30 research outputs found

    Alamouti OFDM/OQAM systems with time reversal technique

    Full text link
    Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation (OFDM/OQAM) is a multicarrier modulation scheme that can be considered as an alternative to the conventional Orthogonal Frequency Division Multiplexing (OFDM) with Cyclic Prefix (CP) for transmission over multipath fading channels. In this paper, we investigate the combination of the OFDM/OQAM with Alamouti system with Time Reversal (TR) technique. TR can be viewed as a precoding scheme which can be combined with OFDM/OQAM and easily carried out in a Multiple Input Single Output (MISO) context such as Alamouti system. We present the simulation results of the performance of OFDM/OQAM system in SISO case compared with the conventional CP-OFDM system and the performance of the combination Alamouti OFDM/OQAM with TR compared to Alamouti CP-OFDM. The performance is derived by computing the Bit Error Rate (BER) as a function of the transmit signal-to-noise ratio (SNR)

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    A hybrid-structure offset-QAM filter-bank multi-carrier MIMO system

    Get PDF
    Offset quadrature amplitude modulation (OQAM) filter-bank multi-carrier (FBMC), has great potential for boosting the spectral efficiency (SE) and energy efficiency (EE) of future communication systems. This is due to its superior spectral localization, CP-less transmission and relaxed synchronization requirements. Our research focuses on three main OQAM/FBMC research problems: the computational complexity reduction taking equalization into consideration, its integration with multiple-input multiple-output (MIMO) and its high peak-to-average power ratio (PAPR). OQAM/FBMC systems are mainly implemented either using frequency spreading (FS) or polyphase network (PPN) techniques. The PPN technique is generally less complex, but when using frequency domain equalization (FDE) to equalize multipath channel effects at the receiver, there is a computational complexity overhead when using PPN. A novel hybrid-structure OQAM/FBMC MIMO space-frequency block coding (SFBC) system is proposed, to achieve the lowest possible overall complexity in conjunction with FDE at the receiver in frequency selective Rayleigh fading channel. The Alamouti SFBC block coding is performed on the complex-orthogonal signal before OQAM processing, which resolves the problems of intrinsic interference when integrating OQAM/FBMC with MIMO. In better multipath channel conditions with a line-of-sight (LOS) path, a zero-forcing (ZF) time domain equalization (TDE) is exploited to further reduce the computational complexity with comparable performance bit-error-rate (BER). On the other hand, to tackle the high PAPR problem of the OQAM/FBMC system in the uplink, a novel single carrier (SC)-OQAM/FBMC MIMO system is proposed. The system uses DFT-spreading applied to the OQAM modulated signal, along with interleaved subcarrier mapping to significantly reduce the PAPR and enhance the BER performance over Rayleigh fading channels, with relatively low additional computational complexity compared to the original complexity of the FBMC system and compared to other FBMC PAPR reduction techniques.The proposed hybrid-structure system has shown significant BER performance in frequency-selective Rayleigh fading channels compared to OFDM, with significantly lower OOB emissions in addition to the enhanced SE due to the absence of CP. In mild multipath fading channels with a LOS component, the PPN OQAM/FBMC MIMO using TDE has a comparable BER performance with significantly less computational complexity. As for the uplink, the SC-OQAM/FBMC MIMO system significantly reduces the PAPR and enhances the BER performance, with relatively low additional computational complexity

    Filtered OFDM systems, algorithms and performance analysis for 5G and beyond

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) system is a promising waveform for 5G and beyond to enable multi-service system and spectrum efficient network slicing. However, the performance for F-OFDM systems has not been systematically analyzed in literature. In this paper, we first establish a mathematical model for F-OFDM system and derive the conditions to achieve the interference-free one-tap channel equalization. In the practical cases (e.g., insufficient guard interval, asynchronous transmission, etc.), the analytical expressions for inter-symbol-interference (ISI), inter-carrier-interference (ICI) and adjacent-carrier-interference (ACI) are derived, where the last term is considered as one of the key factors for asynchronous transmissions. Based on the framework, an optimal power compensation matrix is derived to make all of the subcarriers having the same ergodic performance. Another key contribution of the paper is that we propose a multi-rate F-OFDM system to enable low complexity low cost communication scenarios such as narrow band Internet of Things (IoT), at the cost of generating inter-subband-interference (ISubBI). Low computational complexity algorithms are proposed to cancel the ISubBI. The result shows that the derived analytical expressions match the simulation results, and the proposed ISubBI cancelation algorithms can significantly save the original F-OFDM complexity (up to 100 times) without significant performance los

    Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing

    Get PDF
    Since its invention, cellular communication has dramatically transformed personal lifes and the evolution of mobile networks is still ongoing. Evergrowing demand for higher data rates has driven development of 3G and 4G systems, but foreseen 5G requirements also address diverse characteristics such as low latency or massive connectivity. It is speculated that the 4G plain cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM) cannot sufficiently fulfill all requirements and hence alternative waveforms have been in-vestigated, where generalized frequency division multiplexing (GFDM) is one popular option. An important aspect for any modern wireless communication system is the application of multi-antenna, i.e. MIMO techiques, as MIMO can deliver gains in terms of capacity, reliability and connectivity. Due to its channel-independent orthogonality, CP-OFDM straightforwardly supports broadband MIMO techniques, as the resulting inter-antenna interference (IAI) can readily be resolved. In this regard, CP-OFDM is unique among multicarrier waveforms. Other waveforms suffer from additional inter-carrier interference (ICI), inter-symbol interference (ISI) or both. This possibly 3-dimensional interference renders an optimal MIMO detection much more complex. In this thesis, weinvestigate how GFDM can support an efficient multiple-input multiple-output (MIMO) operation given its 3-dimensional interference structure. To this end, we first connect the mathematical theory of time-frequency analysis (TFA) with multicarrier waveforms in general, leading to theoretical insights into GFDM. Second, we show that the detection problem can be seen as a detection problem on a large, banded linear model under Gaussian noise. Basing on this observation, we propose methods for applying both space-time code (STC) and spatial multiplexing techniques to GFDM. Subsequently, we propose methods to decode the transmitted signals and numerically and theoretically analyze their performance in terms of complexiy and achieved frame error rate (FER). After showing that GFDM modulation and linear demodulation is a direct application of Gabor expansion and transform, we apply results from TFA to explain singularities of the modulation matrix and derive low-complexity expressions for receiver filters. We derive two linear detection algorithms for STC encoded GFDM signals and we show that their performance is equal to OFDM. In the case of spatial multiplexing, we derive both non-iterative and iterative detection algorithms which base on successive interference cancellation (SIC) and minimum mean squared error (MMSE)-parallel interference cancellation (PIC) detection, respectively. By analyzing the error propagation of the SIC algorithm, we explain its significantly inferior performance compared to OFDM. Using feedback information from the channel decoder, we can eventually show that near-optimal GFDM detection can outperform an optimal OFDM detector by up to 3dB for high SNR regions. We conclude that GFDM, given the obtained results, is not a general-purpose replacement for CP-OFDM, due to higher complexity and varying performance. Instead, we can propose GFDM for scenarios with strong frequency-selectivity and stringent spectral and FER requirements

    Filtered OFDM: an insight into intrinsic in-band interference and filter frequency response selectivity

    Get PDF
    The future mobile networks will face challenges in support of heterogeneous services over a unified physical layer, calling for a waveform with good frequency localization. Filtered orthogonal frequency division multiplexing (f-OFDM), as a representative subband filtered waveform, can be employed to improve the spectrum localization of orthogonal frequency-division multiplexing (OFDM) signal. However, the applied filtering operations will impact the performance in various aspects, especially for narrow subband cases. Unlike existing studies which mainly focus its benefits, this paper investigates two negative consequences inflicted on single subband f-OFDM systems: in-band interference and filter frequency response (FFR) selectivity. The exact-form expression for the in-band interference is derived, and the effect of FFR selectivity is analyzed for both single antenna and multiple antenna cases. The in-band interference-free and nearly-free conditions for f-OFDM systems are studied. A low-complexity blockwise parallel interference cancellation (BwPIC) algorithm and a pre-equalizer are proposed to tackle the two issues caused by the filtering operations, respectively. Numerical results show that narrower subbands suffer more performance degradation compared to wider bands. In addition, the proposed BwPIC algorithm effectively suppresses interference, and pre-equalized f-OFDM (pf-OFDM) considerably outperforms f- OFDM in both single antenna and multi-antenna systems
    corecore