176 research outputs found

    Block-diagonal Preconditioning for Optimal Control Problems Constrained by PDEs with Uncertain Inputs

    Get PDF

    Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods

    Full text link
    Many problems in computational science and engineering are simultaneously characterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity and high dimensionality. Existing numerical techniques for such models would typically require considerable computational and storage resources. This is the case, for instance, for an optimization problem governed by time-dependent Navier-Stokes equations with uncertain inputs. In particular, the stochastic Galerkin finite element method often leads to a prohibitively high dimensional saddle-point system with tensor product structure. In this paper, we approximate the solution by the low-rank Tensor Train decomposition, and present a numerically efficient algorithm to solve the optimality equations directly in the low-rank representation. We show that the solution of the vorticity minimization problem with a distributed control admits a representation with ranks that depend modestly on model and discretization parameters even for high Reynolds numbers. For lower Reynolds numbers this is also the case for a boundary control. This opens the way for a reduced-order modeling of the stochastic optimal flow control with a moderate cost at all stages.Comment: 29 page

    Low-Rank Iterative Solvers for Large-Scale Stochastic Galerkin Linear Systems

    Get PDF
    Otto-von-Guericke-UniversitĂ€t Magdeburg, FakultĂ€t fĂŒr Mathematik, Dissertation, 2016von Dr. rer. pol. Akwum Agwu OnwuntaLiteraturverzeichnis: Seite 135-14

    Matching Schur complement approximations for certain saddle-point systems

    Get PDF
    The solution of many practical problems described by mathematical models requires approximation methods that give rise to linear(ized) systems of equations, solving which will determine the desired approximation. This short contribution describes a particularly effective solution approach for a certain class of so-called saddle-point linear systems which arises in different contexts

    A multigrid method for PDE-constrained optimization with uncertain inputs

    Full text link
    We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number NN of samples used to discretized the probability space. We show that this reduced system can be solved with optimal O(N)O(N) complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and L1L^1-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.Comment: 24, 2 figure
    • 

    corecore