571 research outputs found

    A concatenated coded modulation scheme for error control

    Get PDF
    A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is very effective for high speed satellite communications for large file transfer where high reliability is required. A simple method is also presented for constructing codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation

    Concatenated Multilevel Coded Modulation Schemes for Digital Satellite Broadcasting

    Get PDF
    The error performance of bandwith-efficient concatenated multilevel coded modulation (MCM) schemes for digital satellite broadcasting is analyzed. Nonstandard partitioning, multistage decoding, and outer Reed-Solomon (RS) codes are employed to provided unequal error protection capabilities

    A concatenated coded modulation scheme for error control

    Get PDF
    A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high speed satellite communication for large file transfer where high reliability is required. Also presented is a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft decision Viterbi decoding algorithm

    Pairwise Check Decoding for LDPC Coded Two-Way Relay Block Fading Channels

    Full text link
    Partial decoding has the potential to achieve a larger capacity region than full decoding in two-way relay (TWR) channels. Existing partial decoding realizations are however designed for Gaussian channels and with a static physical layer network coding (PLNC). In this paper, we propose a new solution for joint network coding and channel decoding at the relay, called pairwise check decoding (PCD), for low-density parity-check (LDPC) coded TWR system over block fading channels. The main idea is to form a check relationship table (check-relation-tab) for the superimposed LDPC coded packet pair in the multiple access (MA) phase in conjunction with an adaptive PLNC mapping in the broadcast (BC) phase. Using PCD, we then present a partial decoding method, two-stage closest-neighbor clustering with PCD (TS-CNC-PCD), with the aim of minimizing the worst pairwise error probability. Moreover, we propose the minimum correlation optimization (MCO) for selecting the better check-relation-tabs. Simulation results confirm that the proposed TS-CNC-PCD offers a sizable gain over the conventional XOR with belief propagation (BP) in fading channels.Comment: to appear in IEEE Trans. on Communications, 201

    Error Rate Analysis of GF(q) Network Coded Detect-and-Forward Wireless Relay Networks Using Equivalent Relay Channel Models

    Full text link
    This paper investigates simple means of analyzing the error rate performance of a general q-ary Galois Field network coded detect-and-forward cooperative relay network with known relay error statistics at the destination. Equivalent relay channels are used in obtaining an approximate error rate of the relay network, from which the diversity order is found. Error rate analyses using equivalent relay channel models are shown to be closely matched with simulation results. Using the equivalent relay channels, low complexity receivers are developed whose performances are close to that of the optimal maximum likelihood receiver.Comment: 28 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Robust Reed Solomon Coded MPSK Modulation

    Get PDF
    In this paper, construction of partitioned Reed Solomon coded modulation (RSCM), which is robust for the additive white Gaussian noise channel and a Rayleigh fading channel, is investigated. By matching configuration of component codes with the channel characteristics, it is shown that this system is robust for the Gaussian and a Rayleigh fading channel. This approach is compared with non-partitioned RSCM, a Reed Solomon code combined with an MPSK signal set using Gray mapping; and block coded MPSK modulation using binary codes, Reed Muller codes. All codes use hard decision decoding algorithm. Simulation results for these schemes show that RSCM based on set partitioning performs better than those that are not based on set partitioning and Reed Muller Coded Modulation across a wide range of conditions. The novel idea here is that in the receiver, we use a rotated 2^(m+1)-PSK detector if the transmitter uses a 2^m-PSK modulator

    Multi-dimensional modulation codes for fading channel

    Get PDF
    Some new codes are presented which have good performance on Rician fading channel with small decoding complexities. A new M-way partition chain is proposed for the L x MPSK (L less than or equal to M) signal set which maximizes the intra-set distance of each subset at each partition level. Based on this partition chain, a class of asymptotical optimum codes was found. For M = 4, these codes have both large symbol distances and product distances. Multi-level coding scheme allows to construct a code by hand such that the code meets some desired parameters, e.g., symbol distance, product distance, etc. In design of a multi-level code, all factors were considered which affect the performance and complexity of the code, such as, the decoding scheme, decoding complexity, and performance under the decoding scheme, e.g., if the multi-stage decoding scheme is used, the performance degradation due to the suboptimum decoding is taken into consideration. The performance for most of the presented codes was simulated on Rayleigh fading channel, and the results show that these codes have good performance with small decoding complexities

    Flexible high speed codec

    Get PDF
    The project's objective is to develop an advanced high speed coding technology that provides substantial coding gains with limited bandwidth expansion for several common modulation types. The resulting technique is applicable to several continuous and burst communication environments. Decoding provides a significant gain with hard decisions alone and can utilize soft decision information when available from the demodulator to increase the coding gain. The hard decision codec will be implemented using a single application specific integrated circuit (ASIC) chip. It will be capable of coding and decoding as well as some formatting and synchronization functions at data rates up to 300 megabits per second (Mb/s). Code rate is a function of the block length and can vary from 7/8 to 15/16. Length of coded bursts can be any multiple of 32 that is greater than or equal to 256 bits. Coding may be switched in or out on a burst by burst basis with no change in the throughput delay. Reliability information in the form of 3-bit (8-level) soft decisions, can be exploited using applique circuitry around the hard decision codec. This applique circuitry will be discrete logic in the present contract. However, ease of transition to LSI is one of the design guidelines. Discussed here is the selected coding technique. Its application to some communication systems is described. Performance with 4, 8, and 16-ary Phase Shift Keying (PSK) modulation is also presented

    A concatenated coded modulation scheme for error control (addition 2)

    Get PDF
    A concatenated coded modulation scheme for error control in data communications is described. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high-speed satellite communications for large file transfer where high reliability is required. This paper also presents a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation
    corecore