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ABSTRACT 

I This paper presents a concatenated coded modulation scheme for error 
control in data communications. The scheme is achieved by concatenating 
a Reed-Solomon outer code and a bandwidth efficient block inner code for 
M-ary PSK modulation. Error performance of the scheme is analyzed for 

an AWGN channel. We show that extremely high reliability can be attained 

by using a simple M-ary PSK modulation inner code and relatively powerful 

Reed-Solomon outer code. Furthermore, if an inner code of high effective rate 

is used, the bandwidth expansion required by the scheme due to coding will 
be greatly reduced. The proposed scheme is particularly effective for high- 

speed satellite communications for large file transfer where high reliability is 

required. 

This paper also presents a simple method for constructing block codes for 

M-ary PSK modulation. Some short M-ary PSK codes with good minimum 

squared Euclidean distance are constructed. These codes have trellis structure 

and hence can be decoded with a soft-decision Viterbi decoding algorithm. 



A CONCATENATED CODED MODULATION SCHEME 
FOR ERROR CONTROL 

1. Introduction 

Recently a great deal of research effort has been expended in bandwidth efficient coded 
modulation for achieving reliable communication on bandlimited channels [ 1-19]. This 

new technique of coded modulation is achieved by coding onto an expanded set of channel 
signals (relative to that needed for uncoded transmission). A properly designed coded 
modulation can provide significant coding gain over an uncoded modulation system with 

no or little bandwidth expansion. To achieve a 3 to 5 dB coding gain with a single modu- 
lation code, the decoding complexity is quite reasonable. However, to achieve coding gains 

exceeding 5 dB with a single modulation (trellis or block) code, the decoding complexity 
increases drastically, and the implementation of the decoder becomes very expensive and 
unpractical (if not impossible). Then the question is, “how can we achieve coded modu- 
lation with reduced complexity?”. An answer to this question is to use coded modulation 
in conjunction with concatenated coding. In this combined coding/modulation scheme, 

a good short modulation code is used as the inner code and a relatively powerful Reed- 
Solomon (RS) code is used as the outer code. With properly chosen inner and outer codes, 
this scheme not only can achieve large coding gain (or high reliability) with good band- 
width efficiency but also can be practically implemented. That is to say, this concatenated 
coding/modulation scheme offers a way of achieving the best of two worlds. 

In this paper, we present a coded modulation scheme with reduced complexity for 
error control in data communications. This scheme is achieved by concatenating a RS 
outer code and a bandwidth efficient block inner code for the M-ary PSK modulation. 
The outer code is interleaved to enhance the overall system performance. We show that 

this concatenated coded modulation scheme can achieve extremely high reliability (or large 
coding gain) with a very simple M-ary PSK modulation inner code. Furthermore, if an 

inner code of high effective rate is used, the overall bandwidth expansion of the scheme due 
to coding will be greatly reduced. Suppose an inner code with effective rate equal to one 

is used. Then the overall bandwidth expansion of the scheme is due to outer code coding. 
Generally, in a concatenated coding scheme, the RS outer code is a high rate code. Hence 

the bandwidth expansion required is small. Of course, if an inner code with effective rate 
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greater than one is used, the overall scheme may not need any bandwidth expansion at all 
[ 161. The proposed scheme is particularly effective for high-speed satellite communications 
for large file transfer where high reliability is required. 

The presentation of this paper is organized as follows. In Section 2, we present a simple 
method for constructing block codes for M-ary PSK modulation with M = 2' which are 

suitable for concatenated coding. Some short M-ary PSK modulation codes with good 
minimum squared Euclidean distance are constructed. These codes have simple trellis 
structure and can be decoded with a soft-decision Viterbi decoding algorithm. In Section 

3, the encoding and decoding of the proposed concatenated coded modulation scheme is 
described. Error performance of the proposed scheme is analyzed in Section 4. In Section 
5,  a specific concatenated coded modulation scheme with the NASA standard (255,223) 

RS code over the Galois field GF(28) as the outer code and an &PSK modulation block 

code as the inner code is presented. Conclusion is given in Section 6. 

2. Bandwidth Efficient Block Codes for M-ary PSK Modulation 

In this section, we present a simple method for constructing block codes for M-ary PSK 
modulation with M = 2' which are suitable for concatenated coding. Using this method, 
some good short codes are constructed. These codes have simple trellis structure and can 
be decoded with a soft-decision Viterbi decoding algorithm. i 

Let A = {0,1,. . . ,2' - 1) be the integer group under the modulo-2' addition. Define 
a distance between two elements s and s) in A, denoted d(s ,s ) ) ,  as follows: d ( s , i )  = 

4sin2(2-'.rr(s-s')). It is clear that d ( s , / )  = d ( s - s ' , O ) .  For 15 i 5 I ,  let Bi = {0,Zi-'}. 

Then A = (61 + b2 + E Bi with 1 5 i 5 1 ) .  Let di be the minimum distance 

between elements in the set, Bi + Bi+, + + B,, for 1 5 i 5 1. It is easy to see that 
4 = 4sin2(Zi-l-'.rr). Let A" denote the set of all n-tuples over A. Define a squared 
Euclidean distance between two n-tuples, s = (sl ,s2,. . . ,sn) and S I  = (sl, sa,. . . ,ab), 

A 

+ 6, : 

I I  

over A as follows: 
n 

d(")  (s,s') 2 d ( S j , S J l )  

j =  1 

where d(s j ,s i . )  = 4sin2(2-'x(s - s')). 
For 1 5 i 5 I ,  let Ci be a block code of length n over Bi with minimum Hamming 

distance bi. From C1, C2, . . . , C,, we construct a block code C with symbols from A as 
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follows: 
C = (vl +v, + +vl : vi E Ci with 1 5 i 5 I } .  

1 
Then IC1 = n lCil where 1x1 denotes the number of elements in set X. Let 

i= 1 

D[C] min{d(")(v,v') : v,v' E C and v # v'}. (2) 

Then D[C] is the minimum squared Euclidean distance of C. It is possible to show that 

The code Ci with symbols from Bi = {0,2'- l }  can be constructed from a binary code Cbi 

of the same length and minimum Hamming distance Si by substituting 2'- for 1 in each 

nonzero component of a code vector in chi. Denote ci with Zi-'Cbi. Then the following 

direct-sum, 

c=cb1 + 2 c b 1  + * * * + 2 ' - ' C b l  (4) 

is a linear code over the additive group A. The code Cbi is called a binary component code 

of c. Suppose Cbi is a binary (n,kbi) linear code. Then 

1 
The parameter k = kbi is called the dimension of C. If each component of a code vector 

v in C is mapped into a point in the 2-dimensional 2'-PSK signal set, we obtain a block 
coded 2'-PSK code. The effective rate of this code C is given by 

i= 1 

1 
R[C] = - kbi 

2n (5 )  
i= 1 

which is the number of information bits transmitted by C per dimension. The asymptotic 
coding gain, denoted TIC], of C over the uncoded QPSK is given by [2], I I 

I 

As an example, let 1 = 3, M = 2' and n = 8. Then A = {O,1,2,3,4,5,6,7}, 

Bl = {0,1},B2 = {0 ,2}  and B, = (0,4}. The minimum squared Euclidean distances of 
A = B1 + B, + B, , B, + B3 , and B3 are dl = 0.586, C& = 2 and d,  = 4 respectively. Choose 

, 
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the binary component codes c b 1 ,  c b 2  and c b 3  as follows: (1) c b 1  is the binary (8 , l )  code 
which consists of the all-zero and all-one vectors; (2) c b 2  is the binary (8,7) code with all 
the even weight vectors; and (3) c b 3  is the (8,8) code which consists of all binary 8-tuples. 
Clearly the minimum Hamming distances of c b l  , c b ,  and c b s  are 8, 2, and 1 respectively. 
Consequently, the code C = c b 1  4- 2Cbz 4- 4cbS has minimum squared Euclidean distance 
D[C] = 4, dimension k = 16 and effective rate R = 1. Mapping the code symbols of C 
into points of the 8-PSK signal set as shown in Figure 1, we obtain a block code of length 

8 for the 8-PSK modulation. This code provides a 3 dB coding gain over the uncoded 
QPSK modulation with no bandwidth expansion. Furthermore, the code has a trellis of 4 

states and 8 sections as shown in Figure 2 (see Appendix for the trellis construction), and 

hence can be decoded easily by a soft-decision Viterbi decoding algorithm. 
Using the above method, we have constructed some short codes for QPSK, 8-PSK 

and 16-PSK modulations (listed in Table 1). These codes provide 3 to 6 dB coding gain 
over the uncoded QPSK modulation with little or no bandwidth expansion. They all have 
trellis structure. 

Encoding of a 2'-PSK modulation code C of length n constructed based on the above 
method can be done as follows. A message u of 

1 

k = k b i  

i= 1 

bits (called a segment) is divided into I subsegments, the i-th subsegment consists of kbi 
bits. For 1 5 i 5 I ,  the i-th subsegment is encoded into a code vector vi in the binary 

component code Cbi of C. Then the sum 

v = V I  +2v2 +-.+2'-'v' 

= ( ~ 1 ,  52 , * sn ) 

is the codeword in C for the message segment u. This coudword v is called a rame. 

The components, sl, s2,. . . , sn, of v are then mapped into points in the 2-dimensional 
2'-PSK signal set and transmitted. Hence, each message segment of k bits is encoded into 

a sequence of n 2' -PSK signals. 
A soft-decision decoding algorithm for the above M-ary PSK codes can be devised 

as follows. For any element s in the group A = (0 ,  1, . . . ,2' - l}, let X ( s )  and Y ( s )  be 

defined as 

~ ( s )  = C O S ( ~ ~ - ' T S ) ,  Y (s) = sin(2l-'?rs). (7) 
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For any two elements, s and s t ,  in A, we find that 

(8) 
2 

d ( s , i )  = ( X ( s )  - X ( i ) ) 2  + (Y(s )  - Y ( s ) )  

For 1 5 j 5 n, let (zj,gj) be the normalized output of a coherent demodulator [20] 
for the j-th symbol of a received frame. The received frame is then represented by 
the following 2n-tuple: z = (zl, yl , zl, y2,. . . , z,, y,). For the received frame z and a 

codeword v = (sl, s2,. . . , s,) in C, let Iz, vi2 be defined as follows: 

Assume that the channel is an additive white Gaussian noise (AWGN) channel. When 

symbol s E {0,1,. . . ,2' - 1) is transmitted, the normolized output (2, y) of a coherent 
demodulator for 2'-ary PSK is distributed with the following joint probability density 
function, 

where u2 = 1/2p, and p is the SNR per symbol [20]. Suppose every codeword of C is 
transmitted with the same probability. Then we have the following decoding rule: For 
a received frame z, choose a codeword v in C with minimum I Z , V ~ ~ .  The segment u 
corresponding to v is then the decoded segment. This decoding rule achieves maximum 

likelihood decoding for C over an AWGN channel. If C has a simple trellis structure with 

moderate number of states, the decoding of C can be implemented easily with a Viterbi 

decoding algorithm. 
To analyze the error performance of a 2'-PSK code C, we need to know its complete 

weight distribution. Let v = (sl, s2,. . . , s,) be an n-tuple over the additive group A. 
The composition of v, denoted comp(v), is a 2'-tuple, 

where ti is the number of components si in v equal to the symbol i in A. Let W(t) be the 
number of codewords v in C with comp(v) = t. Let T be the set, 

A T = { ( t o , t l  ,..., t21-l) : O < t i  I n  with O < i < 2 ' } .  

Then, {W(t) : t E T} is the detail weight distribution of C. W(t) can be enumerated from 

the joint weight distribution [21] of the binary component codes, Cb1, Cbl, .  . . , c b 1  of C. 
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Once the detail weight distribution of C is known, its error performance can be analyzed 

and computed for an AWGN channel. The detail weight distributions of the codes listed 
in Table 1 have been determined [19]. 

3. The Encoding and Decoding of the Proposed Concatenated 
Coded Modulation Scheme 

For the proposed concatenated coded modulation scheme, the inner code, denoted C1, is 
a 2' -PSK code of length n, with binary component codes, c,,, c b 2 , .  . . , c b l ,  where Cbi is 
an (n,, kbi) binary linear code for 1 5 i 5 2. The dimension of C, is 

The outer code of the scheme, denoted C2, is an (n2,k2) RS code with symbols from 

the Galois field GF(2b) and minimum (Hamming) distance 4 = n2 - k2 + 1. Each code 

symbol of the outer code is represented by a binary 6-tuple (called a 6-bit byte) based 
on a certain basis of GF(2b). We require that k, = m6 where m is a positive integer. 

The encoding of the proposed scheme! is performed in two stages. First a message 
of k26 bits is divided into k2 6-bit bytes. Each 6-bit byte is regarded as a symbol in 
GF(2'). These k2 bytes are encoded according to the outer code C2 to form an n2-byte 
codeword in C2. This codeword is then temporarily stored in a buffer as a row in an array. 
After m outer codewords have been formed, the buffer stores an rn x n2 array, called a 

segment-array as shown in Figure 3. Each row of a segment-array is called a section. Each 
column of a segment-array consists of rn 6-bit bytes (or m6 bits), and is called a segment. 
There are k2 data segments and n, - k2 parity segments. At the second stage of encoding, 

each segment of a segment-array is encoded according to the inner 2'-PSK code C, to 
form a sequence of n, 2'-PSK signals as described in the previous section. This sequence 

of n, 2'-PSK signals is called a frame. The n, frames corresponding to the segments of 
a segment-array form a code block. A code block is transmitted column by column (or 

frame by frame). In fact each frame is transmitted as soon as it has been formed. Note 
that the outer code is interleaved with a depth (or degree) of m. 

The decoding for the proposed scheme also consists of two stages, the inner and outer 

decodings. When a frame in a code block is received, it is decoded into a segment of m 

bytes based on the soft-decision decoding algorithm as described in the previous section. 
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The decoded segment is then stored as a column of an array in a receiver buffer for the 
second stage of decoding. After n2 frames of a received code block have been decoded, the 
receiver buffer contains a m x n2 decoded segment-array. Each column of this decoded 

segment-array may contain symbol (or byte) errors which are distributed among the m 
sections (rows), at most one symbol error in each section. Now the second stage of decoding 
begins. Each section of the decoded segment array is decoded based on the RS outer code 

C2. Suppose the RS outer code is designed to correct t2 or fewer symbol errors with 

0 5 t 2  5 L(n2 - k2)/2J. If the syndrome of a section corresponds to an error pattern 
of t2 or fewer symbol errors, error correction is performed. The values and locations of 

symbol errors are determined based on a certain algorithm. If more than t2 symbol errors 
are detected, the receiver stops the decoding process and declares an erasure (or raises a 
flag) for the entire segment array. If all the m sections of a segment-array are successfully 
decoded and the number of segments which contain corrected symbols is t2 or less, then the 

k2 decoded data segments are accepted by the receiver and delivered to the user in proper 

order. Otherwise, the receiver declares an erasure for the entire decoded segment-array. 

When the receiver fails to decode a received block, the block is erased from the receiver 

buffer and a retransmission for that block is requested. However, if retransmission is either 

not possible or not practical and no block is allowed to be discarded, then the erroneous 
block with all the parity symbols removed is accepted by the user with alarm. 

4. Error Performance Analysis 

In this section, we analyze the performance of the proposed concatenated coded modulation 
scheme for an AWGN channel. We assume that all the codewords of the inner modulation 
code are equally likely to be transmitted. 

Let P,"' be the probability that a decoded segment is error-free and P,:) be the 
probability that a decoded segment is erroneous. Since the inner code Cr is linear over 

(0, 1, . . . ,2' - 1) under binary component-wise modulo-2 addition, we assume that the 
all-zero codeword 0 is transmitted without loss of generality. For a received frame z, the 
decoded segment is error-free if and only if 

for every nonzero codeword v in Cl (the probability that Iz, vi2 = le, 0l2 is assumed to be 

8 



zero). It follows from (9) that the inequality of (11) can be put into the following form: 

j= 1 j= 1 

where z = (zl ,yl , z2 ,y2 , .  . . ,x,, ,y,,) and v = (sl ,s2,. . . ,snl). For any codeword v in 
C1, let Q(v) denote the set of (zl, y, , z2, y2,. . . , z,, , y,, , ) which satisfies the inequality of 
(12). Define the following set, 

Then it follows from (10) that 

where the integration is taken over the set Qe. 

Let S be a subset of C, - (0) such that 

Then S is called a representative set for C, - (0). To evaluate (14), it is desired to find a 

small set S to represent C1 - (0). 
For a nonzero codeword v in C1, let P'l'(v) denote the probability that a received 

frame z satisfies the following condition: 

The inequality of (16) can be put into the following form: 

where Ivl = d w .  Since the random variable, 

9 



is distributed with a Gaussian distribution of zero mean and variance 4a2 [vi2, we have 

where 

and p is the SNR per symbol [20]. 

it follows from (13) and (15) that 
Let Qc and Q(v) denote the complementary sets of Qc and Q(v) respectively. Then 

where S is a representative set for C, - (0) .  Consequently, we obtain the following upper 
bound on P:cl), 

P:cl) = 1 - P,"' 5 P!"(V). 

Let A be the set of real numbers such that, for any d E A, there is a nonzero codeword 
v in C, with squared Euclidean distance d from the all-zero codeword 0. For a d E A and 

a representative set S for C1 - {0}, let A d [ S ]  be the number of codewords of C, in S with 

squared Euclidean distance d from the all-zero codeword 0. Then it follows from (18) and 
(20) that 

Ad [C, -{O}] can be computed from the complete weight distribution of C1. If we can choose 
a small representative set S for C, - {0}, A d [ S ]  may be much smaller than Ad[Cl - {O}] 

except for "dominate" d's close to the minimum squared Euclidean distance D[C,] of C,. 
Next we analyze the error performance of the overall concatenated coded modulation 

scheme. Let P,, P,, and Per be the probabilities of a correct decoding, an erasure and an 
incorrect decoding for an entire received code block respectively. Then 

1 - Pc = Pea + Per - 
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Let p'cl) denote an upper bound on P:cl), say the right-hand side of (20). Then it follows 
from (22) that 

where gn,,i(z) = zi ( l  - z)"'-~ for 0 5 z 5 i/na, and gn,,i(z) = ( i /na)i( l  - i/n2)na-i 
otherwise. 

For a nonnegative integer i, let d [ i ]  denote the smallest d' in A such that 

d E A ,  
d < d '  

An upper bound on the probability of an incorrect decoding, Per, can be derived in a way 

similar to the one given in Appendix F of [22], 

where 4 = na - ka + 1, and 

Let pc and per denote the right-hand sides of (23) and (25) respectively. Then pc is 
a lower bound on Pc, and Fer is an upper bound on Per. The probability, 1 - Pc, is an 
upper bound on the total probability of a decoding failure and a decoding error. Clearly, 
1 - pc serves as an upper bound on the probability that a received block will be rejected 
(we will call this as the rejection rate). The performance of the proposed concatenated 

coded modulation scheme is then measured by the pair of probabilities, Per and 1 - p,. 
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5. A Specific Concatenated Coded Modulation Scheme 

In this section, we consider a specific concatenated coded modulation scheme, in which 
the outer code C2 is the NASA standard (255,223) RS code over GF(28) and the inner 
code C1 is the 8-PSK code of length 8 (described in Section 2) with a 4-state trellis 
structure as shown in Figure 2. The inner code has dimension kl = 16, effective rate 
RICl] = 1 and minimum squared Euclidean distance DICl] = 4. Since kl = 16 and 
b = 8, the outer code is interleaved to a depth of m = 2. The overall code rate of the 
scheme is Ref,  = ( k 2 / n 2 )  . RICl] = (223/255) . 1 = 0.875. The inner code provides a 

3 dB (asymptoic) coding gain over the uncoded QPSK modulation without bandwidth 
expansion. The bandwidth expansion required by the overall scheme is due to the coding 
of the outer RS code. 

The complete weight distribution of the inner code can be enumerated from the joint 

weight distribution of its three binary component codes, c b 1 ,  c b 2  and c a s .  For integers i ,  
j and h such that i is even, 0 5 j 5 i 5 8 and 0 5 h 5 8 - i ,  

W ( (h,  0, j ,  0,8 - i - h, 0, i - j ,  0)) 

= W((O,h,O,j,O, 8 - i - h,O,i - j ) )  

= (3 (;) (" i, 

For other composition t = (to , t l  , t2 ,  t 3 ,  t , ,  t 5 , t @ ,  t 8 ) ,  W(t) = 0. 

By choosing a representative set for Cl - {0}, we find the following upper bound on 

the probability of an incorrect decoding for the inner code, 

\/2(8 - 3Jz)P p"' 5 60 erfc(fi) +64 erfc(d-) +484 erfc( 
2 

Let p!') IC denote the upper bound on q:) given by the right hand side expression of (28). 
Then 8:) is used as a measure of the error performance of the inner code Cl. The error 
performance of the inner code and that of the uncoded QPSK versus SNR per symbol is 
shown in Figure 4. Simulation result on PjC1) is also included. Note that the difference 
between q:) and the simulation result on P'jc1) is very small for SNR > 8 dB/symbol (or 

5 dB/information bit). We also see that the simple 8-PSK inner code provide a 2.31 dB 
(real) coding gain over the uncoded QPSK modulation at loe6 decoded segment-error 

rate, and a 2.42 dB coding gain at lo'@ decoded segment-error rate. 
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The RS outer code is a very powerful code which is capable of correcting up to 16 
symbol (or byte) errors. From (23) and (28), we can compute the probability 1 - pc which 
is an upper bound on the probability of a decoding failure. From (25) and (28), we can 
compute the probability f i e ,  which is an upper bound on the probability Per of an incorrect 
decoding of a received block. The error performance of the scheme is given by the pair of 
probabilities, and 1 - p,. 

We can also use the simulation result on P'cl), denoted P'ct!, to compute the error 

performance of the overall scheme. Let 1 - Pc,, denote the value computed from the 
expression of (22) with P!cl) replaced by the simulation result F f ! .  Then 1 - Pc,, gives 
the total probability of a decoding failure and a decoding error for the overall scheme based 
on the simulation results of the inner code. 

Using the outer code to correct up to 16 symbol errors (t2 = 16), the error performance 

of the overall scheme is shown in Figures 5 to 8, where Figures 5 and 6 give the block- 
error performance and Figures 7 and 8 give the bit-error performance. Figure 5 gives the 

upper bound 1 - p, and simulation result 1 - P',, on the total probability of a decoding 
failure and a decoding error versus SNR/symbol, and Figure 6 gives the upper bound 
f ie ,  on the probability Per of a decoding error for the overall scheme versus SNR/symbol. 
From Figures 5 to 6, we see that the specific concatenated modulation scheme proposed 
in this section provides extremely high reliability. For example, with SNR = 9 dB/symbol 
(or 6.57 dB/information bit), the probability of a decoding error is upper bounded by 
6.28 x (using simulation 
results of the inner code). We see that the rejection rate is extremely small and it does 

not affect the system throughput. With SNR = 10 dB/symbol (or 7.57 dB/information 
bit), the probability of a decoding error is less than 6.80 x lo'"! Practically, the scheme 

achieves error-free communication. Figure 5 also shows the coding'gain of the scheme 

over the uncoded QPSK in terms of decoded block-error rate. For example, at decoded 
block-error rates, lo-' and lO-'O, the scheme achieves coding gains, 8 dB/symbol and 
9 dB/symbol, over the uncoded QPSK (a block of 2 x 223 bytes) respectively. These are 

large coding gains. 

and the rejection rate is upper bounded by 4.95 x 

For data file transfer, the block-error-rates should be used as the measure of error 

performance of the scheme. However, for the purpose of providing a basis for comparing 
with other coding schemes, we follow the conventional practice to compute the decoded 

bit-error-rate (BER) of the scheme. The bit-error performance of the scheme is shown 
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in Figures 7 and 8. Two types of decoded BERs are computed. The first type, denoted 
Pbl, is computed based on the probability Pet of an incorrect decoding of a code block 
using the approximation, Pbl = (4 /2n2) Per. This type of BER is a measure of bit-error 
performance of the scheme when retransmission is allowed. The t y p e 1  decoded BER of 
the scheme versus SNR/symbol is shown in Figure 7. We see that the scheme achieves large 

coding gain over the uncoded QPsK for 2 lo-'. At Pbl = lo-' and Pb1 = lo-", 
the coding gains are 6.16 dB/symbol (or 5.58 dB/information bit) and 8.30 dB/symbol (or 

7.72 dB/information bit) respectively. The required SNR to achieve Pbl = lo-' is 7.39 
dB/symbol (or 4.96 dB/information bit), and the required SNR to achieve Pbl = lo-'' is 
7.80 dB/symbol (or 5.37 dB/information bit). 

The second type of decoded BER, denoted Pbl, is computed based on the total prob- 
ability 1 - P' of a decoding failure and a decoding error of a code block using the apprax- 

imation, Pb2 = (4 /2n2)  - (1 - P'). This type of BER is used as the measure of bit-error 
performance of the scheme when retransmission is not allowed. Figure 8 gives the type- 

2 decoded BER of the scheme versus SNR/symbol. We see that, at Pb2 = and 
Pbl = lo"', the coding gains of the scheme Over the uncoded QPSK are 5.52 dB/symbol 
(or 4.94 dB/information bit) and 7.60 dB/symbol (or 7.02 dB/information bit) respectively. 
The required SNR to achieve Pbl = is 8.04 dB/symbol (or 5.61 dB/information bit), 

and the required SNR to achieve Pbl = 10' lo is 8.50 dB/symbol (or 6.07 dB/information 
bit). 

From Figure 2, we see that the 4-state trellis diagram for the 8-PSK inner code 
consists of two identical parallel 2-state trellis sub-diagrams without cross connection 
between them. This structure suggests that the decoding of the inner code can be done 
with two 2-state Viterbi decoders to process the two trellis sub-diagrams in parallel. This 
implementation not only simplify the decoding complexity but also speeds up the decoding 
process. Since the inner code is very short, a very high speed decoder can be implemented 
without much cost. 

The specific concatenated coded modulation scheme is suitable for high-speed satellite 

communications for large file transfer where high reliability is required. Furthermore, the 
scheme is very robust in correcting burst-erron. It is capable of correcting any single burst 
of errors of length up to 242 bits. 

To reduce the bandwidth expansion due to coding of the (255,223) RS outer code, we 

may use a higher effective rate M-ary PSK code as the inner code. Suppose we use the 
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7-th code in Table 1 as the inner code. This code is an 8-PSK code with effective rate 
R[C7] = 9/8. As a result, the overall code rate of the concatenated coded modulation 
scheme with the (255,223) RS code as the outer code is Re,, = 0.9844. In this case, the 
inner code has a 16-state trellis diagram and is much harder to decode than the 8-PSK 
code with a I-state trellis diagram considered above. 

6. Conclusion Remarks 

In this paper, a concatenated coded modulation scheme for error control in data communi- 
cations has been presented. This scheme is achieved by concatenating a RS (or maximum- 
distance-separable) outer code and a bandwidth efficient block inner code for the M-ary 

PSK modulation. Error performance of this scheme has been analyzed. A simple method 

for constructing bandwidth efficient block codes for the M-ary PSK modulation has been 

devised. By a specific example, we have shown that extremely high reliability can be 
achieved by concatenating a good short 8-PSK modulation inner code and relatively pow- 

erful RS outer code, such as the NASA standard (255,223) RS code over GF(2'). Since 
the inner code is short, a high speed decoder with a soft-decision decoding algorithm can 
be implemented without much cost (or complexity). If a proper high effective rate inner 
code is used, the bandwidth expansion required by the overall scheme due to coding will 

be greatly reduced. The proposed scheme is actually devised to achieve coded modulation 
with reduced complexity. It offers a way of obtaining the best of three worlds, reliabil- 
ity, complexity and bandwidth efficiency. The proposed scheme is particularly suitable for 
high-speed satellite communications for large file transfer where high reliability is required. 

The inner code decoder can be implemented to perform both decoding and erasure 
operations. In this case, a decoded segment may contains symbol errors and an erased 
segment creates m symbol erasures, one in each section. The RS outer code is then 

designed to correct both symbol errors and erasures. 
Of course, other types of modulation codes can be used as inner codes in the proposed 

concatenated coded modulation scheme. 
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Appendix 

Trellis Diagram for the 8-PSK Code Described in Section 2 

The 8-PSK code C described in Section 2 consists of three binary component codes c b l y  

c b 2  and c b s  where (1) c b l  is the binary (8,l) code which consists of the all-zero and all- 
one vectors; ( 2 )  c b 2  is the binary (8,7) code with all the even weight vectors; and (3) ct,, 
is the (8,8) code which consists of all binary 8-tuples. Let u be a 16-bit message segment 
to be encoded. Divide u into three sub-segments ul, u2 and us where u1 consists of only 
one bit, u2 consists of seven bits and us consists of eight bits. Then ul, u2 and us are 

encoded based on c b 1 ,  c b 2  and c b 3  respectively. Let 

be their corresponding binary codewords. Note that a is either the all-zero vector or the 
all-one vector. The codeword b has even weight. 

For 1 < I 5 8, the input to the signal selector of the overall encoder-modulator at 
the I-th time unit is the triplet (al ,  bf , c f ) .  If al = 0, then (a, c f )  selects a point from the 
QPSK signal set shown in Figure lb. If al = 1, the (bf , c l )  selects a point from the QPSK 
signal set shown in Figure IC. Hence the system switches between two QPSK signal sets. 
To construct the trellis diagram for C, we need to define the states of the overall encoder- 

modulator. Let (b, ¶ & ¶ .  . . ¶ b l )  denote the 2-bit prefix of codeword b. Let W(bl ¶ b2,. . . , bl) 

denote the Hamming weight of ( b , ,  4 , .  . . , b l ) .  At the l-th time unit, the state of the 

encoder-modulator depends on the bit al and the number W(bl b2 ¶ .  . . , b f ) .  Define the 

following states: 

(1) A, represents the state that al = 0 and W ( b l ,  b2 ,  . . . , bl) is even; 
(2) A, represents the state that al = 0 and W(bl b 2 , .  . . 61) is odd; 

(3) Be represents the state that al = 1 and W(bl 4,. . . , b l )  is even; and 

(4) Bo represents the state that al = 1 and W ( b l ,  b2, . . . , b f )  is odd. 

Assume that the encoder-modulator starts from the state A, at the time I = 0. Then 

the trellis diagram for C can be constructed easily as shown in Figure 2. There are two 
parallel branches (or transitions) between the transition of two states; they correspond to 

cl = 0 and cl = 1 respectively. 
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The encoding of message u is equivalent to tracing a path in the trellis diagram. The 
codeword corresponding to u is a sequence of QPSK signal points either from the set shown 
in Figure lb  or from the set shown in Figure IC. 
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Table 1 Some short QPSK 8-PSK and lSPSK codes (the reference system is the uncoded QSPK modulation) 

Modulation Code Length D [ q  R ( q  7(Cj No. ofstates Binary component codes 
C n dB of t r e b  c b l  cba cbs Cb4 

~~ 

01 5 4 415 2 .o 2 p2 x p3 VS 

C2 15 a 415 5 .O 24 s-RM4.1 PlS 

QPSK C3 16 16 1/2 6.0 27 RM4,a RM4.i 

C4 32 16 21/32 7.2 2* RMs,a RMSJ 

Not at ions: 

(1) v, = (0, I},; 
(2) P, denotes the (n,n - 1) linear binary code which consists of all the even-weight 

(3) P,l denotes the dual code of P,, which consists of the all-zero and all-one vectors; 
(4) RMiti denotes the j-th order binary Reed-Muller code of length 2'; 

( 5 )  s - RMi,i denotes a shortened version of 
(6) G, denotes the even weight subcode of Golay code; 

(7) C' denotes the code obtained from C by appending an extra zero bit to each code 

binary n-tuple; 

vector of C. 
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Figure 4 Error performance of the 4-state 8-PSK block inner code 
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Figure 5 The total probability of a decoding failure and a decoding error for the concatenated 

modulation scheme with the (255,233) RS outer code and the 4state  8-PSK block 

inner code 
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Figure 6 The probability of a decoding error for the concatenated coded modulation scheme 

with the (255,223) RS outer code and the 4-state 8-PSK block inner code 
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Figure 7 Type-1 bit-error performance of the concatenated coded modulation scheme with the 

(255,223) RS outer code and the 4-state 8-PSK block inner code 
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Figure 8 Type2 bit error performance of the concatenated coded modulation scheme with the 

(255,223) RS outer code and the 4-state 8-PSK block inner code 
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