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Abstract

We consider the numerical simulation of an optimal control problem constrained by the unsteady Stokes-
Brinkman equation involving random data. More precisely, we treat the state, the control, the target (or the
desired state), as well as the viscosity, as analytic functions depending on uncertain parameters. This allows
for a simultaneous generalized polynomial chaos approximation of these random functions in the stochastic
Galerkin finite element method discretization of the model. The discrete problem yields a prohibitively high
dimensional saddle point system with Kronecker product structure. We develop a new alternating iterative
tensor method for an efficient reduction of this system by the low-rank Tensor Train representation. Besides,
we propose and analyze a robust Schur complement-based preconditioner for the solution of the saddle-point
system. The performance of our approach is illustrated with extensive numerical experiments based on two-
and three-dimensional examples, where the full problem size exceeds one billion degrees of freedom. The
developed Tensor Train scheme reduces the solution storage by two–three orders of magnitude, depending
on discretization parameters.

Keywords: Stochastic Galerkin system, iterative methods, PDE-constrained optimization, low-rank
solution, tensor methods, preconditioning, Schur complement.
AMS: 35R60, 60H15, 60H35, 65N22, 65F10.

1. Introduction1

The Brinkman model is a parameter-dependent combination of the Darcy and the Stokes models. It2

provides a unified approach to model flows of viscous fluids in a cavity and a porous media. As pointed3

out in [57], in practical applications, the location and number of the Darcy-Stokes interfaces might not4

be known a priori. Hence, the unified equations represent an advantage over the domain decomposition5

methods coupling the Darcy and the Stokes equations [9, 2]. The Brinkman model is typically applied in6

oil reservoir modeling [48] or computational fuel cell dynamics [35, 62].7

The study of finite element-based solvers for the Brinkman model has, on the one hand, attracted much8

attention recently [48, 57, 58, 62]. It is a quite challenging task, essentially due to the high variability in the9

coefficients of the model, which may take very high or very small values. This feature adversely affects not10

only the preconditioning of the resulting linear system [57], but also the construction of stable finite element11

discretizations [40, 62]. On the other hand, the numerical simulation of optimization problems constrained12
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School (IMPRS) for Advanced Methods in Process and System Engineering (Magdeburg).

2S. Dolgov gratefully acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) Fellow-
ship EP/M019004/1. This work started when S. Dolgov was with Max Planck Institute for Dynamics of Complex Technical
Systems.
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by unsteady Brinkman equations has not yet received adequate attention. Generally speaking, optimization1

problems constrained by unsteady partial differential equations (PDEs) are a lot more computationally2

challenging because one needs to solve a system of PDEs coupled globally in time and space, and time-3

stepping methods quickly reach their limitations due to the enormous demand for storage [46, 55]. Yet,4

more challenging than the aforementioned are the optimal control problems constrained by unsteady PDEs5

involving (countably many) parametric or uncertain inputs. This class of problems arises because the input6

parameters of the model, such as the viscosity or initial condition may be affected by uncertainty due,7

for example, to measurement errors, limited data or intrinsic variability in physical phenomenon being8

modeled. Hence, a convenient way to characterize the uncertainty in the problem consists in incorporating9

the uncertain parameters as random variables or space- and/or time-varying random fields.10

In fluid mechanics, for example, the cost functionals in optimization problems are expressed in terms11

of flow variables (such as velocity, pressure, temperature, etc.), whereas constraints are represented by12

the PDE (advection-diffusion, Stokes or Stokes-Brinkman or Navier-Stokes equations, etc.) describing the13

flow and, whenever necessary, by topological constraints on the shape of the domain. In a broad variety14

of applications, the design of devices which are able to reduce drag forces, dissipations or stresses greatly15

enhances the efficiency of a system. For example, the reduction of vorticity and stresses in biomedical devices,16

and the compliance minimization in cantilevers or membranes, represent instances in which optimization17

techniques are called into play. In particular, in biomedical engineering, Stokes-Brinkman control could be18

used to model the reduction of vorticity of blood flow through intracranial aneurysms [54]. However, the19

value of the fluid viscosity ν may not be known precisely. Instead of guessing a value, one can model ν20

as a random variable defined on some complete probability space. This could be interpreted as a scenario21

where the volume of blood moving through the intracranial aneurysms is uncertain due to measurement22

error in ν or probably some other factors [51]. As aptly pointed out in a related study in the framework of a23

deterministic control problem [39], efficient procedures for the numerical solution of the resulting stochastic24

control problem is required because the model is expensive to solve, especially when solutions need to capture25

fine details (such as velocity and thermal boundary layers, etc.); moreover, the finite element assembling26

discretization procedures for the spatial domain could become expensive. The introduction of a suitable low-27

rank numerical scheme is thus instrumental to reduce both the storage requirements and the computational28

complexity. With a view to achieving these goals in this contribution, we discuss a low-rank tensor-based29

technique for solving high dimensional tensor product linear systems resulting from the discretization of a30

Stokes-Brinkman optimal control problem with stochastic inputs (SOCP).31

For the numerical simulation of the SOCP, we assume that the state, the control and the target are32

analytic functions depending on some uncertain parameters. This allows for a simultaneous generalized33

polynomial chaos (PCE) approximation of these random functions [15, 16, 38, 50, 63] in the stochastic34

Galerkin finite element method (SGFEM) discretization of the model. However, these problems often lead35

to prohibitively high dimensional linear systems with Kronecker product structure.36

To reduce the computational complexity, we impose the Kronecker product structure on the solution37

as well. More precisely, we seek an approximate solution in a low-rank tensor product representation,38

namely, the Tensor Train decomposition [42], also known as the Matrix Product States [29]. The tensor39

decomposition concept is similar to low-rank model reduction techniques, for example, the Proper Orthogonal40

Decomposition (POD) [34]. However, the POD solves the full problem in order to derive a reduced model.41

For really large-scale systems this is not feasible. Tensor methods aim to construct directly the reduced42

solution without a priori information. One of the most powerful tensor-based algorithms that can effectively43

accomplish this task is the alternating iterative method [22, 53, 60]. However, existing alternating solvers for44

linear systems require a positive definite matrix. Another novel contributions of this paper are the extension45

and adaptation of these algorithms to the saddle-points optimality system. We refer to [18, 17] for a more46

detailed overview of tensor methods.47

This paper is structured as follows. In Section 2, we present the deterministic Stokes-Brinkman model.48

Section 3 introduces the Stokes-Brinkman optimal control problem with uncertain inputs and gives an49

overview of the SGFEM. Besides, it establishes the Kronecker-product structure of the discrete problem.50

Section 4 presents and analyzes our preconditioners for the corresponding saddle-point linear systems. In51

Section 5, we introduce the Tensor Train decomposition and alternating tensor algorithms, adjust them to the52
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particular structure of the inverse problem and the Stokes-Brinkman model and discuss some implementation1

issues. Section 6 contains numerical results obtained for two- and three-dimensional examples using our2

approach. Finally, Section 7 gives a conclusion and outlines future research goals.3

2. Deterministic Brinkman model4

Let D ⊂ Rd with d ∈ {1, 2, 3}, be a bounded open set with Lipschitz continuous simply connected5

boundary ∂D. Herein, the spatial domain D consists of two parts, namely, a porous medium Dp and a6

viscous flow medium Ds. That is, D = Dp ∪ Ds. Moreover, denote by Q the space-time cylinder D × [0, T ]7

and T = (0, T ]. The generalized unsteady Brinkman problem reads8 

∂v(x, t)

∂t
− ν∆v(x, t) +K0(x)v(x, t) +∇p(x, t) = u(x, t), in Q,

−∇ · v(x, t) = 0, on Q,
v(x, t) = h(x, t), on ∂D × T ,
v(x, 0) = v0, in D,

(1)

where v and p are, respectively, the fluid velocity and the fluid pressure, and h is the boundary condition.9

The parameter ν represents the fluid viscosity. Moreover, K0 is the inverse permeability tensor of the10

medium. We assume here that K0 ∈ L2(D)∩L∞(D) and that the source term u ∈ L2(D). The challenge of11

this problem is that the coefficient K0 takes two extreme values: it is very small in the viscous flow medium12

Ds so that the PDE behaves like the unsteady Stokes flow, and very big in the porous medium Dp in which13

case the PDE behaves like the unsteady Darcy equations.14

In this paper, we denote by Hk(D) the Sobolev space of functions on D whose derivatives up to order k15

are square-integrable. Hk
0 (D) denotes the closure in Hk(D) of the set of finitely differentiable functions with16

compact support in D. For some space X of functions on D, let L2(0, T ;X ) = L2(0, T )⊗X . The variational17

formulation of the Brinkman model (1) can thus be written in following form: find v ∈ L2(0, T ;H1
0 (D)),18

p ∈ L2(0, T ;L2(D)) and ∂tv ∈ L2(0, T ;H−1(D)), such that v|t=0 = v0 and a.e on [0, T ]19 {
(∂tv(t), w) + B(v(t), w)− C(p(t),div w) = (u,w), ∀w ∈ L2(0, T ;H1

0 (D))

C(div v, q) = 0, ∀q ∈ L2(0, T ;L2(D)),

where20

B(v(t), w) = (ν∇v(t),∇w) + (K0(x)v, w),
21

C(p(t),div w) = (p(t),∇ · w),

and (·, ·) represents the L2 inner product of a pair of functions on D.22

For a mixed finite element discretization of the Brinkman problem [40, 54, 57, 62] in the primal variables23

v and p, let Vh ⊂ L2(0, T ;H1
0 (D)) and Wh ⊂ L2(0, T ;L2(D)) be finite element spaces with stable elements24

(i.e. elements that satisfy the inf-sup condition, e.g. mini elements as discussed in [54]) such that Vh =25

span{φ1, . . . , φJv} and Wh = span{ϕ1, . . . , ϕJp}. Performing a Galerkin projection on Vh and Wh and using26

implicit Euler for the temporal discretization, while taking into account the boundary conditions, leads to27

the following equations:28 
Mvi −Mvi−1

τ
+ (νK +Mk)vi +BT pi = Mui + gi,

Bvi = 0,
(2)
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where τ is the time step size,1

B =

[
−
∫
D
ϕk∇ · φk′

]
is the discrete divergence operator,

K =

[∫
D
∇φk : ∇φk′

]
is the matrix representing the vector Laplacian operator,

M =

[∫
D
φkφk′

]
is the mass matrix and

Mk =

[∫
D
K0φkφk′

]
is the mass matrix with the inverse permeability coefficient K0(x).

(3)

Remark 1. In the special case where Mk = 0 in (2), we get the unsteady Stokes problem.2

3. Brinkman optimal control problem with random data3

Suppose now that, even though the fluid viscosity ν is time-independent and spatially constant but that4

its value is not known precisely. Instead of guessing a value, we can model ν as a random variable defined on5

the complete probability space (Ω,F ,P). This could be interpreted as a scenario where the volume of fluid6

moving into a channel is uncertain due to measurement error in ν or probably some other factors [51]. Here,7

Ω is a sample space of events whereas, F denotes a σ-algebra on Ω and is endowed with an appropriate8

probability measure P. The corresponding Brinkman velocity and pressure are consequently also random9

and the numerical solution of the associated SOCP is far more challenging. More precisely, the SOCP which10

we will solve in the rest of this paper consists in minimizing the cost functional of tracking-type11

J =
1

2
||v − v̄||2L2(0,T ;D)⊗L2(Ω) +

α

2
||std(v)||2L2(0,T ;D) +

β

2
||u||2L2(0,T ;D)⊗L2(Ω) (4)

subject, P-almost surely, to the state equations3
12 

∂v(x, t, ω)

∂t
− ν(ω)∆v(x, t, ω) +K0(x)v(x, t, ω) +∇p(x, t, ω) = u(x, t, ω), in Q× Ω,

−∇ · v(x, t, ω) = 0, on Q× Ω,

v(x, t, ω) = h, on ∂D × T × Ω,

v(x, 0, ω) = v0, in D × Ω,

where v, v̄, p : D × T × Ω → R are random fields [5] representing the state (velocity), the target (or the13

desired state) and the pressure. The forcing term on the right hand side u : D × T × Ω → R denotes a14

random control function. Moreover, the positive constant β represents the parameter for the penalization of15

the norm of the control u, whereas α penalizes the standard deviation std(v) of the state v. Here, we have16

used the notation L2(Ω) := L2(Ω,F ,P). The viscosity ν in the state equations is modeled as17

ν(ω) = ν0 + ν1ξ(ω), ν0, ν1 ∈ R+, (5)

where ξ is a uniformly distributed random variable with ξ ∼ U(−1, 1). Furthermore, we assume that the18

control and the target satisfy19

u, v̄ ∈ L2(D)⊗ L2(T )⊗ L2(Ω), (6)

and that, for some νmin, νmax ∈ R+ satisfying 0 < νmin < νmax < +∞, we have20

P (ω ∈ Ω : ν(ω) ∈ [νmin, νmax]) = 1. (7)

3In this contribution, we do not consider the case of state- or control- or mixed control-state-constrained problems [21, 45, 49].
These problems can be tackled via the use of, for instance, semi-smooth Newton algorithms [20, 25, 27].
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3.1. A fully discrete problem1

Two standard methods are used to discretize the optimal control problem introduced above - we can2

either discretize the model first and then optimize the discrete system (DTO method), or alternatively3

optimize first before discretizing the resulting optimality system (OTD method). The commutativity of4

DTO and OTD methods when applied to optimal control problems constrained by PDEs has been a subject5

of debate in recent times (see [36] for an overview). In what follows, we will adopt the DTO strategy because,6

for the optimal control problem considered in this paper, it leads to a symmetric saddle point linear system7

which fits in nicely with our preconditioning strategies.8

Since our optimal control problem contains random coefficients, the stochastic discretization could be9

effected using either a projection-based method (e.g. stochastic Galerkin method in [50]) or a sampling10

method (e.g. stochastic collocation method in [52]). Due to its high convergence rate, the former is our11

preferred method in this paper. In order to use this method, we first assume that the pressure p, the state12

v, the control u and the target v̄ are analytic functions depending on the uncertain parameters. This allows13

for a simultaneous generalized polynomial chaos (PCE) approximation of these random functions [15, 50, 5].14

Of course, v̄ can equally be modeled deterministically. Together with the finite element method, the PCE15

yields an SGFEM for discretizing both the spatial and stochastic domains. More precisely, p, u, v, and v̄16

admit the following respective representations17

p(x, t, ω) =

Jp∑
k=1

P∑
j=1

pkj(t)ϕk(x)ψj(ξ(ω)), (8)

u(x, t, ω) =

Jv∑
k=1

P∑
j=1

ukj(t)φk(x)ψj(ξ(ω)),

v(x, t, ω) =

Jv∑
k=1

P∑
j=1

vkj(t)φk(x)ψj(ξ(ω)),

v̄(x, t, ω) =

Jv∑
k=1

P∑
j=1

v̄kj(t)φk(x)ψj(ξ(ω)),

where {ψj}Pj=1 are univariate orthogonal polynomials of order P − 1 satisfying18

〈ψ1(ξ)〉 = 1, 〈ψj(ξ)〉 = 0, j > 1, 〈ψj(ξ)ψk(ξ)〉 =
〈
ψ2
j (ξ)

〉
δjk, (9)

with19

〈ψj(ξ)〉 =

∫
ω∈Ω

ψj(ξ(ω)) dP(ω) =

∫
ξ∈Γ

ψj(ξ)ρ(ξ) dξ, (10)

where ρ is the density of the random variable ξ and Γ is the support of ρ.20

In spirit of [5, 55], we apply to the cost functional the trapezoidal rule for temporal discretization, and the21

mini finite elements [54], together with Legendre polynomial chaos in the SGFEM for spatial and stochastic22

discretizations [50], to get the following23

J (y,u) :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u, (11)

where y> =
[
v>1 ,p

>
1 , . . . ,v

>
nt ,p

>
nt

]
∈ RJPnt , J := Jv + Jp, and u> =

[
u>1 , . . . ,u

>
nt

]
denote the long vectors24

of all time snapshots of the state and control, respectively,25 

Ma = blkdiag
(

1
2M, 0,M, 0, . . . ,M, 0, 1

2M, 0
)
, M := G0 ⊗M,

Mb = blkdiag
(

1
2Mt, 0,Mt, 0, . . . ,Mt, 0,

1
2Mt, 0

)
, Mt := H0 ⊗M,

M2 = blkdiag
(

1
2M,M, . . . ,M, 1

2M
)
,

(12)

5



with M the finite element mass matrix, and1 {
G0 = diag

(〈
ψ2

1(ξ)
〉
,
〈
ψ2

2(ξ)
〉
, . . . ,

〈
ψ2
P (ξ)

〉)
,

H0 = diag
(
0,
〈
ψ2

2(ξ)
〉
, . . . ,

〈
ψ2
P (ξ)

〉)
,

(13)

where the Kronecker product ⊗ is meant in the usual sense, A⊗B = [AijB].2

For an all-at-once discretization of the state equation, we use the implicit Euler together with SGFEM3

to get4

Ky −Nu = g, (14)

where5

K =


L̄
−M̄ L̄

. . .
. . .

−M̄ L̄

 , N =


N
N

. . .

N

 , g =


M̄y0 + g0

1

g0
2
...

g0
nt

 ,
with6

N = G0 ⊗N, N =

[
M
0

]
, M̄ = G0 ⊗ τ−1M̄, M̄ =

[
M 0
0 0

]
, (15)

and, in the notation of [51],7

L̄ =

[
A BT
B 0

]
(16)

represents an instance of the time-dependent Brinkman problem with8

A = G0 ⊗A+G1 ⊗ ν1K, A = τ−1M + ν0K +Mk, B = G0 ⊗B, (17)

andG1(j, j′) = 〈ξψj(ξ)ψj′(ξ)〉 . Note that since we are using Legendre polynomials for SGFEM discretization,9

G0 is a diagonal matrix whereas G1 is a tridiagonal matrix with zeros on the main diagonal (see e.g., [50, 51]).10

This implies that the matrix B in (17) is block-diagonal. Furthermore, since the matrices K, M and Mk are11

positive definite, we know that A in (17) is sparse and positive definite. However, L̄ is an indefinite block12

sparse matrix with sparse blocks.13

Later it will be convenient to work with the Kronecker product representations of the system matrices.14

To this end, we introduce the identity matrix Int ∈ Rnt×nt , as well as the matrix15

C =


0
−1 0

. . .
. . .

−1 0

 , (18)

and observe then that16

K = Int ⊗G0 ⊗
[
A B>

B 0

]
+ Int ⊗G1 ⊗

[
ν1K 0

0 0

]
+ C ⊗G0 ⊗

[
τ−1M 0

0 0

]
, (19)

and17

N = Int ⊗G0 ⊗N. (20)

The structure of the right-hand side is problem-dependent. However, in our experiments we will use y0 = 018

and a static deterministic g0 coming from Dirichlet boundary conditions, such that g = g0 = e⊗e1⊗
[
g0
v

g0
p

]
,19

where e is the vector of all ones, and e1 is the first unit vector.20

6



Now, note from (11) and (14) that the discrete Lagrangian functional of the SOCP is given by1

L :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u + λT (−Ky +Nu + g),

where λ is the Lagrange multiplier. Hence, applying the first order conditions to L yields the Karush-Kuhn-2

Tucker (KKT) system3  τM1 0 −KT

0 βτM2 NT

−K N 0


︸ ︷︷ ︸

:=A

 y
u
λ

 =

 b1

0
g

 , (21)

where b1 = τMaȳ, and4

M1 = Ma + αMb = D ⊗Gα ⊗ M̄, M2 = D ⊗M = D ⊗G0 ⊗M, (22)
5

D = diag

(
1

2
, 1 . . . , 1,

1

2

)
∈ Rnt×nt , Gα := G0 + αH0. (23)

We note here that if the desired state is also static and deterministic, then one gets ȳ = e⊗ e1 ⊗
[
v̄
0

]
.6

4. Preconditioning7

The KKT coefficient matrix A in (21) is usually ill-conditioned and thus requires a suitable precondi-
tioner to solve (21) efficiently. A block-diagonal preconditioner, discussed in the framework of determin-
istic unsteady Stokes control problem [56], is written in the form P1 = blockdiag(M̃1, βM2, S̃1), where

S̃1 = 1
τ (K +Ms)M̃1

−1 (
KT +Ms

)T
is the approximate Schur complement, and M̃1 is some perturbation

to M1, since the latter is rank-deficient. Here, the matrix Ms is determined via a ’matching’ argument. In
particular, [56] suggest the following augmentation,

M̃1 =

[
D ⊗Gα ⊗M

D ⊗Gα ⊗
(
‖M‖22τβ

)
I

]
,

where I is the identity of the size of the pressure grid. However, this approach is tricky. For example, it may8

be quite suitable for preconditioning of MINRES, which works with the P−1
1 -scalar product, but perform9

poorly in the Flexible GMRES, if we are to apply P−1
1 approximately. Besides, it is not obvious how to10

generalize it to the case whenM1 is numerically rank-deficient, i.e. its eigenvalues form a gradually decaying11

sequence instead of two distinct clusters. This will occur in the low-rank tensor methods; consequently,12

instead of M1, we will work with its Galerkin projection in the sequel. More specifically, we proceed next to13

Section 4.1 to propose another preconditioner which circumvents this deficiency and yields faster convergence14

even with the original sparse M1.15

4.1. A block-triangular preconditioner16

Our point of departure is to replace the KKT coefficient matrix A in (21) by Ã given by17

Ã := Aρ =

 −KT 0 τM1

NT βτM2 0
0 N −K

 =

[
Φ Υ
Ψ −K

]
,

where18

ρ =

 0 0 I
0 I 0
I 0 0

 , Φ =

[
−KT 0
NT βτM2

]
, Υ =

[
τM1

0

]
, Ψ =

[
0
N

]T
.

7



Note that the matrix ρ swaps the first and third columns of A in the product Aρ; it swaps the first and1

third rows of A in the product ρA. Next, observe also that we can factorize the matrix Ã as follows2 [
Φ Υ
Ψ −K

]
=

[
I 0

ΨΦ−1 I

] [
Φ Υ
0 −S2

]
,

where3

Φ−1 =

[
−K−T 0

1
τβM

−1
2 NTK−T 1

τβM
−1
2

]
, (24)

and S2 = K + ΨΦ−1Υ = K + 1
βNM

−1
2 NTK−TM1. But then, from (15), (20) and (22), we obtain4

NM−1
2 NT = D−1 ⊗G0 ⊗ M̄ = D−1 ⊗

[
τM 0

0 0

]
=: M−1. (25)

Therefore,5

S2 = K + ΨΦ−1Υ = K +
1

β
M−1K

−TM1. (26)

We propose to right-precondition Ã with the matrix6

PD =

[
Φ Υ
0 −S2

]
. (27)

This implies that7

ÃP−1
D = AρP−1

D = AP−1
2 =

[
I 0

ΨΦ−1 I

]
, (28)

where the right preconditioner P2 for the original KKT matrix A satisfies8

P−1
2 = ρP−1

D =

 0 0 −S−1
2

1
βτM

−1
2 NTK−T 1

βτM
−1
2

1
βM

−1
2 NTK−TM1S

−1
2

−K−T 0 −K−T τM1S
−1
2

 . (29)

It can be noticed that (28) immediately implies (AP−1
2 − I)2 = 0; hence, such Krylov solvers as the9

generalized minimal residual (GMRES) method will converge in two iterations if P−1
2 is applied exactly, see10

e.g. [13, Section 8.1].11

The seeming complicated structure of (29) notwithstanding, matrix-vector product with P−1
2 can be12

implemented fairly easily. For instance, suppose now that we want to solve x = P−1
2 y, where x =13

[x1,x2,x3]T , y = [y1,y2,y3]T . Then, it can easily be shown that an efficient way to implement the14

matrix-vector product is15 
x1 = −S−1

2 y3

x3 = −K−T (y1 − τM1x1)

x2 = τ−1β−1M−1
2 (y2 −NTx3).

(30)

Next, following a state-of-the-art preconditioning strategy in [47], we approximate the Schur complement16

S2 in (26) with a matrix of the form17

S̃2 = (K +Ml)K
−T (KT +Mr

)
.

= K +MlK
−TMr +Ml +KK−TMr, (31)

where Ml and Mr are determined using also a ’matching’ argument between the exact Schur complement18

S2 and the approximation S̃2. More precisely, we ignore the last two terms in (31) and match the first and19

8



second terms with those in (26) to get Mr = β−1/2M1, and Ml = β−1/2M−1, where M1 and M−1 are as1

defined, respectively, in (22) and (25). Hence, we have2

S̃2 =

(
K +

1√
β
M−1

)
K−T

(
KT +

1√
β
M1

)
. (32)

For matrix-vector products, the factors
(
K + 1√

β
M−1

)
and

(
KT + 1√

β
M1

)
can be kept as sums of four3

Kronecker products, with the first three coming from K in (19), and the fourth corresponding to M−1 in4

(25) and M1 in (22), respectively. However, our ultimate goal is to apply S̃−1
2 , where it appears that solving5

a linear system with exact factors is difficult. As a result, we instead approximate them by one Kronecker-6

product term: we approximate K by the first term from (19), whereas we set M1 ≈ Int ⊗ (1 + α)G0 ⊗ M̄7

and M−1 ≈ Int ⊗G0 ⊗ M̄ ; therefore,8 (
K +

1√
β
Mi

)
≈ Int ⊗G0 ⊗

[
A+ ηiM B>

B 0

]
, (33)

where i ∈ {−1, 1}, and η−1 = 1/
√
β, η1 = (1 + α)/

√
β. Inside alternating tensor methods (cf. Section 5.5),9

the matrix Int ⊗ G0 will be further reduced, but the concept of the one-term preconditioner remains the10

same.11

4.2. Preconditioning of the forward Stokes-Brinkman problem12

In linear systems of the form (33), Int and G0 can be inverted straightforwardly, while the spatial matrix13

may require a special treatment. To this end, we can use either the GMRES or the inexact Uzawa algorithm14

(see e.g. [56]), together with the block-triangular preconditioner15

Ps =

[
Ã 0
B −S0

]
, (34)

where S0 = BÃ−1B> is the Schur complement and Ã = ν0K +Mk + (τ−1 + η)M with η = 1√
β

or η = 1+α√
β
.16

So, we need P−1
s , that is,17

P−1
s =

[
Ã−1 0

S−1
0 BÃ−1 −S−1

0

]
. (35)

In what follows, we derive the approximation to the blocks of P−1
s . First, to approximate Ã, we can use18

algebraic multigrid methods, since Ã is symmetric and positive definite. Next, we need an approximation19

to the Schur complement S0. As was pointed out in [13], the pressure mass matrix is a very effective20

approximation for S0 in the case of stationary Stokes equations. However, as we are considering unsteady21

Stokes-Brinkman constraint, this does not apply since Ã has an entirely different structure. Thus, following22

[56], we proceed to derive the so-called Cahouet-Chabard approximation to S0 using a technique for the23

steady Navier-Stokes equation, which is based on the least squares commutator (see Chapter 8 of [13])24

defined by25

E := (L)∇−∇(Lp),

where L = (τ−1 + η)I + ∆ +K0 and Lp = (τ−1 + η)Ip + ∆p +K0p is defined similarly but on the pressure26

space. As was noted in [56], these operators are only used for the purpose of deriving matrix preconditioners27

and no function spaces or boundary conditions are defined here. Assuming the least squares commutator is28

small, we obtain the following finite element discretization of the differential operators29

Eh = (M−1Ã)M−1BT −M−1BT (M−1
p Ãp) ≈ 0, (36)

where Ã, B and M are as defined previously, and30

Ãp = ν0Kp +Mkp + (τ−1 + η)Mp. (37)

9



The smallness Eh ≈ 0 should be understood in the sense that the norm of the commutator is much smaller1

than the norm of either term in (36). Next, we pre-multiply (36) by BÃ−1M and post-multiply it by Ã−1
p Mp2

to obtain3

BM−1BT Ã−1
p Mp −BÃ−1BT ≈ 0, (38)

or, equivalently (with ≈ meaning again the proximity in the norm),4

S0 ≈ BM−1BT Ã−1
p Mp. (39)

Now, note that the matrix on the right hand side of (39) is not, in general, a practical choice for the Schur5

complement S0 since BM−1BT is not easy to work with because it is dense. Fortunately, though, BM−1BT6

is spectrally equivalent to the Laplacian Kp defined on the pressure space [13]; that is, Kp ∼ BM−1BT in7

the sense that there exist constants c0 and c1 independent of h such that 0 < c0 ≤ c1 <∞ with8

c0 ≤
〈
BM−1BTv,v

〉
〈Kpv,v〉

≤ c1, ∀v ∈ RJp , v 6= 0, v 6= 1.

This observation suggests that in general a discrete Laplacian on the pressure space is what is needed in9

place of BM−1BT in (39). Hence, from (39), we obtain10

S0 ≈ KpÃ
−1
p Mp, (40)

and from (37) and (40), we have11

S−1
0 ≈M−1

p

(
ν0Kp +Mkp + (τ−1 + η)Mp

)
K−1
p . (41)

The inverse of the pressure Laplacian K−1
p is approximated using algebraic multigrid methods, whereas the12

use of the Chebyshev semi-iteration will suffice for M−1
p . We note here that, as pointed out in Chapter 513

of [13], the pressure Laplacian represents a Neumann problem because the pressure basis functions form a14

partition of unity. Indeed, this property is independent of the boundary conditions attached to the flow15

problem. To solve the problem of indefiniteness of Kp we just pin a boundary node in Kp (see, e.g., [7]).16

Afterwards, we use the AMG package provided by [8].17

4.3. Spectral analysis18

The effectiveness of the iterative solver for our KKT linear system (21) depends to a large extent on how19

well the exact Schur complement is represented by its approximation. To measure this, we need to consider20

the eigenvalues of the preconditioned Schur complement S−1
2 S̃2. We are, however, unable to give a general21

estimate. Instead, we restrict our analysis to the regularization parameters.22

Theorem 1. If the system matrix K in (19) and its velocity block are invertible, then there exist constants23

C1 and C2 such that24

cond(S−1
2 S̃2) ≤ (1 + C1β

1/2) for β sufficiently small,

cond(S−1
2 S̃2) ≤ (1 + C2β

−1/2) for β sufficiently large,
(42)

where C1 and C2 are independent of β.25

Proof. Recall first that if26

KT =

[
AT BT

B 0

]
,

where27

B = Int ⊗G0 ⊗B, (43)
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1

A = Int ⊗G0 ⊗ (ν0K +M% + τ−1M) + Int ⊗G1 ⊗ ν1K + C ⊗G0 ⊗ τ−1M, (44)

and that both KT and A are non-singular, then2

K−T =

[
A−T −A−TBTS−1BA−T A−TBTS−1

S−1BA−T −S−1

]
, (45)

and3

KK−T =

[
AA−T (I − PK) + PK (AA−T − I)BTS−1

0 I

]
,

where S = BA−TBT , PK = BTS−1BA−T , and I is an identity of suitable sizes, see e.g. [6]. Notice that4

PK = P 2
K ; that is, the matrix PK is a projector and, from (43) and (44), it is also β-independent. From5

(22), (25) and (45), we have that6

β−1M−1K
−TM1 =

[
M? 0
0 0

]
, (46)

where7

M? = β−1M−1K11M1, (47)

M−1 = D−1⊗G0⊗M and M1 = D⊗Gα⊗M are the velocity submatrices of M−1 and M1, as given by (25)8

and (22) respectively, and K11 = A−T (I −PK) denotes the (1,1) block of K−T . Thus, using (47), (46) and9

(26), we get10

S2 = K + β−1M−1K
−TM1 =

[
A? BT

B 0

]
, (48)

where11

A? = A+M?. (49)

Next, observe from (31) that12

S̃2 − S2 = β−1/2(M−1 +KK−TM1) =

[
U 0
0 0

]
, (50)

where13

U = β−1/2
(
M−1 +

(
AA−T (I − PK) + PK

)
M1

)︸ ︷︷ ︸
:=U1

. (51)

Notice from (51) that U1 is also β-independent. Now, using (45), (48) and (50), we have14

S−1
2 S̃2 =

[
I 0
0 I

]
+

[
A? BT

B 0

]−1 [
U 0
0 0

]
(52)

=

[
I +A−1

? (I − P?)U 0
S−1
? BA−1

? U I

]
,

where S? = BA−1
? B

T and15

P? = BTS−1
? BA−1

? (53)

11



Figure 1: Eigenvalue distribution of the matrix I + A−1
? (I − P?)U using the parameters ν1 = 0.1, J = 642, P = 4, nt = 4.

Left: α = 1 and β is varied. Right: β = 1 and α is varied.
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is another projector. Thus, the eigenvalues of S−1
2 S̃2 are contained in the set {1}∪λ

(
I +A−1

? (I − P?)U
)
.1

To prove the first part of the assertion (42), suppose now that β is sufficiently small. Then, from (47)
and (49), the norm of M? is much larger than the norm of A, ‖M?‖ = ‖β−1M−1K11M1‖ � ‖A‖, since A is
independent of β. That is, we take β much less than the β-independent bound ‖M−1K11M1‖/‖A‖. Hence,
A? ≈M?. In particular, we have

0 < ĉβ ≤ ‖A−1
? ‖ ≤ Ĉβ

and
0 < c′β−1 ≤ ‖S−1

? ‖ ≤ C ′β−1,

from which, together with (53), we deduce that the norm of the projector P? is asymptotically β-independent.2

Finally, from (51), we have ‖U‖ = ‖β−1/2U1‖ := C̃β−1/2, and ‖A−1
? (I − P?)U‖ ≤ C1β

1/2. That is,3

λ(S−1
2 S̃2) ∈ [1− C1β

1/2, 1 + C1β
1/2]→ {1} when β → 0.4

On the other hand, when β is large, the norm of M? is small, and A? ≈ A, a matrix independent of β.5

The only multiplication with β comes from U ; therefore, ‖A−1
? (I − P?)U‖ ≤ C2β

−1/2 → 0 when β → ∞.6

Again, the matrix S−1
2 S̃2 becomes well conditioned in β in the limit, thereby completing the proof of the7

theorem. �8

For intermediate β, we expect that S̃2 is still a good approximation to S2, and do observe that in9

practice. For small matrices we have illustrated the distribution of the eigenvalues of I + A−1
? (I − P?)U10

explicitly in Figure 1. As we can see from the left figure, as β is varied, the eigenvalues are mostly clustered11

between 1 and 2.2, regardless of the value of β. Note that the eigenvalues approach the maximum 2.2 for12

intermediate β = 10−4, but remain closer to 1 for both larger and smaller values of β. This is also reflected13

in the experiment in Section 6.4: β = 10−4 is the kink point for the error, and the maximum point for the14

CPU time.15

On the other hand, Figure 1 (right) shows that, keeping β = 1, the eigenvalues of I +A−1
? (I − P?)U16

are clustered around 1 if 0 ≤ α ≤ 1, but drastically increase for α > 1. Again, this observation confirms the17

deterioration in the performance of our solver as α increases in Section 6.5. The scenario α � 1 is not of18

much practical interest anyway, as this would imply a very low value of the variance, in which case we lose19

the point of uncertainty quantification in the problem.20
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5. Tensor Train solver1

To develop an efficient tensor-based iterative solver for our problem, we separate variables x, ω and t,2

but not the inner components of x. In what follows, we shall rely specifically on the Tensor Train (TT)3

decomposition introduced in [42] to solve our linear systems. A detailed discussion on tensor decompositions4

can be found in recent surveys and books [18, 17, 28]. Here, we start with the introduction to TT calculus,5

and finally propose the new solution algorithm for the systems like (21).6

5.1. Tensor Train decomposition7

By a tensor y, we mean an array with many indices: y = [y(i1, . . . , id)], where im = 1, . . . , nm, m =8

1, . . . , d. For example, the y-component of (21) can be seen as a 3-dimensional tensor, where i3 enumerates9

basis functions in x, i2 defines different polynomials in the stochastic variable ξ(ω), and i1 corresponds to10

different time steps, ti1 . On the other hand, it is clear that the solution of a linear system is a vector.11

The equivalence between vectors, matrices and tensors is established via the reshaping operation, employed12

ubiquitously in tensor calculus.13

Definition 1. Given arbitrary indices ip, . . . , iq with ranges np, . . . , nq, by a multi-index we denote their
big-endian lexicographic grouping,

ip . . . iq = (ip − 1)np+1 · · ·nq + (ip+1 − 1)np+2 · · ·nq + · · ·+ (iq−1 − 1)nq + iq.

Definition 2. Given a tensor y(i1, . . . , id), we define the following classical reshapes using multi-indices:14

• vector y =
[
y(i1 . . . id)

]
∈ Rn1···nd×1, y(i1 . . . id) = y(i1, . . . , id), and15

• matrix Y =
[
Y(i1 . . . im, im+1 . . . id)

]
∈ Rn1···nm×nm+1···nd , Y(i1 . . . im, im+1 . . . id) = y(i1, . . . , id).16

For example, the Kronecker product c = a ⊗ b of two vectors can be equivalently seen as a tensor, matrix17

or vector, since c(i1, i2) = c(i1i2) = a(i1)b(i2).18

The computational difficulty of tensors lies in their possibly large storage demand n1 · · ·nd, which grows19

exponentially in d if all nk are equal. However, notice that the Kronecker product a⊗b above can be seen as20

a low-rank matrix, and we only need to store its factors a,b of total cardinality n1 +n2. One of the simplest21

and powerful generalizations of this idea to higher dimensions is the Tensor Train (TT) decomposition.22

Definition 3. A tensor is said to be represented in the TT format, if23

y(i1, . . . , id) =

r0,...,rd∑
s0,...,sd=1

y(1)
s0,s1(i1)y(2)

s1,s2(i2) · · ·y(d)
sd−1,sd

(id). (54)

The summation indices r0, . . . , rd are called TT ranks, the factors y(m), m = 1, . . . , d, are called TT blocks
and have the sizes rm−1×nm×rm. We put the rank indices to subscripts and the original indices to brackets
to emphasize particular levels in (54). Omitting either group of indices, we can write equivalent compact
representations as a sum of Kronecker products or a product of matrices, respectively,

y =

r0,...,rd∑
s0,...,sd=1

y(1)
s0,s1 ⊗ y(2)

s1,s2 ⊗ · · · ⊗ y(d)
sd−1,sd

⇔ y(i1, . . . , id) = y(1)(i1) · · ·y(1)(id).

Here, for example, y
(m)
sm−1,sm ∈ Rnm is a vector, and y(m)(im) ∈ Rrm−1×rm is a matrix.24

In this paper, we always fix r0 = rd = 1; these dimensions are introduced only for uniformity of y(1)
25

and y(d). The other TT ranks are however nontrivial, and depend on the enforced accuracy, since (54) can26

hold approximately. If all TT ranks are bounded, rm . r, and nm . n, then the TT blocks require in total27

O(dnr2) memory, which might be much less than nd, needed for the full vector y. Although it is difficult28

in general to estimate the TT ranks theoretically, there is a reliable numerical TT-SVD procedure, which29

computes a quasi-optimal TT representation, using a sequence of singular value decompositions (SVD) [42].30
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The complexity of the TT-SVD is O(nd+1) if we compress a full tensor. However, in the course of1

computations we mostly need to re-compress a tensor, given already in the TT format, but with (overly)2

larger ranks. For example, given a matrix as a sum of Kronecker products, A =
∑R
q=1Aq ⊗Bq ⊗ Cq and a3

vector y in the format (54) with d = 3, the matrix-vector product can be written as follows [53, 42],4

g = Ay =

r1,r2∑
s1,s2=1

R,R∑
q1,q2=1

(
Aq1y

(1)
s1

)
⊗
(
δq1,q2Bq1y

(2)
s1,s2

)
⊗
(
Cq2y

(3)
s2

)
, (55)

where δq1,q2 = 1 if q1 = q2 and zero otherwise. Each bracket in the right-hand side of (55) is a larger TT5

block, the new rank indices are s′1 = s1q1, s′2 = s2q2, and hence the TT ranks are Rr1, Rr2. Similarly, a6

linear combination y + z of vectors can be recast to their TT blocks y(m), z(m). However, the result might7

be approximated accurately enough with much smaller ranks. When applied to the TT format (55) instead8

of the full tensor, the TT-SVD requires O(nR3r3) operations. These properties allow to adopt classical9

iterative methods such as MINRES or GMRES in an inexact fashion, keeping all Krylov vectors in the TT10

format and performing the TT-SVD re-compression [33, 4, 1, 10].11

5.2. Alternating iterative methods12

Notwithstanding the TT truncation, the Krylov vectors may still develop rather large TT ranks – much13

larger than the ranks of the exact solution, in particular. Unless a very good preconditioner is available, such14

that the method converges in about 10 iterations, the TT-GMRES approach may become too expensive.15

For problems of some special forms (e.g. Lyapunov equations), one can employ ADI [59] or tensor Krylov16

methods [32]. For more general problems we have to employ more general alternating methods [22, 53].17

The main idea behind the alternating tensor methods is to reduce the problem to the elements of a18

particular TT block and iterate over different TT blocks until convergence is achieved. In the mathematical19

community, the concept started with the Alternating Least Squares (ALS) method used to minimize the20

misfit of a tensor by a low-rank tensor model, see the surveys [30, 17]. This was later extended to the21

solution of linear systems [22, 44]. In quantum physics, a powerful realization of the alternation idea is22

the Density Matrix Renormalization Group (DMRG) algorithm [60], which is mainly used for eigenvalue23

problems, but also for linear systems [26]. Later on, the ALS/DMRG methods were combined with the24

classical gradient descent iteration: besides the ALS iteration, the TT blocks are explicitly augmented by25

the partial TT format of the residual surrogate. The DMRG algorithm with a single center site [61] uses the26

surrogate of the Krylov vector, and the Alternating Minimal Energy (AMEn) method [12] uses the actual27

residual, which was later adopted for eigenvalue problems as well [24, 31]. Details of these algorithms can28

be found in the corresponding papers.29

Let us consider a linear system Ay = g with a symmetric positive definite A, such that the problem30

can be reformulated as miny J(y) = y>Ay− 2y>g. The ALS method plugs in the TT format (54) instead31

of y, and minimizes J over a single TT block y(m) in the course of iteration m = 1, . . . , d. The optimality32

conditions result in a smaller linear system [22], for which we need the following33

Definition 4. Given the TT format (54), we introduce the left resp. right interface matrices

Y <m(i1 . . . im−1, sm−1) =
∑

s0,...,sm−2

y(1)
s0,s1(i1) · · ·y(m−1)

sm−2,sm−1
(im−1),

Y >m(sm, im+1 . . . id) =
∑

sm+1,...,sd

y(m+1)
sm,sm+1

(im+1) · · ·y(d)
sd−1,sd

(id),

including the degenerate cases Y <1 = Y >d = 1, and the frame matrix34

Ym = Y <m ⊗ Inm ⊗
(
Y >m

)>
. (56)

The ALS method proceeds solving35 (
Y >mAYm

)
y(m) = Y >m g, for m = 1, . . . , d, d− 1, . . . , 1, (57)
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and so on, replacing the current TT block by the new elements y(m) before constructing (56) for the next1

step. This follows from the crucial linearity of the TT format, y = Ymy(m), where y and y(m) here are2

reshaped into vectors (see Def. 2).3

However, the convergence of this algorithm is questionable. It is possible that the systems (57) remain4

the same within machine precision in two consecutive iterations, while the true residual of the initial linear5

system Ay − g is large. The AMEn algorithm [12] was developed to circumvent this problem. In addition6

to the solution, we approximate the residual in the TT format, and add it to the solution after each step.7

This allows to increase the TT ranks if necessary, and prevent the method from a premature stagnation.8

5.3. Block alternating iteration9

However, the idea outlined above may not work for indefinite matrices, such as the KKT system (21). The10

Galerkin projections (57) obey the Poincaré Separation Theorem [23, Section 4.3], and since the spectrum11

has both positive and negative parts, some of the eigenvalues may interlace to zero. The projected matrices12

become degenerate and the calculation stops.13

To avoid this problem, we store the state y, control u and adjoint λ vectors in the so-called block TT
format [11], and preserve the KKT structure in the reduced system. Suppose we are given a systemτM1 0 −K>

0 βτM2 N>

−K N 0

w1

w2

w3

 =

b1

b2

b3

 =

τMaȳ
0
g

 ,
w1

w2

w3

 =

y
u
λ,

 ,
where each component wl, l = 1, 2, 3, is a vector associated with a d-dimensional tensor.14

Definition 5. A set of tensors is said to be represented in the block TT format, if for some m,15

wl(i1, . . . , id) =

r0,...,rd∑
s0,...,sd=1

w(1)
s0,s1(i1) · · · ŵ(m)

sm−1,sm(im, l) · · ·w(d)
sd−1,sd

(id). (58)

Here, w(p) ∈ Rrp−1×np×rp are ordinary TT blocks as in (54) for p = 1, . . . ,m − 1 and m + 1, . . . , d, but16

ŵ(m) ∈ Rrm−1×nm×3×rm is a larger block defining the components of w.17

The following two observations are crucial for us:18

• the component index l appears in one arbitrary TT block;19

• the component index appears in only one block, hence the frame matrix Wm (defined in the same20

guise as in Def. 4) is independent of l.21

The first property implies that the initial guess can be chosen with an arbitrary position of l. Moreover,
we can move l from one TT block to another using the SVD [11]. Indeed, let us reshape ŵ(m) into a matrix

Ŵ (m) ∈ Rrm−1nm×3rm by assigning Ŵ (m)(sm−1im, lsm) = ŵ
(m)
sm−1,sm(im, l), and compute its truncated SVD

Ŵ (m) ≈ UΣV >, U ∈ Rrm−1nm×r′m , V ∈ R3rm×r′m .

Notice that U can overwrite the m-th TT block, by setting w
(m)
sm−1,s′m

(im) = U(sm−1im, s
′
m), s′m = 1, . . . , r′m.

The remaining matrices can be seen as a tensor Gs′m,sm
(l) = ΣV >(s′m, lsm) and multiplied with the next

TT block as follows,

ŵ
(m+1)
s′m,sm+1

(im+1, l) =

rm∑
sm=1

Gs′m,sm
(l)w(m+1)

sm,sm+1
(im+1),

or, omitting the rank indices, simply as ŵ(m+1)(im+1, l) = G(l)w(m+1)(im+1). We see that we have obtained22

the same form as (58), with m replaced by m + 1, and the rank rm replaced by the new rank r′m. In a23

similar way, we can move l from the m-th to the (m − 1)-th TT block. The pseudocodes are provided in24
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Algorithm 1 Switching from m-th to (m+ 1)-th block TT format

1: Populate Ŵ (m) by the elements Ŵ (m)(sm−1im, lsm) = ŵ
(m)
sm−1,sm(im, l).

2: Compute SVD Ŵ (m) ≈ UΣV >, with the new rank(U) = r′m.

3: Populate w(m) by the elements w
(m)
sm−1,s′m

(im) = U(sm−1im, s
′
m).

4: Populate G by the elements Gs′m,sm
(l) = G(s′m, lsm), where G = ΣV >.

5: Compute new ŵ(m+1)(im+1, l) = G(l)w(m+1)(im+1).
6: Replace the rank rm = r′m.

Algorithm 2 Switching from m-th to (m− 1)-th block TT format

1: Populate Ŵ (m) by the elements Ŵ (m)(sm−1l, imsm) = ŵ
(m)
sm−1,sm(im, l).

2: Compute SVD Ŵ (m) ≈ UΣV >, with the new rank(V ) = r′m−1.

3: Populate w(m) by the elements w
(m)
s′m−1,sm

(im) = V >(s′m−1imsm).

4: Populate G by the elements Gsm−1,s′m−1
(l) = G(sm−1l, s

′
m−1), where G = UΣ.

5: Compute new ŵ(m−1)(im−1, l) = w(m−1)(im−1)G(l).
6: Replace the rank rm−1 = r′m−1.

Algorithms 1 and 2, respectively. Generally, the TT ranks change after such transformations. However, in1

our numerical practice the ranks remained comparatively the same in different block representations.2

The second property of (58) allows us to preserve the structure of the KKT system. Indeed, from (56)3

it follows that Wm ∈ Rn1···nd×rm−1nmrm . By our assumption, the size of the KKT system is 3 · n1 · · ·nd.4

Therefore, instead of (57), the ALS step in the block TT format reads5 W>
mτM1Wm 0 −W>

mK
>Wm

0 W>
mβτM2Wm W>

mN
>Wm

−W>
mKWm W>

mNWm 0

 ŵ(m) =

W>
mb1

W>
mb2

W>
mb3

 . (59)

The size of this system is 3 · rm−1nmrm, the same as the number of elements in ŵ(m) according to (58).6

After this system is solved, we use Algorithms 1, 2 to switch to the next block TT representation.7

Although these algorithms allow already to adapt TT ranks to the desired accuracy, it is still useful to8

incorporate the residual, as proposed in the AMEn algorithm [12], to improve the convergence. The residual9

is computed in the same fashion as the solution. Define the block storages10

z =

z1

z2

z3

 ∈ Rn1···nd·3, Z =
[
z1 z2 z3

]
∈ Rn1···nd×3,

z1 = τM1w1 −K>w3 − b1,
z2 = βτM2w2 +N>w3 − b2,
z3 = −Kw1 +Nw2 − b3.

(60)

Introducing the block TT format for z,

zl(i1, . . . , id) = z(1)(i1) · · · ẑ(m)(im, l) · · · z(d)(id),

one can use the simple ALS algorithm, and solve minẑ(m) ‖(Aw − b) − z‖22. This problem becomes much11

easier with the proper orthogonality conditions imposed on the TT blocks.12

Definition 6. A TT block w(m) is said to be left- resp. right-orthogonal, if

nm∑
im=1

(w(m)(im))>w(m)(im) = Irm , or

nm∑
im=1

w(m)(im)(w(m)(im))> = Irm−1
.

Reshaping w(m) to a matrix and computing the QR decomposition, one can make w(m) left- or right-13

orthogonal in O(nr3) operations. We refer to [42] for details. The crucial fact is that the orthogonality of14

TT blocks implies orthogonality of the frame matrix.15

16



• If w(p) are left-orthogonal for p = 1, . . . ,m− 1, then W<m has orthogonal columns.1

• If w(p) are right-orthogonal for p = m+ 1, . . . , d, then W>m has orthogonal rows.2

• If both previous conditions hold, then Wm has orthogonal columns.3

Now the ALS step for the residual can be easily computed as ẑ(m) = Z>mZ, provided that Zm is made4

orthogonal. Due to its low complexity, this step is never a bottleneck.5

Remark 2. The switching Algorithms 1 and 2 maintain orthogonality of Wm+1 resp. Wm−1 automatically6

if the input was given with orthogonal Wm. This is also beneficial for the well-posedness of (59): if K is7

symmetric, the spectrum of the orthogonal projection W>
mKWm lies within the spectrum of K, and if8

the matrices are positive definite, it holds cond(W>
mKWm) ≤ cond(K). Moreover, in this case the error9

introduced to the whole tensor w due to the SVD is equal to the error in Ŵ (m).10

Having solved the reduced system for w(m), the AMEn algorithm enriches it with the projected residual.
For example, if we iterate increasing m, we expand the two neighboring blocks as follows,

w(m)(im) :=
[
w(m)(im) z

(m)
w (im)

]
, ŵ(m+1)(im+1, l) :=

[
ŵ(m+1)(im+1, l)

0

]
,

where we compute ẑ
(m)
w =

(
W<m ⊗ Inm ⊗ (Z>m)>

)>
Z, and z

(m)
w is obtained from ẑ

(m)
w by Algorithm 1.11

The hybrid frame matrix in ẑ
(m)
w is used to match the sizes of w(m) and z

(m)
w , and the zeros in ŵ(m+1) are12

used to match its size with w(m).13

Before we outline the final procedure, we need one more trick. Although M1 and M2 are symmetric14

and (semi)definite, the Stokes-Brinkman matrix K is indefinite. Moreover, the sizes of M1,K and M2 are15

different. We could consider the 2× 2 Stokes-Brinkman block structure and the 3× 3 KKT structure on the16

same level, and solve the 5× 5 block system. However, the second row of the Stokes-Brinkman matrix has17

a very particular meaning, which we can exploit to reduce the complexity.18

5.4. Pressure elimination in the reduced model19

The low-rank separation of space and time variables has been used for a while in the numerical simulation
of the Navier-Stokes equation. The Proper Orthogonal Decomposition (POD) is a well-known approach to
model reduction [34]. It reshapes the velocity component of the solution to a matrix Y = [y(i1, i2)],
computes the truncated SVD Y ≈ UΣV >, and uses the columns of V for the Galerkin reduction of the
velocity operators. If we were solving the continuous equation, we would have a vector-valued function
V = V (x) ∈ Rr, where r is the number of POD terms, and the reduced solution sought in the form
y(x, t) ≈ V (x)a(t). Plugging this into the Stokes-Brinkman equation, and projecting the velocity equation
onto V , we have {

da
dt − ν〈V

>,∆V 〉a+ 〈V >,K0V 〉a+ 〈V >,∇p〉 = 〈V >, u〉,
∇ · V a = 0.

Since a(t) is not fixed a priori, from the second row we have ∇ · V (x) = 0. However, then in the first20

row 〈V >,∇p〉 = −〈∇ · V >, p〉 = 0; that is, the reduced model contains no pressure at all. In the discrete21

formulation, we have the system (16), and the pressure part V >B>p is not exactly zero due to the boundary22

conditions. Compared to alternating methods, the POD conducts one iteration (returning with m = 1, since23

it corresponds to the time variable), and hence requires either an explicit elimination of boundary conditions24

[3], or nonlinear corrections [41]. Alternating iterations allow us to proceed with the following more general25

Gauss-Seidel-type scheme.26

17



From now on, we focus on our Stokes-Brinkman problem with d = 3. When we solve (59) for the spatial1

TT block (m = 3), we consider the 5× 5 Stokes-KKT structure2 
τM̂1 0 0 −Â −B̂>

0 0 0 −B̂ 0

0 0 βτM̂2 N̂> 0

−Â −B̂> N̂ 0 0

−B̂ 0 0 0 0




ŵ(3)(1)
ŵ(3)(2)
ŵ(3)(3)
ŵ(3)(4)
ŵ(3)(5)

 =


b̂1

0
0
ĝv

ĝp

 , (61)

where M̂1 = D̂α ⊗M , M̂2 = D̂0 ⊗M , N̂ = Î0 ⊗M , B̂ = Î0 ⊗B,

Â = Î0 ⊗
(
τ−1M + ν0K +Mk

)
+ Î1 ⊗ ν1K + Ĉ0 ⊗ τ−1M,

the reduced matrices corresponding to the time t and the event ω are computed as3

Î0 =W>3 (I ⊗G0)W3, Î1 =W>3 (I ⊗G1)W3, Ĉ0 =W>3 (C ⊗G0)W3,

D̂0 =W>3 (D ⊗G0)W3, D̂α =W>3 (D ⊗Gα)W3,
(62)

whereas the right-hand side parts are

b̂1 =W>3 (De⊗G0e1)⊗ τ v̄,
[
ĝv

ĝp

]
=W>3 (e⊗ e1)⊗

[
g0
v

g0
p

]
,

and4 W3 =
r1∑
s1=1

w
(1)
s1 ⊗w

(2)
s1 ∈ RntP×r2 is a chunk of the frame matrix W3. We introduce this chunk and4

the Kronecker structures above in order to explain the preconditioner in the next section. We see that the5

solution components ŵ(3)(2) and ŵ(3)(5) denote the state and adjoint pressures, respectively.6

Our further construction is based on the following two considerations. First, the velocity and the pressure7

are likely to have similar TT blocks for time and stochastic variables. The motivation is that v and p are8

connected only via the matrix I ⊗G0 ⊗ B, which is diagonal (or even identity) in these variables. Second,9

the block TT format can be seen as a representation of several vectors in the common basis, comprised from10

the TT blocks without l. Therefore, if the only difference between the velocity and pressure is in the spatial11

TT block, the other TT blocks can be computed based on the velocity only. Although it is unclear whether12

it is allowed in general to ’freeze’ some components like that, in our numerical experiments we observed that13

the solution is accurate enough.14

So, we include only the velocities and control to the new TT block ŵ(3) =
[
ŵ(3)(1), ŵ(3)(3), ŵ(3)(4)

]
.15

Since the pressures will not change in the subsequent AMEn steps (m = 2, 1), their contributions to the16

velocity equations can be recast to the right-hand side. More precisely, we construct the TT formats17

δb1 =
∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

>ŵ(3)
s2 (5), δg =

∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

>ŵ(3)
s2 (2), (63)

and correct the right-hand side of (21) as follows,18 b1

0
g

 →

b1 + δb1

0
g + δg

 . (64)

After that, we conduct AMEn steps m = 2, 1, 2 with the system of the form (59), where K contains now19

only the velocity equation, and hence is positive definite. As a by-product, the sizes of all submatrices in20

(59) are equal, which allows to use the block TT format. When we come back to m = 3, we drop the21

right-hand side corrections and solve the full system (61). If we are to stop the iteration, we return the full22

solution, including ŵ(3)(2) and ŵ(3)(5).23

4Remember that discretization sizes in the initial and “tensor” notations match as n1 = nt, n2 = P and n3 = J .

18



5.5. Practical implementation1

The preconditioner developed in Section 4.1 needs to be adjusted to the local problem (61). Although
the reduced matrices (62) are small, they are dense, and it is impractical to compute the blocks of (61)
explicitly. However, note that all of them are single Kronecker products except Â. Moreover, if the norms of
K and Mk are sufficiently large, and ν1 is small, then the first term in Â dominates. Therefore, we replace Â
by its first term Î0⊗

(
τ−1M + ν0K +Mk

)
during the preconditioning. This also allows to avoid the second

level of preconditioning for the Stokes-Brinkman system (34). Since B̂ contains Î0, we can assemble the
Stokes-Brinkman matrix in the Kronecker form as well,

K̂ = Î0 ⊗
[
τ−1M + ν0K +Mk B>

B 0

]
.

In the computation of x3 in an analog of (30), we can solve linear systems with K̂ directly. For two-2

dimensional cases, this approach is faster than iterations with (34). In the same way we approximate the3

factors of the Schur complement (32), e.g.4

K̂> + M̂r ≈ Î0 ⊗

[(
1
τ + 1√

β

‖D̂α‖
‖Î0‖

)
M + ν0K +Mk B>

B 0

]
, (65)

where we approximated M̂r = 1√
β
D̂α ⊗ M by Î0

‖D̂α‖
‖Î0‖
√
β
⊗ M , and D̂α and Î0 are defined in (62). For5

three dimensions (Section 6.10), the matrices become more dense, and we have to use iterative methods,6

preconditioning the velocity block by a multigrid cycle. Similar rank-1 approximation is performed for the7

TT blocks w(1) and w(2). Although they are smaller than the spatial block, they are still rather large to8

form and solve the systems (59) directly. The crucial point here, fortunately, is that the new preconditioner9

does not need to invert M1.10

The final block AMEn procedure for the Stokes-like structure is summarized in Algorithm 3 on page 29.11

6. Numerical experiments12

A systematic study of the proposed technique will be conducted on two- and three-dimensional examples.
We first consider the Stokes(-Brinkman) flow constraints on D = [0, 1]2 with the inflow boundary conditions

v1|x1=0 = x2(1− x2), v2|x1=0 = 0, v|x2=0 = v|x2=1 = 0,

and ‘do-nothing’ boundary conditions at x1 = 1. The velocity operators are discretized with the mini
elements [54] and the pressure operators are discretized with the piecewise linear finite elements. The
stiffness matrices are assembled in FEniCS 1.5.0 package [37]. For the Stokes-Brinkmann equation, the
coefficient is chosen as follows:

K0(x) =

{
K̄0, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.152,
0, otherwise.

The right-hand side and the initial condition are zeros. The desired state is the deterministic stationary13

solution of the forward Stokes-Brinkman problem.14

The model is characterized by 8 parameters: the spatial grid size J , the number of time steps nt, the time15

interval T , regularization parameters α and β, variance ν1, a threshold for the tensor approximation and16

the AMEn algorithm ε, and the porosity coefficient K̄0. For the sake of brevity, we perform 8 experiments,17

fixing all parameters to their default values and varying only one of them. The default parameters are18

the following: one-dimensional spatial grid size n = 64 (so that J = 29059), time grid size nt = 210, time19

interval T = 1, regularization parameters β = 10−6 and α = 1, variance parameter5 ν1 = 0.1, approximation20

5In applications involving highly heterogeneous media, such as subsurface diffusion, the variance of a random field may be
several orders in magnitude. However, a highly viscous fluid is more or less homogeneous, and the 10% variance is realistic.
This is the case in biomedical modeling, for example.

19



tolerance ε = 10−6, and pure Stokes coefficient K̄0 = 0. The mean viscosity is always fixed at ν0 = 1, since1

the behavior of the model is the same if ν0 ∼ 1/T , so we can investigate either of these parameters. The2

stochastic polynomial degree P = 16.3

We investigate several kinds of discrepancies, such as the residual, the misfit w.r.t. the desired state, and4

so on. Therefore, it is convenient to introduce a unifying notation. All errors are measured in the Frobenius5

norm, i.e. given the reference y? and trial y vectors, we compute6

E(y,y?) = ‖y − y?‖F /‖y?‖F . (66)

By ’residual’, we mean the maximal relative residual among the KKT system rows:

residual = max
(
E(τM1y −K>λ, τMaȳ); E(τβM2u,N

>λ); E(−Ky +Nu,g)
)
.

Since the KKT matrix is rather ill-conditioned, we also estimate the Frobenius-norm errors of the state and7

control components of the solution as follows. For each experiment, we solve the system with two thresholds,8

ε and 0.1ε. The solution components of the latter run, denoted as y? and u?, are taken as the reference9

ones, and the relative errors are computed by (66).10

Remark 3. This error estimate can be justified similarly to the Richardson extrapolation. Suppose the11

true error expands as ‖y − yex‖ = Cεδ + o(εδ) for some C > 0, δ > 0. Using the triangle inequality twice,12

we get ‖y− yex‖ ≤ ‖y− y?‖+ ‖y? − yex‖ and ‖y− y?‖ ≤ ‖y− yex‖+ ‖yex − y?‖, and by our assumption13

‖y?−yex‖ = 10−δ ·Cεδ + o(εδ). Therefore, (1− 10−δ)‖y−yex‖ ≤ ‖y−y?‖+ o(εδ) ≤ (1 + 10−δ)‖y−yex‖.14

So we can estimate both δ and ‖y−yex‖ from ‖y−y?‖. In the AMEn algorithm, the error usually depends15

linearly on ε, i.e. the assumption holds with δ = 1, and the true error is bounded by 1
0.9‖y − y?‖+ o(ε).16

The complexity indicators are the CPU time, memory consumption and the number of iterations. The
CPU time is measured for a sequential MATLAB R2012b program, run under Linux at Intel Xeon X5650
CPU with 2.67GHz. The TT algorithms6 are implemented within the TT-Toolbox [43]. The memory
consumption is reported as the memory compression ratio by the TT format. It is computed as the number
of TT elements over the total number of degrees of freedom in the solution, i.e.

% Mem =
ntr1 + r1Pr2 + r2J

JPnt
· 100.

By ’iterations’, we mean the total number of FGMRES iterations, spent in solving the reduced systems (61)17

for the spatial TT block, in all AMEn steps. The FGMRES is used with the block-triangular preconditioner18

(30) for the KKT level only (the Stokes-like systems (65) are solved directly in two-dimensional examples).19

6.1. Performance of the new block-triangular preconditioner20

It is illustrative to compare the new preconditioner (30) with the established block-diagonal precondi-21

tioner P1 from [56], mentioned at the beginning of Section 4. We test P1 using the MINRES method, for22

the spatial TT block only. The comparison with P2 (30) is given in Table 1. We see that P2 provides faster23

convergence in terms of both iterations and time. Therefore, we use it in all the remaining experiments in24

this paper.25

6.2. Experiment with nt (Figure 2)26

In the first test, we vary the number of time steps from 25 to 212. In addition to the solution errors
E(y,y?), E(u,u?), which arise from tensor approximations, we report also the convergence of the mean value
of the velocity with the time grid refinement. The mean value is computed over all variables:

〈v〉 =
τ

T

Jv,Jv,nt∑
k,k′,i=1

M(k, k′)D(i, i)y(i, 1, k′) ≈
∫
D

∫
Ω

1

T

∫ T

0

v(x, ω, t)dtdP(ω)dx.

6The MATLAB and Python codes together with precomputed 2D matrices can be downloaded from
https://mpim.iwww.mpg.de/3090660/sb_supplementary.zip, and the 3D matrices are located at
https://mpim.iwww.mpg.de/3090674/sb_precomputed_3d.zip.

20
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Table 1: 2D Stokes, comparison of spatial preconditioners

P1 P2

β Iterations CPU time Iterations CPU time
10−2 1264 6197 194 2015
10−4 738 3700 201 1968
10−6 196 759 108 700
10−8 163 465 72 322

Figure 2: 2D Stokes, experiment with nt. Left: Residual, errors w.r.t. the reference solutions, and the mean value error w.r.t.
the time grid level. Right: CPU time, total number of iterations in spatial systems, memory compression ratio.

5 6 7 8 9 10 11 12

−6

−5

−4

−3

log2 nt

log10 errors

residual

E(y,y?)

E(u,u?)

E(〈v〉, 〈v12〉)

5 6 7 8 9 10 11 12
200

400

600

800

1,000

1,200

1,400

1,600

1,800

C
P
U

tim
e

It
er

at
io
ns

%
M

em

TT
rank

log2 nt

CPU time (sec.)

0

2

4

6

8

10

12

14

% Mem

50

100

150

200

Iterations

25

30

35

40

TT rank

Note that y has the form [v,p] w.r.t. the index k, so that the summation k, k′ = 1, . . . , Jv extracts only1

the velocity. The reference value 〈v12〉 is computed on the grid nt = 212. The distance from 〈v〉 decays2

proportionally to 2−nt , as expected for the Euler scheme.3

The tensor approximation errors grow proportionally to the grid size, since the matrix becomes more4

ill-conditioned, and one can select as an optimum the point where the discretization and solution errors5

intersect. To improve the overall accuracy, one has to take finer grids and decrease ε. Fortunately, the6

complexity increases mildly with refinement of these parameters. The dependence on ε is given in Fig. 7.7

Here, we notice that the CPU times and the numbers of iterations grow only as a small power of log nt,8

and the TT ranks scale even milder than log-linearly. This yields a sharp improvement of the memory9

compression ratio, which drops below 1% when nt exceeds 29, and reaches 0.16% for nt = 212.10

The behavior of the CPU time is very close to the behavior of the iterations, hence the main reason for11

its growth is the deterioration of the preconditioner due to the rank-1 approximation (65). For more extreme12

parameters one might need a more robust preconditioner that would reflect the time derivative better.13

6.3. Experiment with T (Figure 3)14

Since the initial condition is zero, while the desired state is not for any time step, the time interval15

influences the model significantly. The smaller is the interval, the larger the force (in our terminology,16

control) that must be exerted to drive the system to the desired state. This is true not only for the physical17

behavior, but also for the computational efforts required to solve the system. For T = 0.01, the matrix18

becomes too ill-conditioned, and 800 iterations are not enough to compute the spatial TT block accurately19

enough. For larger T, both the error and the complexity decrease.20

21



Figure 3: 2D Stokes, experiment with T . Left: Residual and errors w.r.t. the reference solutions. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio.
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6.4. Experiment with β (Figure 4)1

Although there are rigorous mathematical ways to estimate β for a given problem, such as the L-curve2

analysis [19] or the discrepancy principle [14], we do not follow them here for a couple of reasons. First, the3

value of β may be suggested by the physical considerations (i.e. the maximal force available). Second, we4

want to demonstrate robustness of our approach for as wide range as possible. Therefore, we vary β from5

10−12 to 103.6

We see that the errors are smaller for smaller β and stabilize at some levels when β increases. When7

β is small, the model reconstructs the deterministic Stokes solution quite accurately, as can be seen from8

the discrepancy E(v, v̄). In addition, we report the deviation of the mean solution at the final time from9

the desired state. This quantity is much smaller and less dependent on β than the global misfit: since the10

initial state is zero, the misfit in the first time steps will always be rather large, but in the latter steps the11

systems converges to the stationary solution. From the complexity figure, we see that the most difficult are12

the cases with intermediate β. The memory consumption increases with β, since the solution drives away13

from the rank-1 desired state.14

6.5. Experiment with α (Figure 5)15

This parameter is supposed to penalize the standard deviation of the velocity. The (discrete) deviation
is defined as follows,

std(v) =

√√√√ τ

T

Jv,Jv,nt∑
k,k′,i=1

P∑
j=2

M(k, k′)G0(j, j)D(i, i)y2(i, j, k′).

In Fig. 5, we report the relative deviations for two variance parameters, ν1 = 0.1 and ν1 = 0.9. We see16

that in both cases the deviation decreases only marginally with α varying from 10−3 to 102. In particular,17

for ν1 = 0.1, it seems that the minimization of ‖v − v̄‖ with a deterministic v̄ delivers v with already a18

quasi-minimal variance as well. For larger ν1, the deviation decreases more significantly. We could expect19

this effect to develop further for α > 103. However, the preconditioner deteriorates rapidly with larger α.20

In particular, for α = 104, the GMRES did not converge below the threshold ε = 10−6 after 900 iterations.21

Further investigation is needed to develop reliable methods for damping the solution variance.22

22



Figure 4: 2D Stokes, experiment with β. Left: Residual and errors w.r.t. the reference solutions, and the distance to the
desired state. Right: CPU time, total number of iterations in spatial systems, memory compression ratio.
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6.6. Experiment with ν1 (Figure 6)1

The ratio of maximal and minimal viscosities due to the stochasticity is νmax/νmin = (1 + ν1)/(1− ν1).2

If ν1 � 1, it grows almost linearly, νmax/νmin ≈ 1 + 2ν1. If ν1 is close to 1, the behavior becomes essentially3

nonlinear, e.g. for ν1 = 0.9 we have νmax/νmin = 19. The same can be seen in both error and complexity4

figures. The residuals and errors are almost stable for small ν1, and the standard deviation grows linearly,5

while for ν1 > 0.5, all quantities grow faster. In particular, the distance to the desired state becomes larger6

since the Stokes system becomes more stiff. All three complexity indicators grow rapidly as ν1 → 1 as well.7

6.7. Experiment with the tensor approximation tolerance (Figure 7)8

Here we confirm the consistency of the error estimate E(y,y?), see Remark 3. In experiments with9

positive definite matrices, it was observed that residuals and errors decay proportionally to ε. In this10

problem, this is only the case for ε between 10−4 and 10−5. For smaller tolerances the residual and the11

control error are approximately proportional to ε0.5. This may be caused by the indefiniteness of the problem12

and the pressure exclusion trick. We are unable to study their effects separately in the meantime, as the13

reduced systems (57) become degenerate if we try to apply the AMEn to an indefinite system directly.14

6.8. Experiment with n (Figure 8)15

The mesh generator in FEniCS is initialized with the number of mesh steps in one dimension n. The16

number of degrees of freedom for the pressure is (n+1)2, since the pressure is discretized with linear elements,17

but together with the cubic mini elements for two components of the velocity, the total number of DoFs18

J ≈ 7n2. As in the time grid test, in addition to the residual and errors w.r.t. the reference solution, we19

investigate the error decay w.r.t. the grid refinement. The reference velocity for this test, 〈v8〉, is the mean20

value computed at the grid n = 28. The approximation error decays with the rate n−1.4.21

The most time-consuming stage in the scheme is the solution of the system for the spatial TT block. The22

sparsity of the spatial matrix allows its efficient factorization, such that the CPU time grows proportionally23

to n2, i.e. linear w.r.t. the total number of spatial degrees of freedom. Interestingly, the number of iterations,24

TT ranks and the residual are smaller for larger n. This is due to the rank-1 approximation used for the25

factors of the preconditioner (32). For larger n, the norm of the discrete Laplace operator becomes larger,26

and the rank-1 term becomes a better approximation to the whole matrix.27

23



Figure 5: 2D Stokes, experiment with α. Left: Residual and errors w.r.t. the reference solutions, and the relative standard
deviation. Right: CPU time, total number of iterations in spatial systems, memory compression ratio.
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6.9. Experiment with K̄0 (Figure 9)1

Finally, we take K̄0 nonzero and investigate the Stokes-Brinkman model. For some reasons, with n = 642

and K̄0 > 105, the velocity matrix becomes indefinite. This might be due to the Gibbs phenomenon of the3

quadrature rule employed in FEniCS in computation of the stiffness matrix elements corresponding to the4

interface of K0(x). A detailed study would require interfering with the FEniCS source codes and this was5

not conducted. As a remedy, we perform this test with n = 128. This produces correct matrices up to6

K̄0 = 106.7

We see that the scheme is quite robust in the considered range of the coefficient. The error estimates8

decay with increasing K̄0, since the system becomes closer to the Darcy model. The CPU time and the9

number of iterations show the chaotic behavior, but this fluctuation is only 10–20% compared to the average10

values.11

6.10. 3D problem (Figure 10)12

Finally, we demonstrate that our approach is suitable for larger 3D problems. We consider the three-
dimensional Stokes-Brinkman problem on the domain [0, 1]× [0, 1]× [0, 5] as constraints, with the coefficient

K0(x) =

{
104, (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 2.5)2 ≤ 0.12,
0, otherwise,

and the inflow boundary condition v1|x1=0 = x2(1 − x2) and zero conditions at other boundaries. The13

one-dimensional grid sizes are 16, 16, 32 for x1, x2, x3, respectively, which results in Jv = 212355 degrees of14

freedom for the velocity. Note that the full system size without tensor approximations would have been15

larger than 2 billions, which is intractable on our hardware by any means. Other parameters are the same16

as in the 2D tests except ν1 = 0.01 and ε = 10−4.17

Since the direct elimination is too expensive for such matrices, we used the commutator-based precon-18

ditioner (40) for the Schur complement in the Stokes matrices, and the velocity matrix was approximated19

by one V-cycle of the HSL MI20 algebraic multigrid [8]. The iterative method is two-level. First, we em-20

ployed the block-triangular preconditioner for the KKT structure in the FGMRES method with unlimited21

number of iterations. Second, for all Stokes-like matrices in the preconditioning step, e.g. in (65), we used22

another FGMRES method with 50 iterations, preconditioned by (40) with the multigrid. That many in-23

ner iterations are needed because the commutator preconditioner deteriorates rapidly with the size of the24

porosity region. The KKT solver conducted in total 152 iterations, which took 148985 seconds of the CPU25

24



Figure 6: 2D Stokes, experiment with ν1. Left: Residual and errors w.r.t. the reference solutions, the relative standard
deviation and the distance to the desired state. Right: CPU time, total number of iterations in spatial systems, memory
compression ratio.
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time. Nevertheless, the maximal TT rank of the solution is 8, so the TT format consumed only 0.2% of the1

memory required for the full solution. The final residual is 4.1 · 10−4, and the misfit with the desired state2

E(v, v̄) = 2.8 · 10−3. The mean and the standard deviation of the solution at the final time are shown in3

Fig. 10. We notice a clear perturbation around the region with nonzero Brinkman coefficient. In particular,4

the largest deviations are attained at the interface, while in the homogeneous region the velocity is almost5

deterministic. The deviation of the pressure grows proportionally to the mean magnitude (note that the6

mean pressure is mostly negative, while the deviation is not, hence the color map in the right middle figure7

was reversed). The control exhibits a clear interface around the Brinkman region. Another interesting8

feature is that the deviation of the control is larger than its mean.9

7. Conclusions and outlook10

We have considered a low-rank solution to an optimal control problem constrained by Stokes-Brinkman11

with uncertain inputs. The discretized solution can be naturally indexed by three independent parameters,12

coming from the spatial, stochastic and time variables. Each of these parameters can vary in a considerable13

range, hence the straightforward storage of the solution consumes a vast amount of memory. By employing14

tensor product decomposition methods, we have reduced it by two–three orders of magnitude. However,15

the optimal control problem yields a saddle-point linear system, which requires a special treatment. We16

have extended the alternating minimal energy algorithm such that it preserves the saddle-point structure17

and solves this system robustly. Moreover, we have proposed a new Schur complement-based preconditioner18

which is free from auxiliary perturbations and provides smaller condition numbers of the preconditioned19

matrix. These techniques enabled the simulation of the stochastic Stokes-Brinkman optimization problem20

on a workstation.21

Several directions of future research are possible. A natural extension is to apply our techniques to the22

nonlinear Navier-Stokes model. The preconditioner still needs an improvement, especially for large stochastic23

variance parameter ν1, variance-penalizing regularization parameter α and many time steps. More complex24

models, such as those with uncertain boundary conditions and random domain, are also a challenging topic25

for future investigation.26

25



Figure 7: 2D Stokes, experiment with ε. Left: Residual and errors w.r.t. the reference solutions. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio.
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Algorithm 3 Block AMEn iteration for the inverse Stokes-Brinkman system (21).

Require: TT blocks of the matrix A, right-hand side b, initial guesses w and z in the TT format (58).
Ensure: Improved approximations of the solution w and residual z.

1: while not converged do
2: for m = 3, 2, 1 do
3: if m = 3 then
4: Prepare and solve (61), using preconditioners (30) with (65) and possibly (41).
5: Construct ŵ(3) =

[
ŵ(3)(1), ŵ(3)(3), ŵ(3)(4)

]
without pressures.

6: Correct the right-hand side by (64), (63).
7: else
8: Prepare and solve (59) with pressure parts removed from K,M1,N .
9: end if

10: if m > 1 then
11: Use Alg. 2 for ŵ(m) to move l to w(m−1).
12: Compute the ALS step for the residual ẑ(m) = Z>mZ using (60).
13: Use Alg. 2 for ẑ(m) to move l to z(m−1).

14: Compute the ALS step for the enrichment ẑ
(m)
w =

(
Z<m ⊗ Inm ⊗ (W>m)>

)>
Z.

15: Use Alg. 2 for ẑ
(m)
w to drop l, obtain z

(m)
w .

16: Enrich the solution ŵ(m−1)(im−1, l) :=
[
ŵ(m−1)(im−1, l) 0

]
, w(m)(im) :=

[
w(m)(im)

z
(m)
w (im)

]
.

17: Make w(m) right-orthogonal, see [42] and Def. 6.
18: end if
19: end for
20: for m = 1, 2, 3 do
21: if m = 3 then
22: Prepare and solve (61), using preconditioners (30) with (65) and possibly (41).
23: Construct ŵ(3) =

[
ŵ(3)(1), ŵ(3)(3), ŵ(3)(4)

]
without pressures.

24: Correct the right-hand side by (64), (63).
25: else
26: Prepare and solve (59) with pressure parts removed from K,M1,N .
27: end if
28: if m < 3 then
29: Use Alg. 1 for ŵ(m) to move l to w(m+1).
30: Compute the ALS step for the residual ẑ(m) = Z>mZ using (60).
31: Use Alg. 1 for ẑ(m) to move l to z(m+1).

32: Compute the ALS step for the enrichment ẑ
(m)
w =

(
W<m ⊗ Inm ⊗ (Z>m)>

)>
Z.

33: Use Alg. 1 for ẑ
(m)
w to drop l, obtain z

(m)
w .

34: Enrich the solution w(m)(im) :=
[
w(m)(im) z

(m)
w (im)

]
, ŵ(m+1)(im+1, l) :=

[
ŵ(m+1)(im+1, l)

0

]
.

35: Make w(m) left-orthogonal, see [42] and Def. 6.
36: end if
37: end for
38: end while
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Figure 10: 3D Stokes-Brinkman. Left: mean values at the last time step, right: standard deviations. Top: velocity, middle:
pressure, bottom: control.
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