) ≤ 𝑢𝑓 (𝑆) for each subset 𝑆 ⊆ 𝑈 , and a parameter 𝑘 , find a subset 𝑆 of size |𝑆 | ≤ 𝑘 with maximum

𝑓 (𝑆). The 𝑆𝐴 strategy applies Greedy three times: with 𝑓 , to produce a subset 𝑆𝑓 ; with 𝑙𝑓 to produce a subset

𝑆𝑙𝑓 , and with 𝑢𝑓 to produce a subset 𝑆𝑢𝑓
. Then, 𝑆𝐴 returns the subset in {𝑆𝑓 , 𝑆𝑙𝑓 , 𝑆𝑢𝑓

} with the largest value

in 𝑓 .

Thus,𝐴𝑆𝐴 is an adaptation of the 𝑆𝐴 strategy, which uses the non-negative non-submodular spread function

𝜎 (𝑆, 𝑡) as 𝑓 , and the non-negative, monotone submodular functions 𝜎L (𝑆, 𝑡) and 𝜎U (𝑆, 𝑡) as the lower and
upper bound functions 𝑙𝑓 and 𝑢𝑓 , respectively.

B PROOF OF THEOREM 1
We first show that 𝐺𝑟𝐿𝐴𝐼𝐶𝑂 offers the following approximation guarantee:
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𝜎 (𝑆𝐺𝑟 , 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡) ≥

1 − 1

e

1 + 𝑘 ·
((

𝑅 (0)
𝑅 (1)

)
2

− 1
) , (10)

where 𝑆∗
𝐼𝑀𝐿

is the optimal solution of the IML problem, 𝜎 (𝑆𝐺𝑟 , 𝑡) and 𝜎 (𝑆∗𝐼𝑀𝐿
, 𝑡) is the spread of 𝑆𝐺𝑟 and 𝑆

∗
𝐼𝑀𝐿

in the window𝑊 , respectively, e is the base of the natural logarithm, and 𝑅(1) and 𝑅(0) is the minimum and

maximum value of the logistic regression function 𝑅, respectively.

Let 𝑆𝑖 be the subset of nodes found by Greedy in iteration 𝑖 ∈ [1, 𝑘], and 𝑆∗
𝐼𝑀𝐿

be the optimal solution

of the 𝐼𝑀𝐿 problem. Let also 𝜎𝐴 (𝑆𝑖 , 𝑡) =
∑
𝑢∈𝑉1

P(𝑢, 𝑆𝑖 , [0, 𝑡]), where 𝑉1 = {𝑢 ∈ 𝑉 | O(𝑢, 𝑆, 𝑡) = 1}, and
𝜎𝐵′ (𝑆𝑖 , 𝑡) =

∑
𝑢∈𝑉<1

P(𝑢, 𝑆𝑖 , [0, 𝑡]) be a function measuring the spread of nodes with overexposure scores

lower than 1 in the LAIC model, where 𝑉<1 = {𝑢 ∈ 𝑉 | O(𝑢, 𝑆, 𝑡) < 1}.
We observe that:

𝜎𝐴 (𝑆∗𝐼𝑀𝐿, 𝑡) ≤ 𝜎𝐴 (𝑆𝑖 , 𝑡) +
∑

𝑢∈𝑆∗
𝐼𝑀𝐿

[𝜎𝐴 (𝑆𝑖 ∪ 𝑢, 𝑡) − 𝜎𝐴 (𝑆𝑖 , 𝑡)]

≤ 𝜎𝐴 (𝑆𝑖 , 𝑡) + 𝑘 · [𝜎𝐴 (𝑆𝑖+1, 𝑡) − 𝜎𝐴 (𝑆𝑖 , 𝑡)] .

The first inequality follows from the submodularity of 𝜎𝐴 [25] and the second inequality follows from the fact

that 𝑆∗
𝐼𝑀𝐿

has size at most 𝑘 . By reordering the terms of the second inequality, we obtain:

𝜎𝐴 (𝑆𝑖+1, 𝑡) ≥
1

𝑘
· [𝜎𝐴 (𝑆∗𝐼𝑀𝐿, 𝑡) + (𝑘 − 1) · 𝜎𝐴 (𝑆𝑖 , 𝑡)] . (11)

Similarly, by the submodularity of 𝜎𝐵 , the fact that 𝑅(0) ≥ 𝑅(1), and the fact that 𝑆∗
𝐼𝑀𝐿

has size at most 𝑘 ,

we obtain:

𝜎𝐵′ (𝑆∗𝐼𝑀𝐿, 𝑡) ≤ 𝜎𝐵′ (𝑆𝑖 , 𝑡) +
∑

𝑢∈𝑆∗
𝐼𝑀𝐿

[𝜎𝐵′ (𝑆𝑖 ∪ 𝑢, 𝑡) − 𝜎𝐵′ (𝑆𝑖 , 𝑡)]

≤ 𝜎𝐵′ (𝑆𝑖 , 𝑡) +
∑

𝑢∈𝑆∗
𝐼𝑀𝐿

[
𝑅(0)
𝑅(1) · 𝜎𝐵

′ (𝑆𝑖 ∪ 𝑢, 𝑡) − 𝜎𝐵′ (𝑆𝑖 , 𝑡)
]

≤ 𝜎𝐵′ (𝑆𝑖 , 𝑡) + 𝑘 ·
[
𝑅(0)
𝑅(1) · 𝜎𝐵

′ (𝑆𝑖+1, 𝑡) − 𝜎𝐵′ (𝑆𝑖 , 𝑡)
]

By reordering the terms of the third inequality and expressing it using 𝜎𝐵 , based on

𝑅(1) · 𝜎𝐵′ (𝑆, 𝑡) ≤ 𝜎𝐵 (𝑆, 𝑡) ≤ 𝑅(0) · 𝜎𝐵′ (𝑆, 𝑡),
we obtain:

𝜎𝐵 (𝑆𝑖+1, 𝑡) ≥
1

𝑘
·
(
𝑅(1)
𝑅(0)

)
2

· [𝜎𝐵 (𝑆∗𝐼𝑀𝐿, 𝑡) + (𝑘 − 1) · 𝜎𝐵 (𝑆𝑖 , 𝑡)] . (12)

Since 𝜎 (𝑆, 𝑡) = 𝜎𝐴 (𝑆, 𝑡) + 𝜎𝐵 (𝑆, 𝑡), for each 𝑆 ⊆ 𝑉 and 𝑅(1) ≤ 𝑅(0), we obtain the following by adding Eqs.

11 and 12 together:

𝜎 (𝑆𝑖+1, 𝑡) ≥
1

𝑘
· (𝑘 − 1) ·

(
𝑅(1)
𝑅(0)

)
2

· 𝜎 (𝑆𝑖 , 𝑡) +
1

𝑘
·
(
𝑅(1)
𝑅(0)

)
2

· 𝜎 (𝑆∗𝐼𝑀𝐿, 𝑡). (13)

Eq. 13 is of the form 𝑢𝑖+1 = 𝛼 · 𝑢𝑖 + 𝛽 , where 𝛼 = 1

𝑘
· (𝑘 − 1) ·

(
𝑅 (1)
𝑅 (0)

)
2

, 𝛽 = 1

𝑘
·
(
𝑅 (1)
𝑅 (0)

)
2

· 𝜎 (𝑆∗
𝐼𝑀𝐿

, 𝑡) and

𝑢0 = 0. Thus, recursively, we obtain 𝑢𝑖 ≥ 𝛽 · 1−𝛼𝑖

1−𝛼 , which implies

𝜎 (𝑆𝑖 , 𝑡) ≥
1

𝑘
·
(
𝑅(1)
𝑅(0)

)
2

· 𝜎 (𝑆∗𝐼𝑀𝐿, 𝑡) ·

[
1 −

(
1

𝑘
· (𝑘 − 1) ·

(
𝑅 (1)
𝑅 (0)

)
2

)𝑖 ]
1 − 1

𝑘
· (𝑘 − 1) ·

(
𝑅 (1)
𝑅 (0)

)
2

. (14)

Since Greedy performs 𝑘 iterations and Eq. 14 holds for each 𝑖 ∈ [1, 𝑘], we obtain:
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𝜎 (𝑆𝑘 , 𝑡) ≥
1

𝑘
·
(
𝑅(1)
𝑅(0)

)
2

·

[
1 −

(
1

𝑘
· (𝑘 − 1) ·

(
𝑅 (1)
𝑅 (0)

)
2

)𝑘 ]
1 − 1

𝑘
· (𝑘 − 1) ·

(
𝑅 (1)
𝑅 (0)

)
2
· 𝜎 (𝑆∗𝐼𝑀𝐿, 𝑡)

which can be written as:

𝜎 (𝑆𝑘 , 𝑡) ≥
1 −

(
1 − 1

𝑘

)𝑘
·
(
𝑅 (1)
𝑅 (0)

)
2·𝑘

1 + 𝑘 ·
((

𝑅 (0)
𝑅 (1)

)
2

− 1
) · 𝜎 (𝑆∗𝐼𝑀𝐿, 𝑡) . (15)

It can be shown that (1 − 1

𝑚 )
𝑚 ≥ 1

e
· (1 − 1

𝑚 ) holds, for𝑚 ≥ 1, by induction. Thus, Eq. 15 yields:

𝜎 (𝑆𝑘 , 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡) ≥

1 − 1

e
·
(
1 − 1

𝑘

)
·
(
𝑅 (1)
𝑅 (0)

)
2·𝑘

1 + 𝑘 ·
((

𝑅 (0)
𝑅 (1)

)
2

− 1
)

≥
1 − 1

e

1 + 𝑘 ·
((

𝑅 (0)
𝑅 (1)

)
2

− 1
) .

We now use the following inequalities, which hold by definition:

𝜎 (𝑆U , 𝑡) ≥
∑
𝑢∈𝑉
(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(1))

𝜎U (𝑆U , 𝑡) ≤
∑
𝑢∈𝑉
(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(0))

𝜎L (𝑆∗𝐼𝑀𝐿, 𝑡) ≥
∑
𝑢∈𝑉
(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(1))

𝜎 (𝑆∗𝐼𝑀𝐿, 𝑡) ≤
∑
𝑢∈𝑉
(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(0))

to rewrite Eq. 6 as:

𝜎 (𝑆𝐴𝑆𝐴, 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡) ≥ max{

∑
𝑢∈𝑉 (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(1))∑
𝑢∈𝑉 (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(0))

,

∑
𝑢∈𝑉 (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(1))∑
𝑢∈𝑉 (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · 𝑅(0))

} ·
(
1 − 1

e

)
,

which implies

𝜎 (𝑆𝐴𝑆𝐴, 𝑡)
𝜎 (𝑆∗

𝐼𝑀𝐿
, 𝑡) ≥

𝑅(1)
𝑅(0) ·

(
1 − 1

e

)
(16)

The proof follows by dividing Eqs. 16 and 10. □

C PROOF OF LEMMA 1
Let 𝑉 be the set of nodes of the graph 𝐺 , 𝑆 ⊆ 𝑆 ′ ⊆ 𝑉 be subsets of 𝑉 , and 𝑣 be a node in 𝑉 \ 𝑆 ′. Let also
N𝑆,𝑡
𝑢 ⊆ 𝑛− (𝑢), N𝑆′,𝑡

𝑢 ⊆ 𝑛− (𝑢), and N {𝑣 },𝑡𝑢 ⊆ 𝑛− (𝑢) be the set of in-neighbors of 𝑢 that may activate 𝑢 for a

seed-set 𝑆 , 𝑆 ′, and {𝑣}, respectively.

We first show that O(𝑢, 𝑆, 𝑡) is non-increasing, by proving that Eq. 17 holds in each possible case Ia to IIIa

below.

O(𝑢, 𝑆, 𝑡) ≥ O(𝑢, 𝑆 ′, 𝑡) (17)
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Specifically, since 𝑁
𝑆,𝑡
𝑢 ≤ 𝑁

𝑆′,𝑡
𝑢 by definition, where 𝑁

𝑆,𝑡
𝑢 (respectively, 𝑁

𝑆′,𝑡
𝑢 ) is the estimated number of

activation attempts to 𝑢 when the seed-set is 𝑆 (respectively, 𝑆 ′), the cases are as follows:
Case Ia: 1 < 𝑁

𝑆,𝑡
𝑢 ≤ 𝑁

𝑆′,𝑡
𝑢 . In this case, Eq. 17 holds, because O(𝑢, 𝑆, 𝑡) is given by the logistic regression whose

first derivative is negative for 𝛽1 < 0 as in our case.

Case IIa: 𝑁
𝑆,𝑡
𝑢 ≤ 1 < 𝑁

𝑆′,𝑡
𝑢 . In this case, Eq. 17 holds, because O(𝑢, 𝑆, 𝑡) = 1 and O(𝑢, 𝑆 ′, 𝑡) < 1 (since it is given

by the logistic function, whose values cannot exceed 1).

Case IIIa: 𝑁
𝑆,𝑡
𝑢 = 𝑁

𝑆′,𝑡
𝑢 ≤ 1. In this case, Eq. 17 holds, because O(𝑢, 𝑆, 𝑡) = O(𝑢, 𝑆 ′, 𝑡) = 1.

We now show that O(𝑢, 𝑆, 𝑡) is supermodular, by proving that Eq. 18 holds in each possible case Ib to IIIb

below.

O(𝑢, 𝑆 ∪ 𝑣, 𝑡) − O(𝑢, 𝑆, 𝑡) ≤ O(𝑢, 𝑆 ′ ∪ 𝑣, 𝑡) − O(𝑢, 𝑆 ′, 𝑡) (18)

Case Ib: All nodes in N {𝑣 },𝑡𝑢 are contained in N𝑆,𝑡
𝑢 . Thus,

O(𝑢, 𝑆 ∪ 𝑣, 𝑡) − O(𝑢, 𝑆, 𝑡) = 0 ≤ O(𝑢, 𝑆 ′ ∪ 𝑣, 𝑡) − O(𝑢, 𝑆 ′, 𝑡) = 0

since adding 𝑣 into 𝑆 (respectively, 𝑆 ′) results in 𝑁
𝑆∪𝑣,𝑡
𝑢 = 𝑁

𝑆,𝑡
𝑢 (respectively, 𝑁

𝑆′∪𝑣,𝑡
𝑢 = 𝑁

𝑆′,𝑡
𝑢 ).

Case IIb: All nodes in N {𝑣 },𝑡𝑢 are contained in N𝑆′,𝑡
𝑢 and at least one node in N {𝑣 },𝑡𝑢 is not contained in N𝑆,𝑡

𝑢 .

Thus,

O(𝑢, 𝑆 ∪ 𝑣, 𝑡) − O(𝑢, 𝑆, 𝑡) ≤ O(𝑢, 𝑆 ′ ∪ 𝑣, 𝑡) − O(𝑢, 𝑆 ′, 𝑡) = 0

since adding 𝑣 into 𝑆 results in 𝑁
𝑆∪𝑣,𝑡
𝑢 ≥ 𝑁

𝑆,𝑡
𝑢 and O(𝑢, 𝑆, 𝑡) is non-increasing, while adding 𝑣 into 𝑆 ′ results

in 𝑁
𝑆′∪𝑣,𝑡
𝑢 = 𝑁

𝑆′,𝑡
𝑢 .

Case IIIb: At least one node in N {𝑣 },𝑡𝑢 is not contained in N𝑆′,𝑡
𝑢 . Thus,

O(𝑢, 𝑆 ∪ 𝑣, 𝑡) − O(𝑢, 𝑆, 𝑡) ≤ O(𝑢, 𝑆 ′ ∪ 𝑣, 𝑡) − O(𝑢, 𝑆 ′, 𝑡)
since: (i) adding 𝑣 into 𝑆 causes the addition into N𝑆,𝑡

𝑢 of all nodes that are not contained in N𝑆′,𝑡
𝑢 , and all

nodes that are contained in N𝑆′,𝑡
𝑢 \ N𝑆,𝑡

𝑢 , which implies that 𝑁
𝑆∪𝑣,𝑡
𝑢 − 𝑁

𝑆,𝑡
𝑢 ≥ 𝑁

𝑆′∪𝑣,𝑡
𝑢 − 𝑁

𝑆′,𝑡
𝑢 , and (ii) the

function O(𝑢,𝑋 ∪ {𝑣}, 𝑡) −O(𝑢,𝑋, 𝑡) is non-increasing for each node 𝑣 and subset 𝑋 ⊆ 𝑉 (the proof is similar

to the proof that O(𝑢, 𝑆, 𝑡) is non-increasing and is omitted). □

D PROOF OF THEOREM 2
The proof is comprised of two steps. In step (I), we show that

∑
𝑢∈𝑉 ln (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) is a submodular

function. In step (II), we show that

∑
𝑢∈𝑉 (− ln (O(𝑢, 𝑆, 𝑡))) is a submodular function.

Step (I) The function ln (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) is the composition of the natural logarithm function, which is

monotone concave, and of the function P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]), which is monotone submodular, for any seed-set

𝑆 , according to [25]. Thus, ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) is monotone submodular for any seed-set 𝑆 , as a compo-

sition of a monotone concave function and a monotone submodular function [5]. Consequently, the sum∑
𝑢∈𝑉 ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) is a non-negative linear combination of submodular functions (i.e., a weighted

sum of submodular functions, where the weights are non-negative constants) and hence it is a submodular

function [22].

Step (II) We will first consider a helper function
1

−O(𝑢,𝑆,𝑡 ) . The function is a composition of the function
1

𝑥 ,

which is non-increasing convex, and of the function−O(𝑢, 𝑆, 𝑡), which is monotone submodular (sinceO(𝑢, 𝑆, 𝑡)
is non-increasing supermodular according to Lemma 1). Thus, the helper function

1

−O(𝑢,𝑆,𝑡 ) is supermodular,

as a composition of a non-increasing convex function and a monotone submodular function [37]. It can also

be easily shown that the helper function is non-increasing. Therefore, the helper function
1

−O(𝑢,𝑆,𝑡 ) is non-

increasing supermodular, and the function
1

O(𝑢,𝑆,𝑡 ) monotone submodular. We now consider the composition

of the monotone concave function ln(𝑥) and of the monotone submodular function
1

O(𝑢,𝑆,𝑡 ) . The composition
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is the function ln( 1

O(𝑢,𝑆,𝑡 ) ) = − ln(O(𝑢, 𝑆, 𝑡)), which is monotone submodular, as a composition of a monotone

concave function and a monotone submodular function [5]. Consequently, the sum∑
𝑢∈𝑉
(− ln(O(𝑢, 𝑆, 𝑡)))

is a non-negative linear combination of submodular functions and hence it is a submodular function. □.

E PROOF OF LEMMA 2
We prove the lemma by a counterexample, which is similar to Example 3except that the function 𝜎 is used

instead of the spread function 𝜎 .

Consider the graph of Fig. 3a, the window [0, 2], and that the overexposure score of each node 𝑢, for a

seed-set 𝑆 and window [0, 2], was calculated using Eq. 3 with the logistic function
1

1+𝑒−
(
𝛽
0
+𝛽

1
·�̃�𝑆,𝑡

𝑢

) whose

coefficients 𝛽0 = 1.61977 and 𝛽1 = −5.00491 were obtained by a user evaluation study. The function 𝜎 (𝑆, 𝑡) is
not submodular, because for {𝑢1} ⊆ {𝑢1, 𝑢3} and 𝑢2 ∈ {𝑢1, . . . 𝑢7} \ {𝑢1, 𝑢3}, it holds that 𝜎 ({𝑢1} ∪ {𝑢2}, 2) −
𝜎 ({𝑢1}, 2) = −1.88204 < 𝜎 ({𝑢1, 𝑢3} ∪ {𝑢2}, 2) − 𝜎 ({𝑢1, 𝑢3}, 2) = −3.418459 − (−1.88204) = −1.596412. In
addition, 𝜎 is not supermodular, because for {𝑢1} ⊆ {𝑢1, 𝑢2, 𝑢3} and 𝑢4 ∈ {𝑢1, . . . , 𝑢7} \ {𝑢1, 𝑢2, 𝑢3}, it holds
that 𝜎 ({𝑢1} ∪ {𝑢4}, 2) − 𝜎 ({𝑢1}, 2) = 0 > 𝜎 ({𝑢1, 𝑢2, 𝑢3} ∪ {𝑢4}, 2) − 𝜎 ({𝑢1, 𝑢2, 𝑢3}, 2) = −3.418459. □

F PROOF OF THEOREM 3
We prove each of the properties I, II, and III below.

Property I. Recall that

𝜎𝑌 (𝑆, 𝑡) =
∑
𝑢∈𝑉
(ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]))) − Ô𝑌 (𝑆, 𝑡) − |𝑉 | (ln(ℎ) + (𝑘 + 1) ln(𝑅(1))) .

Thus, it suffices to show that |𝑉 | (ln(ℎ) + (𝑘 + 1) ln(𝑅(1))) is the minimum value of∑
𝑢∈𝑉

ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) − Ô𝑌 (𝑆, 𝑡) .

For ease of reference we rewrite

∑
𝑢∈𝑉 ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) − Ô𝑌 (𝑆, 𝑡) using Eq. 9 as follows:∑

𝑢∈𝑉
ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) − Ô𝑌 (𝑆, 𝑡) =

∑
𝑢∈𝑉
(ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) + ln(O(𝑢,𝑌, 𝑡)))

+
∑

𝑢′∈𝑆\𝑌

∑
𝑢∈𝑉

(
ln(O(𝑢, {𝑢 ′}, 𝑡))

)
+

∑
𝑢′∈𝑌\𝑆

∑
𝑢∈𝑉

(
ln(O(𝑢,𝑌 \ {𝑢 ′}, 𝑡)) − ln(O(𝑢,𝑌, 𝑡))

)
(19)

Observe that the minimum value of

∑
𝑢∈𝑉 ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) − Ô𝑌 (𝑆, 𝑡) is obtained when each of the

sums in the right-hand side of Eq. 19 is minimum.

The minimum value of the first sum is∑
𝑢∈𝑉
(ln(ℎ) + · ln (𝑅(1))) = |𝑉 | · (ln(ℎ) + ln (𝑅(1)))

since ln (P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) ≥ ln(ℎ) and ln (O(𝑢,𝑌, 𝑡)) ≥ ln (𝑅(1)). The minimum value of the second sum is

𝑘 · |𝑉 | · ln(𝑅(1)), since |𝑆 \ 𝑌 | ≤ 𝑘 by the way Sup-Sub works and ln (O(𝑢,𝑌, 𝑡))) ≥ ln(𝑅(1)). The minimum

value of the third sum is 0. This is because the function − ln (O(𝑢, 𝑆, 𝑡)) is monotone with respect to 𝑆

(see the proof of Theorem 2), which implies that ln (O(𝑢, 𝑆, 𝑡)) is non-increasing with respect to 𝑆 and that

ln (O(𝑢,𝑌 \ {𝑢 ′}, 𝑡)) − ln (O(𝑢,𝑌, 𝑡)) ≥ 0, since 𝑌 \ {𝑢 ′} ⊆ 𝑌 .

Therefore, the minimum value of the function in Eq. 19 is:

|𝑉 | · (ln(ℎ) + · ln(𝑅(1))) + 𝑘 · |𝑉 | · ln(𝑅(1)) = |𝑉 | · (ln(ℎ) + (𝑘 + 1) · ln(𝑅(1))) .
Property II. We prove this property by a counterexample. Consider the graph of Fig. 3a in the paper, the window

[0, 2], and that the overexposure score of each node 𝑢, for a seed-set 𝑆 and window [0, 2], was calculated
using Eq. 3 with the logistic function

1

1+𝑒−
(
𝛽
0
+𝛽

1
·�̃�𝑆,𝑡

𝑢

) whose coefficients 𝛽0 = 1.61977 and 𝛽1 = −5.00491 were
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obtained by a user evaluation study. Also, consider ℎ = 10
−3

and 𝑘 = 2. The function 𝜎𝑌 (𝑆, 𝑡) is non-monotone,

because for {𝑢1} ⊆ {𝑢1, 𝑢2} and 𝑌 = ∅, it holds that 𝜎𝑌 ({𝑢1}, 2) = 120.1418 > 𝜎𝑌 ({𝑢1, 𝑢2}, 2)) = 117.5391.

Property III. It suffices to show that the term −�O𝑆𝑖−1 (𝑆, 𝑡) of the function 𝜎 (𝑆, 𝑡) is submodular, since the

term

∑
𝑢∈𝑉 ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡])) is submodular (see Theorem 2) and −|𝑉 | (ln(ℎ) + (𝑘 + 1) ln(𝑅(1))) is a non-

negative constant (and hence modular and submodular). By showing this, we have that 𝜎 (𝑆, 𝑡) is submodular

as a weighted sum of submodular functions with non-negative weights [22]. In fact, Ô𝑌 (𝑆, 𝑡) is modular and

hence supermodular (see Section 2.1). This implies that −Ô𝑌 (𝑆, 𝑡) is supermodular. □

G OVERVIEW OF SUBSAMPLE GREEDY
Given a non-negative submodular function 𝑓 : 2

𝑈 → R≥0, and a parameter 𝑘 , Subsample Greedy finds a

subset 𝑆 ⊆ 𝑈 of size |𝑆 | ≤ 𝑘 with E[𝑓 (𝑆)] ≥ 1

e
· (1 − 1

e
) · argmax𝑆′⊆𝑈 : |𝑆′ | ≤𝑘 𝑓 (𝑆 ′), where E[𝑓 (𝑆)] denotes

the expected value of 𝑓 (𝑆). The expected value is computed over every possible 𝑆 constructed by Subsample
Greedy. Subsample Greedy performs 𝑘 iterations. In each iteration, it constructs a uniform random sample of

𝑈 , adds into the sample a dummy element 𝑒 (i.e., an element with marginal gain 𝑓 (𝑋 ∪ {𝑒}) − 𝑓 (𝑋 ) = 0, for

each 𝑋 ⊆ 𝑈 ), and adds into the subset 𝑆 the element with the maximum marginal gain in the sample. The

sample has size
|𝑈 |
𝑘

which must be an integer. If it is not an integer, the minimum number of dummy elements

are added into 𝑈 . After 𝑘 iterations, any dummy elements are removed from the subset 𝑆 , and the subset is

returned. Subsample Greedy performs 𝑂 ( |𝑈 |) evaluations of 𝑓 . Thus, it is more efficient than competitors [8]

which perform 𝑂 ( |𝑈 | · 𝑘) evaluations.

H OVERVIEW OF SUP-SUB
Sup-Sub is an effective heuristic for the following inapproximable problem: Given submodular functions

𝑓 : 2
𝑈 → R and 𝑔 : 2

𝑈 → R, find a subset 𝑆 ⊆ 𝑈 of size |𝑆 | ≤ 𝑘 with maximum 𝑓 (𝑆) − 𝑔(𝑆), where the
objective function 𝑓 − 𝑔 is not necessarily submodular. In [17], the problem was presented in its minimization

form, obtained by swapping 𝑓 with 𝑔. In each iteration 𝑖 , Sup-Sub: (I) constructs a submodular proxy function

𝑓 (𝑆) −�𝑔𝑆𝑖−1 (𝑆) of the function 𝑓 (𝑆) −𝑔(𝑆), where�𝑔𝑆𝑖−1 (𝑆) is the modular upper bound of 𝑔(𝑆) with parameter

the subset 𝑆𝑖−1 constructed in iteration 𝑖 − 1, and (II) finds a subset 𝑆𝑖 ⊆ 𝑈 of size |𝑆𝑖 | ≤ 𝑘 and large or

approximately maximum value in the proxy function using an input algorithm, selected based on the properties

of the proxy function. Sup-Sub stops and returns 𝑆𝑖−1, when 𝑆𝑖 has a smaller value in the proxy function than

that of 𝑆𝑖−1. This stopping criterion guarantees that Sup-Sub terminates.

I PROOF OF LEMMA 3
Before providing the proof of Lemma 3, we prove an auxiliary lemma below.

Lemma 4. For a seed-set 𝑆 and window [0, 𝑡], it holds that

𝜎 (𝑆, 𝑡) = 𝜎 (𝑆, 𝑡) − |𝑉 | −
∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

, (20)

where |𝑉 | is the number of nodes in the graph and 𝑛 is an integer.

Proof. The Taylor series of the function ln(1 − 𝑥), 𝑥 ∈ [−1, 1), centered at 0 (also known as MacLaurin

series) is −∑∞𝑛=1 𝑥𝑛

𝑛 [35]. Thus, ln(1−𝑥) = −∑∞𝑛=1 𝑥𝑛

𝑛 . Therefore, by substituting 1−𝑥 with P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) ·
O(𝑢, 𝑆, 𝑡) ∈ (0, 1] (recall that nodes with P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) = 0 are ignored in the computation of spread),

summing over each node 𝑣 ∈ 𝑉 , we obtain:∑
𝑢∈𝑉

ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡)) = −
∑
𝑢∈𝑉
(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))

−
∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

.

The proof follows from equality∑
𝑢∈𝑉

ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡)) = 𝜎 (𝑆, 𝑡),
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which is easily obtained from Eq. 7, and equality

−
∑
𝑢∈𝑉
(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡)) = 𝜎 (𝑆, 𝑡) − |𝑉 |,

which holds from the definition of spread in the LAICO model. □

We are now ready to provide the proof of Lemma 3.

Proof. For any seed-set 𝑆𝑖 and window [0, 𝑡], it holds that

𝜎 (𝑆𝑖 , 𝑡) = 𝜎 (𝑆𝑖 , 𝑡) + |𝑉 | +
∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

(21)

according to the auxiliary Lemma 4.

Furthermore, the following equations hold:

𝜎 (𝑆𝑖 , 𝑡) =
∑
𝑢∈𝑉

ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆𝑖 , [0, 𝑡])) −
∑
𝑢∈𝑉
(− ln(O(𝑢, 𝑆𝑖 , 𝑡))) ⇒ (22)

𝜎 (𝑆𝑖 , 𝑡) ≥
∑
𝑢∈𝑉

ln(P𝐿𝐴𝐼𝐶 (𝑢, 𝑆𝑖 , [0, 𝑡])) −�O𝑆𝑖−1 (𝑆𝑖 , 𝑡). (23)

Eq. 22 holds by definition and Eq. 23 holds because, from the construction of proxy function, �O𝑆𝑖−1 (𝑆, 𝑡) is
a modular upper bound of

∑
𝑢∈𝑉
(− ln(O(𝑢, 𝑆, 𝑡))). In addition, the following holds from Eqs. 7 and 8:

𝜎 (𝑆𝑖 , 𝑡) ≥�𝜎𝑆𝑖−1 (𝑆, 𝑡) + |𝑉 | (ln(ℎ) + (𝑘 + 1) · ln(𝑅(1))) . (24)

Thus, from Eqs. 21 and 24, we obtain:

𝜎 (𝑆𝑖 , 𝑡) ≥�𝜎𝑆𝑖−1 (𝑆, 𝑡) + [|𝑉 | (1 + ln(ℎ) + (𝑘 + 1) · ln(𝑅(1)))]
+
∑
𝑢∈𝑉

∞∑
𝑛=2

(1 − P𝐿𝐴𝐼𝐶 (𝑢, 𝑆, [0, 𝑡]) · O(𝑢, 𝑆, 𝑡))𝑛
𝑛

.

□

J QUESTIONNAIRE

The questionnaire (in pdf format) that we used in our user evaluation study can be found at:

https://www.dropbox.com/s/upz0f21upxdz6ng/questionnaire.pdf?dl=0. Ethical approval for the study

was obtained by the King’s College Research Ethics Committee. The questionnaire was managed

through QuestionPro.
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