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Abstract

Since its invention, cellular communication has dramatically transformed personal lifes
and the evolution of mobile networks is still ongoing. Evergrowing demand for higher data
rates has driven development of 3G and 4G systems, but foreseen 5G requirements also
address diverse characteristics such as low latency or massive connectivity. It is speculated
that the 4G plain cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM)
cannot sufficiently fulfill all requirements and hence alternative waveforms have been in-
vestigated, where generalized frequency division multiplexing (GFDM) is one popular
option. An important aspect for any modern wireless communication system is the ap-
plication of multi-antenna, i.e. MIMO techiques, as MIMO can deliver gains in terms of
capacity, reliability and connectivity. Due to its channel-independent orthogonality, CP-
OFDM straightforwardly supports broadband MIMO techniques, as the resulting inter-
antenna interference (IAI) can readily be resolved. In this regard, CP-OFDM is unique
among multicarrier waveforms. Other waveforms suffer from additional inter-carrier in-
terference (ICI), inter-symbol interference (ISI) or both. This possibly 3-dimensional in-
terference renders an optimal MIMO detection much more complex. In this thesis, we
investigate how GFDM can support an efficient multiple-input multiple-output (MIMO)
operation given its 3-dimensional interference structure. To this end, we first connect
the mathematical theory of time-frequency analysis (TFA) with multicarrier waveforms
in general, leading to theoretical insights into GFDM. Second, we show that the detec-
tion problem can be seen as a detection problem on a large, banded linear model under
Gaussian noise. Basing on this observation, we propose methods for applying both space-
time code (STC) and spatial multiplexing techniques to GFDM. Subsequently, we propose
methods to decode the transmitted signals and numerically and theoretically analyze their
performance in terms of complexiy and achieved frame error rate (FER). After showing
that GFDM modulation and linear demodulation is a direct application of Gabor expan-
sion and transform, we apply results from TFA to explain singularities of the modulation
matrix and derive low-complexity expressions for receiver filters. We derive two linear de-
tection algorithms for STC encoded GFDM signals and we show that their performance
is equal to OFDM. In the case of spatial multiplexing, we derive both non-iterative and
iterative detection algorithms which base on successive interference cancellation (SIC) and
minimum mean squared error (MMSE)-parallel interference cancellation (PIC) detection,
respectively. By analyzing the error propagation of the SIC algorithm, we explain its sig-
nificantly inferior performance compared to OFDM. Using feedback information from the
channel decoder, we can eventually show that near-optimal GFDM detection can outper-
form an optimal OFDM detector by up to 3dB for high SNR regions. We conclude that
GFDM, given the obtained results, is not a general-purpose replacement for CP-OFDM,
due to higher complexity and varying performance. Instead, we can propose GFDM for
scenarios with strong frequency-selectivity and stringent spectral and FER requirements.

i



Acknowledgement

As I am completing this dissertation, I’m going back over everything I did in my studies.
Here, I’d like to thank Prof. Gerhard Fettweis for growing my fascination for communi-
cations engineering and signal processing already in my undergraduate studies in 2008.
This passion remained over the years and eventually peaked in this dissertation. I thank
Gerhard for offering me a position in the Vodafone Chair at TU Dresden during 2013–
2017, for supervising me over the years and giving valuable feedback during meetings and
seminars. I also thank Prof. Helmut Bölcskei for taking time to review this work as my
second supervisor and providing his valuable feedback.

Special thanks goes to Prof. Luciano Leonel Mendes who gave important initial re-
search impulses and taught me how to efficiently write and revise papers. My publication
record would not have been possible without his professional guidance. Our group leader
Dr. Dan Zhang had always been available for technical exchange, reviews and adminis-
trative questions and deserves my highest gratefulness. Our discussions about stochastic
signal processing, estimation theory and iterative receivers were invaluable and eventually
led to the results presented in Chapter 4, 5 and 6 in this thesis.

Additionally, I want to express my gratitude to Dr. Nicola Michailow and Dr. Ivan
Simões Gaspar for rising my interest to GFDM in the first place during my Diploma the-
sis and for being trustful and valuable colleagues during my Dissertation work. Moreover,
thankfulness goes to my colleagues Ahmad, Albrecht, Ana, Martin, Shahab, Roberto,
Song, Zhitao for interesting discussions, reviewing this thesis and nice lunch breaks.
Kathrin and Sylvia deserve my honest esteem for keeping the chair running and sup-
port in any organizational matters.

Finally, I want to thank my parents for supporting my studies and permanent expres-
sion of believe in me and my skills. My girlfriend Steffi deserves my heartful affection
for supporting me in any situation in life, understanding sometimes stressful times and
together with our daughter Pauline maintaining such important and pleasurable diversion
from work.

Dresden, November 2017 Maximilian Matthé



Contents

1 Introduction 1
1.1 Alternative Waveform Candidates . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 MIMO Wireless Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contribution of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fundamentals 9
2.1 Wireless Communication Systems . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Generic MIMO Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 GFDM Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 GFDM Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 GFDM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Linear GFDM Demodulation . . . . . . . . . . . . . . . . . . . . . 22

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Multicarrier Systems in the Context of Gabor Theory 26
3.1 Time-Frequency Analysis and Gabor Theory . . . . . . . . . . . . . . . . . 26

3.1.1 The Continuous-Time Case . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 The Finite Discrete-Time Case . . . . . . . . . . . . . . . . . . . . 30

3.2 Multicarrier Systems and Gabor Theory . . . . . . . . . . . . . . . . . . . 32
3.3 GDFM in a Gabor Transform Setting . . . . . . . . . . . . . . . . . . . . . 35
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Transmit Diversity Techniques for GFDM 40
4.1 The Alamouti Space Time Block Code . . . . . . . . . . . . . . . . . . . . 41
4.2 The Alamouti STBC for GFDM . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Time-Reversal Space-Time Coding for GFDM . . . . . . . . . . . . 44
4.2.2 Widely Linear Equalization for Space-Time Coded GFDM . . . . . 45
4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



Contents iv

5 Non-Iterative Detection for Spatially Multiplexed GFDM 52
5.1 The Linear Model as a Lattice Transform . . . . . . . . . . . . . . . . . . . 54
5.2 Successive Interference Cancellation for GFDM . . . . . . . . . . . . . . . 58

5.2.1 Basic Algorithm Description . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Overcoming Error Propagation . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Iterative Detection for Spatially Multiplexed GFDM 68
6.1 Iterative MIMO Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Iterative MMSE-PIC Detection for MIMO-GFDM . . . . . . . . . . . . . . 69

6.2.1 CWCU LMMSE Estimation . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 SISO LMMSE Demapping . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Factorization of the channel matrix . . . . . . . . . . . . . . . . . . 72
6.2.4 Low-Complexity Approximation . . . . . . . . . . . . . . . . . . . . 76

6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Approximation accuracy . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 MMSE-PIC demapper information transfer . . . . . . . . . . . . . . 82
6.3.3 Channel decoder information transfer . . . . . . . . . . . . . . . . . 82
6.3.4 Decoding performance of different channel codes . . . . . . . . . . . 83
6.3.5 Convergence behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.6 Power delay profile and subcarrier allocation . . . . . . . . . . . . . 85
6.3.7 Performance with different MCS . . . . . . . . . . . . . . . . . . . . 86
6.3.8 Achieving the ML detection performance . . . . . . . . . . . . . . . 88

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 GFDM - A promising waveform? 90

8 Conclusions and Future works 94
8.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Open Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendix A Proofs 99
A.1 Derivation of Widely Linear Estimator for STC-GFDM . . . . . . . . . . . 99
A.2 Uncoded Symbol Error Rate of TRSTC . . . . . . . . . . . . . . . . . . . . 100
A.3 Proof of (6.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Figures

1.1 Comparison of OOB emission of 5G candidate waveforms. . . . . . . . . . 4

2.1 Generic system model of a wireless point-to-point communications system . 9
2.2 Temporal autocorrelation of a single Rayleigh tap. . . . . . . . . . . . . . . 12
2.3 Separation of the outer receiver into a demapper and decoder block. . . . . 15
2.4 GFDM Block structure overview. . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Block structure of type I and II GFDM configurations. . . . . . . . . . . . 19
2.6 GFDM modulation matrix in time and frequency domain. . . . . . . . . . 21
2.7 Performance comparison of linear GFDM receivers. . . . . . . . . . . . . . 25

3.1 Example of STFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Time and frequency response of biorthogonal filters. . . . . . . . . . . . . . 35
3.3 Effect of even and odd M and different rolloff factors on DZT and SER. . . 38

4.1 Example of a flat-fading system exploiting transmit diversity. . . . . . . . . 41
4.2 Sample equivalent channel illustration. . . . . . . . . . . . . . . . . . . . . 47
4.3 Simulated performance for TRSTC GFDM. The overhead due to CP for

GFDM and OFDM is considered in the Eb/N0 calculation. . . . . . . . . . 49
4.4 Simulated performance for widely linear MMSE equalization for STC-GFDM. 50

5.1 Comparison of GFDM and OFDM channel structure. . . . . . . . . . . . . 53
5.2 Simulation of minimum distance of OFDM, SC-FDMA and GFDM. . . . . 57
5.3 Example of dmin for OFDM and GFDM. . . . . . . . . . . . . . . . . . . . 58
5.4 Example R after QR decomposition. . . . . . . . . . . . . . . . . . . . . . 59
5.5 Detection algorithm from [MGZF15]. The subscripts S, S̄, : denote the last

S, all but the last S, and all elements of the subscripted object, respectively. 60
5.6 Soft-SIC demapping algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 K-best demapping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Uncoded and coded performance of the proposed SIC algorithm. . . . . . . 63
5.9 Histograms of distance difference for GFDM and OFDM. . . . . . . . . . . 64
5.10 Histograms of LLR at demapper output at Eb/N0 = 15dB in Channel 1. . . 65
5.11 FER comparison for the proposed demappers in Channel 1. . . . . . . . . . 66

6.1 Schematic representation of an iterative receiver. . . . . . . . . . . . . . . . 69
6.2 Interference structure of data in frequency domain. . . . . . . . . . . . . . 72
6.3 Factorized equation system in the noiseless case. . . . . . . . . . . . . . . . 73

v



List of Figures vi

6.4 Block diagram of the 3-step MMSE estimation process. . . . . . . . . . . . 75
6.5 Frame structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 Information transfer characteristics for GFDM. . . . . . . . . . . . . . . . 81
6.7 Coded FER performance of GFDM. . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Information transfer chart of the SISO demapper. . . . . . . . . . . . . . . 83
6.9 Performance of CC and LDPC channel codes. . . . . . . . . . . . . . . . . 84
6.10 Convergence behaviour of GFDM and OFDM. . . . . . . . . . . . . . . . . 85
6.11 FER performance for 64QAM modulation, code rate r = 3/4 and α = 1 for

EVA and ETU block fading channels. . . . . . . . . . . . . . . . . . . . . . 86
6.12 Performance of MMSE-PIC iterative receiver with different MCS. . . . . . 87
6.13 ML lower bound for the GFDM and OFDM. . . . . . . . . . . . . . . . . . 88



List of Tables

2.1 Power delay profiles of ETU and EVA channels. . . . . . . . . . . . . . . . 11
2.2 Relation of OFDM and GFDM Type I, Type II parameters. . . . . . . . . 19

4.1 Simulation parameters for space-time coding simulations. . . . . . . . . . . 49

5.1 System parameters used for the simulation. . . . . . . . . . . . . . . . . . . 63

6.1 Algorithm description of the Conjugate Gradient Method. . . . . . . . . . 78
6.2 GFDM and OFDM configuration used in the simulation. . . . . . . . . . . 80

vii



List of Abbreviations

3GPP 3rd generation partnership project
4G 4th generation
5G 5th generation
AD analog to digital
AWGN additive white Gaussian noise
BCJR Bahl-Cocke-Jelinek-Raviv
BFDM bi-orthogonal frequency division multiplexing
BLT Balian-Low theorem
CC convolutional code
CFO carrier frequency offset
CGD conjugate gradient
CIR channel impulse response
CP-OFDM cyclic-prefix orthogonal frequency division multiplexing
CP cyclic prefix
CR cognitive radio
CSI channel state information
CWCU component-wise conditionally unbiased
DA digital to analog
DFT discrete Fourier transform
DTFT discrete-time Fourier transform
DZT discrete Zak transform
ETU Extended typical urban
EVA Extended vehicular A
EXIT extrinsic information transfer
F-OFDM filtered OFDM
FBMC/FMT filter-bank multicarrier filtered multitone
FBMC/OQAM filter-bank multicarrier offset-QAM
FBMC filter-bank multicarrier
FCC Federal Communications Commission
FDMA frequency division multiple access
FEC forward error correction
FER frame error rate
FFT fast Fourier transform
FMT filtered multitone
FTN faster-than-Nyquist
FT Fourier transform

viii



List of Abbreviations ix

GFDM generalized frequency division multiplexing
HARQ hybrid automatic repeat request
IAI inter-antenna interference
IBI inter-block interference
ICI inter-carrier interference
IDFT inverse discrete Fourier transform
ISI inter-symbol interference
LDPC low-density parity check
LLR log-likelihood ratio
LMMSE linear minimum mean squared error
LR lattice reduction
LTE Long Term Evolution
M2M machine to machine
MAP maximum a-posteriori
MCS modulation and coding scheme
MF matched filter
MIMO multiple-input multiple-output
ML maximum likelihood
MMSE-PIC minimum mean squared error with parallel interference

cancellation
MMSE minimum mean squared error
MRC maximum ratio combining
MSE mean squared error
NEF noise enhancement factor
NLOS non-line of sight
NR new radio
OFDMA orthogonal frequency division multiple access
OFDM orthogonal frequency division multiplexing
OOB out-of-band
OQAM offset-QAM
P-OFDM pulse-shaped OFDM
PAPR peak-to-average power ratio
PDF probability density function
PDP power delay profile
PHY physical layer
PIC parallel interference cancellation
PRB physical resource block
QAM Quadrature amplitude modulation
RC raised cosine



List of Abbreviations x

RF radio frequency
RRC root raised cosine
RSCC recursive systematic CC
SC-FDMA single-carrier frequency division multiple access
SD sphere decoder
SER symbol error rate
SFC space-frequency code
SIC successive interference cancellation
SISO soft-in soft-out
SMR specialized mobile radio
SM spatial multiplexing
SNR signal to noise ratio
SPA sum product algorithm
STBC space-time block code
STC space-time code
STFT short-time Fourier transform
STO symbol timing offset
TDL tapped delay line
TFA time-frequency analysis
TR-STC time-reversal STC
TTI transmission time interval
UF-OFDM universal filtered OFDM
URLLC ultra-reliable low-latency communications
W-OFDM windowed OFDM
WCP-COQAM windowed CP offset-QAM
WH Weyl-Heisenberg
WLAN wireless local area network
WLE widely linear estimation
WOLA weighted overlap-and-add
ZF zero-forcing
ZT Zak transform
eMBB enhanced mobile broadband
mMIMO massive MIMO
mMTC massive machine-type communication



Mathematical Notation

Operators and Functions

‖ · ‖2 Euclidean Norm
(·)T Matrix transpose
(·)H Matrix conjugate transpose
(·)−1 Matrix inverse
E[·] Expectation operator
〈a, b〉 Standard scalar product in L2
〈x〉N argument x modulo N
◦ Hadamard product (elementwise product)
� Elementwise division
⊗ Kronecker product

(·)◦−1 Elementwise inversion
DFTN(·) N-point discrete Fourier transform
IDFTN(·) N-point inverse discrete Fourier transform

sinc(x) Sinc-function, sinc(x) = sin(πx)/(πx)

δ[n] Discrete delta function
δjk Kronecker delta symbol

M(~b) Bit-Mapping function to map bits to constellation symbols

xi



Mathematical Notation xii

Mathematical Symbols

B Binary set, {0, 1}
R Set of real numbers
C Set of complex numbers
Z Set of integers

`2(X ) Set of square-summable sequences indexed by the set X
S Set of constellation symbols
C Set of possible codewords

NT Number of transmit antennas
NR Number of receive antennas
M Number of GFDM subsymbols
K Number of subcarriers
N Number of samples per block
µ Number of bits per QAM symbol
~b Payload bits
~bc Encoded bits
~d Data vector of constellation points

x[n], ~x Transmit signal (time-domain)
y[n], ~y Received signal (time-domain)

n Discrete time domain index
ν Discrete frequency domain index
t Continuous time coordinate
f Continuous frequency coordinate
Fs Baseband sampling frequency
TS (Sub)symbol duration
fD Doppler spread
fc Carrier frequency
~w Additive white Gaussian noise vector

H Channel coefficient matrix in ~y = H~d+ ~w

FN Unitary N-point DFT matrix
λpi,b LLR of bth bit in ith constellation symbol



Chapter 1

Introduction

The advancement of wireless and in particular cellular communication systems has a
tremendous impact on both personal daily life and global economy. While the 2nd gener-
ation of cellular communication networks brought instant, mobile communication to the
people, 4th generation (4G) networks allow ubiquitous internet access, social media and
on-demand video streaming.

As the development of cellular communication advances, new use cases are being dis-
cussed for the 5th generation (5G) of cellular communications [NGM15]. Most obvious,
mobile broadband applications will remain to play a central role in future mobile net-
works. 5G enhanced mobile broadband (eMBB) aims to support additional features like
augmented or virtual reality and inter-user interaction which will increase the required
data rate beyond current capacities. Further envisioned use cases for 5G include massive
machine-type communication (mMTC), where a massive number of low-cost devices is
connected to the network, which require sporadic traffic with low energy consumption
[ZBC+14]. Applications include smart wearables such as sensors within clothes or sensor
networks measuring traffic or environmental conditions in many places in urban or rural
areas. The Tactile Internet [SAD+16, Fet14] enables seamless control of remote objects
due to ultra-low latency of the communication link. Moreover, ultra-reliable low-latency
communications (URLLC) facilitates applications such as automated traffic control and
driving, cloud-controlled robot networks or remote surgery [Eri17].

The diverse applications of the envisioned 5G cellular network require a massive rework
of all system aspects, such as operations and management facilities, network structure and
radio air interface [NGM15]. In this thesis, we will focus on the constitutional basis of the
radio air interface: the physical layer (PHY) of the cellular communications system.

The foundation of any PHY implementation is the choice of the waveform which is
used to convey messages over the air. While in 2G systems a narrow-band single-carrier
system was used [Rah93], 3G employed a wideband CDMA technique [Ric00a]. 4G systems
have employed the multicarrier system cyclic-prefix orthogonal frequency division multi-
plexing (CP-OFDM)1 in combination with frequency division multiple access (FDMA)
for the downlink from the base station to the terminal and the single-carrier frequency
1 In this work, when referring to OFDM, we implicitely assume the cyclic-prefix aided OFDM waveform
which is used by LTE and WiFi.

1



1.1 Alternative Waveform Candidates 2

division multiple access (SC-FDMA) waveform for the uplink in the opposite direction
[WZR+16]. Dominated by the need for higher data rates, the choice of the 4G wave-
forms was led by the flexible orthogonal frequency division multiple access (OFDMA)
scheme and a straightforward applicability of multi-antenna technologies to achieve un-
precedented spectral efficiencies [JKL+17]. Moreover, both SC-FDMA and OFDMA offer
a low-complexity implementation by means of efficient fast Fourier transform (FFT) op-
erations [Bin90].

With the envisioning of 5G use cases it became evident that the plain 4G CP-OFDM
system cannot provide the flexibility that is required by upcoming applications [BBC+14].
Its constraint on strict synchronization depends upon bulky synchronization schemes,
which creates a severe overhead for sporadic, energy-efficient traffic [WJK+14]. Its in-
herently high out-of-band (OOB) emission requires large guard bands between adjacent
channels, which reduces spectral efficiency and inhibits a heterogenouos signal structure
within a single transmission band [FB11]. High peak-to-average power ratio (PAPR) as
a general problem of multicarrier waveforms inhibits energy-efficient power amplifiers,
which gave rise to the usage of SC-FDMA in the 4G uplink. In this context, research on
5G waveform improvements arose, aiming to overcome the limitations of plain OFDM.

1.1 Alternative Waveform Candidates

The research on alternative multicarrier techniques led to two different paths in the jour-
ney towards the 5G waveform. On the one side, attempts to keep the 4G PHY mainly
unchanged and to apply techniques on top of OFDM to mitigate the above mentioned
drawbacks are mainly pursued by industrial research. In this regard, frame structure,
pilot pattern and synchronization sequence design can be reused from the proven 4G
PHY. OOB supression for OFDM can be achieved by filtering the OFDM waveform on
a subband basis and was proposed by Nokia and Huawei in the form of universal filtered
OFDM (UF-OFDM) [SW14, VWS+13] and filtered OFDM (F-OFDM) [AJM15, ZJC+15],
respectively. Furthermore, windowed OFDM (W-OFDM) [AKR16] was proposed as a
more flexible method for filtering the OFDM signal on a subcarrier basis. Eventually,
pulse-shaped OFDM (P-OFDM) [ZSW+15] as a generalization of W-OFDM was pro-
posed to further exploit a tradeoff between controllable inter-symbol interference (ISI)
and spectral confinement. The problem of high PAPR for OFDM, which is a problem for
multicarrier waveforms in general, is addressed by numerous techniques which are gen-
erally applicable to multicarrier waveforms, see e.g. [HL05]. Moreover, the requirement
for strict synchronization for OFDM is relaxed by the reduced OOB emission, such that
frequency-adjacent, independent systems do not interfer each other and hence can run
asynchronously.

The alternative path, which is more closely followed by academia, is to examine wave-
forms, which are not necessarily limited to the orthogonal techniques used in 4G. Hence,
the fundamental limitations of OFDM can be circumvented by completely new designs
rather than outmaneuvering them with advanced signal processing on top of OFDM.
In general, new waveforms give up the channel independent orthogonality (cf. Sec. 3.2)
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or even orthogonality in general, and hence introduce self-interference at the receiver
side. Even though self-interference at first seems to have a negative impact on the error
performance, in the upcoming chapters we will reveal that self-interference can actually
be harnessed. As OFDM alternatives, waveforms such as filter-bank multicarrier offset-
QAM (FBMC/OQAM) [Bel10, CPN14], windowed CP offset-QAM (WCP-COQAM)
[LS14], filtered multitone (FMT) [CEÖ02, AFB11], bi-orthogonal frequency division mul-
tiplexing (BFDM) [KWJM14] and generalized frequency division multiplexing (GFDM)
[MMG+14] are under investigation in the context of foreseen 5G requirements. Gener-
ally, all mentioned multicarrier waveforms apply subcarrier-based filtering to reduce OOB
emissions at the cost of either self-interference or rate-reduction2. The group of linearly
filtered waveforms, i.e. BFDM, filter-bank multicarrier (FBMC) and FMT achieve un-
precedentedly low levels of OOB emissions at the cost of long filter tails that are not
suitable for low-latency transmissions [SWC14]. On the other hand, circularly filtered
waveforms such as WCP-COQAM and GFDM generally need additional means for OOB
reduction such as windowing [MMGF14], but result in a block-structured transmission
which is more suitable for low-latency transmissions. Moreover, inserting a CP between
the blocks isolates adjacent blocks, which can then be processed separately at the receiver,
facilitating frequency-domain processing.

In the literature, numerous studies on the link-level performance of both OFDM-
derived waveforms and OFDM-alternatives are available. For example, even though all
waveforms clearly outperform OFDM in terms of lower OOB emission (see Fig. 1.1 from
[ZMMF17]), large differences between the obtained OOB levels exist. However, depending
on the actual application, different levels of OOB emission are acceptable and henceforth,
reducing OOB emission below a certain threshold, possibly at the cost of other perfor-
mance metrics, does not yield benefits. Hence, diverse results on the waveform perfor-
mance are obtained in literature, depending on the specific application requirements. For
example, in [BBC+14] P. Banelli et. al compared spectral efficiency of FBMC, OFDM
and SC-FDMA and conclude no clear winner, instead they argue the optimal waveform
depends on the actual application scenario. Moreover, in [LLJ+15] several waveform can-
didates are conceptually compared regarding suitable applications. With the broad re-
quirements of 5G use cases, it is widely accepted that a single waveform parametrization
will not be able to jointly fulfill all foreseen requirements and several waveforms have their
niches. Hence, flexibility of the PHY is considered a key factor for a successful 5G PHY
implementation [SZÖ+17].

Eventually, as the 5G standardization progressed for early 5G standards, the 3rd
generation partnership project (3GPP) consortium [3GP17] defined the waveform to be
a relative to OFDM, such as F-OFDM or UF-OFDM [Nag17] but leaves freedom to the
vendors, how it is actually implemented. The standard solely requires the waveform to
obey a given spectral mask, without defining how this spectrum is achieved. The reasons
for eventually relying on OFDM-relatives instead of employing a completely new waveform
are numerous. Early 5G standard releases aim to mainly keep the Long Term Evolution
2 Subband filtering for OFDM also implies ISI or rate reduction due to extended cyclic prefix (CP) lengths
or overlapping filter tails.
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Figure 1.1: Comparison of OOB emission of 5G candidate waveforms at a sampling frequency of
23.04MHz split into 1536 subcarriers, i.e. subcarrier spacing equals 15kHz. F-OFDM and UF-OFDM
use a subband that consists of 12 subcarriers, and filters as proposed in [ZJC+15, SWC14]. GFDM em-
ploys 15 subsymbols, raised cosine filtering and windowing as in [MMG+14]. FBMC uses the PHYDYAS
filter [Bel10] of length 4 · 1536 samples. Data taken from [ZMMF17]

(LTE) frame structure, with only a scaled numerology for different applications [GWT+17,
VZV+16]. Here, subband filtered OFDM-relatives offer the necessary seperation between
the channels for different applications. The effort required for designing a completely new
frame structure when using a disruptive waveform were not considered worth the marginal
gains of alternative waveforms and OFDM-relatives are simply considered “good-enough”.
Nevertheless, research on OFDM alternatives is important, given that current solutions
are merely workarounds for the problems of OFDM. Moreover, theoretical and practical
insights gained while researching non-orthogonal waveforms with their inherent ICI can
be fed back to OFDM improvement under e.g. non-ideal conditions such as high mobility
scenarios.

1.2 MIMO Wireless Techniques

A crucial aspect for any modulation technique is the application of multi-antenna tech-
nologies, which are also known as multiple-input multiple-output (MIMO) techniques,
since the resulting wireless channel has multiple inputs (i.e. transmit antennas) and mul-
tiple outputs (i.e. receive antennas). Through the use of multiple antennas at the trans-
mitter and/or the receiver, significant improvements in terms of link reliability, cover-
age or spectral efficiency can be achieved compared to single-antenna systems (see e.g.
[TV05, YH15]). This compelling property makes MIMO play a central role in both today’s
cellular (e.g. LTE) and wireless local area network (WLAN) (e.g. IEEE 802.11n [IEE09])
communication systems. Undoubtedly, 5G will adopt and build upon MIMO techniques
for its air interface due to the massive gains compared to single-antenna systems [NGM15].
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Here, we want to emphasize two specific gains that are achievable by traditional MIMO
transmission, which are described as follows [TV05]. Additional gains stemming from
MIMO architectures include array gain [OPF12] and multi-user gain [SKS+16].

Diversity Gain. Wireless techniques obtaining diversity gains transmit the same in-
formation over multiple fading links. By means of independent fading, it becomes more
unlikely that all links are in a deep fade, eventually improving the robustness of the
transmission. We can distinguish between three types of diversity: temporal diversity, fre-
quency diversity and spatial diversity. Temporal diversity and frequency diversity exploits
temporal and spectral variations of the wireless channel due to movement and multipath
propagation. Both techniques are applicable to both single- and multi-antenna systems,
but transmitting the same information over two time- or frequency resources reduces the
gross data rate. Thus, based on the assumption that the wireless channels between differ-
ent transmit and receive antenna pairs experience independent fading, spatial diversity is
an additional dimension of diversity in MIMO systems, which does not reduce data rate
compared to single-antenna systems. Whereas exploiting diversity with multiple receive
antennas is rather trivial [CGE03], more advanced methods were developed to obtain
transmit antenna diversity, where the Alamouti space-time code (STC) [Ala98] is one
popular example.

Multiplexing Gain. Instead of transmitting the same information over several different
transmit antennas, using MIMO techniques it is possible to send independent messages
over each transmit antenna. Hence, the data rate is increased compared to a single an-
tenna system without increasing the required bandwidth. This technique is called spatial
multiplexing (SM) and the so-called SM gain grows linearly with the minimum of number
of transmit and receive antennas [TV05]. Therefore, an increased number of antennas
is one of the main reasons for the ever-increasing data rates of modern wireless sys-
tems, such as WiFi and LTE, which already nowadays propose to use 8 transmit and
receive antennas [Pen15]. Moreover, the proposal of massive MIMO (mMIMO) systems
[LMLS14, FMFM14] further increases the number of antennas at the base stations to
combine SM gains with beamforming gains to support multiple users at different spatial
locations. Consequently, it is no surprise, that discussions about upcoming 5G systems
will heavily rely on SM techniques to further boost the achievable data rate.

1.3 Contribution of this Work

While the research on alternatives to OFDM for 5G applications has brought important
results regarding spectral efficiency, complexity, spectral properties, few results on the im-
portant aspect of MIMO detection for these waveforms are available. However, to consider
a waveform to be a serious contestant to OFDM, it is essential to prove its applicability
in MIMO systems. Whereas applying MIMO techniques to OFDM derivatives such as
(U)F-OFDM is straight-forward [ZMMF17], the self-interference of non-orthogonal alter-
natives rises problems due to interference resolution and algorithm complexity [ZMMF16].
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The goal of this thesis is to design, analyze and optimize algorithms for MIMO detection
for non-orthogonal waveforms, where we choose GFDM as a role model for waveforms
with subcarierrer-localized interference3. To this end, we identify the problems that arise
from self-interference for state-of-the-art MIMO detection and propose solutions to over-
come and beneficially exploit this interference. In particular, we propose both linear and
non-linear MIMO detection algorithms for MIMO-GFDM aiming for both diversity and
multiplexing gains. We analyze the proposed algorithms in terms of detection perfor-
mance, arithmetic complexity and parallelizability for hardware implementation. As a
benchmark, we compare the obtained results with state-of-the-art detection algorithms
for MIMO-OFDM systems, as they are used in modern communication systems. In more
detail, the sequel of this work is structured as follows:

Chapter 2 introduces the necessary fundamentals. After presenting a generic wireless
transceiver model, we outline the model of the Rayleigh fading multipath channel which
is employed throughout the thesis. Subsequently, we recap the fundamentals of soft-out
MIMO detection and detail the soft QAM demapping operation. Chapter 2 concludes
with a description of the single-antenna GFDM system and summarizes the error rate
performance of linear GFDM receivers.

Before we dive into the details of MIMO detection for GFDM, Chapter 3 relates generic
multicarrier systems to the mathematical theory of time-frequency analysis. We describe
the relation between the Gabor expansion/transform pair and linear GFDM transmit-
ter/receiver operations and identify the GFDM modulation as a critically sampled Gabor
expansion. From this observation, we obtain theoretical properties and low-complexity
implementation formulations for GFDM as direct consequences of the underlying Gabor
transform structure of GFDM.

In Chapter 4 we present two techniques for GFDM for achieving transmit diversity in
a MIMO system. After introducing the basic Alamouti space-time block code, we point
out the problems that arise for the application to the non-orthogonal GFDM system. Sub-
sequently, we propose both time-reversal space-time coding and widely linear equalization
for GFDM to overcome these problems and to obtain the desired transmit diversity. We
conclude this chapter with simulated error rate performance of both proposals.

Chapter 5 and 6 focus on the problem of detecting spatially multiplexed GFDM signals
with iterative and non-iterative receivers, respectively. After understanding the MIMO
detection as a search for the closest point in a lattice, we present an analysis of the
minimum distance of OFDM and GFDM in Chapter 5. We show that GFDM achieves
a larger minimum distance for uncoded transmission, indicating a larger capacity for
GFDM modulated signals. We propose a receiver algorithm for MIMO-GFDM which is
based on successive interference cancellation (SIC), that significantly outperforms OFDM
with uncoded transmission, and in addition we analyze reasons why it performs poorly
with coded transmissions. Based on these observations, in Chapter 6 we analyze the per-
formance of MMSE with parallel interference cancellation (MMSE-PIC) iterative MIMO
detection for GFDM and propose low-complexity approximations that achieve feasible
3 Other OFDM alternative waveforms also focus on low OOB and hence their subcarriers do not overlap
a lot, meaning they all have subcarrier-localized interference.



1.4 Prior Work 7

complexity with superior error performance compared to OFDM. Moreover, we compare
the effect of low-density parity checks (LDPCs) and convolutional codes (CCs) on the
detection performance and find out that CCs are more suitable for the detection problem
at hand.

The short chapter 6 is dedicated to discussing the applicability of GFDM to real-
world problems. We highlight problems of commonly used OFDM systems and explain,
how GFDM can be more suitable for particular use cases. Finally, the achievements of this
work are summarized in Chapter 8 and important remaining challenges for MIMO-GFDM
detection are discussed.

1.4 Prior Work

Despite GFDM being a relatively recent topic4, its research has gained traction in other
research groups. In parallel to the results presented in this work regarding MIMO detec-
tion for GFDM, advances have been achieved and published on other aspects of GFDM.
For example the modeling of symbolic expressions for error rates were studied in e.g.
[Bru13, BDM15, YGR16]. There, closed form expressions or approximation for linear re-
ceivers in multipath or time-variant channels are presented and verified. The reduction of
complexity at the transmitter side and for linear receivers was in the focus of the works in
e.g. [FMD15b, CSH17, WXXL16], that mainly exploit the modulation matrix structure
which bases on the underlying Gabor structure of GFDM. The authors proposed solutions
whose complexities are only slightly higher than that of OFDM, making the implemen-
tation feasible on today’s hardware. Regarding the detection for MIMO-GFDM systems,
few results outside of the author’s research group are available in the literature. A rudi-
mentary possibility to perform linear detection for spatially multiplexed MIMO-GFDM
was conceptually proposed in [FBM15], though no performance evaluation was presented.
In [TWD+15], the authors compared different 5G waveform candidates under large-scale
MIMO systems employing linear receivers. Though, the criterion for the detection was
different between the waveforms, making the comparison unfair. In their work, GFDM
performed poorly compared to a plain OFDM system. The authors in [ÖBÇ17] employed
GFDM in the context of a relatively new MIMO technique called spatial modulation
[RHG11]. There, the authors showed a potential for GFDM to be used in future wireless
networks, though only uncoded performance comparison was conducted and hence the
results are not too trustworthy. Besides the mentioned works, no considerable work on
MIMO-GFDM is available in literature.

1.5 Notation

Z,R,C denote the set of integers, real and complex numbers and XN describes N-
dimensional tuples of elements of the set X . B is the set of of binary digits, i.e. B = {0, 1}.
L2(R) denotes the space of square integrable functions defined on the real line. `2(X ) cor-
4 The first mentioning was in [FKB09]
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responds to the set of square-integrable sequences defined on the set X and [`2(X )]N is
the set of N-dimensional tuples of elements of `2(X ).

Matrices and vectors are denoted in boldface and with an arrow on top, as in X, ~x. The
transpose and hermitian transpose operation are denoted by XT ,XH , respectively. The
N×N identity matrix is written as IN , where we omit the index if it can be read from the
context. ~ei is the ith column of the identity matrix. The Kronecker and Hadamard product
are denoted by ⊗ and ◦, respectively and � denotes elementwise vector or matrix division.
The matrix vectorization operation is denoted as vec(X) which stacks the columns of X

on top of each other. Moreover, 〈x〉N denotes the remainer of x divided by N .
√

X,
√
~x

denote the element-wise square root of the matrix of vector X, ~x, respectively.
Moreover δij denotes the Kronecker delta symbol and δ(t) denotes the Dirac delta

distribution. ~1N and ~0N denote the length N vectors of all ones or zeros, respectively.
The unitary Fourier transform for x ∈ L2(R) and its inverse are defined as

X(f) =

∫

R
x(t) exp(−j2πft)dt x(t) =

∫

R
X(f) exp(j2πft)df. (1.1)

The discrete Fourier transform of a sequence x[n], n = 0, . . . , N − 1 and its inverse oper-
ation are given by

X[f ] = DFTN{x[n]} =
N−1∑

n=0

x[n] exp

(
−j2πnf

N

)
(1.2)

x[n] = IDFTN{X[f ]} =
1

N

N−1∑

f=0

X[f ] exp

(
j2π

nf

N

)
. (1.3)

The unitary N-dimensional Fourier transform matrix FN is given by

FN = ( 1√
N
wlk)l=0,...,N−1,k=0,...,N−1 with w = exp(−j2π/N)

and fulfills FNFH
N = FH

NFN = IN . Moreover, circ(~x) returns the circulant matrix with ~x
being its first column.



Chapter 2

Fundamentals

Before we can dive into the techniques to make MIMO transmission accessible to GFDM,
we need to address relevant fundamental principles that evolve around wireless commu-
nications and GFDM. In this chapter, we introduce the general notation for a wireless
communication system and describe the considered wireless channel model from which we
derive the fundamental linear signal model that is used throughout this work. Moreover
we introduce the generic building blocks of a MIMO detector. Eventually, we describe the
GFDM system in detail and relate its configuration parameters to the well-known OFDM
configuration.

2.1 Wireless Communication Systems

ENC Modulation
DAC
RF

~b ∈ BrL
~bc ∈ BL ~d ∈ CL/µ ~x[n] ∈ [`2(Z)]NT

..
.

RF
ADC

Synchronization,
Channel Estimation

Demapping
Decoding..

.

~y[n] ∈ [`2(Z)]NR

~̂b ∈ CrL

CSI (H, σ2)

Inner Receiver Outer Receiver

Figure 2.1: Generic system model of a wireless point-to-point communications system

Fig. 2.1 shows a generic system model of a MIMO wireless point-to-point communi-
cation systems with NT transmit and NR receive antennas. A message ~b ∈ BrL consisting
of rL bits is encoded with a channel encoder (ENC) with code rate r to yield a codeword
~bc ∈ BL of length L. We assume that potenial interleaving is already contained within the
encoding operation. The codeword is separated into bit groups of length µ and each group
is mapped to a complex value from the discrete constellation set S consisting of 2µ constel-
lation symbols. In this work, we consider J -QAM modulation with J = 2µ. We assume

9
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the resulting constellation points ~d = ~M(~bc) ∈ CL/µ to be uncorrelated and of unit energy,
i.e. E[~d~dH ] = I. Here, ~M(~bc) describes the mapping from bits to constellation symbols.
Throughout this thesis, we assume Gray mapping [Pro95]. In the subsequent modulator,
for each transmit antenna a complex-valued baseband transmit signal ~x[n] ∈ [`2(Z)]NT

is then formed from the complex Quadrature amplitude modulation (QAM) symbols ~d.
Eventually, the baseband signal from each transmit antenna is transformed to an analog
signal, upconverted to the carrier frequency and transmitted over the wireless channel.

At the receiver side, the signal at each receive antenna is first downconverted, sampled
and quantized to yield the digital received baseband signal, where we assume ideal quanti-
zation and no sampling jitter. In the inner receiver synchronization and channel estimation
is performed, i.e. the inner receiver compensates time and frequency offset and forwards
the signal ~y[n] ∈ [`2(Z)]NR together with the estimated channel state information (CSI)
to the following outer receiver.

The outer receiver uses the baseband signal ~y[n] ∈ [`2(Z)]NR and estimated CSI to

yield an estimate ~̂b ∈ CrL of the transmitted message. Eventually, the estimated message
~̂b should match the transmitted message ~b to yield a correct detection.

2.2 Wireless Channel

Time-variant impulse response. Once the complex baseband signal is transformed
to analog domain and upconverted to the carrier frequency to yield

~x(t) = (x0(t), x1(t), . . . , xNT−1(t))T ,

it is sent via the transmit antennas over the air, where xi(t) denotes the signal from the
ith transmit antenna. The signal propagates through the wireless channel and is distorted
according to the channel characteristics. Eventually, the radio frequency (RF) signal

~y(t) = (y0(t), y1(t), . . . , yNR−1(t))T

at the receive antennas is downconverted and discretized to yield the digital baseband
signal. With a good approximation, the wireless channel between any pair of transmit
antenna it and receive antenna ir can be generally considered a linear system Hirit with
additional additive white Gaussian noise (AWGN) due to thermal noise in the devices
[TV05]. The signal yir(t) at the irth receive antenna then is the superposition of the
transmit signals from all transmit antennas, given by

yir(t) =

NT−1∑

it=0

(Hiritxit)(t) + wir(t) (2.1)

=

NT−1∑

it=0

∫ ∞

−∞
h′irit(t, τ)xit(t− τ)dτ + wir(t), (2.2)

where h′irit(t, τ) denotes the time-variant impulse response of the channel from the itth
transmit to the irth receive antenna and wir(t) denotes AWGN at the irth receive antenna.
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Table 2.1: Power delay profiles of ETU and EVA channels. The dB values for the taps are relative to
the strongest path in each channel.

EVA Channel

l 0 1 2 3 4 5 6 7 8

τl [ns] 0 30 150 310 370 710 1090 1730 2510
σ2
l [dB] 0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9

ETU Channel

l 0 1 2 3 4 5 6 7 8

τl [ns] 0 50 120 200 230 500 1600 2300 5000
σ2
l [dB] -1.0 -1.0 -1.0 0 0 0 -3.0 -5.0 -7.0

Here, we have omitted rigorous mathematical derivations, as the channel model is not the
focus of this thesis. A more detailed description, including the proof that (2.2) can model
any linear channel, is given in e.g. [MBH13].

Rayleigh multipath fading. In this thesis, we particularly focus on the important
model of the uncorrelated Rayleigh fading multipath channel. This model arises in a rich-
scattering non-line of sight (NLOS) environment which is typical for e.g. urban areas
[SA05]. In particular, we model the time-variant impulse response between any pair of
transmit and receive antennas as a tapped delay line (TDL) by

h′irit(t, τ) =

NL−1∑

l=0

al,irit(t)δ(τ − τl,irit(t)), (2.3)

where NL denotes the number of paths in the multipath channel, al,irit(t) is a stationary
proper complex Gaussian random process describing amplitude and phase of the reflection
from the lth path and τl,irit(t) denotes the delay of the lth path at time t. Further, we
assume the delays τl,irit(t) to be constant for all times and antenna pairs [SA05] and the
scatterers are uncorrelated, i.e.

E[al,irit(t)al′,i′ri′t(t
′)] = rl,irit(t− t′)δll′δiti′tδiri′r ,

with δjk denoting the Kronecker delta. rl,irit(t− t′) describes the temporal correlation of
the reflection coefficient on the lth path, which is given by

rl,irit(∆t) = σ2
l,iritJ0(2π∆tfD) (2.4)

for Rayleigh fading [TV05]. Here, σ2
l,irit

is the average power of the lth path and J0(x) is
the 0th order Bessel function of the first kind [BS08]. Further, fD = v

c
fc is the maximum

Doppler spread due to the relative speed v between transmitter and receiver and fc is the
carrier frequency. c ≈ 3 · 108ms−2 denotes the wave propagation speed, which equals the
speed of light in the medium.
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Figure 2.2: Example of temporal autocorrelation of a single tap in a Rayleigh multipath fading channel.
The carrier frequency is set to fc = 3GHz.

Power delay profile (PDP). We assume that σ2
l,irit

is independent of the antenna
pair ir, it, and hence σ2

l = σ2
l,irit

. Then, the set P = {(σ2
l , τl)}l=0,...,L−1 describes the power

delay profile (PDP) of the channel, i.e. it characterizes all available paths by their delay
and average power. In common channel models, such as the 3GPP Extended typical urban
(ETU) and Extended vehicular A (EVA) channels, the PDP is the main characteristic of
a wireless channel. As an example, Tab. 2.1 shows the PDP of the 3GPP ETU and EVA
channels. Depending on the number of paths in the PDP, different multipath diversity
can be harvested in the channel. This multipath diversity directly translates to diversity
in the frequency domain, hence longer channels exhibit a larger potential for frequency
diversity.

Block fading. Figure 2.2 illustrates the temporal autocorrelation of al,irit(t) depending
on the relative velocity between transmitter and receiver according to (2.4). As can be
seen, for pedestrian movement of 6km/h, the channel can be considered almost constant
over at least 2ms. For higher velocities, the channel changes more rapidly, such that for
v = 100km/h the tap coefficients are completely uncorrelated after already ∆t ≈ 1.4ms.

The term block-fading amounts to a channel that changes signifantly slower than the
signal duration of one code word (a block). In this case, the channel can be considered
as a linear time-invariant system and can be approximated by h′irit(t, τ) ≈ h′irit(τ). Then,
the channel input-output relation (2.2) simplifies to

yir(t) =

NT−1∑

it=0

∫ ∞

−∞
h′irit(τ)xit(t− τ)dτ =

NT−1∑

it=0

(hirit ∗ xit)(t). (2.5)

Equivalent baseband discrete-time channel. Assuming ideal, linear RF devices in
transmitter and receiver with no phase noise, IQ imbalance, DC offset etc., the effect of
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analog to digital (AD) and digital to analog (DA) conversion and up/down-conversion can
be incorporated into the channel impulse response to yield the overall impulse response
hirit(t, τ). Assuming the baseband sampling frequency equals Fs and the combined impulse
response of AD and DA converters equals u(t) = sinc(Fst) = sin(πFst)

πFst
[TV05], we have

hirit(t, τ) =

∫ ∞

−∞
u(τ ′)h′irit(t, τ − τ ′)dτ ′ =

NL−1∑

l=0

al,irit(t)sinc(τ − τl). (2.6)

Then, the equivalent baseband channel impulse response can be modeled by

hirit [n, n
′] = hirit(t, τ)|

t= n
Fs
,τ= n′

Fs

=
L−1∑

l=0

al,irit

(
n

Fs

)
sinc

(
n′

Fs
− τl

)
, (2.7)

and the overall digital baseband relation from all transmit signals ~x[n] to all received
signal ~y[n] becomes linear with additional AWGN, given by

~y[n] =
∑

n′∈Z

H[n, n′]~x[n− n′] + ~w[n], (2.8)

where H[n, n′] = (hir,it [n, n
′])ir=0,...,NR−1,it=0,...,NT−1 ∈ CNR×NT is the overall discrete

MIMO channel matrix. Note that if Fsτl ∈ Z, (2.7) simplifies to

hirit [n, n
′] =

L−1∑

l=0

al,irit

(
n

Fs

)
δ[n′ − Fsτl], (2.9)

i.e. each reflecting path is mapped to a single coefficient in the discrete baseband model.
Throughout this thesis, we have assumed this property to hold, by rounding Fsτl to the
nearest integer.

Generic linear baseband model. Let us assume that the information for a given
message is contained only in a continuous subset of N samples of y[n]1. In this case, we
can extract a finite part y ∈ CNR×N from ~y[n] by y = (~y[n])n=0,...N−1 to process as a
single block to estimate the transmitted message. Then, starting from the linear model
(2.8) and assuming a linear modulation, i.e. ~x[n] depends linearly on ~d, we eventually
reach the central linear system model

vec(yT ) = ~y = H~d+ ~w (2.10)

which will be used throughout this thesis. Here, H ∈ CNRN×L/µ is the equivalent chan-
nel matrix that jointly describes the transmit signal modulation, upconversion, wireless
channel effects and downconversion and can be directly obtained from (2.8). We want to
emphasize that (2.10) does not exclusively describe MIMO systems but any linear rela-
tion between transmitted data symbols and a received signal is covered. In particular, for
non-orthogonal systems where interference cannot be removed by a unitary linear filter,
H can become of considerable size.
1 We assume non-interleaved, i.e. continuous transmission here. If symbol interleaving is used, the model
still holds by increasing the considered signal length.
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Relation to flat-fading MIMO channel. Commonly, in the literature, another linear
MIMO model according to

~y[k] = C[k]~d[k] + w[k] (2.11)

is assumed, where C[k] ∈ CNR×NT and k is a symbol index. In particular, this model holds
for a flat-fading channel, where H in (2.10) consists of NR × NT diagonal blocks of size
N×N , which can be permuted to (2.11). For CP-OFDM we can obtain (2.11) from (2.10)
under the assumption of multipath block-fading with sufficient CP length and k denotes
the subcarrier index. Then, (2.10) can be unitarily transformed to (2.11), by noting that

~Y = (INR
⊗ FN)~y = (INR

⊗ FN)H~d+ (INR
⊗ FN)~w

becomes a system of NR × NT diagonal blocks of size N × N and the noise statistics
remain equal.2

2.3 Generic MIMO Receiver

Given the signal model for the received signal ~y

~y = H~d+ ~w, (2.12)

the task of the receiver is to estimate the transmitted message ~b, or equivalently ~bc, from
~y. The optimal estimate b̂c,ML in the maximum a-posteriori (MAP) sense is given by3

b̂c,MAP = argmax
~bc∈C

Pr(~bc|~y,H), (2.13)

where C ⊂ BL denotes the set of all possible codewords and Pr(~bc|~y,H) denotes the
probability that the message was ~bc given the observations H and ~y. By using Bayes
theorem[BS08] this can be reformulated to

b̂c,MAP = argmax
~bc∈C

Pr(~y|~bc,H)
Pr(~bc)

Pr(~y)
. (2.14)

Under the common assumption that all codewords~bc are equally likely and hence Pr(~bc) =
1
|C| , the MAP criterion reduces to the maximum likelihood (ML) criterion given by

b̂c,ML = argmax
~bc∈C

Pr(~y|~bc,H), (2.15)

which is a criterion commonly applied by optimal MIMO detectors. In case ~w is AWGN,
the ML criterion reduces to the minimization of the Euclidean distance [BC12] by

b̂c,ML = argmin
~bc∈C
‖~y −H~d‖2 = argmin

~bc∈C
‖~y −H ~M(~bc)‖2. (2.16)

2 Note that the inverse discrete Fourier transform (IDFT) at the CP-OFDM transmitter is already con-
tained in H in the obeyed notation, i.e. H = H̃(INT

⊗ FH
N ) where H̃ contains NR ×NT circulant blocks

of size N ×N
3 Here, optimum refers to minimizing the expected codeword error rate after detection.
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Demapper Decoder

~λpD
~λaC

~λpC
~̂b

~y

H, σ2

~λaD
Feedback iterations

Outer receiver

Figure 2.3: Separation of the outer receiver into a demapper and decoder block. The demapper trans-
forms the received signal into LLRs for each bit, considering only the constellation constraint. Subse-
quently, the decoder improves the estimate by including the code constraint into the detection process.
Eventually, the demapper can use the information from the decoder via a feedback loop, yielding an iter-
ative receiver structure. Note that this generic diagram does not consider the difference between extrinsic
and intrinsic information and assumes that these are calculated within the demapper and decoder blocks.

Implied by the fact that longer codewords in general yield better receiver performance
[RL09], C does not allow exhaustive search as in (2.16) since |C| grows exponentially with
the code word length. Hence, alternative solutions must be pursued and approximations
are inevitable.

Constellation and code constraint. In particular, the outer receiver has the knowl-
edge that the transmitted signal ~x = H~d obeys two constraints: First, the transmitted
constellation symbols ~d are a discrete subset of CL/µ, hence only discrete values for ~d
are admissable. This constraint is termed constellation constraint. Second, only bit com-
binations that are valid codewords can be transmitted, further reducing the amount of
possible ~d. We term this second constraint the code constraint. Treating each constraint
separately, the operation in the outer receiver is commonly split into two steps, which are
performed by the demapper and decoder blocks, respectively, as is outlined in Fig. 2.3.

The demapper. The demapper ignores the code constraint and exclusively considers
the constellation constraint of the transmitted signal. Therefore, it considers the model

~y = H~d+ ~w (2.17)

to yield an estimate of the transmitted QAM symbols, or equivalently it estimates the
probability for each element in ~bc to be 0 or 1. The information λpi,b describes the prob-
ability of the bth bit of the ith element of ~d is conveniently expressed in terms of the
log-likelihood ratio (LLR) and given by

λpi,b = log

(
Pr(bi,b = 1|~y,H)

Pr(bi,b = 0|~y,H)

)
, (2.18)

where the superscript (·)p denotes a-posterori information, i.e. information gained from
the demapping operation. Using Bayes’s theorem [BS08], we can write (2.18) as

λpi,b = log



∑

~d∈D(1)
i,b

p(~y|~d,H)P (~d)


− log



∑

~d∈D(0)
i,b

p(~y|~d,H)P (~d)


 , (2.19)
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where D(1)
i,b ,D

(0)
i,b are the sets of all constellation vectors ~d where the bth bit of the ith

symbols is 1 or 0, respectively. p(~y|~d,H) denotes the probability density function (PDF)
of ~y conditioned on the transmitted data and channel observation and is a Gaussian PDF
centered at H~d with covariance matrix σ2I. P (~d) contains a-priori information about the
probability of each constellation vector. This information can for example be obtained
from decdor feedback in an iterative receiver structure (cf. Sec. 6). Alternatively, a uniform
distribution of ~d is assumed.

The channel decoder. In a second step, the channel decoder combines the constraint
implied by the channel code with the information gathered from the demapper to yield
an improved estimate of the transmitted codeword. Depending on the type of applied
channel code, different decoding algorithms exist, such as Viterbi or Bahl-Cocke-Jelinek-
Raviv (BCJR) decoding for convolutional codes (CCs) or the sum product algorithm
(SPA) for low-density parity check (LDPC) channel codes [RL09]. The design of channel
decoding algorithm is an important field in communication research, but beyond the scope
of this work. Instead, we adopt available channel decoders from the literature (see e.g.
[RL09]).

Linear Soft-out MIMO demapping. An important class soft-out demappers are
linear demappers that perform a linear equalization of ~y expressed by the matrix W to
get the estimate d̂ given by

d̂ = W~y = WH~d+ W~w (2.20)

= ∆~d+ (WH−∆)~d+ W~w︸ ︷︷ ︸
w̃

, (2.21)

where ∆ = diag(WH). The equalizer W can e.g. be defined by the linear minimum
mean squared error (LMMSE) or zero-forcing (ZF) criterion [Kay93] such that WH is
(approximately) diagonal. The residual term (WH−∆)~d amounts to self-interference after
the equalization and the noise term W~w becomes colored, if W is not unitary. When W is
a full-rank matrix, (2.20) is a sufficient statistic for (2.17), hence d̂ and ~y contain the same
information about ~d. However, the suboptimality of linear receivers arises from modeling
the error terms w̃i, w̃j on two different elements i, j of d̂ as uncorrelated Gaussian random
variables with zero mean. In this case the noise correlation is ignored which leads to a
loss of information. On the other hand, then (2.20) reduces to decoupled scalar equations

d̂i = ∆i,idi + w̃i for i = 0, . . . , L/µ, (2.22)

with

(σ2
w̃i

)i=0,...,L/q = diag(E[w̃w̃H ]) = diag((WH−∆)(WH−∆)H + σ2I) (2.23)

modeling the variance of post-equalization error term w̃. This way, each data symbol
di can be detected separately, which significantly reduces complexity. Accordingly, the
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post-equalization LLR λpi,b for the bth bit in the ith constellation symbol are given by

λpi,b = log



∑

a∈S(1)b

exp

(
−‖d̂i −∆i,ia‖2

σ2
w̃i

+ logP (~di = a)

)


− log



∑

a∈S(0)b

exp

(
−‖d̂i −∆i,ia‖2

σ2
w̃i

+ logP (~di = a)

)
 ,

(2.24)

where S(1)
b ,S(0)

b ⊂ S are the set of constellation symbols where the bth bit is 1 or 0, respec-
tively. Employing the max-log approximation [RL09] log(exp(a) + exp(b)) ≈ max(a, b)

this expression is simplified to

λpi,b ≈ min
a∈S(0)b

{
‖d̂i −∆i,ia‖2

σ2
w̃i

+ logP (d̂i = a)

}

− min
a∈S(1)b

{
‖d̂i −∆i,ia‖2

σ2
w̃i

+ logP (d̂i = a)

}
.

(2.25)

2.4 GFDM Fundamentals

GFDM is a block-based multicarrier system [MMG+14]. Similar to OFDM, consecutive
GFDM blocks can be separated by a CP [TV05], mitigating inter-block interference (IBI)
such that each block can be processed separately at the receiver side. In contrast to
OFDM, where subsequent symbols are separated by a CP, in GFDM M subsymbols are
concatenated to form one GFDM block. Let TS denote the time distance between adjacent
subsymbols, then, similar to OFDM, the frequency spacing F between subcarriers is given
by F = 1/TS.

Figure 2.4 presents an overview of the GFDM block structure. Within one GFDM block
of total bandwidth Fs, there are M subsymbols, spaced by TS and K = FsTS subcarriers,
spaced by F = 1/TS. On each subcarrier k within each subsymbol m, a complex-valued
data symbol dk,m is transmitted and the entire block is protected by a single CP. In the
following, we will first relate the introduced GFDM parameters to well-known OFDM
system parameters and subsequently describe the GFDM modulation and conventional
linear detection in detail.

2.4.1 GFDM Parameters

For a given sampling frequency Fs, in relation to OFDM we can identify two characteristic
GFDM configurations, Type I and Type II, which are illustrated in Fig. 2.5. We assume
the CP to be of equal length for GFDM and OFDM, as its length is constrained by the
channel’s PDP. In relation to the generic OFDM system with symbol duration TO (which
corresponds to U = FsTO samples), CP duration TCP and subcarrier spacing FO = 1/TO,
GFDM Type I employs a subsymbol spacing equal to the OFDM symbol duration TS,I =
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Figure 2.4: GFDM Block structure overview.

TO and according subcarrier spacing FI = FO. SinceM subsymbols are concatenated into
one block, with the GFDM Type I configuration the duration of the GFDM block is larger
than a corresponding OFDM block and a better spectral confinement than OFDM can be
achieved [MMGF14]. At the same time, since multiple subsymbols share a single CP, the
spectral efficiency rG,I of GFDM Type I is larger than that of the corresponding OFDM
system rO. Assuming equal modulation and coding scheme (MCS), pilot overhead and
signal bandwidth, the gain can be quantified by

rG,I
rO

=

MTO
MTO+TCP

TO
TO+TCP

= 1 +
(M − 1)TCP
MTO + TCP

M→∞−−−−→ 1 +
TCP
TO

. (2.26)

The gain increases with more subsymbolsM and is limited by the ratio of the CP duration
to the symbol duration, which exactly equals the rate loss due to the CP of OFDM. Hence,
theoretically GFDM type I could mitigate the rate loss of the CP of OFDM. However,
the wireless channel is required to be static for an entire GFDM block, which limits the
amount of applicable subsymbols in practice due to time-varying channels.

In the GFDM Type II configuration, we keep the GFDM block duration equal to
the OFDM symbol duration and hence reduce the distance between the subsymbols to
TS,II = TO/M . Accordingly, the subcarrier spacing of the system increases to FII = MFO
and the spectral efficiency of GFDM Type II and OFDM remains equal. Here, the wider
subcarrier spacing of GFDM compared to OFDM can yield more robustness against
residual carrier frequency offset or time-variant channels that exhibit Doppler spread
[ZMMF17]. Furthermore, wider subcarriers can potentially harvest more frequency diver-
sity in case of frequency selective channels [MGZF15]. On the other hand, without further
means to reduce OOB emission such as windowing [MMG+14], the spectral properties of
GFDM Type-II and OFDM become equal.

Table 2.2 shows the relation between the parameters of OFDM and its corresponding
GFDM Type I and Type II configurations. Additionally, relations to physical parame-
ters are provided. We start from systems that all have the same bandwith or sampling
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Figure 2.5: Block structure of type I and II GFDM configurations in relation to a reference OFDM
system.

Table 2.2: Relation of OFDM and GFDM Type I, Type II parameters and corresponding physical
parameters.

Physical Parameter OFDM GFDM-I GFDM-II Unit

Bandwidth Fs Fs Fs Hz
Subsymbol duration TO TO TO/M s

U = FsTO U U/M samples
# Subsymbols 1 M M -
Block duration TO + TCP MTO + TCP TO + TCP s

U +NCP MU +NCP U +NCP samples
Subcarrier spacing 1/TO

1/TO
M/TO Hz

# Subcarriers U U U/M -

GFDM Parameter

# Subsymbols M M M

# Subcarriers K U U/M

Block length N MU U

frequency of Fs and define the parameters for GFDM Type I and Type II in terms of
the corresponding values of OFDM. Additionally, we present the symbol spacing and and
block duration in terms of number of samples, corresponding to the sampling frequency
Fs.

2.4.2 GFDM Modulation

In this section we describe the structure of the GFDM transmit signal and introduce
representations of the transmit equation which are suitable for the subsequent analysis
throughout this thesis.

Modulation equation. Let us consider a GFDM system in the discrete time domain,
consisting of K subcarriers and M subsymbols, that are equally spaced in time and
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frequency. We arrange the data in the data matrix D, given by

D =




d0,0 d0,1 . . . d0,M−1

d1,0 d1,1 . . . d1,M−1

...
... . . . ...

dK−1,0 dK−1,1 . . . dK−1,M−1


 , (2.27)

where dk,m denotes the complex-valued constellation symbol that is transmitted on the
kth subcarrier andmth subsymbol. Obeying critical sampling, the number of samplesN in
the time domain required to convey the information of one GFDM block equals N = KM .
Let g[n], n = 0, . . . , N − 1 be any time-domain sequence of N samples, denoted as the
prototype filter. Then, the transmit signal x[n] of one GFDM block, excluding the CP, is
given by

x[n] =
M−1∑

m=0

∑

k∈K

dk,mgk,m[n], n = 0, 1, . . . , N − 1 (2.28)

with gk,m[n] = g[〈n−mK〉N ] exp

(
j2π

nk

K

)
, (2.29)

where K ⊆ {0, 1, . . . , K−1} is the set of switched-on subcarriers and we denote Kon = |K|
as the number of switched-on subcarriers.

The sequence gk,m[n] is the prototype filter circularly shifted in time and frequency.
The shift in frequency becomes apparent when looking at the N-point discrete Fourier
transform (DFT) of gk,m[n], given by

DFTN{gk,m[n]} = Gk,m[ν] = G[〈ν − kM〉N ] exp(−j2πmν
M

), ν = 0, . . . , N − 1. (2.30)

The index m, denoting the subsymbol index, circularly shifts the prototype filter by mK
samples in the time domain. Accordingly, the subcarrier index k circularly shifts the
prototype filter by kM = kN/K samples in the DFT domain.

For the subsequent analysis of applying MIMO techniques to the GFDM system,
two particular representations of the modulation equation (2.28) are useful, which we
will describe in the following. Firstly, observing that (2.28) is a linear combination of
gk,m[n] with coefficients dk,m we can express the modulation conveniently as a matrix
multiplication [MKLF12]. Let us denote

~x = (x[n])n=0,...,N−1 ∈ CN , (2.31)
~dk = (dk,0, dk,1, . . . , dk,M−1)T ∈ CM , (2.32)
~d = (~dT0 ,

~dT1 , . . . ,
~dTK−1)T = vec(DT ) ∈ CN , (2.33)

where ~x is the vector of the samples of the transmit signal, ~dk contains the data on the
kth subcarrier and ~d denotes the entire data in the GFDM block4. Then, we can define
4 Note that, in contrast to most literature, here we define the ordering to be grouped by subcarriers rather
than subsymbols. This treatment readily provides us a banded structure of the modulation matrix in the
frequency domain, given g[n] is band-limited.
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Figure 2.6: Depiction of A in time and frequency domain for M = 7,K = 4 using a RC filter with
α = 1. One can clearly see the banded structure of A in the frequency domain, since G[ν] is band-limited.
In the time domain, adjacent columns of A correspond to different subsymbols, therefore the peaks on
each column appear at different times. It is notable that in the time domain the colums of A cannot be
permuted to yield a band-diagonal matrix, since g[n] is not time-limited.

the transmit signal by

~x = A~d, (2.34)

where A = (~g0,0, ~g0,1, ~g0,2, . . . , ~g1,0, ~g1,1, . . . , ~gK−1,M−1) for Kon = K with ~gk,m =

(gk,m[n])n=0,...,N−1. Hence, the m+ kMth column of A is given by ~gk,m. In case Kon < K,
A only contains ~gk,m for switched-on subcarriers and A has dimensions N ×KonM . Fig.
2.6 illustrates the structure of A in time- and frequency domain.

Secondly, let us examine the structure of the N-point DFT of the transmit signal
[GNN+13, MGK+12]:

X[ν] = DFTN{x[n]} =
K−1∑

k=0

M−1∑

m=0

dk,mGk,m[ν] (2.35)

=
K−1∑

k=0

M−1∑

m=0

dk,mG[〈ν − kM〉N ] exp(−j2πνm
M

) (2.36)

=
K−1∑

k=0

G[〈ν − kM〉N ]
M−1∑

m=0

dk,m exp(−j2πνm
M

)

︸ ︷︷ ︸
DFTM{dk,(·)}

[ν] (2.37)

Naturally, the transmit signal in the frequency domain is the linear combination of all time
and frequency shifted filter responses Gk,m[ν]. More remarkably, the modulation can be
separated into an M-point DFT of all subsymbols on each subcarrier, DFTM{dk,(·)}, with
subsequent freqency domain windowing withG[〈ν − kM〉N ]. Note that since DFTM{dk,(·)}
is periodic with period M , DFTM{dk,(·)}[ν], ν = 0, . . . , N − 1 is a K-times repetition of
DFTM{dk,(·)}[ν], ν = 0, . . . ,M − 1. Hence, if the filter G[ν] has more than M non-zero
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elements, adjacent subcarriers overlap. On the one hand, this introduces inter-carrier
interference (ICI). On the other hand, at the same time data on one subcarrier is spread
onto several frequency bins, raising potential for enhanced frequency diversity in multipath
channels, which can improve the obtained diversity of a subsequent channel code. Before
transmitting the signal over the wireless channel, a CP is added to each block.

Derivation of the discrete baseband prototype filter. The normalized and pe-
riodic pulse shaping prototype filter g[n] for GFDM5 is commonly derived from a
continuous-time filter g(t) by sampling in the time and frequency domain. Let g(t) be
any continuous-time filter and Fs be the sampling frequency and hence bandwidth of the
discrete baseband system. Then, we first sample g(t) in the time domain to get g̃[n] given
by

g̃[n] =
1

Fs
g

(
n

Fs

)
(2.38)

which has a continuous, periodic spectrum G̃(f) with G̃(f) = G̃(f + kFs), k ∈ Z. Subse-
quently, we sample one period of G̃(f) with N samples in the frequency domain to get
the spectrum of the discrete prototype filter G[ν] given by

G[ν] = G̃
( ν
N
Fs

)
, ν = 0, 1, . . . , N − 1. (2.39)

Here, G[ν] yields the discrete baseband spectrum of the prototype filter and hence the
time-domain response of the filter is given by

g[n] = IDFTN{G[ν]}. (2.40)

Note that due to sampling in the frequency domain, g[n] is also periodic with period N ,
i.e. g[n+lN ] = g[n], l ∈ Z. Hence, understanding GFDM filtering as a circular convolution
as in [MKLF12] as well as the definition of gk,m[n] = g[〈n−mK〉N ] exp(j2π kn

K
) appears

natural.
For example, the discrete baseband periodic raised cosine (RC) filter g[n] for GFDM

which is used throughout this thesis is derived from the continuous-time RC filter given
by

g(t) =
1

T
sinc

(
t

T

)
cos
(
παt
T

)

1−
(

2αt
T

)2 , (2.41)

with sinc(x) = sin(πx)/(πx), T = K
Fs

and α ∈ [0, 1] is the rolloff factor.

2.4.3 Linear GFDM Demodulation

Consider a single-antenna point-to-point link. Assuming the CP is longer than the channel
impulse response (CIR) and the channel remains static over the duration of one GFDM
5 Here, the normalization constraint is given by

∑N−1
n=0 |g[n]|2 = 1.
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block, i.e. block-fading is considered, after removing the CP at the receiver [TV05], the
received signal ~y ∈ CN for one GFDM block can be written as

~y = H̃A~d+ ~w, (2.42)

where H̃ ∈ CN×N is the circulant channel matrix with the CIR in its first column and ~w is
AWGN of complex normal distribution ~w ∼ CN (0, σ2I) at the receiver antenna. Assuming
E[~d~dH ] = I, with the linear model (2.42), we can immediately identify three basic linear
receivers [MKLF12], namely matched filter (MF)6 , ZF and LMMSE receivers. Their
characteristics for soft-demapping according to (2.24) are given by

MF receiver5: d̂ = AHH̃−1~y

diag(∆) = ~1

Rw̃ = (AHA− I)(AHA− I)H + σ2AHH̃−1H̃−HA

(2.43)

ZF receiver: d̂ = A−1H̃−1~y

diag(∆) = ~1

Rw̃ = σ2A−1H̃−1H̃−HA−H

(2.44)

LMMSE receiver: d̂ = AHH̃H(H̃AAHH̃H + σ2I)−1~y

diag(∆) = diag(AHH̃H(H̃AAHH̃H + σ2I)−1H̃A)

Rw̃ = I−AHH̃H(H̃AAHH̃H + σ2I)−1H̃A,

(2.45)

where we have used the notation from Sec. 2.3.
For the uncoded case, closed-form solutions for the symbol error rate (SER) of GFDM

for ZF and MF receivers in different channel models are derived in [MMGF14, MMG+14,
MMG+15]. In particular, due to self-interference of the MF receiver, an error floor is
obtained for higher modulation orders. For the ZF receiver, a constant shift of the SER
curves compared to an orthogonal system is experienced, due to noise enhancement during
equalization. Specifically, the noise enhancement factor (NEF) ξ for the GFDM ZF receiver
is given by [NMZF17, MMG+14]

ξ =
1

N
tr(A−1A−H). (2.46)

For the LMMSE receiver, a tradeoff between self-interference and noise-enhancement is
exploited, leading to improved performance compared to the ZF receiver. More details on
these basic linear receivers are given in e.g. [MMG+14, MKLF12].

Low-complexity LMMSE estimation with banded linear systems. Throughout
this work, LMMSE estimation with a band-diagonal linear model plays a central role.
Consider a generic linear model

~y = H~d+ ~w (2.47)
6 Note that we employ ZF equalization here before MF GFDM filtering
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with a-priori knowledge of ~w ∼ CN (0, σ2I) and ~d ∼ CN (~da,Λa
d) where Λa

d is diagonal. As

we have shown in [MZF16a], the LMMSE estimate of mean ~̂dp and variance Λp
d of ~d can

be formulated as

~̂dp = X−1(HH~y −G~da) + ~µ ◦ ~da (2.48)
diag(Λp

d) = ~µ− Λa
d~µ ◦ ~µ, (2.49)

with

~µ = diag(X−1G), X = GΛa
d + σ2I, G = HHH. (2.50)

If G is a band-diagonal matrix of size N ×N with one-sided bandwidth M , X obeys
the same structure and the complexity required to solve (2.48) grows linearly in N and
quadratic in M [(NA, Functions zgbtrf, zgbtrs ]. However, the arithmetic complexity for
directly calculating ~µ as in (2.50) would grow quadratically in N , which is undesirable.
Instead, ~µ can be estimated from X = X−1(GV), where V is an arbitrary real matrix
[BKS07] with preferably less columns than G. An estimate of ~µ is given by

~̂µ = [(V ◦ X )~1]� [(V ◦V)~1]. (2.51)

The accuracy of the estimation depends on both the structure of V and X−1G. The
estimation in (2.51) is exact, if the off-diagonal elements of VVT are zero where X−1G

is non-zero. Optimally, V = I, however in this case the inverse is implicitely calculated,
leading to no reduction in complexity. Instead, noting that both X and G are band-
diagonal, we can assume that X−1G is mostly concentrated within the bandwidth 2M .
We can hence design a matrix V which is zero inside the bandwidth 2M . As is shown in
[MZF16a], submatrices of Hadamard matrices with 2M columns fulfill this property, and
hence the arithmetic complexity of ~µ in (2.51) scales linearly with the bandwidth of X

and not with its dimension, leading to an overall complexity that scales linearly with N
and quadratic with M . A more detailed derivation including results on accuracy of this
approximation and exact arithmetic complexities are given in our work [MZF16a].

Detection performance. Figure 2.7 compares the uncoded SER and coded frame
error rate (FER) performance for the three receivers with an example single-antenna
GFDM configuration under block-fading multipath channels employing a rate 1/2 standard
(1, 15/13)8 Turbo code [RL09] with 16-QAM modulation. Here, we consider a single-
antenna system to present the effect of the different linear receivers in absence of additional
inter-antenna interference (IAI). In the following chapters, we will exclusively focus on
MIMO-GFDM systems. For comparison, Figure 2.7 additionally shows a reference curve of
OFDM . At first glance, the linear MF receiver shows inferior performance for coded and
uncoded transmission due to the strong self-interference which is just treated as additional
noise in the receiver. Apparently, as has been also shown in [MMGF14, MKLF12], the
self-interference increases with increasing rolloff and performance degrades. Therefore,
also a similar behaviour is observed with ZF and LMMSE receivers, whereas the influence
of the rolloff factor is not as pronounced. For the LMMSE receiver, the degradation due
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Figure 2.7: Coded and uncoded performance of single-antenna GFDM and OFDM in block-fading
Rayleigh multipath channel with PDP P [n] = [0,−1,−2,−3,−8,−17.2,−20.8]dB, where this PDP is
derived from the EPA channel model. GFDM Type II with K = 128,M = 7 and RC filter. 16-QAM
modulation with Turbo code of rate 1/2.

to self-interference is the smallest. As a corner case, for α = 0 the modulation matrix A

becomes orthogonal, there is no self-interference and the performance eventually lines up
with OFDM. Apparently, treating self-interference as noise will not yield an optimal FER.
Instead, we can harvest the information that is contained in the interference as shown in
the subsequent chapters on receiver design, using advanced nonlinear receivers. This fact
is even more pronounced when additional IAI occurs due to involving multiple antennas.

2.5 Summary

This chapter has laid the foundations for the treatment of different receiver architec-
tures for MIMO-GFDM. In particular, the building blocks of a generic wireless point-to-
point communication system have been introduced and the wireless channel was modelled.
Moreover, the linear GFDM modulation was presented, leading to the convenient linear
expression of the GFDM transmit signal

~y = A~d.

Moreover, this linear model was extended to include MIMO and the linear effects of the
wireless channel, eventually leading to a generic linear model

~y = H~d+ ~w,

which will be of central importance in the upcoming chapters. In addition, the perfor-
mance of linear GFDM receivers in single-antenna systems was presented and compared
to OFDM. The findings motivate the investigation of more sophisticated, non-linear, re-
ceiver algorithms to exploit the information that is contained in the self-interference,
which we will focus on in the upcoming chapters. However, before focusing on receiver
design we investigate, how the mathematical theory behind multicarrier systems, namely
time-frequency analysis, can bring insights into the theoretical performance of prominent
multicarrier systems.



Chapter 3

Multicarrier Systems in the Context of
Gabor Theory

In his 1947 work “Theory of Communication” [Gab47], Dennis Gabor laid the mathemat-
ical foundations to the theory of multicarrier systems. Since then, a multitude of research
has been conducted [FS02, MBH13, Böl03]. In this chapter, we first shortly introduce con-
cepts and theorems from time-frequency analysis (TFA) that are relevant to the present
work. Subsequently, we relate properties of multicarrier systems and in particular GFDM
to the concepts of TFA. As an outcome of this relation, we will deduct theoretical prop-
erties of GFDM and derive low-complexity formulations for receiver implementations.

3.1 Time-Frequency Analysis and Gabor Theory

3.1.1 The Continuous-Time Case

Let x denote an arbitrary signal and let x(t) denote the representation of this signal in
the time domain. The same signal can be represented in the frequency domain in terms of
its Fourier transform X(f) =

∫∞
−∞ x(t) exp(−j2πft)dt and both x(t) and X(f) contain all

information about x. x(t) describes the value of the signal at any given time, whereasX(f)

describes the contribution of any frequency to the signal. In other words, x(t) provides us
with exact information about the time-domain behaviour, but it does not tell us anything
about the frequency of the signal around this time. Analogously, X(f) provides accurate
information about the frequency components of x, but does not describe any time-domain
behaviour.

In many applications, the signal x is non-stationary and evolves over time. For these
signals, it is desirable to obtain information about the frequency of the signal around
a given time t0. Here, we have to point out that the formulation of “frequency around
a given time” is, strictly spoken, impossible, because a pure tone is infinitely wide in
time. A rigorous treatment of this problem of instantaneous frequency is out of scope of
this thesis, but more details can be found in e.g. [FS98, FS02, Grö01]. In short, limited
by the uncertainty principle of TFA (“A signal cannot be time- and band-limited at
the same time”) [Dau90], for a given interval of length T around t0, we can only reach a

26
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Figure 3.1: Example of the STFT of a frequency varying tone x(t) = sin(φ(t)) with φ(t) = 2π
∫ t

0
f(τ)dτ

with instantaneous frequency f(t) = 4 + 2 sin(πt). The time-domain plot x(t) qualitatively shows that
the instantaneous frequency changes over time, but no frequency value can be seen. Its spectrum |X(f)|
shows that the frequency is around 5Hz, but does not reveal any time-domain information. A quantitative
analysis of instantaneous frequency over time is accomplished by the STFT in the right figure, showing
that the frequency ranges between 2 and 6Hz which closely matches the analytic expression for f(t). For
the STFT, a Tukey window of length T = 1/2s with shape parameter 0.25 was used, hence the width of
the curve of the STFT is approximately 1/T = 2Hz.

resolution in frequency domain of 1/T . The short-time Fourier transform (STFT) X(t0, f)

of x(t) provides the requested information by performing the Fourier transform of the
multiplication of the signal with an analysis window w(t)1 around t0, given by

X(t0, f) =

∫ ∞

−∞
x(t)w(t− t0) exp(−j2πft)dt. (3.1)

Fig. 3.1 shows an example of the STFT of some artificial signal where the instan-
taneuos frequency changes over time. As is shown, the STFT accurately describes the
time-frequency behaviour of the function.

Gabor transform and expansion. The STFT maps the one-dimensional signal
x(t), t ∈ R to a two-dimensional signal X(t0, f), (t0, f) ∈ R2, hence it contains a sig-
nificant amount of redundancy. In his 1947 work “Theory of communication” [Gab47]
Dennis Gabor worked on the question: How dense does the STFT need to be sampled
such that no information about x(t) is lost? In particular, given the sampled STFT

ak,m = X(mT, kF ) = 〈x(t), w(t−mT ) exp(j2πkFt)〉 =
〈
x(t), w

(F,T )
k,m (t)

〉
(3.2)

1 Throughout this chapter we consider the noisefree case, such that we use w(t) for denoting the analysis
window without ambiguity.
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where 〈x(t), y(t)〉 denotes the scalar product in L2(R) and w(F,T )
k,m (t) = w(t−mT ) exp(j2πkFt),

what is the relation between T and F such that {ak,m}(k,m)∈Z2 completely describes x(t)

by means of

x(t) =
∑

k∈Z

∑

m∈Z

ak,mv(t−mT ) exp(j2πkFt) =
∑

k∈Z

∑

m∈Z

ak,mv
(F,T )
k,m (t), (3.3)

where v(t) is a suitable synthesis window function? Nowadays, the projection of x(t)

onto time-frequency shifts of w(t) in (3.2) is termed Gabor transform whereas the linear
combination of time-frequency shifts of v(t) in (3.3) is called Gabor expansion. The set

G(v, F, T ) = {v(F,T )
k,m }(k,m)∈Z2 (3.4)

is also called a Weyl-Heisenberg (WH) set [Jan97].

Time-frequency localization and the Balian-Low theorem. Considering that a
single coefficient ak,m in the Gabor expansion should optimally describe only a local aspect
of the overall signal, the time-bandwidth product Ω(v) = σ2

t (v)σ2
f (v) of the synthesis

window should be small, where σ2
t (v) and σ2

f (v) are spreading of v in time and frequency
given by

σ2
t (v) =

∫ ∞

−∞
(t− µt)2v(t)dt σ2

f (v) =

∫ ∞

−∞
(f − µf )2V (f)df (3.5)

with

µt(v) =

∫ ∞

−∞
tv(t)dt µf (v) =

∫ ∞

−∞
fV (f)df (3.6)

being the center of mass in time and frequency and V (f) = (Fv)(f) is the Fourier trans-
form of v(t). Gabor analyzed the question for a Gaussian window v(t) = exp(−π

(
t
T

)2
)

due to its best time-frequency localization Ω(v) = 2π. He concluded that x(t) is com-
pletely described by {ak,m}, if TF ≤ 1. However, later in [BGZ75] it was corrected, that
for the Gaussian window, the coefficients are numerically stable only for TF < 1 and do
not always exist for the case of critical sampling with TF = 1. In particular, the later
found Balian-Low theorem (BLT) [Bal81, BHW98] enforces, that if for TF = 1 the pair
(3.2) and (3.3) holds for all x(t) for some w(t), then Ω(v) → ∞ or Ω(w) → ∞. As a
consequence, there do not exist any well-localized analysis and synthesis windows in the
critical sampling case.

Dual windows and the Wexler-Raz duality condition. If for all x(t) ∈ L2(R) it
holds

x(t) =
∑

(k,m)∈Z2

ak,mv
(F,T )
k,m (t) with ak,m =

〈
x(t), w

(F,T )
k,m (t)

〉
(3.7)
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for a pair w(t), v(t) ∈ L2(R) of analysis and synthesis window, v(t) is termed the dual
window of w(t) and vice versa 2. A sufficient and necessary condition for (3.7) to hold is
the Wexler-Raz duality condition [WR90], given by

〈
w

(1/T,1/F )
k,m (t), v

(1/T,1/F )
k′,m′ (t)

〉
= δkk′δmm′ , (3.8)

i.e. the windows v and w are biorthogonal when time-frequency shifted on the dual lattice
with time-frequency distance 1/T, 1/F . Further, (3.8) is equivalent to [Jan98]

〈
w(t), v

(1/T,1/F )
k′,m′ (t)

〉
= δ0k′δ0m′ . (3.9)

Ron-Shen Duality principle. It can be shown [Jan98] that (3.7) can only hold for all
x(t) ∈ L2(R) if TF ≤ 1. In this case, G(v, F, T ) forms a frame for L2(R). It is notable that
the coefficients ak,m are in general not unique for TF < 1 [FS98], i.e. two different sets
of {ak,m} can yield the same expansion x(t) in (3.7). Consequently, the duality condition
(3.9) does not uniquely determine the dual window, but for TF < 1 infinitely many dual
windows exist [FS98].

In relation, the Ron-Shen duality principle [RS97] asserts that G(v, F, T ) is a frame for
L2(R) if and only if G(v, 1/T, 1/F ) is a Riesz basis for the linear span of G(v, 1/T, 1/F ).
In particular this means that for TF > 1 the pair (3.7) only holds for a subspace of
L2(R), but the expansion coefficients ak,m become unique [FS98]. We will see how this
property influences the design of digital communication systems in the following section.
A mathematical more rigorous, but accessible treatment of this topic can be found in e.g.
[Chr03].

The Zak-Transform. Closely related to TFA is the Zak transform (ZT) [Bas98], given
by

(Zv)(T )(τ, ν) =
√
T
∑

m′∈Z

v((τ +m′)T ) exp(−j2πνm′) = DTFT{v((τ + (·))T )}, (3.10)

which is a unitary transform, with inverse

v((t+m′)T ) =

∫ 1

0

(Zv)(T )(t, ν) exp(j2πm′ν)dν. (3.11)

The ZT is quasi-periodic in τ and ν, i.e.

(Zv)(T )(τ + k, ν +m) = (Zv)(T )(τ, ν) exp(j2πkν), (m, k) ∈ Z2, (3.12)

hence all properties of (Zv)(T ) can be inferred from the fundamental rectangle (0, 0) ≤
(τ, ν) ≤ (1, 1). As shown, the ZT can be considered as the discrete-time Fourier transform
(DTFT) of a sampled version of v(t), where the sampling offset τ is a parameter. The ZT
is important for a variety of signal processing and time-frequency applications and a more
2 If (3.7) holds for analysis and synthesis windows w(t), v(t), it also holds for analysis window v(t) and
synthesis window w(t) [FS98].
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thorough treatment is provided in e.g. [Bas98, BH97, Jan88]. Here, we want to focus on
an aspect in relation to the calculation of dual windows. In particular, an analysis w(t)

and synthesis window v(t) are directly related in their Zak-domain according to [Str98]

(Zv)(T )(τ, ν) =
(Zw)(T )(τ, ν)

T
∑L−1

l=0 |(Zw)(T )(τ − lT, ν)|2
(3.13)

when 1/(TF ) = L ∈ N is an integer. In the case of critical sampling, i.e. TF = 1, the
relation simplifies to

(Zv)(T )(τ, ν) =
1

T (Zw)(T )(τ, ν)∗
, (3.14)

i.e. the ZT of one window is the element-wise inverse of the ZT of its dual. In accordance
with the BLT, it was shown [Jan88] that the ZT of a window v(t) with Ω(v) < ∞ does
become zero for some (τ, ν). In particular, if v(t) is real-valued then (Zv)(τ, 1/2) = 0 for
some τ and if v(t) is even, i.e. v(t) = v(−t)∗, then (Zv)(1/2, 1/2) = 0 [Jan88].

3.1.2 The Finite Discrete-Time Case

In the previous sections, the results from TFA have been stated for the continuous-time
case. Since digital signal processing deals with discrete-time signals that originate from
sampling bandlimited continuous-time signals, it is beneficial to take over the obtained
results to a discrete setting. We further consider the discrete-time discrete-frequency case,
which corresponds to periodic discrete-time functions3. In this setting, we can explain
results from TFA with more intuitive arguments from linear algebra. The transition from
continuous-time to finite discrete time is achieved via the periodization and sampling trick
[Orr93], which we will describe in the following.

Periodization and sampling. Similar to how the GFDM discrete-time filter is derived
in Sec. 2.4.2, the periodization and sampling trick can be applied to the Gabor expansion
and transform [WR90, Orr93, Orr92] and the Zak transform [BH97, BG96]. To give an
example of this periodization and sampling trick, let us derive the relation between the
discrete [BH97] and the continuous-time [Jan88] Zak transform. Consider the (complex-
valued) signal f(t) with (two-sided) bandwidth Fs and its periodic version fT (t)

fT (t) =
∑

u∈Z

f(t− uT ) (3.15)

which is periodic with period T . If we sample fT (t) with sampling frequency Fs, we get

fT [n] = fT (n/Fs) =
∑

u∈Z

f

(
n− uTFs

Fs

)
. (3.16)

3 Intuitively, the relation between continuous-time and the periodic discrete-time signals is analogous to
the relation between the continuous-time and discrete Fourier transform.
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Hence, we have N = TFs samples per period and we can identify fT [n], n = 0, . . . , N − 1

as an N-dimensional vector ~f ∈ CN , which opens up the possibility to use common results
from linear algebra for the present analysis. Let N = KM with K,M ∈ N be an arbitrary
factorization of N . Then, calculating the discrete Zak transform (DZT) of fT [n] with
step-size K yields

(ZfT )(K)(k,m)
(a)
=

M−1∑

m′=0

fT [k +m′K] exp

(
−j2πmm

′

M

)
(3.17)

(b)
=

M−1∑

m′=0

∑

u∈Z

f

(
k +m′K − uN

Fs

)
exp

(
−j2πmm

′

M

)
(3.18)

(c)
=
∑

m′∈Z

f

(
k +m′K

Fs

)
exp

(
−j2πmm

′

M

)
(3.19)

=
∑

m′∈Z

f

((
m′ +

k

K

)
K

Fs

)
exp

(
−j2πmm

′

M

)
(3.20)

(d)
= (Zf)( K

Fs
)

(
τ =

k

K
, ν =

m

M

)
, (3.21)

where (a) is the definition of the DZT [BH97], (b) follows from (3.16), (c) is obtained by
the substitution m′ ← m′ + uM . Eventually (d) points out that the DZT of the periodic
and sampled version fT [n] of f(t) equals the ZT of f(t) sampled at (k/K,m/M).

Discrete Gabor expansion and transform. Let N = ∆FNF = ∆TNT with
∆F ,∆M , NF , NT ∈ N be two factorizations of the block length N . Then, the discrete
Gabor expansion and transform pair is given by[Orr93, BG96, WR90]

x[n] =

NF−1∑

k=0

NT−1∑

m=0

ak,mv[〈n−m∆T 〉N ] exp

(
−j2πk∆F

N
n

)
=

K−1∑

k=0

M−1∑

m=0

ak,mv
(∆F ∆M )
k,m [n]

ak,m =
N−1∑

n=0

x[n]w[〈n−m∆T 〉N ] exp

(
j2π

k∆F

N
n

)
=
〈
x[n], w

(∆F ,∆T )
k,m [n]

〉
CN
,

(3.22)

where 〈·, ·〉CN denotes the scalar product in CN and 〈·〉N denotes the argument modulo
N , resulting from the periodization of w and v and x[n], n = 0, 1, . . . , N − 1 denotes the
transformed or expanded signal. The sampling density of the Gabor transform is given
by ∆T ∆F

N
.

Discrete Gabor transform in a linear algebra setting. Let us summa-
rize the results from section 3.1.1 with techniques from linear algebra. There-
fore, let ~x,~v, ~w,~v

(∆F ,∆T )
k,m , ~w

(∆F ,∆T )
k,m ∈ CN denote the vector equivalents of

x[n], v[n], w[n], v
(∆F ,∆T )
k,m [n], w

(∆F ,∆T )
k,m [n] for n = 0, . . . , N − 1. Further, let ~a ∈ CNFNT

denote the expansion coefficients with indexing ~ak+mNF
= ak,m.
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Then, the Gabor expansion and transform pair (3.22) becomes

~x = Gv~a (3.23)
~a = GH

w ~x (3.24)

where Gv is the N ×NFNT matrix where the (k +mNF )th column equals ~v(∆F ,∆T )
k,m . Let

us assume in the sequel that Gv has full rank, i.e. rank(Gv) = min(N,NFNT ).
If we substitute (3.24) into (3.23), we get

~x = GvG
H
w ~x. (3.25)

Hence, for (3.25) to be true for all ~x ∈ CN , we require GvG
H
w = I which can only hold

for some v, w if NFNT ≥ N , i.e. Gw and Gv are fat matrices. This constraint is the
equivalent of requiring TF ≤ 1 such that (3.7) can hold for all x(t) ∈ L2(R). Even more,
if NFNT > N , for a fixed v there exists infinitely many w such that GvG

H
w = I and hence

~a = GH
w ~x is not unique.

On the other hand, consider the substitution of (3.23) into (3.24), i.e.

~a = GH
wGv~a. (3.26)

This can only hold for all ~a ∈ CNFNT , if N ≥ NFNT , which is equivalent to TF ≥ 1.
In this case, for a fixed v, ~x = Gv~a lies in an NFNT -dimensional subspace of CN , i.e. ~x
cannot reach all elements of CN . This duality is the linear algebraic explanation of the
Ron-Shen duality for the infinite-dimensional case.

Furthermore, let ~z(f) ∈ CN with ~z
(f)
k+mK = (Zf)(K/Fs)(m, k) denote the vectorized

values of the DZT of ~f . Then, Z = IK ⊗ FM performs the DZT, i.e.

~z(f) = Z~f. (3.27)

We immediately see that Z is a unitary matrix due to unitarity of FM , which is in line
with the unitarity of the continuous and discrete ZT [HW89, BH97].

3.2 Multicarrier Systems and Gabor Theory

The transmit signal of classic linear multicarrier modulation systems can be readily in-
terpreted as a Gabor expansion of the transmitted data symbols dk,m, i.e.

x(t) =
∑

m∈Z

K/2−1∑

k=−K/2

dk,mg(t−mT ) exp(j2πkFt), (3.28)

where K is the number of subcarriers and g(t) is a prototype transmit filter. Furthermore,
assuming a linear receiver, at the receiver a Gabor transform with the receiver filter γ(t)

is performed, given by

d̂k,m =
〈
x(t), γ

(F,T )
k,m (t)

〉
. (3.29)
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The spectral efficiency ρ of the system is inversely proportional to the time-frequency
distance, i.e. ρ ∼ 1

TF
, i.e. the product between symbol duration and carrier spacing.

Intuitively, we want to minimize TF for highest efficiency. However, the Ron-Shen duality
principle implies that for TF < 1 the correspondence of x(t) with the data sequence {dk,m}
is not one-to-one, i.e. the same transmit signal x(t) would correspond to infinitely many
transmit data sequences {dk,m}. This is clearly not practical due to detection ambiguity at
the receiver side4. On the other hand, the critical sampling TF = 1 allows non-ambiguous
detection where at the same time x(t) can become every element of L2(R), leading to
full utilization of the signal space. However, in this case due to the BLT g(t) cannot be
well-localized. Finally, with TF > 1, well-localized g(t) exists that allow non-ambiguous
detection. However, then all x(t) are elements of a proper subspace of L2(R), and hence
x(t) cannot reach each element of L2(R). Therefore, the signal space is not fully utilized
which leads to a reduced spectral efficiency compared to TF = 1.

CP-OFDM and its orthogonality. With the most prominent multicarrier waveform
example being CP-OFDM, we can identify

g(t) =

{
1 −TCP ≤ t ≤ TS

0 else
(3.30)

T = TS + TCP (3.31)
F = 1/TS, (3.32)

where TS is the useful symbol duration and TCP is the duration for the cyclic prefix. At
the receiver side, the linear CP-OFDM demodulator uses a rectangular window of length
TS, i.e.

γ(t) =

{
1 0 ≤ t ≤ TS

0 else
, (3.33)

and achieves orthogonality in the sense of
〈
γ

(F,T )
k′,m′ , g

(F,T )
k,m

〉
= δkk′δmm′ . (3.34)

By using the rectangular filter, the spectrum of the OFDM signal becomes the slowly
decaying sinc-function, implying a large OOB emission. Since TF = TS+TCP

TS
> 1 does

not yield the critical sampling, in principle well-localized, orthogonal filters in the sense
of (3.34) do exist for this density. However, the celebrated orthogonality property of
CP-OFDM which distinguishes it from any other waveform is its channel independent
4 Here, we refer to dk,m ∈ C, i.e. the data symbols can take any value. In practice, dk,m are elemements
of the discrete constellation set, making x(t) become elements of a discrete subspace of L2(R). Then,
non-ambiguous detection is theoretically possible also for TF < 1. At the receiver side, a non-linear
demodulator is required to resolve x(t) to a specific discrete lattice point. In practice, the so-called faster-
than-Nyquist (FTN) [ARÖ13] waveforms exploit this property and it has been shown that the transmit
signal is non-ambiguous up to TF = 0.8 if g(t) is a sinc function with BPSK modulation. This bound is
nowadays known as the Mazo Limit [Maz75, RA09].
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orthogonality. Assuming a time-invariant channel with impulse response h(t) which is
shorter than the CP, this special orthogonality can be expressed as

〈
γ

(F,T )
k,m (t), h(t) ∗ g(F,T )

k,m (t)
〉

= H(kF )δkk′δmm′ (3.35)
〈
γ

(F,T )
k,m , γ

(F,T )
k′,m′

〉
= δkk′δmm′ , (3.36)

where H(f) = (Fh)(f) is the Fourier transform of the channel impulse response. First
the time-frequency shifted receiver filters form an orthogonal basis for the signal space,
which is necessary to keep noise uncorrelated after filtering, and second, even in a multi-
path channel, which introduces ISI in the time domain, the carriers of CP-OFDM remain
orthogonal. Mathematically, the OFDM modulation and demodulation unitarily diago-
nalize the time-invariant channel, which is the unique property of CP-OFDM compared
to other waveforms and has made it popular in a multitude of wireless communication
systems. Furthermore, it is this particular property which made its application to MIMO
systems so straightforward.

FBMC/OQAM. FBMC/OQAM is another multicarrier waveforms, that even predates
CP-OFDM [Cha66, Sal67]. It has been rediscovered in the context of 5G waveform research
due to its notably low OOB emission while still achieving TF = 1. Though this seems
to contradict the BLT, in FBMC/OQAM a slightly modified signal structure is used,
according to

x(t) =
∑

m∈Z

K/2−1∑

k=−K/2

dk,mg(t−mTS
2

) exp(j2πk
t

TS
) (3.37)

dk,m = jk+m

{
<{ak,m/2} m even
={ak,(m−1)/2} m odd

, (3.38)

where ak,m are the complex-valued QAM symbols and dk,m are real-valued transmit sym-
bols, which are transformed according to the offset-QAM (OQAM) rule [SSL02]. Appar-
ently for FBMC we have TF = 1

2
, but each data symbol is real-valued instead of complex-

valued. This signal construction is derived from the mathematical concept of Wilson bases
[DJJ91, Woj07, WOJ08], which circumvent the BLT by allowing orthogonal, well-localized
bases, when the filters are simultaneously concentrated at positive and negative frequen-
cies, i.e. the frequency-shifted filters remain real-valued [Grö01]. In OQAM modulation,
this constraint is transformed into real-only data symbols with complex-valued filters.
Hence, the orthogonality at the receiver is given by

<
〈
γ(t−mT

2
) exp(j2π

kt

T
), g(t−m′T

2
) exp(j2π

k′t

T
)

〉
= δkk′δmm′ , (3.39)

where the receiver filter γ(t) = g(t) is equal to the transmitter filter and interference
occurs only on the ignored imaginary part.
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Figure 3.2: Time and frequency response of biorthogonal filters with different TF , where g(t) is a RC
filter designed for a symbol duration of T = 1s with rolloff α = 1. For TF → 1, the BLT constraints the
time-frequency localization and the receiver filter becomes wide in time and frequency. For larger TF ,
the receiver filter becomes more and more localized.

BFDM. In BFDM [KWJM14], biorthogonal transmit and receive filters are used. In
order to be not bound by the BLT, in BFDM spectral efficiency is sacrificed (i.e. TF > 1)
to achieve well-localized filters. In addition to exhibiting a lower OOB emission, well-
localized filters are beneficial in doubly-dispersive channels [MBH13, MH11], as they occur
in high-mobility scenarios. As these channels are both time- and frequency-dispersive a
well-localized filter in time and frequency creates less interference than non-localized filters
when subject to Gabor transform based receivers. Fig. 3.2 shows the biorthogonal trans-
mit and receiver prototype filters for different values of TF . As shown, the biorthogonal
receiver filter γ(t) becomes more localized in time and frequency, when TF increases.

Moreover, filter-bank multicarrier filtered multitone (FBMC/FMT) [AFB11, CEÖ02]
can be considered a special case of BFDM, where the transmitter filter is a half-Nyquist
filter. At the receiver a matched filter receiver is employed, yielding an ISI-free overall
filter response. At the cost of spectral efficiency, the subcarrier spacing is such that ad-
jacent subcarriers do not overlap and hence no ICI occurs and biorthogonality between
transmitter and receiver is ensured.

3.3 GDFM in a Gabor Transform Setting

In this section we will establish the relation between the finite discrete Gabor transform
and expansion and GFDM and derive the consequences that become apparent from this
relation. As any wireless communication signal, the GFDM signal is certainly bandlimited,
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and its circular convolution property and discrete time-baseband processing can naturally
be treated in the finite-dimensional setting established in Sec. 3.1.2. The results that are
presented in the following summarize the author’s work published in [MMF14a], [MGF15].

GFDM Modulation as a critically sampled Gabor expansion. Letting ∆F =

M,NF = K and ∆T = K,NT = M we end up with a critically sampled Gabor expansion
and transform pair, given by

x[n] =
K−1∑

k=0

M−1∑

m=0

ak,mv[〈n−mK〉N ] exp

(
j2π

kn

K

)
(3.40)

ak,m =
N−1∑

n=0

x[n]w∗[〈n−mK〉N ] exp

(
j2π

kn

K

)
(3.41)

and we can immediately see that (3.40) exactly matches the modulation equation for
GFDM established in (2.28) with dk,m ≡ ak,m and v[n] ≡ g[n]. Hence, we can establish
the connection A = Gg and the GFDM modulation

~x = A~d (3.42)

equals a critically sampled discrete Gabor expansion.

Linear receivers as critically sampled Gabor transform. Further, we can, under
the assumption of an ideal channel, associate the three linear receiver types from section
2.4.3 with the corresponding Gabor transform operation (3.24).

1. The MF receiver with d̂MF = AH~x performs a critically sampled Gabor transform
with analysis window ~γMF = ~g. Hence, the MF receiver achieves perfect reconstruc-
tion, if A is a unitary matrix or, equally, if ~gH~gk,m = δ0kδ0m, i.e. {~gk,m}k,m forms an
orthonormal basis for CN .

2. For the ZF receiver operation d̂ZF = A−1~x, from GH
w = A−1 it immediately follows,

that the rows of A−1 are time-frequency shifts of a prototype receiver filter ~γZF and
hence A−H obeys the same structure as A. Furthermore, A−1A = I implies that
~γZF is the dual window to ~g, which we denote by ~γZF = D(~g) and we see that the
columns and rows of A and A−1 form biorthogonal WH sets.

3. Under the assumption of a regular A, the expression d̂LMMSE = AH(AAH + σ2I)−1~x

for the LMMSE receiver with ideal channel can be reformulated to
d̂LMMSE = (A + σ2(A−1)H)−1~x. This expression points out that the LMMSE
filter matrix is the inverse of a critically sampled Gabor expansion matrix with
window ~g + σ2D(~g), and is hence itself a Gabor transform matrix. Accordingly,
the LMMSE filter operation performs a critically sampled Gabor transform with
analysis window D(~g + σ2D(~g)).
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These standard linear GFDM receivers commonly perform a critically sampled Gabor
transform, however with different receiver filters. Therefore, the low-complexity frequency-
domain implementation that has been proposed in [GNN+13] for the MF receiver can
readiliy be applied for implementing ZF and LMMSE receivers, where just the receiver
filter needs to be adapted. Furthermore, the more recently proposed time-domain demod-
ulation technique [MMG+16] is generically applicable for MF, ZF and LMMSE receivers.

Observing that ‖~g‖2 = ‖~gk,m‖2 for all k,m, the NEF of a ZF receiver, which is given
by ξ = 1

N
tr(A−1A−H) (cf. Sec. 2.4.3), can be simplified to

ξ =
1

N
tr(A−1A−H) = ‖D(~g)‖2. (3.43)

Efficient Receiver filter calculation. As we have shown before, the calculation of the
ZF and LMMSE filter matrices requires the calculation of the dual window D(~g), given
the prototype filter ~g. The dual window D(~g) can be efficiently obtained from (3.14),
which describes the relation between the synthesis window ~v and its dual window ~w in
the Zak-domain in the case of critical sampling in continuous time. Therefore, in the
finite-dimensional case we have

D(~g) = ZH [(Z~g)◦−1]∗, (3.44)

where (·)◦−1 denotes elementwise inversion. Since Z = IK ⊗ FM , a multiplication with
Z equals the K-fold calculation of an M -point DFT and can therefore be done very
efficiently. Hence, the calculation of ZF and AWGN channel LMMSE receiver filters does
not require to invert a huge matrix, but can be reduced to several short DFT operations
[MMF14a]. Furthermore, due to unitarity of Z, the NEF of the ZF is given in direct
relation to the transmitter filter by ξ = ‖(Z~g)◦−1‖2, i.e. small values in Z~g imply a larger
NEF. For the LMMSE receiver with presence of a multipath fading channels, a low-
complexity implementation has been proposed by the author in [MGF15] which bases on
the block-diagonalization of block-circulant matrices via the DZT [Qiu95].

Singular Modulation matrix. In original works on GFDM (e.g. [MMG+14]) it has
been pointed out that A can become a singular matrix. In this case, rank(A) < MK and
hence the signal space does not have maximum dimension, leading to ambiguous detection
at the receiver side. Clearly, this situation is not desirable.

With the knowledge about the Gabor expansion properties, we can immediately un-
derstand the singularity as a direct consequence of the BLT. By means of the BLT, any
well-localized filter g(t) has a zero in its continuous-time Zak transform (ZT). Since the
DZT is the sampled ZT, whenever the zero is sampled, D(~g) does not exist (cf. (3.44))
and hence A becomes singular. Furthermore, assuming a continuous ZT (which is the
case for any well-localized function [HW89]), even when the zero is not directly sampled,
finer sampling moves the sampling points closer to the zero (see also Fig. 3.3). Hence, the
NEF of a ZF receiver increases with increasing M and/or K.
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Figure 3.3: Effect of even and odd M and different rolloff factors on the DZT (left) and uncoded SER
(right) for GFDM with RC filter. The marks in the left figure denote the sampling points of the continuous
ZT. The smaller the rolloff, the narrower the valley in the ZT and the larger the sampled values, improving
A matrix condition. K = 128, α1 = 0.2, α2 = 0.7, 16QAM modulation.

Constraint on M and K. For a real-valued, symmetric, well-localized filter g(t) we
have (Z(T )g)(1/2, 1/2) = 0 [Jan88]. Therefore, for commonly used GFDM filters such as
the RC or root raised cosine (RRC), this requires either M or K to become an odd
number. For the alternative of the non-symmetric Xia-filter [TB99a, Xia97, MMGF14] it
can be shown that (Z(T )g)(1/4, 1/2) = 0 [MMF14a] and similarly either M or K should
be odd-valued. Fig. 3.3 illustrates the sampling of the continuous ZT of a RC filter and
presents the resulting SER performance of different linear receivers. The results confirm
the theoretical derivations and show a poorer performance for larger rolloff-factors and
increased M . Remarkably also the MF receiver, which is not directly connected to the
condition of A, shows a significantly degraded performance for even values of M .

The constraint on odd M or K puts a major restriction on the real-time implemen-
tation, since the most efficient radix-2 FFT algorithms are not applicable in this case.
Only recently, a filter design has been found [NMZF17], which allows even-valued M and
K for well-localized filters derived from e.g. standard RC filters. The design exploits the
frequency-shifting property of the ZT and applies a shift of half a frequency bin to the
prototype filter, to shift the zero of the ZT away from the sampling point [NMZF17].

3.4 Summary

In this chapter, we have first reviewed the fundamental results from time-frequency anal-
ysis (TFA) that are most relevant for theoretically describing multicarrier systems. We
would like to note that the present summary is by far not exhaustive and more detailed lit-
erature on TFA is available in e.g. [FS98, Grö01, FS02]. Subsequently, we have described
multicarrier systems with concepts from TFA. The relation between the mathematical
theory of TFA and the practical application of multicarrier modulation is a beautiful
example, how mathematical results directly have implications on real-world applications.
As one example, the Ron-Shen duality principle explains, why TF = 1 is the limiting
case for maximizing spectral efficiency, as the data becomes ambiguous for TF < 1. As
another example, Wilson bases find their direct application in the Offset-QAM modula-
tion used for FBMC/OQAM. In particular for GFDM, we have identified the modulation
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and linear demodulation as a critically sampled Gabor expansion and transform pair,
being the archetype of multicarrier modulation. We have used this knowledge to derive
low-complexity filter calculations and provide insights into criteria when the modulation
matrix becomes singular.



Chapter 4

Transmit Diversity Techniques for
GFDM

5G use cases of URLLC such as time-critical industrial automation or communications
for vehicular coordination require an extremely high reliability of the transmission (e.g.
frame error rates of 10−6) with at the same time low latency (e.g. 1ms end-to-end). These
requirements pose a massive challenge onto the PHY. In 4G systems, reliability is ob-
tained by the hybrid automatic repeat request (HARQ) procedure, which retransmits
erroneously received packets. However, the tight timing constraint of URLLC does not
allow retransmissions. Hence, the reliability of the link itself becomes of major impor-
tance. Since the temporal fading of the wireless channel is the main source of erroneously
received packets, it is advisable to reduce the impact of deep channel fades onto the data
transmission. Here, the concept of diversity is a central topic: In plain terms, diversity
refers to the situation where the same data is transmitted over different channels. In case
these channels realize independent fading processes, there is a good chance that if one
channel is in a deep fade, the other channel is currently not in a deep fade, and as such
the data can be transmitted more reliably.

Diversity techniques aim to exploit two (or more) independent channels to reliably
transmit data. With spatial diversity, the channels are the paths between pairs of trans-
mit and receive antennas. Accordingly, we can distinguish between two types of spatial
diversity: Receive diversity and transmit diversity. Receive diversity can be obtained,
when multiple receive antennas receive the same signal and hence their signals can be
combined to yield an improved signal. Here, selection combining, equal-gain combining
and maximum ratio combining (MRC) are main techniques to exploit receive diversity
[Bre03]. The application of these techniques for GFDM is straight-forward in the frequency
domain and will not be treated in this work.

On the other hand, transmit diversity can be obtained by a single receive antenna
and multiple transmit antennas. Moreover, both diversity techniques can be combined by
employing multiple receive and transmit antennas. For transmit diversity, one cannot sim-
ply transmit identical signals from all antennas, but the signals at the transmit antennas
have to be precoded such that the diversity gain can be exploited. To understand this,
let us consider a flat fading system as in Fig. 4.1. Assume the transmit signals on both

40
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Transmitter

x1[n]

x2[n]

Receiver

y[n]

h1

h2

Figure 4.1: Example of a flat-fading system exploiting transmit diversity. The two antennas TX1 and
TX2 transmit the signals x1[n], x2[n] over the two flat channels with channel gain h1, h2, which can be
assumed to be independently Rayleigh-faded. Hence, the received signal is given by y[n] = h1x1[n] +

h2x2[n] + w[n], where w[n] is AWGN.

antennas are equal, i.e. x1[n] = x2[n] and by coincidence for one channel realization we
have h1 = −h2. Then, the received signal y[n] is only noise since both signals cancel out.
Hence, more sophisticated methods to achieve transmit diversity are necessary, which are
in general termed Space-Time Codes, since they distribute the transmit signal in space
(i.e. the antennas) and time (i.e. they perform some precoding along the time-dimension)1.
The overall aim of these techniques is to combine the signal at the receiver such that it
appears to be transmitted over a single channel with better fading conditions. Available
transmit diversity techniques can be categorized into two classes, depending on the need
of CSI at the transmitter side (TX-CSI).

The most basic method to achieve transmit diversity that does not require TX-CSI
is to transmit the same signal first over one antenna and then over the other. However,
obviously, this technique halves the data rate. Instead, more advanced techniques have
been developed [NSC00]. In the following, we will first introduce the prominent Alamouti
space-time block code (STBC) [Ala98] for flat fading and later on describe how this
technique can be applied to the non-orthogonal GFDM system. The results in this chapter
are based on the author’s works in [MMF14b, MMG+15, MMM+15].

4.1 The Alamouti Space Time Block Code

The most prominent example of an STBC for a flat-fading channel is the Alamouti tech-
nique [Ala98]. This technique employs two transmit antennas to transmit a single data
stream without reducing the data rate compared to a single transmit antenna. Remark-
ably, it was proven that such code exists only for 2 transmit antennas. For more antennas
the orthogonality constraint implies a rate reduction [TJC99]. The Alamouti STBC keeps
both signal streams orthogonal to each other, such that low-complexity linear STC com-
bining at the receiver yields the optimal detection rule. However, the technique requires
the wireless channel to be constant over two symbol slots.
1 There also exist space-frequency codes (SFC) [LW00] which essentially work similar, but the redundant
signals are transmitted over different frequencies rather than different time slots.
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Transmit and receive signal. The Alamouti code groups the transmit symbol stream
x[n] into adjacent pairs of two samples, xn,1, xn,2, n ∈ Z with

xn,1 = x[2n] , xn,2 = x[2n+ 1]. (4.1)

Then, the transmit signals x1[n] and x2[n] are given by

x1[2n] = xn,1 , x1[2n+ 1] = xn,2 , (4.2)
x2[2n] = −x∗n,2 , x2[2n+ 1] = x∗n,1. (4.3)

At the receive antenna, the signals transmitted over the two channels superpose and the
received signal y[n] is given by

y[2n] = h1xn,1 − h2x
∗
n,2 + w[2n] y[2n+ 1] = h1xn,2 + h2x

∗
n,1 + w[2n+ 1]. (4.4)

STC Combining. In order to obtain the transmitted symbols xn,1, xn,2, the following
operations are carried out:

h∗1y[2n] + h2y[2n+ 1]∗

‖h1‖2 + ‖h2‖2
= xn,1 +

h∗1
‖h1‖2 + ‖h2‖2

w[2n] +
h2

‖h1‖2 + ‖h2‖2
w[2n+ 1]∗

−h2y[2n]∗ + h∗1y[2n+ 1]

‖h1‖2 + ‖h2‖2
= xn,2 −

h2

‖h1‖2 + ‖h2‖2
w[2n]∗ +

h∗1
‖h1‖2 + ‖h2‖2

w[2n+ 1]

(4.5)

As this expression shows, already a linear processing at the receiver decouples the
both transmitted signals, sucht that they appear to be transmitted over a single channel
with gain ‖h1‖2 +‖h2‖2. Hence, optimal ML detection is possible boils down to the single-
antenna case with very low decoding complexity. Assuming i.i.d. Rayleigh fading for both
‖h1‖, ‖h2‖, the equivalent channel gain ‖h1‖2 + ‖h2‖2 is Chi-squared distributed with
4 degrees of freedom. Compared to the single channel gain ‖h1‖2 which is Chi-squared
distributed with 2 degrees of freedom, the probability for deep fades is significantly reduced
[TV05], yielding the diversity gain.

Application of Alamouti STC for CP-OFDM. Originally, the Alamouti STBC
only works for flat-fading channels, i.e. adjacent symbols in time do not interfer with
each other due to ISI. This assumption requires a narrowband transmission such that the
symbol length is much longer than the multipath response of the channel. However, in the
orthogonal CP-OFDM system, we have seen that the multipath channel is diagonalized
(cf. Sec. 3.2), and each carrier experiences perfectly flat fading, due to the application of
the CP. In this case, the Alamouti STBC can be straight-forwardly applied to each carrier
separately, and each carrier can be demodulated independently. Hence, at the receiver,
for the kth carrier we have the relation

Y1[k] = H1[k]∗d1,k +H2[k]d∗2,k Y2[k] = H1[k]∗d2,k −H2[k]d∗1,k, (4.6)

where dit,k are the QAM symbols on the kth carrier and itth timeslot (it = 1, 2), Yit [k]

is the received constellation at the kth carrier and Hit [k] is the frequency response of
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the kth carrier from the itth transmit antenna to the receiver, which is constant over
the two subsequent symbols. Then, the space-time combining can be carried out for each
carrier separately analogously to (4.5). Even though here we focus on receivers with a
single antenna, the Alamouti STC can be straight-forwardly extended to multiple receiver
antennas, by applying MRC at the receiver.

In addition to performing the Alamouti coding in the time domain, a multicarrier
structure allows to perform Alamouti coding in the frequency domain, leadign to so called
space-frequency codes (SFCs). Instead of using two adjacent time slots to convey two data
symbols using two transmit antennes with STC, SFC employs two adjacent OFDM sub-
carriers to convey two data symbols using two transmit antennas [LW00]. The advantage
of this system is a reduced latency, as only one time slot is needed. However, this tech-
nique requires that two adjacent carriers have the same frequency response. Hence, this
technique is less applicable with highly frequency-selective channels. In the following, we
focus on STC, however the presented techniques for GFDM can straight-forwardly be
extended to SFC.

4.2 The Alamouti STBC for GFDM

Starting from the straight-forward application of the STBC to CP-OFDM, it is tempting
to introduce the Alamouti STBC for GFDM according to the following pattern: Given
the transmit data matrix D as in Sec. 2.4.2, we define the data symbols D1,D2 to be
transmitted from the first and second transmit antenna, as follows

D1 =




0 d0,1 d0,2 . . . d0,M−2 d0,M−1

0 d1,1 d1,2 . . . d1,M−2 d1,M−1

...
...

... . . . ...
...

0 dK−1,1 dK−1,2 . . . dK−1,M−2 dK−1,M−1


 (4.7)

D2 =




0 −d∗0,2 d∗0,1 . . . −d∗0,M−1 d∗0,M−2

0 −d∗1,2 d∗1,1 . . . −d∗1,M−1 d∗1,M−2
...

...
... . . . ...

...
0 −d∗K−1,2 d∗K−1,1 . . . −d∗K−1,M−1 d∗K−1,M−2


 . (4.8)

Here, the Alamouti encoding is performed on two adjacent columns in the data matrix.
Assuming an odd M (cf. Sec. 3.3), we leave the first column empty. However, this time
resource can serve as a guard symbol for OOB reduction [MMGF14] or can contain pilots
for channel estimation or synchronization [MF16]. In case of even M , e.g. when applying
the pulse shaping design from [NMZF17], also the first column of D can be used for data
transmission. The received signal after CP removal at the receiver is given by

~y = H1Avec(DT
1 ) + H2Avec(DT

2 ) + ~w, (4.9)

where H1,H2 denote the circulant channel matrices generated from channel impulse re-
sponses ~h1,~h2 and ~w denotes AWGN. In the OFDM case, the channels are diagonalized by
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the modulation and demodulation and hence each symbol experiences flat fading and no
ISI occurs. However, when taking over this demodulation technique to GFDM according
to

d̂k,m =
H1[k]∗yk,m +H2[k]y∗k,m+1

|H1[k]|2 + |H2[k]|2 m even (4.10)

d̂k,m =
H1[k]∗yk,m −H2[k]y∗k,m−1

|H1[k]|2 + |H2[k]|2 m odd, (4.11)

where yk,m = ~γHk,m~y is the received constellation point at subcarrier k and subsym-
bol m and ~γ is any receiver filter from Sec. 2.4.3, the channel-induced ISI is not re-
solved appropriately and hence an error floor depending on the channel length will ap-
pear [MMF14b, MMM+15]. There, Ht[k] is the kth element of the K-point DFT of ~ht,
which describes the average frequency response on the kth subcarrier. The difficulty with
(4.10) is that GFDM is not a channel-independent orthogonal system as CP-OFDM is
(see Sec. 3.2), but a multipath channel introduces interference that needs to be removed
before GFDM demodulation is performed. Hence, more sophisticated methods for the
application of the Alamouti STBC to GFDM need to be found. In the following we will
introduce two of the possible techniques.

4.2.1 Time-Reversal Space-Time Coding for GFDM

The time-reversal STC (TR-STC) has been proposed by [AD01] to allow the use of STC
for single carrier transmission over frequency-selective channels. The proposed approach
operates on two subsequent signals ~xi and ~xi+1 of length N which are separated by a CP.
Their corresponding discrete Fourier transforms are ~X(·) = F~x(·). The transmit signals on
both antennas for two subsequent time slots 1, 2 are given by

TX Antenna 1 TX Antenna 2
Time slot 1 FH ~X1 −FH ~X∗

2

Time slot 2 FH ~X2 FH ~X∗
1 ,

(4.12)

Note that the property

(FH ~X∗i )n = x∗i [〈−n〉N ] (4.13)

of the discrete Fourier transform reasons the name “time-reversal space-time coding”.
At the receiver, after removing the CP, the transmit signals appear circularly con-

volved with the CIR and therefore, the channel is diagonalized in the frequency domain.
Assuming the channel remains constant during the transmission of two subsequent blocks,
the received blocks in the frequency domain are given by

~Y1 = ~H1 ◦ ~X1 − ~H2 ◦ ~X∗2 + ~W1 (4.14)
~Y2 = ~H1 ◦ ~X2 + ~H2 ◦ ~X∗1 + ~W2, (4.15)
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where ~Hit =
√
NF~hit . Using a ZF equalizer, the received signals can be combined in the

frequency domain by

~̂X1 = ~H−1
eq ◦ ( ~H∗1 ◦ ~Y1 + ~H2 ◦ ~Y ∗2 )

~̂X2 = ~H−1
eq ◦ ( ~H∗1 ◦ ~Y2 − ~H2 ◦ ~Y ∗1 ),

(4.16)

where ~H−1
eq = ( ~H∗1 ◦ ~H1 + ~H∗2 ◦ ~H2)◦−1. (4.17)

Finally, the estimates of the transmitted blocks are acquired by inverse Fourier transform

~̂xi = FH ~̂Xi, i = 1, 2. (4.18)

Essentially, the TR-STC treats the signal as if it was a CP-OFDM signal where the
constellation points have been replaced with ~Xi, i.e. the frequency domain samples of
the transmit signal. Accordingly, the frequency domain combining is done equally to the
CP-OFDM case.

TR-STC can be directly applied to GFDM. Consider two data vectors ~d1, ~d2 that
generate two consecutive GFDM frames ~x1, ~x2 by

~xi = A~di. (4.19)

The GFDM signals ~xi and ~xi+1 can be space-time encoded as described in (4.12) and
(4.16) can be used to recover the signals on the receiver side. Then, conventional linear
GFDM demodulation according to Sec. 2.4.3, e.g. using the ZF demodulation can be
carried out to get an estimate of the transmitted symbols.

~̂di = A−1~̂xi. (4.20)

Furthermore, the noise covariance after demodulation that is used for soft-QAM demap-
ping is given by

Rñ = σ2A−1diag( ~H−1
eq )A−H . (4.21)

This technique has been analyzed in detail, including multiple-access and scheduling as-
pects in [MMG+15]. Despite achieving full diversity gain and very low complexity, TR-
STC has the drawback of encoding two adjacent GFDM blocks. This requires the channel
to remain stable over two GFDM blocks and increases latency to two GFDM blocks.
Alternatively, a more elaborate decoding scheme for the STC in (4.7) is shown in the
following.

4.2.2 Widely Linear Equalization for Space-Time Coded GFDM

Considering the problems of naive application of the Alamouti STC combining in (4.10),
a more garnished technique is required to successfully decode a GFDM signal that has
been space-time encoded according to (4.7). In particular, as has been pointed out, the
problem is to perform Alamouti STC combining on data that suffers from inter-symbol
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interference. In [GOS+02] the application of widely linear estimation (WLE) [PC95] has
been proposed to combat this problem and achieve the full diversity gain even in interfered
transmissions. In order to exploit this technique for GFDM, let us write (4.7) as

D1 = (~0 D(1)
s ) D2 = (~0 D(2)

s ) (4.22)

with

D(1)
s =




d0,1 . . . d0,M−1

d1,1 . . . d1,M−1

... . . . ...
dK−1,1 . . . dK−1,M−1


 = Ds D(2)

s = D∗sPs (4.23)

being the non-zero columns of D1,D2, respectively and

Ps = IM−1
2
⊗
(

0 1

−1 0

)
(4.24)

denotes the transformation from D∗s to D
(2)
s . Moreover, let As denote A where the columns

that correspond to the first subsymbol are removed. Then, the signal transmitted from
the ith antenna is given by

~x(i) = Asvec(D(i)
s

T
). (4.25)

Accordingly, taking the N-point DFT of (4.9) we can express the received signal ~Y in the
frequency domain by

~Y =
(
Ĥ1 Ĥ2P

)(~ds
~d∗s

)
+ ~W, (4.26)

where ~W = FN ~w, Ĥi = FNHiAs, ~ds = vec(DT
s ) and P = IK ⊗PT

s .
From the linear model (4.26), one could readiliy derive an LMMSE estimator for ~ds,

treating Ĥ2P~d
∗
s as (correlated) interference. Unfortunately, since E[~ds(~d

∗
s)
H ] = 0 as ~ds

takes rotationally symmetric constellation points, for the LMMSE receiver the interfer-
ence appears uncorrelated. On the other hand, clearly there is dependence, in fact a
deterministic relation, between ~ds and ~d∗s, given by E[~ds(~d

∗
s)
T ] = I, which is known as the

pseudocorrelation between ~ds and ~d∗s. This extra relation is considered by a widely linear
estimation (WLE). Referring to the derivation in Appendix A.1, the WLE for ~ds in (4.26)
is given by [MMM+15]

(
~̂ds
~̂d∗s

)
= (ĤH

eqĤeq + σ2I)−1ĤH
eq

(
~Y
~Y ∗

)
(4.27)

with Ĥeq =

(
Ĥ1 Ĥ2P

Ĥ∗2P Ĥ∗1

)
. (4.28)

Equation (4.27) yields the widely linear MMSE receiver, and it can be easily modified to
get the widely linear ZF receiver by fixing σ2 = 0 in (4.27). Accordingly, the noise variance
for widely linear ZF and MMSE receivers can be derived straight-forwardly from (2.43).



4.2 The Alamouti STBC for GFDM 47

Figure 4.2: Sample equivalent channel Ĥeq for M = 9, K = 8 using a RC filter with α = 1.

Algorithm complexity. According to (4.27), the widely linear minimum mean squared
error (MMSE) and ZF estimators for ds require to solve a linear equation system with
2K(M−1) = 2Non equations. The application of general-purpose solvers for such systems
requires a computational complexity of cubic order in both the number of subcarriers
and subsymbols which is prohibitively complex for real-time implementations of practical
system dimensions. However, due to the sparsity of the transmit filter in the frequency
domain, a solution can be found with linear complexity in the number of subcarriers,
where the number of complex operations is considered as a figure of merit.

Consider the equivalent channel matrix Ĥeq in (4.28). As shown in Sec. 2.4.2, FNA

is a band-diagonal matrix with only B non-zero coefficients per column, where B is the
number of non-zero coefficients of FN~g. For example with a RC filter with rolloff α, we
have B = (1 + α)M . Accordingly,

FNHiAs = FNHiF
H
NFNAs (4.29)

is also band-diagonal since the channel matrix Hi is diagonalized by the DFT. Since P

only operates within isolated subcarriers, the blocks of Ĥeq are also band-diagonal. An
illustration for Ĥeq is given in Fig. 4.2.

Let T2U be a 2U × 2U permutation matrix given by

T2U = [e0 eU e1 eU+1 . . . eU−1 e2U−1]T (4.30)

where ei is a zero column vector of length 2U with 1 at its ith position. The permutation
is applied to (4.27) by
(
~̂ds
~̂d∗s

)
= TH

2Non
(T2NonĤH

eqT
H
2N︸ ︷︷ ︸

QH
eq

T2NĤeqT2Non︸ ︷︷ ︸
Qeq

+σ2I)−1 T2NonĤH
eqT

H
2N︸ ︷︷ ︸

QH
eq

T2N

(
~Y
~Y ∗

)
(4.31)
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where Qeq is a sparse matrix of size 2N × 2Non where each column only has 2B non-zero
elements. Since fixed permutations essentially only describe a fixed wiring, this transfor-
mation does not increase implementation complexity.

The calcuation QH
eq(~Y T (~Y ∗)T )T requires only 2BN complex multiplications.

(Q
(j)
eq )HQ

(j)
eq is a positive definite Hermitian band diagonal matrix with periodic boundary

conditions with S = 4(M − 1)− 1 superdiagonals2 since only the subsymbols of adjacent
subcarriers overlap in the frequency domain. The periodic boundary condition exists due
to the edge subcarriers, that wrap around in the discrete frequency domain. Accordingly,
such subcarriers simultaneously have frequency components at the lowest and highest
frequencies, making them unsuitable for spectral localization and are normally not used,
i.e. Kon < K. In this case, the periodic boundary conditions vanish and the band diagonal
structure of (4.31) can be solved with Non((S2 + 1) + 4S) complex multiplications [(NA,
LAPACK zpbsv]. If K = Kon, the periodic boundary conditions can be overcome with
the application of the Woodbury formula [PTVF07] and the solution is accomplished
with an extra effort in the order of O(K · M3) complex multiplications which is still
linear with the number of subcarriers. Hence, by exploiting the structure of the equation
system, the computational effort can be significantly reduced to O(K · M3) compared
to O(K3M3) when general-purpose solvers are employed. In the beneficial case of empty
edge carriers, even the application of the Woodbury formula is not necessary at all and
complexity reduces to O(K ·M2)

4.2.3 Simulation Results

This section presents simulation results for uncoded and coded transmissions for the
presented techniques to achieve transmit diversity with GFDM. We show both the per-
formance of ZF equalization for TR-STC encoded GFDM signals and of widely linear
equalization for STC-encoded GFDM. Tab. 4.1 shows the system parameters that have
been used in the simulations.

Time-Reversal Space-Time Coding. For the TR-STC simulation, GFDM was con-
figured according to GFDM Type-I, i.e. in the simulation OFDM suffers from a larger CP
overhead. In particular, the ratio ρ between CP overhead for GFDM and OFDM is given
by (see Sec. 2.4.1)

ρ =
1

1 + (M−1)TCP

MTO+TCP

=
1

1 + (9−1)·16
9·64+16

= 0.82 , −0.85dB. (4.32)

In case of uncoded transmission, the theoretic expression of the SER of GFDM and
OFDM in block-fading Rayleigh fading has been derived in [MMG+15] (also see Ap-
pendix), and an approximation is given by

Pr(Symbol error) ≈ 4β
1∑

i=0

(
1 + i

i

)(
1 + ε

2

)i
, (4.33)

2 4(M − 1)− 1 holds for RC with rolloff α = 1. For smaller alpha, S decreases.
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Table 4.1: Simulation parameters for space-time coding simulations.

Parameter Symbol GFDM OFDM in Fig. 4.3 OFDM in Fig. 4.4

Number of Subcarriers K 64 64 64 · 9
Allocated Subcarriers Kon 64 64 64 · 9
Number of Subsymbols M 9 1 1
Prototype filter ~g RC Rect Rect

Bandwidth 5 MHz
CP length 16 samples
Modulation 16-QAM
Channel Code Rate 1/2 Turbo Code, 8 Turbo iterations
Codeword length 2048 bits
Channel Model EVA PDP
Fading Model Block Rayleigh fading
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Figure 4.3: Simulated performance for TRSTC GFDM. The overhead due to CP for GFDM and OFDM
is considered in the Eb/N0 calculation.

where

β =

(√J − 1√
J

)(
1− ε

2

)2

, (4.34)

ε =

√√√√
3
J−1

Es

ξ0N0

2 + 3
J−1

Es

ξ0N0

, (4.35)

with ES/N0 denoting the average symbol to noise energy ratio, J = 2µ denotes the size
of the QAM constellation and ξ0 denotes the product of the CP overhead and the NEF of
GFDM. Equation (4.33) follows from the well-known expression for the SER in flat fading
channels with diversity combining, which is e.g. given in [SA05, Eq. (9.23)]. There, only
the equivalent signal to noise ratio (SNR) needs to be adapted to account for the noise
enhancement and CP overhead. Assuming that due to Gray-mapping only one bit error
occurs per symbol error [Pro95], we have

Pr(Bit error) =
1

µ
Pr(Symbol error). (4.36)

Fig. 4.3 presents the simulated performance of the TRSTC GFDM system, in compar-
ison to a conventional STC OFDM system for coded and uncoded transmission. There,
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Figure 4.4: Simulated performance for widely linear MMSE equalization for STC-GFDM.

the CP overhead is reflected in the Eb/N0 calculation. In the case of TRSTC GFDM, the
space-time combining of GFDM and OFDM is very similar, since both systems combine
and equalize the received signal in the frequency domain. As an additional processing step,
GFDM performs ZF equalization of the GFDM modulation matrix, whereas the OFDM
data is directly obtained from the equalized signal. In case of α = 0, the GFDM equal-
ization is unitary, and hence no extra distortion is introduced. In this case, the calculated
CP overhead ρ = −0.85dB is directly reflected in the obtained coded and uncoded perfor-
mance. When the rolloff increases, the noise enhancement of the ZF GFDM equalizer (cf.
Sec. 2.4.3) comes into play and the performance curve shifts to the right by the amount
of the NEF.

Fig. 4.3 shows a close match between the theoretic and simulated curves for the un-
coded bit error rate, which indicates that the approximation in (4.33) is very tight. Ad-
ditionally, for α = 1, we see a significant BER degradation due to the high NEF for the
non-orthogonal filter. In the simulation setup, the NEF amounts ξ = 1.77 , 2.5dB, which
can also be observed in Fig. 4.3. For α = 0, GFDM slightly outperforms OFDM due to
the smaller CP overhead. In the coded results, we can observe the 0.85dB shift between
the OFDM curve and the GFDM curve for α = 0. Clearly, the gap stems from the CP
overhead of OFDM and the unitary GFDM equalization yields an optimal detection. For
α = 1, we observe a gap that is larger than the expected 2.5dB stemming from the NEF.
We can explain this larger gap by the fact that the ZF equalization matrix for α = 1 is
not unitary. Hence, the equalization introduces post-equalization noise correlation. In the
subsequent soft-QAM demapping according to Sec. 2.3, this correlation is not considered.
Accordingly, we see a larger gap in the coded performance curves.

Widely Linear MMSE Equalization. Fig. 4.4 presents the obtained simulation re-
sults with the widely linear MMSE equalizer for GFDM. In this case, GFDM was config-
ured according to Type-II, i.e. one GFDM block has equal length as one OFDM symbol.
Hence, both systems have a similar CP overhead. We have used this configuration to em-
phasize its usage for low-latency applications, compared to the TR-STC GFDM system.
Here, we have assumed that the first column of the GFDM data matrix is allocated with
pilots and assume the same pilot overhead for OFDM. Looking at the uncoded results
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for low SNR, GFDM with α = 0 follows the OFDM curve. For higher SNR, the slope of
the GFDM curve, compared to OFDM, decreases. In [MMM+15], this observation is ex-
plained by a non-uniform noise-enhancement over the subcarriers, which eventually yields
a degradation in the SER performance. For α = 1, the gap is 0.5dB smaller than expected
from the NEF. We can explain this by the application of the LMMSE equalizer, which
does trade noise enhancement for a small amount of self-interference and can therefore
improve the performance compared to a ZF equalizer. This effect becomes even more ob-
vious in the coded FER performance in Fig. 4.4, where the gap between α = 0 and α = 1

reduces to 1.1dB. Nevertheless, the orthogonal OFDM system outperforms GFDM with
α = 0 by approximately 0.18dB at a FER of 10−3. In the WLE setting, even for α = 0, the
equalizer matrix in (4.27) is not unitary, and therefore introduces noise correlation after
equalization. Hence, the soft-QAM demapping as described in Sec. 2.3 is not optimal,
which explains the performance degradation. On the other hand, the GFDM approach
using WLE exhibits half the latency of OFDM, as it requires only one block for the STC
application. Accordingly, also the channel needs to be stable for only one block, allowing
for more rapid channel variations. Equal latency could be achieved when using SFC for
OFDM, however with the premise that adjacent subcarriers experience the same fading
coefficient, which makes it unsuitable for highly frequency selective scenarios.

4.3 Summary

Even though receiver diversity is theoretically easy to achieve, it requires multiple an-
tennas at the receiver. Transmit antenna diversity is an important means to increase
reliability of a transmission when a receiver cannot afford multiple receive antennas and
is widely applied in today’s communication systems. In this chapter we have provided two
solutions to achieve transmit diversity with GFDM and compared their performance to
the straight-forward algorithm for OFDM. In particular we have proposed TR-STC which
encodes the GFDM transmit signal from two subsequent blocks. This method achieves full
diversity gain with low complexity, but at the cost of increased latency and requires the
channel to be static for two subsequent blocks. Alternatively, we have proposed a widely
linear equalizer for GFDM which harvests diversity when the STC is performed within
one GFDM block. When comparing the simulated performance in the uncoded case, it
was found that the proposed (widely) linear receivers for GFDM achieve full diversity and
perform similar to OFDM, depending on the rolloff. However, we conclude that the infor-
mation loss of the soft-out QAM demapper by ignoring post-equalization noise correlation
is larger for GFDM, leading to a degraded coded performance compared to OFDM. Our
findings imply that linear detection for GFDM cannot achieve superior performance com-
pared to OFDM and more elaborate receiver structures should be analyzed in the sequel.
The problem of interference becomes even more severe when IAI needs to be considered,
as is the case in spatial multiplexing (SM) systems. Therefore, in the following chapter,
we propose two non-linear receivers for spatially multiplexed GFDM streams and analyze
their performance and complexity.



Chapter 5

Non-Iterative Detection for Spatially
Multiplexed GFDM

In the previous chapter we have analyzed how linear GFDM demodulators can be used to
detect space-time encoded GFDM signals. We have seen that the linear receivers severely
suffer from self-interference, such that smaller rolloff factors yielded better performance.
In this chapter, we analyse a non-linear non-iterative receiver structure that can ben-
eficially exploit the extra information coupling introduced by the self-interference and
aim at optimal maximum likelihood (ML) decoding performance. We apply this algo-
rithm to spatially multiplexed GFDM signals. In order to explain the beneficial effect
of self-interference, we introduce the equivalence between the received signal of linearly
modulated data and points on a lattice. We further introduce the notion of the minimum
distance of this lattice and connect it to the error performance of the modulation. Subse-
quently, we introduce the proposed receiver structure for GFDM and analyze it in terms
of complexity and detection performance for coded and uncoded transmission. The results
in this chapter are based on the author’s works in [MGZF15, MZF16b].

System model. In the present and following chapter we consider the general linear
model

~y = H~d+ ~w, (5.1)

where ~w is complex-valued zero-mean AWGN with variance σ2. Moreover, ~y is the received
signal and H is the equivalent channel matrix that contains the modulation operation and
the wireless channel. This model is generally applicable to any linear modulation, including
MIMO transmission (cf. Sec. 2.2) and can be expressed in both time and frequency domain.

The equivalent channel H can become very large, but most of the time it has a very
special structure. For example in case of theNT×NR MIMO transmission using orthogonal
CP-OFDM, in the frequency domain H is equivalent to a block-diagonal matrix, where
each NR ×NT block corresponds to the inter-antenna interference on a single subcarrier.

Let us first detail out the linear system model for GFDM. Consider a MIMO GFDM
system with NT transmit and NR receive antennas operating in spatial multiplexing mode
which equally distributes transmit power over the antennas. Then, the signal ~y at the
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Figure 5.1: Comparison of GFDM and OFDM channel structure for a 2× 2 MIMO system.

receive antennas is given by


~y1

...
~yR




︸ ︷︷ ︸
~y

=




H1,1A . . . H1,TA
... . . . ...

HR,1A . . . HR,TA




︸ ︷︷ ︸
H



~d1

...
~dT




︸ ︷︷ ︸
~d

+~w. (5.2)

Here, Hir,it is the circulant channel matrix between the itth transmit and irth receive
antenna, ~d contains all ~δit , representing the transmit data of the itth transmit antenna
and ~w ∼ CN (0, σ2IRN) is AWGN. Note that (5.2) also holds for OFDM, when A is
the unitary Fourier transform (FT) matrix. A similar model can also be formulated in
the frequency domain, where Hir,it are diagonal channel matrices and A is the GFDM
modulation matrix in the frequency domain.

OFDM and GFDM interference structure. Fig. 5.1 compares the frequency do-
main channel structure of an example 2× 2 OFDM and GFDM system. Apparently, the
OFDM channel matrix is equivalent to a block-diagonal system with blocks of size 2× 2,
and each block corresponds to a single subcarrier. Hence, all subcarriers are decoupled
and can be treated separately. This property makes CP-OFDM attractive for MIMO
applications, since it diagonalizes the channel and does only yield IAI at the receiver.

In contrast, the GFDM channel structure is very different. The orthogonality is miss-
ing, and M symbols on each subcarrier interfer with each other due to channel ISI. Fur-
thermore, adjacent subcarriers interfer due to the overlapping subcarriers, creating ICI.
Eventually, as in every MIMO system, IAI occurs from signals of different antennas. The
system suffers from three-dimensional interference (ISI, ICI, IAI) and cannot be straight-
forwardly decoupled into separate, smaller systems.
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Role of self-interference. At first glance, the self-interference does not appear ben-
eficial for detection. However, the opposite can be the case. Self-interference has a very
different character than pure noise: It contains information about the transmitted signal.
Hence, one can understand self-interference as an additional constraint at the symbol
level, which provides one more error correction criterion for optimal detection and can
yield a performance gain. However, in order to harvest this gain, the interference needs
to be accurately resolved, which can only be achieved by non-linear receivers, which do
not treat interference as additional noise (as purely linear receivers would do).

A similar principle is intuitively known for conventional MIMO-OFDM systems.
Though LMMSE receivers perform optimal for single-antenna systems, in the MIMO case
they by far do not reach the optimal performance. Instead, non-linear receivers employing
sphere-decoders [AF16, SB10] or SIC [BC12] can be employed to harvest the gain from the
interference, which comes in the shape of increased slope in the bit error rate curves. As a
counter-example, consider an artificial MIMO-OFDM system, where the channel matrix
is always diagonal (i.e. there is no IAI). Such system is IAI-free and hence orthogonal,
but the well-known MIMO gains that stem from the cross-talk between the antennas will
not occur.

Hence, the existence of self-interference in a system is a double-edged sword: If a
receiver algorithm is able to accurately resolve it, a boost in detection performance is
achieved, compared to an orthogonal system. However, in case the interference cannot
be resolved, a performance degradation compared to orthogonal systems is observed. To
achieve an optimal detection performance, the detection of all transmit symbols needs
to be done in a joint manner. Apparently, since H can become very large, the algorithm
complexity is a severe issue for the optimal detection in GFDM. Hence, besides designing
high-performance receiver algorithms for GFDM, it is always important to keep its com-
plexity in mind. Fortunately, for GFDM the interference is subcarrier-localized, meaning
that only adjacent carriers interfer with each other, which leads to a banded structure
of H. We will see later on, how this structure allows powerful detection algorithms with
affordable complexity.

5.1 The Linear Model as a Lattice Transform

In Chapter 3 in the context of TFA, the transmit data vector ~d was treated as a continuous
variable, that could take any value from CN . However in reality, this is not true, since
the elements ~d are discrete constellation points. With linear detection, the assumption of
continuous values for ~d is kept for equalization, which causes a performance loss. Instead,
one can take advantage of the fact that ~d only takes discrete values and consequently, H~d

also only takes a finite number of different values. In fact, H~d in (5.1) forms a subset of
a lattice.
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Definition of a lattice. Let H be a full-rank N ×N matrix1. The lattice LH is defined
as the set

LH = {H~d | ~d ∈ ZN + jZN}. (5.3)

A lattice is a set of regularly positioned discrete points in N -dimensional space and H

is called the basis of the lattice. Essentially, the lattice is spanned by all integer linear
combinations of the column vectors of H.

Lattices occur in a wide range of mathematical and engineering topics, such as cryptog-
raphy [Pei14], compression [KDMB02], crystallography [Kit04], and, apparently, digital
communications [WSJM11]. A more detailed treatment of lattices and their properties is
given in e.g. [CS99].

Channel matrix as the lattice basis. Consider the J -QAM constellation where both
the real and imaginary component takes the values {−2s+1,−2s+3,−2s+5, . . . , 2s−1}
2 with s =

√
J and J = 2µ. We can find two numbers s ∈ R, o ∈ C such that ~z =

s~d+ o~1 ⊂ ZN + jZN . Accordingly, the received signal ~y′ with

~y′ = s~y + oH~1 = sH~d+ Ho~1 + s~w = H~z + s~w (5.4)

consists of points of the lattice with basis H which are corrupted by AWGN with noise
variance s2σ2. Here, s and o serve as (channel-independent) constants to shift the receive
points onto the integer lattice with origin ~0. Then, the optimal MIMO detection (2.16) in
the uncoded case is equivalent to finding the closest point H~z of a lattice for a given point
~y′. This problem has been shown to be NP-hard [AEVZ02], i.e. no exact algorithm exists
that achieves polynomial runtime in any case. However, approximations exist, such as the
Schnorr-Euchner enumeration [SE94] which is practically applied in the sphere decoder
[SB10, AF16].

In an orthogonal lattice3, which corresponds to an orthogonal transmission, each com-
ponent of the N -dimensional data vector ~d is encoded within one dimension of the N -
dimensional receive signal space. Hence, ML detection can be easily accomplished. At the
downside, if one dimension of the signal space is severely attenuated due to e.g. fading, the
data on this dimension is most likely lost. On the other hand, non-orthogonal signalling
(i.e. non-orthogonal lattice bases) does not reserve one dimension for one component of
~d but allocates multiple components of ~d onto multiple dimensions of the received signal,
creating interference on the one hand, but mitigating deep fades on the other hand.

An important measure for the error probability in the uncoded case is the minimum
distance dmin between two adjacent lattice points. Intuitively, if the magnitude of the
noise realization for a given received point is smaller than dmin/2, the detected point will
1 If H is tall, there exists a unitary matrix U such that UH has size N × N without changing the
statistical properties of the system.
2 The constellation diagram can be scaled to have unit energy.
3 Orthogonal lattices have an orthogonal basis matrix H, i.e. HHH = diag(~v) where ~v describes the gains
in each dimension. The columns ~hi of H are orthogonal, i.e. ~hHi ~hj = ~viδij . As an example, OFDM is
orthogonal when the channel is a static multipath channel.
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always be correct. If the noise is stronger, detection errors can occur. Due to the linear
structure of the lattice, finding dmin is equivalent to finding the shortest vector in a lattice.
Unfortunately, this problem is also NP-hard and no analytic solution exists. Nevertheless,
dmin can be calculated numerically for small system sizes.

In the coded case, not all combinations of constellation points are allowed. Hence,
there will be holes in the lattice, i.e. some points in the lattice are not valid, since they do
not correspond to valid codewords. Even though also in this case dmin dictates the error
performance, its numerical calculation is more complex since codewords are generally
very long. Furthermore, what makes this significantly harder if not unsolvable than in the
uncoded case is the fact that usually there is no linear mapping from the payload bits to
the transmitted signal, as the bit-to-QAM mapping is a non-linear operation. Therefore,
for the following derivation, we resort to the minimum distance in the uncoded case.

Minimum distance of GFDM and OFDM. In the previous section, we have seen
that interference can in fact be beneficial for the decoding process. We want to illustrate
this observation with the analysis of the probability distribution of the minimum distance
p(dmin) of a single-antenna OFDM, SC-FDMA and GFDM system. Consider a linear
modulation system with frequency domain modulation matrix M and a diagonal channel
in the frequency domain, i.e. a CP is used to diagonalize the channel. The channel is
assumed to be Rayleigh fading with a given PDP ~P with normalization

∑
i Pi = 1.

Hence, a realization of the channel impulse response is given by

~h = diag(
√
~P )~n, (5.5)

where ~n ∼ CN (0, I) describes the Rayleigh fading. Then, the noise-free received signal ~Y
in the frequency domain is given by

~Y = (
√
NFNdiag(

√
~P )~n) ◦M~d. (5.6)

Consider a system that uses only the first GFDM subcarrier. For an equivalent CP-OFDM
system, we have M = (IM 0M×N−M)T , for SC-FDMA we have M = (FM 0M×N−M)

and for GFDM we find M = FNA, and A equals the columns of the GFDM modulation
matrix that correspond to the first subcarrier. Note that GFDM with the Dirichlet filter
reduces to SC-FDMA. We can determine p(dmin) over different fading realizations for
each system and for different power delay profiles. The minimum distance is given as the
shortest vector in the lattice by

dmin = min{‖(FNdiag(
√
~P )~n) ◦M~d‖|~d ∈ ZM + jZM \ {~0}}. (5.7)

In the OFDM case, where M = I, p(dmin) follows the distribution of the minimum ofM
correlated Rayleigh random variables. For uncorrelated Rayleigh variables, this problem is
trivially solved [Lee16], but the approach is not easily generalizable to correlated variables.
However, numeric approximations of the distribution is straight-forwardly possible. For
SC-FDMA and GFDM, no closed-form solution for p(dmin) can be found, since no analytic
expression for dmin is available. Still, the distribution can be estimated numerically.
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Figure 5.2: Simulation of minimum distance of OFDM, SC-FDMA and GFDM for N = 16,M = 4.
GFDM uses a RC filter with α = 1.

Fig. 5.2 shows the numerically obtained probability densities of dmin for OFDM, SC-
FDMA and GFDM for a flat fading and two frequency selective channels. In the flat
fading channel4, we can observe that p(dmin) is independent of the modulation matrix.
Explaining the equality of SC-FDMA and OFDM is straightforward, since both OFDM
and SC-FDMA use a unitary M which does not change the energy of any transmit vector,
i.e. ‖M~d‖2 = ‖~d‖2 for all ~d and hence ‖(FNdiag(~P )~n) ◦M~d‖2 = ‖(FNdiag(~P )~n) ◦ ~d‖ for
a flat channel, i.e. ~P = ~e0, where ~e0 is the first column of the identity matrix.

However, for GFDM M is not unitary. But, one can show that5

min
~d∈SM\~0

‖M~d‖2 = min
~d∈SM\~0

‖~d‖2

and hence the same distribution of dmin as for OFDM is obtained.
In the case of a frequency-selective channel, the situation changes. Now, the channel

is not flat, i.e. the channel frequency bins become less correlated, when the PDP becomes
longer. In this case, p(dmin) for OFDM concentrates around smaller values. Intuitively, we
can explain this for the extreme case of ~P = 1√

N
~1, i.e. all frequency bins are uncorrelated.

Then, for the OFDM case the PDF for dmin is given by the distribution of the mini-
mum of M uncorrelated Rayleigh random variables. Certainly, this distribution is more
concentrated around smaller values than the distribution of a single Rayleigh variable.

This problem of the reduced dmin for OFDM is created by the fact that in OFDM
each frequency bin can be modulated independently, i.e. it can happen that one carrier is
severely faded, yielding a small dmin. In contrast, both GFDM and SC-FDMA do not allow
independent modulation of each frequency bin, due to their modulation matrix M. Intu-
itively, both systems spread the data over multiple frequency bins, exploiting frequency
diversity. Figure 5.3 illustrates this behaviour, where we compare dmin for GFDM and
OFDM for a fixed channel realization. The channel realization is deeply faded around the
35th OFDM subcarrier, hence leading to a small dmin for OFDM. In this case, frequency-
spreading waveforms such as SC-FDMA or GFDM are more robust against these fades.
4 The flat fading channel can be seen as a corner case, where the frequency bins are random variables
that have 100% correlation, i.e. are all equal.
5 Intuitively, the minimum energy is obtained, when only one subsymbol is active. Since ‖~g‖2 = 1 the
result follows.



5.2 Successive Interference Cancellation for GFDM 58

0 20 40 60

0

0.5

1

GFDM subcarriers

X
(f
)

OFDM, dmin = 0.1

Channel

Tx

Rx

0 5 10 15

0

0.5

1

GFDM subcarriers

X
(f
)

GFDM, dmin = 0.2

Channel

Tx

Rx

Figure 5.3: Example of dmin for OFDM and GFDM for the same channel realization. N = 64,M =

4,K = 16, GFDM uses an RC filter with rolloff α = 1. Both systems transmit with unit energy, but
OFDM concentrates all energy into one frequency bin, which can happen to be deeply faded. In contrast,
GFDM uses wider subcarriers and uses more frequency bins for a single subcarrier. Accordingly, it can
harvest frequency diversity and therefore does not equally suffer from the deep fade.

We want to conclude this section by emphasizing that the performed investigations
only hold for the uncoded case, i.e. each data point is independent from all others. In the
coded case, the situation is different, since already the channel code can exploit diversity
that stems from the frequency-selectivity of the channel. Nevertheless, the present inves-
tigation shows that the modulation format itself can lead to additional exploitation of
frequency diversity and therefore opens the potential to outperform plain OFDM, espe-
cially when short code words or high code rate are used and the code diversity is hence
limited.

5.2 Successive Interference Cancellation for GFDM

The technique of SIC is well known in diverse detection algorithms, ranging from multi-
user detection [WQK+14] to channel estimation [KLF07] or MIMO detection [TV05].
In this section, we introduce a SIC algorithm for MIMO-GFDM detection that uses a
sphere-decoder [AF16]to detect each layer. The proposed algorithm greatly outperforms
optimal OFDM detectors in the uncoded case, which we can explain by the increased
dmin of GFDM as shown in the previous section. However, subsequent analysis of coded
performance reveals an inferior performance due to the error propagation of the SIC
technique. As such, these findings are a prominent example that basing conclusions on
simulation with uncoded transmissions can be very misleading.

In the following, we first introduce the basic algorithm and point out methods to
improve its performance. Subsequently, we analyze uncoded and coded performance and
give reasons of the great discrepancy between the coded and uncoded performance. This
section is based on the author’s work in [MGZF15, MZF16b].
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Figure 5.4: Example R after QR decomposition of equivalent GFDM channel in (5.8). 2 × 2 MIMO-
GFDM system with K = 6,M = 3, α = 1. Clearly, the interference is structured in blocks, with the
strongest interference appearing along the triangular blocks on the diagonal.

5.2.1 Basic Algorithm Description

The proposed SIC method relies on the sorted MMSE QR decomposition (MMSE-SQRD)
[WBKK03] of the equivalent channel matrix, given by

[
H

σI

]
=

[
Q1

Q2

]
RPT , (5.8)

where the unitary permutation matrix P denotes the column sorting of H and R is
upper triangular. Here, P is designed such that the lowest layers of R have the largest
SNR[WBKK03]. Then, the received signal ~y in (5.2) is multiplied by Q1, yielding

ỹ = Rd̃+ w̃, (5.9)

where d̃ = PT ~d and w̃ denotes noise plus remaining interference, since Q1 is not exactly
unitary [WBKK03]. Fig. 5.4 shows an example R matrix for a 2×2 MIMO-GFDM system.
As can be seen, the interference (i.e. the off-diagonal elements of R) is concentrated along
the main diagonal. Furthermore, it appears that the interference occurs in blocks of size
M ×M . However, the interference is structured in a way, that no complete decoupling
between parts of the equation system can be achieved.

Optimally, a sphere-decoder could run on the triangular equation system (5.9). How-
ever, even though the complexity of modern sphere decoders has been greatly reduced
[SB10, AF16], the huge size NTNon ×NTNon of (5.9) prohibits a practical application of
the sphere decoder to (5.9). Therefore, we have designed an algorithm that takes into ac-
count the special structure of R. Given a layer size S, the proposal combines S-dimensional
sphere-decoding with SIC between the detected layers [MZF16b, MGZF15]. The idea is
that the sphere-decoder completely resolves the interference between the S × S blocks
on the diagonal of R, and the SIC removes this interference from the other layers. With
S = 1, this algorithm reduces to standard V-BLAST SIC detection [WFGV98] as a corner
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while length(ỹ)>0 do
~λS = SD(ỹS ,RS,S , σ

2) . Detect last S streams using sphere-decoding. (1)
~̂d = ~M(~λS > 0) . Hard-decision LLR to QAM mapping. (2)

ỹ ← ỹ −R:,S
~̂d . Cancel interference from this layer to upper layers. (3)

ỹ ← ỹS̄ , R← RS̄,S̄ . Reduce system size, go to next M ×M layer. (4)
end while.

Figure 5.5: Detection algorithm from [MGZF15]. The subscripts S, S̄, : denote the last S, all but the
last S, and all elements of the subscripted object, respectively.

case. On the other hand, when S = NTNon, the system consists only of a single layer, and
hence equals the application of the sphere-decoder to the entire system at once.

Fig. 5.5 shows the pseudo-code of the proposed algorithm, that was originally published
in the author’s publication [MGZF15]. The algorithm starts in step (1) by performing a
soft-out sphere decoder (SD) [AF16] operation, estimating the LLR ~λS of the last µS bits
in the system. In step (2) ~M(~λS > 0) maps the detected bits to the closest constellation
point (i.e. hard decision) and the cancellation signal is obtained by remodulating the
detected constellation symbols via R:,S. Step (3) removes the detected symbols from the
received signal and in step (4) the algorithm moves to the next group of S QAM symbols.
The algorithm proceeds until all groups have been processed. Eventually, the estimated
LLRs are sent to the channel decoder to produce an estimate of the transmitted code
word or undergo hard-decision for uncoded evaluation.

5.2.2 Overcoming Error Propagation

As a SIC technique, the proposed algorithm suffers from error propagation [TV05], as
erroneously detecting a lower layer impairs detection of upper layers by assuming a wrong
cancellation signal. Moreover, as only groups of symbols are detected jointly, not all re-
lations between all symbols are resolved, reducing the diversity of the system. Therefore,
two techniques aiming at improving on these problems have been developed and will be
described below.

Soft-SIC. The mapping operation in step (2) of Fig. 5.5 considers hard decision of the
cancellation signal based on the LLR output of the SD. However, as the LLRs povide
information on both the constellation symbol and its accuracy, an improved cancellation
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Initialization ~W = σ2~1

while length(ỹ)>0 do
~λS = SD(ỹS ,RS,S , ~WS) . Detect last S streams. (1)
~̄d, ~σ = ~M(~λS) . Estimate constellation symbols. (2)
ỹ ← ỹ −R:,S

~̄d . Cancel interference. (3)
~W ← ~W + diag(R:,Sdiag(~σ)RH

:,S) . Update Noise (4)
ỹ,R, ~W ← ỹS̄ ,RS̄,S̄ ,

~WS̄ . Reduce system size. (5)
end while.

Figure 5.6: Soft-SIC demapping algorithm.

signal can be calculated. Furthermore, considering the reliability information from the
LLRs, the noise level of the upper layers can be adapted accordingly, as outlined in Fig.
5.6. Let λi,b and P [bi,b = 1] =

exp(λi,b)

1+exp(λi,b)
be the LLR and probability for the bth bit of

the ith QAM symbol in ~̂d. Then, considering the bit-to-symbol mapping, P [d̂i = s] is
straightforwardly given for all s ∈ S as the product of the bit probabilities. Mean d̄i and
variance σ2

i of the ith QAM symbol in ~̂d are given by

d̄i =
∑

s∈S

P [d̂i = s]s and σ2
i =

∑

s∈S

P [d̂i = s]|s− d̄i|2. (5.10)

Then, the cancellation signal is calculated from the mean d̄ of the estimated symbols in
step (2) and (3) of Fig. 5.6. Additionally, the uncertainty of the symbols propagates to
the upper layers by

Cov[R:,S( ~̄d− ~d)] = R:,Sdiag(~σ)RH
:,S. (5.11)

By assuming the errors are uncorrelated, the diagonal of (5.11) needs to be considered as
extra noise for the following layers, as done in step (4) of Fig. 5.6. This technique allows
the SD to provide more accurate LLR values for higher layers.

K-Best Decoding. The previously proposed algorithm has the fundamental limitation
that only a subset of all symbols is jointly detected. Decisions on a lower layer are fixed and
will not change when new information from the upper layers is available. Understanding
the solution of (5.9) as a tree search, the proposed algorithm divides the tree into layers
of depth S. Then, it searches through a single layer, and chooses the best path for this
layer as the starting point for the search on the next layer. This principle is equal to the
K-best sphere decoding algorithm [GN06], but only keeping the best path (i.e. Kp = 1)6.
Hence, the proposal can be extended to keep a higher number of best paths in the search
history, such that the decision on one layer is not final, but can be influenced by higher
layers.

The proposed algorithm is shown in Fig. 5.7. The set L contains all LLR candidate
vectors used to calculate the cancellation signal (2). For each of these candidates the SD
6 To distinguish the number of kept paths from the number of subcarriers of the system, we denote the
number of paths by Kp.
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Initialization: L = {} . (1)
for n = TNon

S − 1 downto 0 do
L′ ← {}
for all ~λ ∈ L do

~̂d = ~M(~λ > 0)

ỹ′ = ỹ −R:,nS:end ~̂d . (2)
~λS = SD(ỹ′nS:(n+1)S ,RnS:(n+1)S,nS:(n+1)S) . (3)

Flip unreliable bits in ~λS and add [~λ ~λS ] to L′ . (4)
end for.
Reduce L′ based on d(ỹnS:end,RnS:end,nS:end, ~λ) . (5)
L ← L′

end for.
Keep best element of L.

Figure 5.7: K-best demapping algorithm

is run (3) and its output is added to a new candidate list L′ (4). Furthermore, the sign of
the small LLR values, i.e. unreliable bits, in ~λS are flipped and the resulting LLR vectors
are also considered as candidates in L′. After all candidates have been generated, the K
candidates with the smallest distance of the received signal to the estimated signal, given
by

d(~y,R, ~λ) = ‖~y −R ~M(~λ > 0)‖2, (5.12)

are retained in L′ (5). Eventually, the best candidate vector in L is the final output of
the demapping algorithm.

5.2.3 Simulation results

The described demapping algorithm has been evaluated by Monte-Carlo simulations with
system parameters from Tab. 5.1. According to the results obtained in Sec. 5.1 wider filters
improve frequency diversity and minimum distance. Therefore, two different filter types
were investigated. First, a filter with RC spectrum with rolloff α = 1.0 was considered.
Alternatively, a filter with a RC time-domain function with rolloff α = 0.1 [GMM+15] was
used, which creates a frequency response which is significantly wider than one subcarrier.

For the channel code, a rate 5/6 WiMax LDPC code was chosen, since it performs well
in non-iterative receivers and the GFDM block size was adapted to contain a full LDPC
code word of 1344 bits [MZF16b]. The sum product algorithm (SPA) is used for decoding.
GFDM was configured according to GFDM type-II, such that an OFDM system which
occupies the same bandwidth and time resource is used for benchmarking the system.
The OFDM demapping process involved a soft-out SD operation for each subcarrier and
is hence optimal for non-iterative receivers. The channel is modeled as a block-fading
Rayleigh multipath channel as defined in Sec. 2.2 with the PDP given in Tab. 5.1. In the
simulation, we analyzed the performance under three different PDPs. Moreover, perfect
CSI and synchronization was assumed at the receiver and the LLR output of the SD was
clipped at ±10.
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Table 5.1: System parameters used for the simulation.

Parameter Symbol Value

GFDM # subsymbols, # subcarriers M,K 7, 32
# allocated subcarriers |K| 16
Prototype filter 1 g[n] RC FD, α = 1.0

Prototype filter 2 g[n] RC TD, α = 0.1

Group size for joint detection S 7 = M

OFDM Block length N 224 = MK

# allocated subcarriers 112 = M |K|
General CP length NCP 32

Bit-mapping S 64-QAM, gray
# transmit, receive antennas T,R 2× 2

Channel PDP Channel 1: Exponential PDP L1 12 Taps
Channel 2: Exponential PDP L2 16 Taps
Channel 3: Uniform PDP L3 32 Taps

LDPC Code Code word length 1344 bits
Coding Rate 5/6
Decoding Algorithm SPA
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Figure 5.8: Uncoded and coded performance of the proposed algorithm using Hard-SIC with the system
configuration from Tab. 5.1 and a RC filter with rolloff α = 1.

Uncoded Performance. Fig. 5.8a shows the performance of the proposed algorithm
using Hard-SIC in the uncoded case. There, the performance of ZF equalization, pure SIC
(i.e. S = 1) and the block-wise SD in combination with SIC (i.e. S = M) are compared
with the respective OFDM performances. As can be seen, with the linear ZF receiver,
the 3-dimensional interference of GFDM implies a noise enhancement of roughly 2.5dB

compared OFDM system which is only impaired by IAI. In contrast, comparing the ML
solution of OFDM using a sphere-decoder per OFDM subcarrier with the performance
achieved by the proposed MIMO-GFDM detector with S = M , we observe a far superior
performance of GFDM over OFDM. In fact, GFDM outperforms OFDM by 3dB for an
(uncoded) SER of 10·−4.

We can readily explain the superiority of GFDM with the observed distribution of
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been marked in blue.

the minimum distance of GFDM and OFDM from Sec. 5.1. and Fig. 5.2. Since the mini-
mum distance limits the achievable performance for a given noise variance, a system that
achieves a larger dmin on average will perform superior. On the other hand, dmin does not
alone influence the performance. As can be seen, for lower ES/N0, OFDM outperforms
GFDM in Fig. 5.8a. We can explain this by the error propagation of the SIC method for
GFDM, i.e. if a detection error is made in the lower layers, it will propagate to upper layers
and impede their detection. Therefore, we again see the two-sidedness of self-interference:
If the receiver can accurately resolve the interference (i.e. make correct decisions at the
lower layers), performance improves. If it cannot resolve it (e.g. in the lower SNR regions),
the self-interference acts similar to additional noise and degrades performance compared
to an orthogonal system.

Hard SIC Coded Performance. Encouraged by the promising results in the un-
coded transmission from Fig. 5.8a, simulations including soft-out channel decoding were
performed. Fig. 5.8b shows the achieved decoding performance in terms of coded FER
for the proposed algorithm with S = M in comparison to OFDM. Additionally, the curve
labeled Genie SIC can be understood as a lower bound on the FER showing the poten-
tial of the demapping process without error propagation, i.e. the interference cancellation
was assumed to be always correct. As shown, the Hard-SIC proposal achieves poor per-
formance in the coded case compared to the OFDM system. The evaluation has been
carried out for different channel conditions. Though the performance of GFDM increases
with frequency selectivity, the gap to the OFDM system grows, since the OFDM system
harvests frequency diversity through the LDPC code. On the other hand, the Genie SIC
curves reveal an increasing potential of the algorithm, if the error propagation could be
mitigated.
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Figure 5.10: Histograms of LLR at demapper output at Eb/N0 = 15dB in Channel 1.

Analysis of Error Propagation. To analyze the error propagation characteristics, we
evaluate the metric ∆d for GFDM and OFDM in the uncoded case, wich is given by

∆d = ‖~y − H̃ ~M(~λ > 0)‖ − ‖~y − H̃~d‖. (5.13)

In words, ∆d equal the difference between two characteristic eucledean distances in
the signal space. First, the distance of the received signal to the estimated signal
‖~y − H̃ ~M(~λ > 0)‖, i.e. the decision made by the demapper, is considered. Second, the
distance of the received signal to the transmitted signal ‖~y − H̃~d‖, i.e. to the correct de-
cision, is used. Hence, if the decision of the demapper is correct, i.e. ~M(~λ > 0) = ~d, then
∆d = 07. ∆d < 0 implies the demapper found a bit combination that is closer to the
received signal than the actually transmitted signal. In this case, we know that the ML
decision would be an erroneous decision, since there exists an erroneous decision that is
closer to the received signal than the correct decision. On the other hand, ∆d > 0 implies
that the demapper could not find the ML solution, as we know that H̃~d is closer to the
received signal than the decision made by the demapper.

The histogram for ∆d was obtained by measuring ∆d for different channel and noise
realizations and calculating the relative frequencies of each bin. The result is shown in
Fig. 5.9. As shown, the OFDM demapper always finds the ML solution to (5.1), since
∆d ≤ 0. For GFDM, a significant histogram part relates to ∆d > 0, indicating that the
ML solution was not found. Hence, the coded performance is inferior. But, being in line
with Fig. 5.8a, comparing the bin values of both histograms at ∆d = 0 (blue bar) shows
a better uncoded FER of GFDM than OFDM, as the ratio of exactly correct decisions
(∆d = 0) for GFDM is higher than for OFDM.

In addition, Fig. 5.10 compares the histograms of the demapper LLR output for OFDM
and GFDM, where GFDM employs either Hard SIC or Genie SIC. In the plots, p(λ|b = 1)

describes the histogram of the LLRs that belong to bits with value b = 1. Comparing the
histogram shape for LLRs with correct sign, no difference can be inferred between OFDM
and GFDM. However, looking at LLR with wrong sign, the histogram shapes for GFDM
7 Practically, this implication can be considered to be an equivalence relation, as it is very unlikely that
an erroneous decision will yield an exact match in the distances due to the high dimensionality and
randomness of the noise
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Figure 5.11: FER comparison for the proposed demappers in Channel 1.

and OFDM differ strongly (marked with circles in Fig. 5.10). For GFDM Hard SIC a
large amount of LLRs with wrong sign have high magnitudes compared to OFDM. These
wrong LLRs can outrule LLRs with correct sign but small magnitude in the decoding
process and hence the FER is severely degraded. By intuition, the large LLRs with wrong
sign exist mostly due to the error propagation of the SIC. However, the histogram for
GFDM Genie SIC, where no error propagation can occur, reveals, that still more high-
magnitude wrong-sign LLRs compared to OFDM occur. These exist because only groups
of S symbols are jointly detected. Hence, we can infer a significant loss by not jointly
tackling ISI, ICI and IAI between all symbols. On the other hand, a full joint detection
is computationally infeasible with the present algorithm proposal.

Soft-SIC and K-Best Performance. Finally, Fig. 5.11 shows the FER of the propos-
als to reduce the effect of error propagation in the system. Again, the OFDM curve serves
as a reference. Looking at the uncoded detection performance, Soft SIC, Hard SIC and
Genie SIC all achieve the same FER, significantly outperforming OFDM. Remarkably,
the K-best detection with 16 candidates achieves even better performance than the Genie
SIC, which is explainable by the larger search tree for the detection.

For the coded FER, Soft SIC and K-Best detection improve the decoding performance
by 0.2dB and 0.5dB, respectively. in this sense, we believe the massively increased com-
plexity of the K-best detector is not worth the implementation effort. Furthermore, the
gap to the OFDM system is not closed when using the filter with RC spectrum (RC FD).
Employing a filter with RC impulse response (RC TD) [GMM+15] improves the perfor-
mance by ≈ 1.8dB. The wider bandwidth yields stronger ICI, hence linear receivers would
yield poorer performance, as was shown in Sec. 2.4.3 for single-antenna systems and in
the author’s work [MZF16a] for MIMO systems. However, in principle a wider bandwidth
yields larger frequency diversity which is explained in Sec. 5.1, which can be harvested
by non-linear receivers. For the proposed receiver algorithm, the performance gain can be
explained by the fact that for high SNR, already the cancellation signal calculation based
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on the uncoded symbols partially correctly cancels the interference and leads to higher
diversity. Employing the RC TD filter exhibits an error floor which is because only S

symbols are jointly detected. This is even more influential for the RC TD case, since due
to higher ICI more symbols overlap in the frequency domain and hence the information
loss of jointly detecting only few symbols becomes more significant.

Comparing the Genie SIC curves with the achievable curves of Hard SIC, Soft SIC
and K-best shows a great potential if the error propagation could be further mitigated.
However, with the restriction of a non-iterative receiver structure, the cancellation signal
calculation can only rely on the constellation constraint of the transmitted signal and
no coding constraint can be incorporated. This makes it virtually impossible to generate
the correct cancellation signal reliably. Moreover, considering groups of only S symbols
is not optimal and especially impairs performance with wide-bandwidth filters. On the
other hand, employing an iterative receiver structure quickly becomes impractical with the
present algorithm, since the successive application of the SD implies both a large latency
and computationaly complexity for each iteration. In the following section, we propose a
different method for the soft-in soft-out (SISO) demapping of the MIMO-GFDM signal,
which is more appropriate for iterative detection.

5.3 Summary

In this chapter, we have derived the linear model for MIMO-GFDM transmission and
analyzed the minimum distance of a GFDM and OFDM modulation in the context of the
lattice structure of digital modulation. We have found that due to the self-interference
and hence frequency-spreading of GFDM the distribution of the minimum distance of
GFDM over all channel realizations is shifted towards larger values, compared to OFDM.
Therefore, we concluded a larger capacity for GFDM-modulated signals compared to the
orthogonal signalling.

Based on this observation, we have proposed and analyzed an algorithm for detection
of spatially multiplexed GFDM streams and compared its performance against state-
of-the-art MIMO-OFDM receivers. Namely, we have analyzed a non-iterative detection
algorithm that based on the combination of sphere-decoding with SIC which aims at
achieving the ML performance in the uncoded case. We showed that the proposal signifi-
cantly outperforms optimal OFDM detection in the uncoded case, however the inherent
error propagation of the SIC component degraded coded performance, rendering the ap-
proach dull for practical applications. Particularly, our findings emphasize the necessity
of analyzing coded performance, since extrapolating results from uncoded performance
simulations can be very misleading. Driven by our findings, we conclude that the con-
stellation constraint alone is not sufficient to reliably resolve the self-interference of the
non-orthogonal system. Accordingly, in the following chapter we will present and analyze
an iterative detection algorithm that aims to achieve the coded ML performance.



Chapter 6

Iterative Detection for Spatially
Multiplexed GFDM

As was shown in the previous chapter, relying solely on the constellation constraint for
resolving the self-interference does not yield acceptable performance compared to an or-
thogonal system. Therefore, in this chapter we propose an iterative receiver algorithm for
MIMO-GFDM that incorporates the coding constraint into the demapping operation. In
Sec. 2.3 the concept of iterative detection has already been mentioned. Briefly, the idea
is to provide a-priori information about the probability of different constellation symbols
from the decoder to the demapper. The theory that evolves around iterative receiver struc-
tures is vast and is actively researched in both classical works [Ber93, Bri01] as well as in
timely literature [YH15]. In this thesis, we focus on the application of iterative receiver
algorithms for MIMO-GFDM detection and only shortly describe the necessary basics of
iterative detection.

6.1 Iterative MIMO Detection

An optimal receiver algorithm in terms of the ML criterion finds the codeword that
achieves the minimum distance to the received signal according to (2.16). However, in a
reasonable code the huge amount of possible codewords inhibits a brute-force solution to
(2.16). Instead, as was shown in Sec. 2.3, the processing of a received signal is split into two
blocks, namely the demapper and the decoder. In a non-iterative receiver, the received
signal is first processed by the demapper to create an initial guess on the transmitted
codeword, which is subsequently improved by the channel decoder. The idea of iterative
detection is to understand the combination of the coding and the constellation constraint
as a serially concatenated code [BDMP98], which can be efficiently decoded by alternately
decoding both codes and exchanging information between them. Therefore, we feed back
the information from the channel decoder into the demapper to refine the constellation
constraint (Fig. 6.1). This way, a loop between demapper and decoder is obtained, which
should optimally converge to the global optimum of (2.16).

Two general theoretical tools exist in the literature that are used to analyze the conver-
gence performance and criteria of iterative decoding. First, one could model the decoding
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Feedback iterations
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Figure 6.1: Schematic representation of an iterative receiver with SISO demapper and SISO decoder.
Note that this generic diagram does not consider the difference between extrinsic and intrinsic information
and assumes that the required measures are calculated within the demapper and decoder blocks.

process as a discrete-time nonlinear dynamic system, as was shown in [Ric00b]. Second,
density evolution can be used for the analysis, as was e.g. shown in [RU00, RU01]. How-
ever, the applicability of these tools is often limited to simple cases to be analytically
tractable. To get insights into more complex systems, the extrinsic information trans-
fer (EXIT) chart analysis aims to track the density evolution by a one-dimensional pa-
rameter [tB99b]. However, the accuracy of these methods degrades for short code words
or more complex systems. As such, very few general results are available to predict and
analyze the convergence behaviour. Rather, most insights base on empirical successes of
different algorithms. In this work, we used the one-dimensiomal EXIT chart to get some
insights into the convergence behaviour of the proposed algorithm.

The central components for iterative detection are the soft-in soft-out (SISO) demap-
per and SISO channel decoder. Both blocks receive soft-information about the probability
of certain bits from a previous processing step and return soft-information about these
bits that has been improved by either the constellation (the SISO demapper) or the code
constraint (the SISO decoder). Apparently, the SISO demapper needs to be adapted to
the signal modulation, whereas the SISO decoder needs to be adapted to the channel
code. Hence in the following, we focus on the design of a SISO demapper for the MIMO-
GFDM system and use state-of-the-art channel decoding algorithms for the SISO channel
decoder.

6.2 Iterative MMSE-PIC Detection for MIMO-GFDM

The SISO demapping using linear MMSE estimation has been initially proposed in [WV99]
which exhibited a very high complexity as it required a matrix inversion for each element
in ~d. In this subsection, we present the principles of MMSE-PIC demapping as a classic
interference cancellation scheme. Consider the linear model ~y = H~d + ~w. We model ~d as
a Gaussian random variable with a known mean ~µad and variance Σa

d.1 In the framework
of parallel interference cancellation (PIC) of [WV99], the detection focuses on the nth
element dn of ~d and assumes all other elements of ~d, denoted by ~d\n, are interfering terms.
1 Knowledge of mean and variance of ~d is commonly obtained from the SISO channel decoder.
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This leads to a reformulation of the linear model to

~y = ~hndn + H\n~d\n + ~w, (6.1)

where ~hn denotes the nth column of H, and H\n equals H without the nth column. Then,
the PIC yields the signal ~yn given by

~yn = ~y −H\n[~µad]\n = ~hndn + H\n(~d\n − [~µad]\n) + ~w︸ ︷︷ ︸
w̃

, (6.2)

where [~µad]\n denotes ~µad without the nth element and w̃ models noise-plus-interference
with variance HΣa

dH
H + σ2I. Based on (6.2), an LMMSE estimation for dn is performed,

which apparently requires an N × N matrix inversion for each element of ~d as has been
proposed in [WV99]. Later on, [SFS11] and [ALA14] reduced the complexity to require
only a single Non ×Non matrix inversion. In [MZF16a], we have shown that this process
is equivalent to a single LMMSE estimation with a-priori knowledge on ~d. This finding
allows to perform the MMSE-PIC demapping for MIMO-GFDM with low complexity
based on sparse matrix factorizations. However, before we can dive into the details of the
proposed technique, we need to introduce an unbiased relative of the common LMMSE
estimator, which will be used in the proposed demapper.

6.2.1 Component-wise conditionally unbiased (CWCU) LMMSE
estimation

We denote with Θx the (conventional) LMMSE estimator which calculates an estimate of
~x from the measurement ~y based on the linear model ~y = H~x+ ~w, where we have a-priori
knowledge on ~x and ~w as

~x ∼ CN (~µax,Σ
a
x) ~w ∼ CN (~0,Σa

w). (6.3)

Let (ηpx,Λ
p
x) denote the LMMSE estimate and error variance of this estimate for ~x and

denote the LMMSE estimation operation by

(~ηpx,Λ
p
x) = Θx[~y = H~x+ ~w, CN (~µax,Σ

a
x), CN (~0,Σa

w)]. (6.4)

Here, the first, second and third arguments to Θx are the linear model with known ~y and
H, the a-priori information on ~x and the a-priori information on the noise ~n, respectively.
Then, Θx generates the LMMSE estimate and error covariance matrix by the common
equations for the LMMSE estimation:

~ηpx = ~µax + Σa
xH

H(HΣa
xH

H + Σa
w)−1(~y −H~µax) (6.5)

Λp
x = Σa

x − Σa
xH

H(HΣa
xH

H + Σa
w)−1HHΣa

x. (6.6)

This estimation is conditionally biased [Kay93] since E[~ηpx|~x] 6= ~x. This is due to the fact
that the effective channel matrix after filtering, i.e. Σa

xH
H(HΣa

xH
H + Σa

w)−1H, does not
have a unit diagonal.
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In the following we summarize equations for an unbiased LMMSE estimator, namely
the component-wise conditionally unbiased (CWCU) LMMSE estimator [HL15, HLH17].
We let (µpx,Σ

p
x) denote the CWCU LMMSE estimate and error variance of this estimate

for ~x and denote the CWCU LMMSE estimation operation by

(~µpx,Σ
p
x) = Φx[~y = H~x+ ~n, CN (~µax,Σ

a
x), CN (~0,Σa

w)] (6.7)

where ~µpx = ~µax +
HH(HΣa

xH
H + Σw)−1(~y −H~µax)

diag[HH(HΣa
xH

H + Σa
w)−1H]

(6.8)

and diag(Σp
x) =

~1

diag[HH(HΣa
xH

H + Σa
w)−1H]

− diag[Σa
x]. (6.9)

For the CWCU estimator, we only provide a simple form for the diagonal elements of the
a-posteri covariance matrix Σp

x of ~x. We can ignore off-diagonal elements since considering
the diagonal of the covariance is sufficient in the present analysis. However, in general this
does not mean that the CWCU estimation provides uncorrelated estimates. More details
about CWCU estimation, including the exact expression for the error covariance matrix
Σp
x can be found in [HLH17].

6.2.2 SISO LMMSE Demapping

Based on the derivations of Wang [WV99], Studer [SFS11] and Auras [ALA14], we showed
in [MZF16a] that the core operation of the minimum mean squared error with parallel in-
terference cancellation (MMSE-PIC) demapper is equivalent to a simple CWCU LMMSE
estimation that takes a-priori information from the channel decoder into account. The
details of this derivation are presented in [MZF16a] and are omitted in the present work.
Instead, only the final expressions are shown. The overall SISO demapping operation can
be split into 3 steps:

1. Soft-modulating the LLR from the channel decoder to soft QAM constellation sym-
bols. Let bs,b ∈ {0, 1} be the bth bit of the sth constellation symbol and let its

a-priori information be encoded in the LLR value λAs,b with Pr[bs,b = 1] =
exp(ΛA

s,b)

1+exp(λAs,b)
.

Then, mean and variance of the a-priori constellation symbols are given by

(~µad)s =
∑

d∈S

Pr[ds = d]d =
∑

d∈S

∏

b

Pr[bs,b =M−1
b (d)]d

(Σa
d)ss =

∑

d∈S

Pr[ds = d]‖d− (~µad)s‖2,
(6.10)

where Pr[ds = d] is calculated from the product of the corresponding
Pr[bs,b =M−1

b (d)] and the inverse QAM-to-bit mapping M−1
b (d) yields the

bth bit of the complex constellation symbol d. In the initial iteration no channel
decoder feedback is available and hence ~µad = 0 and Σa

d = I.

2. Refining the constellation symbols by performing CWCU LMMSE estimation with
the received signal

(~µpd,Σ
p
d) = Φd[~y = H~d+ ~w, CN (~µad,Σ

a
d), CN (~0, σ2I)]. (6.11)
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Figure 6.2: Interference structure of data in frequency domain. After the M-point DFT on subcarrier
k, the data is repeated K times, windowed by G[ν] and shifted by kM to the corresponding subcarrier
frequency. Eventually, the signals from all carriers are summed to yield the overall frequency domain
transmit signal.

3. Demapping the constellation symbols to distinct bit probabilities using the common
soft-out QAM demapper (2.25) from Sec. 2.3. Afterwards, the estimated LLRs are
sent to the channel decoder to estimate the transmitted code word.

6.2.3 Factorization of the channel matrix

In [MZF16a], we presented a method to perform the SISO MMSE-PIC demapping oper-
ation by exploiting the band-diagonal structure of the equivalent channel that achieved a
complexity order O(KonM

3N3
T ), i.e. the respective complexity grew linear with the num-

ber of allocated subcarriers, but was cubic with the number of subsymbols in the GFDM
block. For an equivalent OFDM system, the complexity would be O(KMN3

T ), since for
each of the KM subcarriers, an NT × NT full matrix inversion needs to be performed.
Hence, it is desirable to further reduce the complexity of the MMSE-PIC demapping for
MIMO-GFDM systems. Moreover, the OFDM solution can be easily parallelized since
each carrier can be treated independently, whereas the GFDM solution treats the entire
system (6.11) at once, making high-level parallelism difficult to achieve. This can lead to
an increased latency in the demodulation when implemented in real-time. In the following,
we will derive an algorithm that approximates the operation in (6.11) with a complexity of
order that is linear in K and quasi-linear in M and which supports high-level parallelism.

General principle. The basic idea of the complexity reduction is based on the fact
that the linear MMSE demapper assumes that both its input and its output are contin-
uous, Gaussian random variables with some known distribution. Hence, for the LMMSE
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Figure 6.3: Factorized equation system in the noiseless case with Af = FNA(IK⊗FH
M ) for K = 6,M =

3, α = 1. The unitary matrix P is defined as the N × N permutation matrix that fulfills vec(XT ) =

Pvec(X) for all K ×M matrices X.

demapper, it does not matter, if the estimate is actually discrete (i.e. discrete constel-
lation symbols) or not. Since a unitary transform U transforms i.i.d. Gaussians ~d into
i.i.d. Gaussians ~D, the LMMSE estimation can be separated into the estimation of D

with subsequent transformation of ~D to ~d via the adjoint of U. If it turns out that the
estimation of ~D is easier to accomplish than directly estimating ~d, a complexity reduction
can be achieved2.

Interference structure in DFT-spread data domain. To understand how this idea
can be applied to the present system, we have to understand the interference structure
of GFDM in the DFT-spread data domain. Consider the frequency domain transmitter
implementation (2.37), which is illustrated in Fig. 6.2. As is shown, only subsets of the
DFT-spread symbols {FM

~dk}k interfer with each other, depicted with different colors
(i.e. only bins of the same color interfer). Hence, each color corresponds to a separate
equation system. Moreover, since the frequency bins overlap only from adjacent carriers,
these equation systems exhibit a bidiagonal structure. For frequency bins in the center of
the carriers, the corresponding equation system even becomes diagonal, since depending
on the filter rolloff, not all bins overlap. A subsequent multipath channel does not alter
this structure since it becomes diagonal in the frequency domain. Fig. 6.3 illustrates the
structure of the linear system when A is factorized according to this proposal.

Extension to MIMO-GFDM. The previous system factorization has been described
in the context of single-antenna systems. The extension to the MIMO case is straight-
2 Given that the operation UH ~D can be calculated efficiently
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forward, by transforming (5.2) into the frequency domain and writing

(INR
⊗ FN)~y =




H11 . . . H1NT

... . . . ...
HNR1 . . . HNRNT


 (IT ⊗ FNA)~d+ ~w (6.12)

=




H11 . . . H1NT

... . . . ...
HNR1 . . . HNRNT


 (IT ⊗Af )

︸ ︷︷ ︸
H̃

~D + ~w = H̄ ~D + ~w, (6.13)

with ~D = (INT
⊗ (FM ⊗ IK))~d being the DFT-spread data, i.e. the M-point DFT of the

constellation points on each carrier. Then, H̄ in (6.13) is equivalent to H̄ in Fig. 6.3,
however each non-zero element of H̄ in Fig. 6.3 would be replaced by a NR×NT non-zero
matrix due to the inter-antenna interference.

Three-step LMMSE estimation. We are now ready to formulate the LMMSE esti-
mation based on the factorized system. The ultimate goal is to obtain the CWCU estimate
of ~d, given by

(~µpd,Σ
p
d) = Φd[~y = H~d+ ~w, CN (~µad,Σ

a
d), CN (~0, σ2I)], (6.14)

which can be achieved with complexity O(KM3N3
T ) by directly solving (6.14) as shown

in Sec. 2.4.3 and [MZF16a]. However, instead of directly estimating (~µpd,Σ
p
d) in (6.14),

we resort to the DFT-spread data ~D = U~d with U = INT
⊗ (FM ⊗ IK) (cf. (6.13)).

Accordingly, the a-priori mean ~µaD and covariance Σa
D of ~D are given by

~µaD = U~µad, Σa
D = UΣa

dU
H . (6.15)

We can now get the CWCU estimate of ~D from

(~µpD,Σ
p
D) = ΦD[~y = H̄ ~D + ~w, CN (~µaD,Σ

a
D), CN (~0, σ2I], (6.16)

Under the constraint that Σa
D is a diagonal matrix and due to the GFDM interference

structure in Fig. 6.3, the equation system in (6.16) decays into M band-diagonal systems
each of size NTKon where the (one-sided) bandwidth is NT . Furthermore, we can show
that with a diagonal Σa

D we have (proof see appendix)

(ηpd,Λ
p
d) = Θd[~µ

p
D = U~d+ ~w, CN (~µad,Σ

a
d), CN (~0,Σp

D)], (6.17)

i.e. the (biased) a-posteriori LMMSE estimate of ~d can be calculated from the CWCU
a-posteriori LMMSE estimate of ~D with the linear model ~µpD = U~d+ ~η, where ~η contains
the uncertainty of the a-posteriori ~D. By analogy, the final, a-posteriori CWCU estimate
for ~d can be calculated by

(~µpd,Σ
p
d) = Φd[~µ

p
D = U~d+ ~η, CN (~µad,Σ

a
d), CN (~0,Σp

D)]. (6.18)
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Figure 6.4: Block diagram of the 3-step MMSE estimation process in combination with channel decoder.
Using the information from the channel decoder, (~µa

d,Σ
a
d) is generated by soft-modulating the respective

a-posteriori LLRs as in (6.10). Then, this information is used to acquire (~µa
D,Σ

a
D) in step 1) which is

in turn used to gain improved knowledge (~µp
D,Σ

p
D) in step 2). Finally, this information is transformed

to (~µp
d,Σ

p
d) in step 3) and forwarded to the Soft QAM demapper and the channel decoder, closing the

iteration loop.

The above derivation assumes that the covariance matrix Σa
D is diagonal, which re-

quires the variances of Σa
d to be equal on one subcarrier. Naturally, this constraint is

violated after feedback information from the channel decoder is incorporated into the
demapping process. In this case, by analogy to the estimation of (~µpd,Σ

p
d) from (~µpD,Σ

p
D)

in (6.18), we can perform CWCU LMMSE estimation of (~µaD,Σ
a
D) from the a-priori knowl-

edge (~µad,Σ
a
d), given by

(~µaD,Σ
a
D) = ΦD[~µad = UH ~D + ~η, CN (~µa

′

D,Σ
a′

D), CN (~0,Σa
d)]. (6.19)

Here, (~µa′D, Σa′
D) is some a-priori knowledge on the distribution of ~D. In the simplest case we

can use (~µa
′
D,Σ

a′
D) = (~0, I). Accordingly, we can split the overall SISO LMMSE demapping

detection process into 3 steps, which are also illustrated in Fig. 6.4:

1. Calculate (~µaD,Σ
a
D) as the CWCU LMMSE estimate of ~D from the model

~µad = UHD + ~η, ~η ∼ CN (~0,Σa
d) and (~µa

′
D,Σ

a′
D).

2. Calculate (~µpD,Σ
p
D) as the CWCU LMMSE estimate of ~D from the received signal

~y = H̄ ~D + ~w and (~µaD,Σ
a
D).

3. Calculate (~µpd,Σ
p
d) as the CWCU LMMSE estimate of ~d from the model ~µpD = U~d+~η,

~η ∼ CN (~0,Σp
D) and (~µad,Σ

a
d).

We want to emphasize that, despite this treatment focuses on the application to
GFDM, the proposed 3-step estimation technique to first estimate DFT-spread data sym-
bols can readily be employed for other non-orthogonal waveforms with localized ICI which
obey the linear model (5.1) as e.g. FBMC or CB-FMT. For the case of no a-priori knowl-
edge, this has been demonstrated in [ZMMF17]. The present extension of transforming
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a-priori knowledge from the time to the frequency domain and vice versa can be straight-
forwardly applied to other waveforms.

Note, that in case of UHΣa
dU being diagonal, the CWCU LMMSE estimate of (~µaD,Σ

a
D)

in (6.19) and the direct transform from time to frequency in (6.15) are equivalent. How-
ever, in case of Σa

D not being diagonal, the LMMSE estimation process tends to produce
less correlated estimates, compared to the operation in (6.15) and hence provides more
decoupled values to step 2). Nevertheless, the final LMMSE estimate of ~d will not be exact
due to ignored correlation between frequency-domain data ~D. In order to mitigate this
problem, it is possible to perform DI inner demapping iterations between steps 1) and 2),
where the output (~µpD,Σ

p
D) of step 2) can serve as a-priori knowledge (~µa

′
D,Σ

a′
D) for step

1) (see Fig. 6.4). This way, the estimation performance can be improved, at the cost of
increased complexity. The obtained simulation results will be presented below in Sec. 6.3.

6.2.4 Low-Complexity Approximation

We have separated the estimation process into smaller steps of decoupled linear equation
systems. Therefore, the possibility for high-level parallelism in the implementation is al-
ready achieved. On the other hand, the solution of the equation systems can still require
high computational efforts, which we investigate in the following section.

Steps 1) and 3): Transforming frequency to time-domain data and vice versa.
Initially, in (6.19) in step 1) a CWCU LMMSE estimation of the frequency domain data
based on the time-domain data is to be calculated by

~µaD = ~µa
′

D +
(Σa′

D + UΣa
dU

H)−1(U~µad − ~µa
′
D)

diag((Σa′
D + UΣa

dU
H)−1)

,

Σa
D =

1

diag((Σa′
D + UΣa

dU
H)−1)

− Σa′

D.

(6.20)

Note that since U = INT
⊗FM⊗IKon , (6.20) can be decoupled into NTKon smaller systems

of size M ×M with coefficient matrices {Xkit}k=0,...,Kon−1;it=0,...,NT−1 given by

Xkit = Σa′

D,kit + FMΣa
d,kitF

H
M = Σa′

D,kit + circ
(

1√
M

FMdiag(Σa
d,kit)

)
. (6.21)

In (6.21), the index (·)kit denotes to select the M elements that correspond to the kth
subcarrier from the itth transmit antenna. Calculating the numerator in (6.20) requires
to solve X−1

kit
~b for the right-hand side ~b = U~µad − ~µa

′
D, whereas the denominator requires

knowledge of diag(X−1
kit

). Even though Xkit is a highly structured matrix by being the sum
of a positive definite diagonal and circulant matrix Γ + ∆, no specific solvers for these
kinds of systems exist in the literature. Most closely, in [HN05] an algorithm for systems
of the form (Γ + j∆) is presented, where Γ has eigenvalues with positive real part and ∆

is real-valued. Hence, in order to not be bound to the O(M3) complexity of brute-force
matrix inversion, we resort to approximate methods.

Let us first consider diag(X−1
kit

). As shown in the following, we can approximate
diag(X−1

kit
) by

diag(X−1
kit

) ≈ diag((Σa′

D,kit + 1
M
tr(Σa

d,kit)I)−1) (6.22)
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from the observation that the diagonal of Xkit is larger than its off-diagonal elements.
Assume the elements σ2

d,i of the a-priori covariance Σa
d,kit

are i.i.d. random variables that
are distributed according to some distribution. Since σ2

d,i ∈ (0, 1], they clearly have non-
zero mean and we can model

σ2
d,i = σ̄2

d + ri (6.23)
ri ∼ D(σ2

r), (6.24)

where σ̄2
d is the mean of the a-priori variance information of ~d and ri follows a distribution

with zero mean and variance σ2
r . Note that due to the boundedness of σ2

d,i ∈ (0, 1], we have
σ2
r ≤ r2

max with rmax = min(σ̄2
d, 1 − σ̄2

d), which corresponds to a degenerate distribution
p(r) = 1

2
(δ(r − rmax) + δ(r + rmax)) of maximum variance. Now, considering the system

matrix Xkit , the expected value of the first column ~c1 of the circulant part is given by

~̄c1 = E[~c1] = 1√
M

FME[diag(Σa
d,kit)] = σ̄2

d~e1, (6.25)

where ~e1 is the first column of an M ×M identity matrix. Furthermore, the variance on
each element of ~c1 is given by

E[(~c1 − ~̄c1)(~c1 − ~̄c1)H ] =
σ2
r

M
I. (6.26)

Hence, on average ~c1 equals σ̄2
d~e1 and each element varies with standard deviation σr√

M
<

σ̄2
d√
M
, which is smaller than the average power of the first element of ~c1. Eventually, we

can conclude that the diagonal of Xkit is larger than its off-diagonal elements and the
expression in (6.22) approximately holds, where we have estimated the true mean σ̄2

d

from the elements of Σa
d,kit

by σ̄2
d ≈

tr(Σa
d,kit

)

M
. This approximation in (6.22) improves with

increasing M .
Considering the solution to X−1

kit
~b = (Γ + ∆)−1~b, we note that multiplying with a

diagonal matrix is trivial and for a circulant matrix it can be done with quasilinear
complexity via the DFT. Accordingly, we can employ the iterative conjugate gradient
(CGD) method [GL96], which converges quickly to the exact solution.

Tab. 6.1 outlines the process for solving the system (Σa′

D,kit
+FMΣa

d,kit
FH
M)−1(F~µad,kit−

~µa
′

D,kit
) of step 1) with the CGD method and summarizes the required number of operations

for each step. As the CGD method requires an initial starting point for the iterations, we
use the approximate inverse in (6.22) to calculate an initial solution. The same algorithm
can also be used for step 3) of the LMMSE estimation process by replacing the corre-
sponding variables. Note that in the last iteration, only the first two steps of the loop
are necessary, since the remaining steps yield values for the following iteration. We finally
note that all NTKon small M ×M systems are independent and can be solved in parallel,
making it suitable for a parallelized implementation.
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Table 6.1: Algorithm description of the Conjugate Gradient Method for LMMSE steps 1) and 3). DFT
denotes the operation count for an M -point DFT, i.e. M logM complex operations, which is quasilinear
in M .

Calculation Add. Mult. Div. DFT Remarks

~b = FM~µ
a
d,kit
− ~µa′

D,kit
M 1 Calculating the RHS of the sys-

tem
~x0 = (Σa′

D,kit
+

tr(Σa
d,kit

)

M I)−1~b 2M − 1 0 M + 1 0 Initial guess of the solution
~r0 = ~b− (Σa′

D,kit
+ FMΣa

d,kit
FH

M )~x0 2M 2M 0 2
~p0 = ~r0, k = 0

Repeat
αk =

~rHk ~rk

~pH
k (Σa′

D,kit
+FMΣa

d,kit
FH

M )~pk
4M − 2 4M 1 2

~xk+1 = ~xk + αk~pk M M 0 0 Refined solution, break at k =

KMax − 1

~rk+1 = ~rk − αk(Σa′
D,kit

+ FMΣa
d,kit

FH
M )~pk M M 0 0 reuse value of αk calculation

βk =
~rHk+1~rk+1

~rHk ~rk
M − 1 M 1 0 reuse nominator from αk calcu-

lation
~pk+1 = ~rk+1 + βk~pk M M 0 0
k = k + 1

Overall count KMax = 1 10M − 3 7M M + 2 5

Overall count KMax = 2 18M − 6 15M M + 4 7

Overall count KMax = 5 42M − 15 39M M + 10 13

Step 2): LMMSE estimation for frequency domain data. According to the results
in [MZF16a], the LMMSE estimation process for step 2) can be reformulated to

~µpD = ~µaD +
(H̄HH̄Σa

D + σ2I)−1(H̄H~y − H̄HH̄~µaD)

diag((H̄H̄HΣa
D + σ2I)−1H̄HH̄)

Σp
D =

1

diag((H̄HH̄Σa
D + σ2I)−1H̄HH̄)

− Σa
D.

(6.27)

As shown in [ZMMF17], the equation system in (6.27) is equivalent to M systems of size
NTKon each, where each equation system is governed by a band-diagonal matrix with
(single-sided) bandwidth B = NT . However, this only exactly holds if Σa

D is a diagonal
matrix, which is the case when no decoder feedback was incorporated into the demapping
operation. In any other case, we can approximate the solution by ignoring the off-diagonal
elements of Σa

D and still consider the systems separately. Then, following the derivation
from Sec. 2.4.3 for a band-diagonal system, we can perform the estimation with complexity
O(KonNRN

2
T ) for each of the M systems. Since the systems are decoupled, all systems

can be solved in parallel, creating no extra penalty on the overall latency.

Overall Complexity. Let us denote with O(FN) the arithmetic complexity for per-
forming an N -point FFT, which can be approximated by O(FN) ≈ O(N logN). Consid-
ering the straight-forward implementation of the SISO MMSE-PIC demapping operation
for OFDM with symbol length MK where MKon subcarriers are allocated, the order of
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Figure 6.5: Frame structure.

complexity in terms of arithmetic operations can be estimated by

COFDM = NRO(FKM) + IMKonO(NRN
2
T ), (6.28)

where I denotes the number of MMSE-PIC iterations. There, the first term corresponds to
the transformation of the received time-domain signal into the frequency domain, and the
second term describes the complexity of the MKon LMMSE inversions of the NR × NT

channel matrix of each subcarrier for each iteration. Now, considering the arithmetic
complexity for GFDM with Kon allocated subcarriers, we end up with

CGFDM = NRO(FKM) + I(NTKonO(FM) +MO(KonNRN
2
T ) +NTKonO(FM)). (6.29)

Again, the first terms corresponds to the transformation of the received time-domain
signal to the frequency domain. The second, third and fourth term correspond to steps
1), 2) and 3) of the MMSE-PIC demapping for each iteration, respectively. In overall, we
find

COFDM = NRO(FMK) + IMKonO(NRN
2
T ) (6.30)

CGFDM = NRO(FMK) + IMO(KonNRN
2
T ) + 2INTKonO(FM), (6.31)

showing that the proposed algorithm for GFDM has only a quasilinear overhead in number
of symbols and streams compared to OFDM and in total both systems exhibit the similar
order of complexity in terms of big-O notation. Compared to the solution provided in
[MZF16a], where the complete system using H was solved at once, the current proposal
offers linear complexity in the number of subcarriers Kon and quasilinear complexity
O(M logM) in the number of subsymbols M which is a significant gain compared to the
cubic complexity in M when directly solving the banded system with the algorithm from
Sec. 2.4.3. Furthermore, by splitting the estimation process into 3 sequential steps, with
each step consisting of independent equation systems, potential for high-level pipelining
and parallelization of a practical implementation is readily available.

6.3 Simulation results

In this section we present performance simulation results of the proposed algorithms using
a 4 × 4 MIMO system under practical LTE EVA and ETU channel models defined by
3GPP (cf. Tab 2.1) exhibiting continuous time-variance according to Jakes model and
maximum delay spread of 2.5µs and 5µs, respectively.
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Table 6.2: GFDM and OFDM configuration used in the simulation.

Parameter Symbol GFDM OFDM
# Available Subcarriers K 128 1536
# Allocated Subcarriers Kon 3 or 24 12 · {3, 24}
# Subsymbols M 12 1
# Allocated Subsymbols Mon 12 1
# Tx, Rx antennas T,R 4 4
Prototype filter g[n] RC Rect
Filter rolloff α 0 or 1 -
CP length - 4.7µs (EVA channel); 16.7µs (ETU channel)
Time-Window - RC window, 16 samples ramp up
Modulation and coding - {(16-QAM, r = 1/2),(64-QAM, r = 3/4)}
Channel Model 3GPP EVA, ETU; fd = {0, 30, 100}Hz, Jake’s Model Fading
CSI Perfect CSI or Imperfect CSI: Channel MSE = SNR+3dB
LDPC Code WiMax LDPC with SPA log-MAP decoder
Convolutional Code {1, 133/171}8 RSCC with BCJR log-MAP decoder
# GFDM/OFDM blocks per frame F LDPC: 8; Conv.: 7
GFDM/OFDM Frame length TFrame LDPC: 666µs; Conv: 583µs

System configuration. Tab. 6.2 shows the simulation parameters that have been
adopted in the present simulation. The GFDM parameters are derived from an OFDM
LTE system with 15MHz bandwidth with sampling frequency of 23.04MHz, obeying the
GFDM Type-II configuration (cf. Sec. 2.4.1). We have made GFDM and OFDM blocks
of equal length and 12 subsymbols are contained in one GFDM block. Hence, one GFDM
subcarrier has the bandwidth of one LTE physical resource block (PRB). Additionally, to
be in line with commonly applied OOB reduction methods, we have added a raised cosine
time-window of consisting of 16 ramp-up and ramp-down samples to each OFDM and
GFDM block, to emulate a windowed-GFDM [MMGF14] or windowed-OFDM [ZSW+15]
scheme. The frame structure of the adopted scheme is shown in Fig. 6.5, where F GFDM
or OFDM blocks are preceded by a single preamble, that is used for channel estimation and
synchronization. We assume ideal synchronization, i.e. no carrier frequency offset (CFO)
and symbol timing offset (STO) are present. The channel was implemented using Jake’s
model with a given Doppler spread (cf. Sec. 2.2), i.e. the channel was time-variant. How-
ever, the CSI for the receiver was obtained only from the preamble and assumed to be
constant during the full frame. We have performed simulations with perfect and imperfect
CSI where we emulate the channel estimation by supplying erroneous CSI to the demap-
ping unit. Assuming an LMMSE channel estimation unit has knowledge of the PDP, the
channel estimate is given by adding random noise of variance depending on the SNR to
the correct impulse response, i.e. ~h = ~̂h + ~nh where ~̂h is the obtained CSI and ~h is the
average impulse response during the preamble. Further, ~nh ∼ CN (~0, σ2

hI) is the chan-
nel estimation error. The SNR is defined as 1

σ2 = µr Eb

N0
and for imperfect CSI we have

σ2
h = σ2/2. For perfect CSI, we set σ2

h = 0.
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6.3.1 Approximation accuracy

Fig. 6.6 and 6.7 compare the performance of the approximate solution of the LMMSE
estimation process by doing the estimation in the symbol’s frequency domain against the
exact detection from (6.14). Fig. 6.6 shows the measured information transfer curves,
whereas Fig. 6.7 presents the obtained FER performance with perfect and imperfect CSI.
All information transfer curves start in the same point, and the FER performance of all
schemes is equal with no iterations, confirming that the 3-step estimation process is exact
when no a-priori knowledge is available in the system.

When decoder feedback is available, with perfect CSI the performance of the approxi-
mate method is only slightly worse than the exact solution. A very different result occurs
for the more realistic case of imperfect CSI as a performance difference of almost 1.5dB
at a FER of 10−3 can be observed. In particular, performing no extra demapping iter-
ations (DI = 1) and using the approximate CGD method with C = 5 CGD iterations
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even outperforms the exact MMSE-PIC SISO demapper in terms of FER. We can ex-
plain this behaviour by the fact that the exact MMSE-PIC demapper does not consider
imperfect CSI, but only considers the noise term in the calculation of a-posteriori LLR.
As such, the exact SISO demapper tends to be over-confident with imperfect CSI and the
iterative receiver might get stuck in a local minimum and does not necessarily reach the
optimum solution. In contrast, the approximate method with DI = 1, C = 5 introduces
approximation errors into the system, which occur as extra noise at the demapper. This
extra noise can reduce the over-confidence and hence aids in reaching a more optimal
solution. The parametrization DI = 2, C = M yields a performance close to the exact
solution, showing that this configuration approximates the exact MMSE-PIC demapping
accurately. On the other hand, the parametrizations DI = 2, C = {2 or 5} perform ≈ 1dB
worse than the exact SISO MMSE-PIC demapping. To conclude, we find that performing
internal demapping operations (DI > 1) in combination with an exact solution of (6.20)
yields a performance that is close to the direct solution of (6.14). In contrast, for imperfect
CSI the parametrization DI = 1, C = 5 even outperforms the direct solution of (6.14) in
terms of FER at lower complexity. With perfect CSI, there is only a marginal difference
between all investigated parametrizations. Hence, in the following evaluations, we employ
the parametrization DI = 1, C = 5 for both perfect and imperfect CSI.

6.3.2 MMSE-PIC demapper information transfer

Fig. 6.8 shows the information transfer chart of the SISOMMSE-PIC demapper for GFDM
and OFDM in a block-fading ETU channel. The curves of OFDM and GFDM intersect and
the intersection moves to the left with increasing SNR, exhibiting potential that iterative
GFDM schemes can outperform iterative OFDM schemes. Interestingly, for Eb/N0 =

15dB, even the starting point of the GFDM curve is above the OFDM curve, indicating
that already a non-iterative GFDM LMMSE receiver can outperform OFDM for the
present parametrization.

6.3.3 Channel decoder information transfer

Additionally, Fig. 6.8 presents the information transfer chart for the BCJR decoder of the
employed {1, 133/171}8 recursive systematic CC (RSCC) and the sum product algorithm
(SPA) decoder of the WiMax LDPC code that can be used for forward error correction
(FEC). For the SPA, the characteristic for different SPA iteration counts are shown. As
shown, the SPA performance improves with more iterations, and accordingly we chose
to use 100 iterations for the subsequent FER performance measurements. Comparing
the shape of channel decoder and demapper curves, it becomes apparent why an LDPC
channel code does not perform well with the iterative demapper. Compared to the CC, the
curve for the LDPC code exhibits a higher Ia input threshold, before its output Ie gains a
significant amount of information. Hence, with little input information, the performance
of the LDPC code is worse than the CC. Consequently, when only a small amount of
information can be inferred from the received signal, the iterations are more likely to
get stuck when using the LDPC code. Additionally, in existing literature it has been
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ETU channel with perfect CSI with code rate r = 1

2 and α = 1, Kon = 3. GFDM employs the direct
solution of (6.14).

shown [SB10] that the CC decoder exhibits a better energy consumption-performance
tradeoff compared to more powerful channel codes when employed in iterative receiver
structures. In fact, the combination of the MIMO constellation constraint and the CC can
be considered as a serially concatenated code [BMDP97], which can, in contrast to a single
CC, result in compelling FER performance [BDMP98]. Hence, for the upcoming FER
performance simulations, we expect the CC to outperform the LDPC code in an iterative
receiver context. On the other hand, with no iterations, the LDPC code is expected to
outperform the CC due to its steeper EXIT curve, once the initial input Ia threshold is
exceeded.

6.3.4 Decoding performance of different channel codes

Fig. 6.9 shows the performance of the LMMSE and MMSE-PIC receivers with CC and
LDPC channel codes for block-fading and time-varying EVA channels with perfect and
imperfect CSI. As qualitatively derived from Fig. 6.8, for a non-iterative LMMSE detector,
the LDPC code outperforms the CC by approximately 4dB for a FER of 10−2 in the
block-fading case for perfect CSI. On the contrary, with the MMSE-PIC detector, the CC
performs better after convergence, outperforming the LDPC code by 1.5dB for a FER of
10−2. In total, for block-fading channels a gain of 5dB is achieved for MMSE-PIC detection
with CCs compared to non-iterative detection employing LDPC codes. The gain increases
when the Doppler spread of the channel increases. Similar observations can be done for
the case of imperfect CSI, where all curves are shifted approximately 7dB to the right. We
have obtained similar relations between LDPC and CCs before and after convergence for
different code rates, power delay profiles and doppler spreads and perfect and imperfect
CSI (not shown). Accordingly, in the subsequent figures we focus on the LDPC code for
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ations. Here, the channel exhibits an EVA power delay profile, assuming both perfect and imperfect CSI.
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2 , α = 1,Kon = 3.

the non-iterative receiver, whereas we employ CCs for the iterative receiver.
When comparing the performance of GFDM and OFDM in Fig. 6.9, we find that

for the non-iterative case, GFDM shows a steeper slope in the FER curve, eventually
crossing the OFDM curve, which can again be explained with the findings from Fig. 6.8.
Accordingly, GFDM outperforms OFDM by roughly 0.8dB at FER=10−3 in the block-
fading case for perfect CSI. For imperfect CSI we can observe a greater robustness of
GFDM against imperfect CSI and GFDM outperforms OFDM by 1dB at FER=10−3.
With fD = 30Hz, the effect is emphasized and also the error floor for GFDM due to the
time-variant channel is reduced. When fD = 100Hz, the channel varies too quickly and the
CSI soon becomes outdated such that reliable detection with the employed frame structure
and channel estimation is not feasible. Even, for SNR>10dB, the FER increases with SNR.
We can explain this behaviour with the MMSE-PIC demapper being too confident due
to the low noise variance since it does not consider the time-variance of the channel. This
leads to poor information sent to the channel decoder, which eventually degrades FER
performance.

6.3.5 Convergence behaviour

Fig. 6.10 compares the convergence of the iterative receivers for GFDM and OFDM in an
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ETU block fading channel, using CC and LDPC codes. With no iterations, the LDPC code
outperforms the CC, however its gain during iterations is below that of the CC, eventually
performing inferior than a CC. In addition, it is shown that for few iterations (<3), OFDM
performs superior than GFDM. Though, for more iterations, GFDM converges to a lower
FER, ultimately outperforming OFDM after 4 iterations and converging at 8 iterations.
These findings emphasize the necessity of an iterative receiver for GFDM in order to
beneficially consider the additional ICI and ISI.

6.3.6 Power delay profile and subcarrier allocation

Fig. 6.11 compares the FER performance for a higher MCS, namely 64-QAM and r = 3/4,
in block-fading EVA and ETU channels with perfect and imperfect CSI. Additionally, we
have simulated a system with more allocated subcarriers, i.e. Kon = 24. To this end, we
have extended the CC codeword to span all available resources. For the LDPC code, due
to its limited configuration options, we have concatenated several LDPC code words of
length 2016 bits and interleaved them over all subcarriers and subsymbols such that each
codeword experiences the same frequency diversity.

First, comparing the ETU and EVA channels, we observe a steeper slope in the FER
curves for the ETU channel. This can be straight-forwardly explained by the larger fre-
quency diversity of the ETU channel. Additionally, comparing the curves for Kon = 3 with
Kon = 24 we observe a steeper slope for the Kon = 24 curve. Again, this is explained by
a bigger frequency diversity when a codeword can span more subcarriers. A fundamental
difference between GFDM and OFDM can be observed when considering the non-iterative
LMMSE receiver for Kon = 24: Despite GFDM was outperforming OFDM for Kon = 3,
for Kon = 24 GFDM performs more than 2dB worse than OFDM and the slope of both
curves is equal. We can explain this by the increased amount of self-interference in GFDM
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Figure 6.11: FER performance for 64QAM modulation, code rate r = 3/4 and α = 1 for EVA and ETU
block fading channels. The rate 3/4 CC was obtained by puncturing the original half-rate code with the
puncturing pattern [1, 1, 0, 1, 1, 0].

whenKon = 24. In this case, the LMMSE equalizer cannot reliably resolve the interference
and the performance degrades. In contrast, comparing the performance of the iterative
schemes, we observe that for Kon = 24 GFDM shows a steeper slope in the FER curve
compared to OFDM. This indicates that the iterative GFDM receiver can harvest more
frequency diversity from the multipath channel due to the wider subcarriers. Eventually,
in the ETU channel GFDM outperforms OFDM for FER=10−4 by 1dB for both perfect
and imperfect CSI. In the EVA channel, OFDM performs superior than GFDM until
FER=10−4. Again, these findings are in line with our previous assumption that a non-
iterative demapper that relies solely on the constellation constraint cannot exploit the full
potential of non-orthogonal waveforms in frequency-selective channels.

6.3.7 Performance with different MCS

Fig. 6.12 presents a more detailed analysis of the coded FER performance of the iterative
receiver under ETU channels with imperfect CSI, using a CC for FEC. From the fig-
ure, we can make several observations: First, in general we see that the curves for higher
allocations are shifted to the left, compared to Kon = 3. We can readily explain this
by both the increased code word length and the larger frequency diversity by the wider
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allocation. Moreover, the curves obtained with GFDM are steeper than the correspond-
ing OFDM curves. We can explain this by both the increased frequency diversity of the
GFDM waveform as well as the stronger constellation constraint of GFDM due to the
self-interference, making the inner code more powerful. Second, comparing the result for
different constellation sizes, we observe that GFDM suffers more from higher modula-
tions, as the curves shift more to the right compared to the corresponding OFDM curves.
We might explain this behaviour with the fact that with higher modulation orders, the
constellation constraint when using Gray-mapping loses its strength. Hence, the negative
aspect of self-interference (i.e. additional “noise”) increases and the performance degrades.
It needs to be investigated, whether this behaviour changes with a different QAM map-
ping strategy in future works3. Eventually, we can see that increasing the code rate yields
favorable results for GFDM, as the gap between OFDM and GFDM increases. When the
code rate increases, the outer CC becomes less powerful, making the inner code, i.e. the
constellation constraint more important for the overall detection. Hence, we can observe
the performance gains for GFDM. Note also, that an error floor might pop up for the rate
5/6 code, which can be due to the fact of imperfect CSI, and hence the equalizer does not
yield perfect constellation symbols even for higher SNRs.
3 As a sidenote, a different QAM mapping can also degrade GFDM performance, as the initial LMMSE
estimate of the transmitted symbol will likely be worse, yielding a worse starting point for the iterative
detection.
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Figure 6.13: ML lower bound for the GFDM and OFDM. ETU power delay profile with static block-
fading, r = 0.5, α = 1,Kon = 3.

6.3.8 Achieving the ML detection performance

Considering the optimally achievable ML performance, Fig. 6.13 presents the obtained
FER performance of the converged OFDM and GFDM demodulators along with an ML
performance lower bound that was obtained with a genie-aided technique as in [ZMMF16]:
Upon convergence of the detection, the distance dR of the detected codeword to the
received signal is compared to the distance dT of the transmitted codeword to the received
signal. If dR < dT , an optimal ML detector would also yield an error. If dR > dT , it is
assumed that an optimal ML detector would have found the correct solution. This process
overestimates the performance of the ML detector and hence yields a lower bound on ML
decoding performance. The tightness of the bound becomes better, when the detection
algorithm approaches the ML decoding performance [ZMM+16]. As is shown in Fig. 6.13,
the MMSE-PIC detector approaches the ML bound for higher SNR when using the CC.
The obtained results show that the proposed iterative detection algorithms achieve the
optimal performance for the given signal structure when using a CC. Further, the ML
bound for the GFDM system is roughly 0.5dB left to the OFDM ML bound, showing
the benefits of frequency diversity and ICI for higher SNR. With an LDPC code, the
ML bound could not be calculated with the proposed technique, since the obtained FER
performance was still far away from the optimal ML performance. In particular, the lower
bound estimate was FER>0, since for each erroneously detected frame we experienced
dR > dT in the LDPC coded case. Here, we again see the superiority of the CC compared to
the LDPC code, as the CC reaches the optimally achievable performance in the considered
iterative receiver due to its interaction with the SISO MMSE-PIC demapper. However,
we expect the actual ML performance of the LDPC code to be better than that of the
CC due to larger minimum distance of LDPC code in general [RL09].
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6.4 Summary

In this chapter, we identified the combination of a channel code with subsequent MIMO-
GFDM modulation as a serially concatenated code, which can be decoded in an iterative
fashion. We showed that the technique of MMSE-PIC demapping can be formulated as a
CWCU LMMSE estimation and proposed a receiver which is based on a LMMSE SISO
demapper and SISO channel decoder. The proposal could harvest the foreseen frequency
diversity and hence outperformed OFDM in realistic channel conditions. We analyzed
the computational complexity of the proposed algorithm and researched means for a
low-complexity implementation based on a sparse factorization of the system matrix. The
proposal achieves a computational complexity similar to OFDM. Further, the factorization
allows for high-level parallelism by decoupling the equation systems. We analyzed the
detection performance with two different channel codes, namely CCs and LDPCs, and
showed that the use of actually weaker CC is beneficial for iterative processing. With the
analysis of the respective EXIT chart of the demapper and decoder and could eventually
explain this observation.

When comparing the obtained performance of GFDM and OFDM, we observe that
GFDM is especially beneficial in the high SNR region, which corresponds to very small
FER in the range below ≈ 10−4. In this area, GFDM outperforms OFDM and hence
yields a more reliable communication. Accordingly, we can suggest to use GFDM with
the provided configuration in the scenario of URLLC, where the low-latency constraint
does not allow retransmissions, but still high reliability is required.



Chapter 7

GFDM - A promising waveform?

Since the technique of GFDM was proposed in 2009 [FKB09], it has been pushed as a
strong alternative for OFDM waveforms. Numerous research groups joined the GFDM
research community, showing different results starting from theoretical results [LW16,
BDM15, CSH17], to spectral characterization [GKCD16, HSL17], near-optimal MIMO
detection [TWD+15], synchronization [LW16] and complexity reduction of transmitter and
receiver [FMD15a, DT15]. However, in recent standardization works on 5G new radio (NR)
[Nag17], filtered or windowed OFDM variants were chosen as the waveform for 5G. Hence,
it remains the question how useful GFDM actually is, given the recent decisions from
3GPP.

In literature, evaluations on GFDM showed both superior [HSL17, GKCD16, DT15,
ZMMF17, NZMF17, GBB+17, VBDH17] and inferior [AFRFB15, TWD+15, LQ15, LK17,
GMP17, MZF16b] performance compared to OFDM. In early works [MLRF11] it was
shown that GFDM can achieve a very narrow and well-confined spectrum compared to
OFDM. Recently, also reliable results regarding coded performance in realistic channels
became available. There, depending on the employed detection algorithm, GFDM wave-
forms sometimes outperformed OFDM. In total, the research community is not united, if
and in which cases GFDM is a promising waveform. In this regard, the viability of GFDM
and consequently is applicability to real-world problems is discussed below.

The selection of OFDM-variants for 5G is understandable. The main focus lied in the
reduction of OOB emissions, where subband-filtering and windowing fulfill the envisioned
spectrum masks for 5G to support asynchronous operation per subband. Other than that,
the proven frame structure of 4G could be kept, with options to shorten the transmission
time interval (TTI) length to fewer OFDM symbols for tackling low-latency applications.
Moreover, 3GPP proposed to scale the numerology to shorter symbols and wider carriers
to further support low-latency communication. To keep spectral efficiency, the CP would
also be scaled. In total, filtered OFDM variants are envisioned to support foreseen 5G use
cases reasonably well. However, the selected waveforms for NR are not without drawbacks,
and GFDM can overcome some of these.

• Considering the spectrum mask and OOB emission, GFDM is fully able to com-
pete or even outperform the NR proposal, see e.g. [ZMMF17] and Fig. 1.1. More-
over, subcarrier-wise filtering compared to subband filtering allows in principle a
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greater flexibility regarding spectral allocations1. Subband-filtering of NR either in-
troduces IBI in case of F-OFDM [AJM15] or noise-correlation in case of UF-OFDM
[MDD+02], marginally reducing the capacity for high MCS. The proposed weighted
overlap-and-add (WOLA) [ZMSR16, MZSR17] for OFDM overcomes this, however
at the cost of slightly reduced spectral efficiency compared to CP-OFDM. In this
regard, GFDM can be configured to use WOLA in combination with constant pilot
symbols at the block boundary to further reduce OOB emission or reduce the nec-
essary overhead of WOLA. This idea has been demonstrated in [NZMF17] to yield
higher throughput compared to CP-OFDM in a WiFi setting.

• Scaling of the entire numerology for low-latency applications has two main conse-
quences: First, by similarly scaling the CP to keep spectral efficiency, the maximum
channel length is reduced. Hence, the scaling can only be done for smaller cells.
Also, GFDM cannot overcome this problem, when considering a TTI length of one
OFDM symbol. However, an additional effect of shorter symbols is an increased
robustness to both CFO and Doppler spread, i.e. time-varying channels. A time-
varying channel induces ICI into the OFDM-system, and the interference increases
with the length of the OFDM symbol. Hence, in high-mobility scenarios short sym-
bols are preferred. But, as mentioned before, short OFDM symbols limit spectral
efficiency due to the required CP length. In contrast, GFDM being configured as
Type I, can pack multiple short subsymbols into one GFDM symbol which is pro-
tected by a single CP, and can at the same time achieve both robustness against
Doppler and less CP overhead.

• Eventually, a fundamental limitation of OFDM-variants is the transmission of QAM
symbols over a single frequency bin. As was shown before, this limits the effective
channel’s minimum distance and hence can reduce capacity. In contrast, GFDM
allows some frequency diversity at the symbol level with an additional rate-1 code
due to ISI and ICI, enforced by the constellation constraint. Even though a decent
channel code would overcome the minimum distance problem for OFDM, the con-
stellation constraint can aid in the search for an optimal decision, eventually leading
to larger capacities of the GFDM system.

These three discussed advantages can be directly mapped to use cases where GFDM can
be considered a practical waveform candidate.

Specialized Mobile Radio (SMR) and Cognitive Radio (CR) Applications.
SMR is a service operating in the VHF frequency band which takes fees for supporting
private mobile communications, such as for communication among Taxi drivers or workers
at a construction site [FCC17]. Technically, the service divides the available bandwidth
into numerous very narrow channels with 10− 20kHz spectral distance. As each channel
operates independent and asynchronous from neighboring channels, the Federal Commu-
nications Commission (FCC) enforces tight spectral masks on each channel. These masks
1 However, more flexible allocations requires a larger control overhead to communicate the allocation to
the receiver
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ensure that one channel does not interfer with adjacent ones. As an example, emission
Mask D [FCC13, Rule 90.210] enforces an OOB attenuation of 70dB at a distance of
one channel bandwidth away from the channel’s center frequency. Traditionally, ensuring
these emission masks requires bulky and costly analog filters for either each used channel
or a combination of one analog filter with a tunable oscillator.

In the scenario of a CR system, a primary, licensed user freely operates in a given
frequency band. However, since the primary user might not always use all of its spectrum,
there can be temporarily unused resources within the band, hence wasting capacity. The
idea of CR is that a secondary, probably unlicensed, user exploits these vacant resources
for communication. In this setting the secondary user should be transparent to the primary
user and keep disturbances on the primary user to a minimum. The secondary user can
achieve this by constantly scanning the licensed band for free spots and then allocating
the according frequencies for its own transmission. Naturally, as the primary user can
start reusing these frequencies at any time, the CR device needs to be able to quickly
switch between allocated frequencies. Moreover, as the spectral holes can be very narrow,
wide guard bands on the secondary user side would significantly reduce capacity. Hence,
the CR device is required to tightly limit its OOB emission.

Obviously, both applications above require the signal to obey tight spectral masks per
carrier. Moreover, the more flexibly frequencies can be allocated by a system, the more
efficient is the CR system. Having a digital wideband modulation with narrow channel
with tight digital masks would allow an SMR device to use less bulky RF equipment like
analog filters and tunable mixers. As high-quality analog parts are more cost-intensive
than silicon, a digital modulation can at the same time reduce costs and add flexibilty
for SMR devices. Configuring GFDM for low OOB emission by using windowing and
pilot guard symbols [MF16] in combination with narrow carriers directly fulfills these
requirements, hence making it a suitable waveform for the described use cases.

Ultra-reliable low-latency communication (URLLC) . URLLC is, among eMBB
and machine to machine (M2M) communication, an important aspect that 5G system
and beyond have to fulfill. URLLC enables applications like tactile internet or real-time
control over cellular links. Generally, high reliability can either be obtained by requesting
retransmissions of lost packages or by reducing the probability of lost package in the first
place. Obviously, relying on retransmission schemes is impossible for low-latency commu-
nications, as retransmissions require additional protocol overhead and multiple subsequent
transmissions of the frame. Hence, URLLC needs to diminish frame loss probability in
the first place.

To reduce frame loss probability, diversity schemes are applied. In particular, multi-
connectivity is employed, where the same data is transmitted over several independent
links from probably distant base stations to exploit large-scale spatial diversity. Assuming
the links are independent, each new link reduces overall FER by the FER on the new link.
Hence, a better FER on the point-to-point link reduces the number of required links, which
in turn reduces cost and energy consumption of the radio, decreases protocol overhead
of maintaining multiple links and increases overall cell capacity as packet redundancy is
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reduced.
As was shown in this work, as well as in e.g. [ZMMF15, ZMMF17], near-optimal

GFDM receivers outperform optimal OFDM receivers in high SNR regions, i.e. in the
region that is suitable for ultra-reliable communication. Hence, employing iterative GFDM
receivers leads to increased coverage, less power consumption or less required links for
URLLC communications. Therefore, GFDM can be considered as a viable waveform for
URLLC communications. However, it needs to be ensured that the increased complexity
and processing latency of GFDM does not outweigh the advantage in the improved FER.

Vehicular Communication. Vehicular communication (V2X) is a challenging field
for wireless communications. In this scenario, vehicles such as cars, trains or motorcycles
communicate with each other or with fixed radios mounted at infrastructure, such as
traffic lights, bridges or street lamps. Vehicles and infrastructure exchange both mission-
critical and non-critical messages. For example, mission-critical security messages such as
emergency brake information need to be reliably transmitted with lowest latency, drawing
a link to URLLC in 5G. On the other hand, non-critical messages such as periodic location
information or even entertainment data can afford packet loss or retransmissions, but
require larger bandwidth, being more similar to the eMBB application in 5G.

Naturally, as vehicles move rapidly, the wireless channel between radios is highly time-
variant including Doppler spread or even different Doppler shifts over different paths.
Moreover, a rich-scattering urban environment can create highly frequency-selective chan-
nels [VBTV15]. In overall, these conditions render the wireless channel very challenging
for reliable wireless transmission. In particular, the strong time-variance requires short
symbols to combat Doppler-induced ICI, however at the same time the CP length is con-
strained by the channel length. In consequence, using an OFDM-based waveform strongly
limits spectral efficiency. Moreover, strongly frequency-selective channels can incur deep
fading of some OFDM carriers, which requires to rely on powerful channel codes to com-
bat the fading. To this end, GFDM can be a viable alternative to OFDM, as it does
not suffer from the (sub)symbol-length vs. CP-length tradeoff. Moreover, as mentioned
before, GFDM offers a better FER in high SNR regions, making it more suitable for the
URLLC aspect in V2X. As an example for the application of GFDM in V2X, the au-
thors in [ZFF17] designed a GFDM system that outperformed CP-OFDM in challenging
vehicular channel conditions in terms of throughput, FER and spectrum mask.

Summary. Given the observations in this work and related literature, GFDM cannot
be considered as a general replacement for the simple and beautiful CP-OFDM waveform
and its descendants. Rather, particularly where OFDM suffers from either spectral masks
or challenging channel conditions, GFDM can indeed be a suitable replacement. To verify
this assumption, real-world experiments with real-time implementation of the proposed
algorithms are the consequent next steps.



Chapter 8

Conclusions and Future works

The main goal of this thesis was to analyze the applicability of generalized frequency divi-
sion multiplexing (GFDM) within MIMO wireless communication systems in the context
of waveform alternatives for the 5th generation of cellular networks. After having analyzed
the GFDM system with methods from time-frequency analysis (TFA), we proposed two
methods for achieving transmit diversity and spatial multiplexing gains for MIMO-GFDM
systems and evaluated the receivers in multipath fading channels.

8.1 Summary of the results

In particular, the following results were obtained:

. We introduced the basic GFDM signal structure and linear receiver types. We de-
scribed the configuration parameters for GFDM in relation to OFDM and defined
two general GFDM configuration types: GFDM Type-I uses subsymbols that have
equal length to one reference OFDM symbol. Hence, the block length of one GFDM
symbol is longer than that of a reference OFDM system, yielding larger system
latency on the one hand, but smaller CP overhead on the other hand. In GFDM
Type-II, a GFDM block has equal length as a reference OFDM symbol, making the
subsymbols shorter and subcarriers wider, which reduces the number of subcarriers
and increases robustness against Doppler spreads.

. We compared the performance of linear GFDM receivers in the coded and uncoded
case against a CP-OFDM system. We concluded that increased self-interference by
means of higher rolloff reduces performance of these receivers. In addition, we con-
cluded that linear GFDM receivers introduce post-equalization noise correlation,
which reduces performance compared to the orthogonal OFDM system, when con-
sidering soft QAM demapping and channel coding.

. We introduced the linear system model of the equivalent MIMO-GFDM system.
We showed that the system model is equivalent to a large-scale linear system with
localized interference. Hence, the results from this thesis on MIMO detection for
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GFDM can have impact on detection for massive MIMO under flat fading, single-
carrier systems with intersymbol interference.

. We introduced the basics of the mathematical theory of time-frequency analysis
(TFA) and Gabor analysis and identified the GFDM transmit signal as a critically
sampled discrete Gabor expansion. This connection makes results from TFA directly
applicable to the present investigations, yielding theoretical and practical insights
into the design of GFDM. Moreover, we showed how multicarrier waveforms in
general fit into the framework of TFA and explained their design in terms of results
from TFA.

. Using methods of TFA and in particular the BLT, we showed under which circum-
stances the GFDM modulation matrix becomes singular. We concluded that an odd
number of subcarriers or subsymbols is required when using standard pulse shap-
ing filters. Based on Gabor analysis, this constraint was recently circumvented with
more specific filter designs [NMZF17]. Moreover, we showed that the linear filter
matrices for GFDM follow the structure of a Gabor transform matrix, allowing the
filtering operation to be performed with low arithmetic complexity.

. By using the Zak-Transform methods we found closed-form solutions for the ZF
and LMMSE filters in AWGN channels for GFDM and hence could give closed form
expressions for the inverse of the GFDM modulation matrix.

. We designed and evaluated two detection algorithms for achieving transmit diversity
with GFDM signals. We proposed TR-STC, which achieves full diversity gain with
low-complexity STC combining. However, since TR-STC encodes two subsequent
GFDM blocks, it requires that the wireless channel remains static for two blocks
and increases the decoding latency. These drawbacks were mitigated by the proposal
of encoding the GFDM data subsymbols with in one block and using a widely linear
equalizer to jointly perform STC combining and GFDM demodulation.

. We benchmarked the proposed STC algorithms against the conventional OFDM
STC and found GFDM to have a comparable performance to OFDM when us-
ing small rolloff factors. For stronger self-interference, the linear receivers per-
formed poorly against OFDM. Again, the problem of information loss due to post-
equalization noise correlation for the non-orthogonal systems became apparent, lead-
ing to the conclusion that linear receivers for non-orthogonal systems cannot com-
pete with the OFDM system.

. We analyzed the minimum euclidean distance between the points in the lattice which
is spanned by the modulated signals of OFDM and GFDM. We have found that the
distribution of dmin over different fading realizations is favorable for systems with
ICI, since they achieve frequency-diversity on the constellation constraint level.

. Accordingly, we proposed two non-linear receiver structures for spatially multiplexed
GFDM streams that aim at reaching the optimal ML performance, which is dictated
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by the minimum distance between codewords. The first proposal was based on a
combination of sphere-decoding with successive interference cancellation (SIC) and
achieved tremendous performance gains over OFDM in the uncoded case. Despite, in
the more practical coded case the proposal proved itself to perform poorly due to the
unavoidable error propagation of the SIC technique. On the other hand, requiring
a joint non-linear detection in the ML sense was infeasible from a complexity point
of view.

. We investigated the usage of both LDPC codes and CC as the channel code for
the iterative receiver schemes and have found, that the less powerful CC performs
superior to the powerful LDPC code in the context of iterative receivers. We could
explain this observation by analyzing the respective information transfer curves of
the channel decoders.

. We designed an iterative receiver algorithm to resolve the self-interference with the
aid of the information gained from the channel decoding. We proposed an implemen-
tation that achieves complexity in the same order as an equivalent OFDM system
and analyzed its performance under realistic channel conditions. We found that the
proposal could outperform an equivalent OFDM receiver under certain system con-
figurations. Moreover, we showed that the iterative scheme reaches the optimal ML
performance for certain configurations.

In conclusion, this work presented a thorough analysis of diverse MIMO detection
algorithms for GFDM and benchmarked its performance against the popular OFDM
system. We saw that OFDM is a technology that is challenging to compete with. Its
orthogonality easily allows optimal ML decoding which is not straightforward to obtain
when self-interference is present due to the inherent explosion of complexity. On the other
hand, we saw that the existence of self-interference increases the minimum distance of
the received symbols, opening up the potential to outperform an optimal OFDM sys-
tem, when ML decoding performance is achieved. However, we showed that ML decoding
for non-orthogonal systems requires significantly more elaborate algorithms compared
to the elegant and straight-forward solution for OFDM. Moreover, we showed that the
commonly suspected increase in complexity for optimal detection algorithms for non-
orthogonal waveforms can be overcome by exploiting the locality of the self-interference.
As such, we could design near-optimal algorithms for GFDM with equal complexity com-
pared to CP-OFDM that outperformed CP-OFDM in high SNR regions. At the same
time, we preserved the flexibility of GFDM as the general model of multicarrier wave-
forms in terms of time-frequency analysis. Eventually, based on the present results and
related literature, we proposed practical use cases for applying GFDM.

8.2 Open Research Topics

In addition to the aspects covered in this work, many topics that relate to MIMO detection
for non-orthogonal waveforms remain open and can be addressed in future works.
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. In this thesis we showed that the minimum distance of non-OFDM waveforms has an
advantageous probability distribution compared to OFDM. However, these results
only hold for the uncoded case. An analysis of the minimum distance concerning the
coded case or information-theoretic treatment of the capacity of large-scale linear
systems would be a consequent next step. In [ZMMF16] bounds for the capacity
were obtained, but the calculation requires a significant amount of work and more
elegant solutions could be available.

. In chapter 5, we proposed a combination of SIC and sphere-decoding to yield an
algorithm that essentially performs the K-best sphere-decoding algorithm while only
keeping the best path, which yielded poor performance. However, considering the
structure of R in (5.9) and Fig. 5.4 it becomes apparent that the interference is
highly structured and deterministic. Future works can design a dedicated sphere-
decoding algorithm that exploits the structure of R to reduce complexity and make
running a sphere-decoder on the full R matrix feasible. Moreover, the deterministic
structure of H can be used to design dedicated QR decomposition algorithms to
reduce complexity.

. Using lattice reduction (LR) algorithms [WSJM11] as a preprocessing step for
MIMO detection was shown to significantly improve the performance of linear de-
tection schemes. Considering that the receiver lattice of non-orthogonal waveforms
is of very high dimension the performance of according LR-aided detection can be-
come very different from the low-dimensional MIMO-OFDM or flat-fading systems
and can open up another direction of research.

. In this work, we exclusively used Gray-mapping for bit-to-constellation mapping.
Gray-mapping is optimal for non-iterative receiver schemes [CTB98], however with
iterative receivers, gains for a non-Gray-mapping were obtained [CR01, LR98]. The
mapping essentially influences the strength of the constellation constraint and re-
search on the effect of the performance of iterative receivers for non-orthogonal
waveforms could potentially show further gains.

. In [PSM06] it was shown that the inclusion of an additional rate-1 CC (an accu-
mulator) can remove error floors and bend information transfer curves to a more
favorable shape. Wether this technique also works within the framework of the pro-
posed MMSE-PIC detection can be an interesting research direction.

. The present analysis was carried out under the assumption of ideal RF hardware.
Especially with multicarrier waveforms that exhibit a high PAPR, it is mandatory
to analyze performance under non-linear distortions of the power amplifiers or IQ
impairments of non-ideal mixers and other analog pieces. In [SM15, SMMF14] re-
search was initiated to find iterative algorithms to cancel the interference induced
by non-linear distortions. However, theoretical and more deep insights are necessary.

. The proposed SISO demapper for the MMSE-PIC detector assumed a continuous
Gaussian distribution of the constellation symbols due to complexity reasons. How-
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ever, splitting the linear model ~y = H~d + ~w into ~y = ~hidi + Hi
~di + ~w where ~hi is

the ith column of H and Hi, di, ~di are H without the ith column, the ith element
of ~d and ~d without the ith element, respectively, one can create a more accurate,
non-linear, MMSE demapper by assuming the distribution of di as discrete but ~di
to be Gaussian. This demapper can generate more accurate results for the LLRs
and hence improve the detection performance. It can be promising to research the
trade-off between the increased complexity and the obtained performance.

. With the advent or reinvention of machine-learning methods it becomes obvious to
use artificial intelligence or machine learning to perform MIMO detection or chan-
nel decoding. Useful techniques can be e.g. neural networks or genetic algorithms
to perform either demapping or channel decoding. These algorithms can be easily
parallelized and hence can yield very low decoding latency with at the same time
very promising performance.

. A crucial step in evaluating a new system is its implementation for real-time ap-
plications. Though already some steps for implementing GFDM were accomplished
[DMG+15, DMG+16, DBD17] still a real-time spatial multiplexing implementation
is not yet available. Also, thorough evaluations of implementations regarding latency
and throughput is not available.



Appendix A

Proofs

A.1 Derivation of Widely Linear Estimator for STC-
GFDM

Starting from (4.26), we calculate the autocorrelation matrix Γ of ~Y , given by

Γ = E
[
~Y ~Y H

]
(A.1)

=
[
H1 H2P

] [ HH
1

PHHH
2

]
+ σ2

wIMK . (A.2)

Similarly, the pseudoautocorrelation C is given by

C = E
[
~Y ~Y T

]
(A.3)

=
[
H1 HP

] [PTHT

HT

]
. (A.4)

Note that PPH = PPT = I. Since C 6= ~0, ~Y is an improper (non-circular) process and
WLE of ~ds can improve the estimation performance. Compared to a linear estimator, a
widely linear estimator jointly processes the received signal and its conjugate to estimate
the transmitted data by

~̂ds =

[
U

V

]H [ ~Y
~Y ∗

]
. (A.5)

The filter coefficients U and V are chosen to minimize the mean squared error (MSE)
between ~ds and ~̂ds and are solutions to the linear system [PC95]

[
Γ C

C∗ Γ∗

]

︸ ︷︷ ︸
F

[
U

V

]
=

[
Φ

Θ∗

]
, (A.6)

where
Φ = E

[
~Y ~dHs

]
= Ĥ1 (A.7)
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and
Θ = E

[
~Y ~dTs

]
= Ĥ2P. (A.8)

The solution of (A.6) is given by

U = S−1 (Φ−CΓ−1∗Θ∗)

V = S−1∗(Θ∗ −C∗Γ−1Φ),
(A.9)

where S = Γ−CΓ−1∗C∗ is the Schur complement of Γ∗ in F.
Since Hi is a tall matrix, Γ becomes singular when σw → 0 and hence a ZF estimation

cannot be directly derived. Instead, the system model (4.26) for the widely linear esti-
mation problem is reformulated to a linear estimation problem of double size according
to

[
~Y
~Y ∗

]

︸ ︷︷ ︸
~Y

(j)
a

= Heq

[
~ds
~d∗s

]

︸︷︷︸
~da

+

[
~w

~w∗

]

︸ ︷︷ ︸
~wa

, (A.10)

where

Heq =

[
H1 Ĥ2P

H∗2P Ĥ∗1

]
. (A.11)

The LMMSE estimator for ~da in (A.10) is given by

~̂d
(j)
a,MMSE = Heq

H(HeqHeq
H + σ2

wI)−1

︸ ︷︷ ︸
BMMSE

~Ya. (A.12)

Direct calculation shows that HeqHeq
H + σ2

wI = F from (A.6) and hence (A.12) is
equivalent to (A.5) and (A.6). Writing the LMMSE estimator in (A.12) to its alternate
form [Kay93] results in

~̂da,MMSE = (Heq
HHeq + σ2

wI)−1Heq
H ~Ya. (A.13)

A.2 Uncoded Symbol Error Rate of TRSTC

An approximation of the TR-STC-GFDM SER performance under a frequency-selective
fading channel can be derived from an upper bound of symbol error probability for or-
thogonal maximum ratio combiner [BB99, Ch. 13], but considering the NEF of GFDM.
The approximation is given by

Pr(Symbol Error) ≈ 4β
JL−1∑

i=0

(
JL− 1 + i

i

)(
1 + η

2

)i
, (A.14)
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where

β =

(√J − 1√
J

)(
1− ε

2

)JL
, (A.15)

ε =
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3σ2

e

J−1
Es

ξ0N0

2 + 3σ2
e

J−1
Es

ξ0N0

, (A.16)

with ES and N0 denoting the average symbol energy and the noise power, respectively.
J denotes the size of the digital constellation, L denotes the number of receive antennas
and

σ2
e =

∑

n

E[|hn|2] = 1. (A.17)

When considering the overhead of the CP of GFDM and OFDM in the effective noise
calculation we have

ξ0,OFDM = K+NCP +NCS

K

ξ0,GFDM = ξ · KM+NCP +NCS

KM
,

(A.18)

which shows that GFDM, depending on the NEF ξ from (2.46), can achieve higher spectral
efficiency compared to OFDM. This is due to the fact that GFDM requires only one CP
for M subsymbols, whereas OFDM uses one CP per OFDM symbol. As in [BB99], (A.14)
becomes a tighter upper bound if JL ≥ 2 and the channel frequency response is flat per
subcarrier.

A.3 Proof of (6.17)

Starting from the biased LMMSE estimate of ~D from the received signal ~y

ηpD = µaD + Σa
DH̄H(H̄Σa

DH̄H + σ2I)−1(~y − H̄~µaD) (A.19)
Λp
D = Σa

D − Σa
DH̄H(H̄Σa

DH̄H + σ2I)−1H̄Σa
D, (A.20)

by assuming H = H̄UH ,~µad = UH~µaD and Σa
d = UHΣa

DU we calculate

UHηpD = ~µad + Σa
dH

H(HΣa
dH

H + σ2I)−1(y −H~µad) = ηpd, (A.21)
UHΛp

DU = Σa
d − Σa

dH
H(HΣa

dH
H + σ2I)−1H = Λp

d (A.22)

Note that from (cf. (6.9))

(Σp
D + Σa

D)−1 = diag(H̄H(H̄Σa
DH̄H + σ2I)−1H̄) (A.23)

directly follows (cf. (6.8))

(Σp
D + Σa

D)−1(~µpD − ~µaD) = H̄H(H̄Σa
DH̄H + σ2I)−1(~y − H̄~µaD). (A.24)

Now, by substituting (A.24) into (A.21) we end up with

ηpd = UHηpD = ~µad + UHΣa
D(Σp

D + Σa
D)−1(~µpD − ~µaD) (A.25)

= ~µad + Σa
dU

H(UΣa
dU

H + Σp
D)−1(~µpD −UH~µad). (A.26)
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Similarly, by using (A.23) in (A.22) we get

Λp
d = UHΛp

DU = Σa
d −UHΣa

D(Σp
D + Σa

D)−1Σa
DU (A.27)

= Σa
d − Σa

dU
H(UΣa

dU
H + Σp

D)−1UHΣa
d (A.28)

Now, comparing (A.26) and (A.28) with (6.17), the proof is finished.
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