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Summary. The solution of many practical problems described by mathematical models re-
quires approximation methods that give rise to linear(ized) systems of equations, solving
which will determine the desired approximation. This short contribution describes a partic-
ularly effective solution approach for a certain class of so-called saddle-point linear systems
which arises in different contexts.

1 Introduction

Iterative methods are now widely used in various applications for the solution of linear(ized)
systems of equations. A key aspect is preconditioning [38]. Without appropriate precondition-
ers, convergence can be unacceptably slow, whereas an effective preconditioner can enable
the solution of matrix systems of vast dimension, and thus allow large scale computational
modelling.

There continues important work on algebraic preconditioners—preconditioners which re-
quire only the entries of a (sparse) matrix for construction; triangular factorization remains
an important paradigm, and algebraic multigrid techniques are finding ever wider application.
However, it is now keenly realised that preconditioners which exploit matrix structures often
have considerable utility. In particular, state-of-the-art preconditioners for so-called saddle-
point systems [6] have found application in many areas [5, 7, 13, 15, 17, 20].

In this short contribution, we examine matrices with a particular type of saddle-point
structure, namely α2A 0 BT

0 γ2A −A
B −A 0


︸ ︷︷ ︸

A3

 u
v
w

=

 f
g
h

 , (1)

where A,B ∈ Rn×n, with A being symmetric and invertible, and with α,γ non-zero (real)
parameters. We survey applications which give rise to equations of this form in section 4
below, and believe the methodology presented could be applied to application areas other than
those specifically mentioned.

In fact, by simple block elimination, it is easily seen that (1) is equivalent to the 2× 2
block system
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α2A BT

B −γ−2A

]
︸ ︷︷ ︸

A2

[
u
w

]
=

[
f

h+ γ−2g

]
,

with v = γ−2w+ γ−2A−1g.
Further block elimination leads to the equivalent “1× 1 block system”—the Schur com-

plement system (
γ
−2A+α

−2BA−1BT
)

︸ ︷︷ ︸
S

w = α
−2BA−1f−h− γ

−2g.

In this case u = α−2A−1f−α−2A−1BT w, and v can be recovered as above.
As an alternative, one may decompose the 2×2 block system to write(

α
2A+ γ

2BT A−1B
)

︸ ︷︷ ︸
S1

u = f+ γ
2BT A−1h+BT A−1g,

and then recover w = γ2A−1Bu− γ2A−1h−A−1g and v as above.
The equivalence of these 3× 3, 2× 2 and 1× 1 block systems is well known—see, for

example, [16]—and, via the result of [19, 21], the solution of any of them crucially depends
on having a good approximation for the Schur complement matrix S = γ−2A+α−2BA−1BT or
S1. Approximations Ŝ for which the eigenvalues of Ŝ−1S do not depend on the parameters α,γ ,
or on any implicit parameters (such as mesh size) which arise in A,B, are particularly valuable
since they lead to iterative solvers which converge in a number of iterations independent of all
such parameters, as we shall demonstrate.

Given the 3×3 block system, use of a block diagonal preconditioner

P3 =

α2A 0 0
0 γ2A 0
0 0 S


allows the solution of (1) in exactly 3 iterations using the Krylov subspace iteration method
MINRES [21]. Similarly, given the 2×2 block system, use of

P2 =

[
α2A 0

0 S

]
and MINRES [22] again is guaranteed to yield the solution for any right hand side vector in
3 iterations. In either case, replacing S with a Ŝ for which the eigenvalues of Ŝ−1S do not
depend on any problem parameters yields solvers based on MINRES which require not 3, but
just a few more iteration steps, and still a number independent of the parameters α,γ and
the problem dimension. For the 1× 1 system, the Conjugate Gradient method can also be
employed effectively with Ŝ as a preconditioner. These guarantees will be described below,
but we first describe in generality a ‘matching Schur complement approximation’ for which
the required parameter-independent eigenvalues are guaranteed.

2 Matching Schur Complement Approximation

By simple calculation it is seen that
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S := γ
−2A+α

−2BA−1BT = Ŝ−α
−1

γ
−1(B+BT ),

where Ŝ :=
(
γ−1A+α−1B

)
A−1 (γ−1A+α−1B

)T . The original motivation for this choice of
approximation, Ŝ, arose in the context of PDE-constrained optimization [27], where it was
argued that the approximation allows one to match all terms except for α−1γ−1(B+ BT ).
Previous suggestions had more significant ‘unmatched’ terms [31].

Theorem 1. If A is positive definite then all eigenvalues of Ŝ−1S are real, and are greater than
or equal to 1

2 . If further the symmetric part of B is positive or negative semi-definite, then the
eigenvalues of Ŝ−1S all lie in the real interval [ 1

2 ,1].

Proof. The desired eigenvalues are bounded by the extreme values of the generalized Rayleigh
quotient

R :=
γ−2xT Ax+α−2xT BA−1BT x

γ−2xT Ax+α−2xT BA−1BT x+α−1γ−1xT (B+BT )x
.

Since A is symmetric and positive definite, we can write a := γ−1A1/2x, b := α−1A−1/2BT x
so that

R =
aT a+bT b

aT a+bT b+aT b+bT a
=

1
2
+

1
2
(a−b)T (a−b)
(a+b)T (a+b)

,

which evidently implies that R ≥ 1
2 whatever the properties of B. Further, since we are at

liberty to choose the signs of α and γ , if B+BT is semi-definite then aT b+ bT a ≥ 0 with
appropriate choice of signs, so that the denominator in R is clearly greater than or equal to the
numerator. This gives the result. ut

Some comments are in order. The multiplicative form of Ŝ means that application of its
inverse requires the solution of two systems with coefficient matrix γ−1A+α−1B, and multi-
plication with A. In section 4, we describe situations where these computations are relatively
straightforward using, for example, multigrid technology. That the eigenvalue spectrum is
so tightly confined is somewhat remarkable, but very helpful, in particular in the context of
Krylov subspace iterative methods.

Furthermore, one may use a similar analysis3 to show that the eigenvalues of Ŝ−1
1 S1 are

also contained in [ 1
2 ,1], where

Ŝ1 := (αA+ γB)T A−1 (αA+ γB) .

Both results are useful, depending on which arrangement of the saddle-point system we ex-
amine.

3 Predicted Convergence Rate of the Krylov Subspace Method

We now wish to analyze the convergence rate we can expect from an iterative method com-
bined with our choice of preconditioner, focusing on the 3×3 block matrix A3 with a suitable
preconditioner, applied within the MINRES algorithm.

3The analysis reads the same as presented for Theorem 1, except with a := αA1/2x,b :=
γA−1/2Bx.
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Eigenvalue bounds for preconditioned system P̂−1
3 A3

Let us first consider eigenvalue bounds for P̂−1
3 A3, where

P̂3 :=

α2Â 0 0
0 γ2Â 0
0 0 Ŝ

 ,
in other words where the (1,1) block of the preconditioner is suitably approximated using a
matrix Â, and a matching strategy is used to approximate the Schur complement of A3.

The starting point of our analysis is the following fundamental result of Rusten and
Winther [32]:

Theorem 2. Consider the saddle-point matrix

AΦ ,Ψ =

[
Φ Ψ T

Ψ 0

]
,

where Φ is symmetric positive definite, and Ψ has full rank. Let µmax and µmin denote the
largest and smallest eigenvalues of Φ , and let σmax and σmin denote the largest and smallest
singular values of Ψ . Then the spectrum of AΦ ,Ψ satisfies

λ
(
AΦ ,Ψ

)
∈
[

1
2

(
µmin−

√
µ2

min +4σ2
max

)
,

1
2

(
µmax−

√
µ2

max +4σ2
min

)]
∪
[

µmin,
1
2

(
µmax +

√
µ2

max +4σ2
max

)]
.

We suppose that the positive definite approximation Â is such that the eigenvalues of Â−1A
are contained in [1−ζ ,1+η ], for some (preferably small) constants ζ ∈ [0,1), η ≥ 0. Within
P̂3, the Schur complement approximation is obtained using our matching strategy, and we
assume for now that it is applied exactly.

Note that the eigenvalues of the preconditioned matrix P̂−1
3 A3 are the same as those of

the following (similar) matrix:

P̂
−1/2
3 A3P̂

−1/2
3 =

α2Â 0 0
0 γ2Â 0
0 0 Ŝ

−1/2α2A 0 BT

0 γ2A −A
B −A 0

α2Â 0 0
0 γ2Â 0
0 0 Ŝ

−1/2

=

 Â−1/2AÂ−1/2 0 α−1Â−1/2BT Ŝ−1/2

0 Â−1/2AÂ−1/2 −γ−1Â−1/2AŜ−1/2

α−1Ŝ−1/2BÂ−1/2 −γ−1Ŝ−1/2AÂ−1/2 0

 .
Thus consider the eigenvalues of P̂

−1/2
3 A3P̂

−1/2
3 . In the setting of Theorem 2,

Φ =

[
Â−1/2AÂ−1/2 0

0 Â−1/2AÂ−1/2

]
, Ψ =

[
α−1Ŝ−1/2BÂ−1/2 −γ−1Ŝ−1/2AÂ−1/2

]
.

First, observing that the matrix Â−1/2AÂ−1/2 is similar to Â−1A gives straightforwardly that

µmin = 1−ζ , µmax = 1+η ,
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again using the notation of Theorem 2.
To find values for σmin and σmax, we then need to look for the singular values of Ψ , which

are equal to the square root of the eigenvalues of

ΨΨ
T = α

−2Ŝ−1/2BÂ−1BT Ŝ−1/2 + γ
−2Ŝ−1/2AÂ−1AŜ−1/2. (2)

The matrix (2) is similar to

Ŝ−1
(

α
−2BÂ−1BT + γ

−2AÂ−1A
)
,

and so its eigenvalues may be bounded by the extreme values of the Rayleigh quotient

xT (α−2BÂ−1BT + γ−2AÂ−1A)x
xT Ŝx

=
xT (α−2BÂ−1BT + γ−2AÂ−1A)x

xT Sx︸ ︷︷ ︸
R1

· x
T Sx

xT Ŝx︸ ︷︷ ︸
R2

. (3)

Note that

R1 =
xT (α−2BÂ−1BT + γ−2AÂ−1A)x
xT (α−2BA−1BT + γ−2AA−1A)x

=
xTCÂ−1CT x
xTCA−1CT x

,

where
C =

[
α−1B γ−1A

]
is full rank by assumption. Thus with y = A−1/2CT x, we have

R1 =
yT A1/2Â−1A1/2y

yT y
,

from which it readily follows that R1 ∈ [1− ζ ,1+η ]. We also know from Theorem 1 that
R2 ∈ [ 1

2 ,1]. Putting these pieces together, we see that

σmin ≥
√

1−ζ

2
, σmax ≤

√
1+η .

Applying Theorem 2 along with our bounds for µmin, µmax, σmin and σmax gives us the
following result:

Lemma 1. The eigenvalues of the preconditioned system P̂−1
3 A3 satisfy

λ

(
P̂−1

3 A
)
∈
[

1
2

(
1−ζ −

√
(1−ζ )2 +4(1+η)

)
,

1
2

(
1+η−

√
(1+η)2 +2(1−ζ )

)]
∪
[

1−ζ ,
1
2

(
1+η +

√
5+6η +η2

)]
.

where ζ ∈ [0,1) and η ≥ 0 are constants such that the bounds λ (Â−1A) ∈ [1− ζ ,1+η ] are
exactly attained .

Note that in the case ζ = 0 = η , which corresponds to the situation where the only ap-
proximation in the preconditioner P̂3 is the matching approximation Ŝ for the exact Schur
complement S, we have

λ (P̂−1
3 A3) ∈

[
1
2
(1−
√

5),
1
2
(1−
√

3)
]
∪
[

1,
1
2
(1+
√

5)
]
.
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Convergence rate of MINRES

It is possible to exploit the result of Lemma 1 to guarantee a resulting convergence rate of the
MINRES algorithm with preconditioner P̂3. To do this, we make use of the following theorem
[13, Theorem 4.14]:

Theorem 3. After k steps of the preconditioned MINRES method, applied to a system with
matrix A and preconditioner P , the residual r(k) satisfies

‖r(k)‖P−1

‖r(0)‖P−1
≤ 2

(√
ad−

√
bc√

ad +
√

bc

)b k
2 c

,

where a,b,c,d > 0 are such that a−b = d− c, and

λ (P−1A ) ∈ [−a,−b]∪ [c,d].

Therefore, considering our preconditioner P̂3 for the matrix A3, we may write

a =
1
2

(
−1+ζ +

√
(1−ζ )2 +4(1+η)

)
, b =

1
2

(
−1−η +

√
(1+η)2 +2(1−ζ )

)
,

c = 1−ζ , d =
1
2

(
1+η +

√
5+6η +η2

)
. (4)

Clearly, in this setting, the condition a− b = d− c is not satisfied. In fact it may be readily
shown that a−b < d− c, as

b+d =
1
2

(√
(1+η)2 +2(1−ζ )+

√
(1+η)2 +4(1+η)

)
>

1
2

(√
(1−ζ )2 +2(1−ζ )+

√
(1−ζ )2 +4(1+η)

)
>

1
2

(
1−ζ +

√
(1−ζ )2 +4(1+η)

)
= c+a.

However, it may clearly be stated that

λ (P̂−1
3 A3) ∈ [−b+ c−d,−b]∪ [c,d],

as the left interval has been stretched and includes the original interval [−a,−b]. We may use
this to state the following result:

Lemma 2. After k steps of the preconditioned MINRES method, applied to the 3× 3 block
system A3 and preconditioned by P̂3, the residual r(k) will satisfy

‖r(k)‖
P̂−1

3

‖r(0)‖
P̂−1

3

≤ 2

(√
d(d− c+b)−

√
bc√

d(d− c+b)+
√

bc

)b k
2 c

,

where b,c,d are the quantities stated in (4).

This result illustrates that the matching strategy outlined in the previous section is able
to achieve rapid and robust convergence for the class of matrix systems under consideration,
since the convergence bound in Lemma 2 is independent of α,γ and the dimensions of A,A ,
provided only that ζ ,η have such independence.
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Approximate application of Ŝ

An important question is whether such a strategy can be readily applied if the Schur comple-
ment approximation Ŝ is applied inexactly. In more detail, the matrices L := γ−1A+α−1B and
LT may not be straightforward to invert, so one may wish to instead approximate the Schur
complement by

S̃ := L̂A−1L̂T ,

where L̂ is some suitable (cheap) approximation of L. This then fits into the preconditioner

P̃3 :=

α2Â 0 0
0 γ2Â 0
0 0 S̃

 .
To analyse the performance of this preconditioner, we need to consider the eigenvalues of
P̃
−1/2
3 A3P̃

−1/2
3 . Then, in the notation of Theorem 2,

Φ =

[
Â−1/2AÂ−1/2 0

0 Â−1/2AÂ−1/2

]
, Ψ =

[
α−1S̃−1/2BÂ−1/2 −γ−1S̃−1/2AÂ−1/2

]
.

The quantities µmin and µmax are therefore identical to the values when Ŝ is applied exactly
(i.e. S̃ = Ŝ) within the preconditioner.

To find suitable values for σmin and σmax, we may apply a similar working as above, and
consider the Rayleigh quotient

xT (α−2BÂ−1BT + γ−2AÂ−1A)x
xT S̃x

=
xT (α−2BÂ−1BT + γ−2AÂ−1A)x

xT Sx︸ ︷︷ ︸
R1

· x
T Sx

xT Ŝx︸ ︷︷ ︸
R2

· x
T Ŝx

xT S̃x︸ ︷︷ ︸
R3

.

As for (3), we may write that R1 ∈ [1−ζ ,1+η ] and R2 ∈ [ 1
2 ,1]. We now wish to know what

can be said about the quantity R3. A useful observation, in particular if the matrix A is well
conditioned, is that

R3 =
xT LA−1LT x
xT L̂A−1L̂T x

=
xT LA−1LT x

xT LLT x
· x

T LLT x
xT L̂L̂T x

· xT L̂L̂T x
xT L̂A−1L̂T x

=
yT y

yT Ay
· x

T LLT x
xT L̂L̂T x

· z
T Az
zT z

,

where y = A−1/2LT x and z = A−1/2L̂T x. It is clear that yT y/yT Ay ∈ [ 1
λmax(A)

, 1
λmin(A)

] and

zT Az/zT z ∈ [λmin(A),λmax(A)], where λmin(A) and λmax(A) denote the minimum and maxi-
mum eigenvalues of A, respectively.

The remaining quantity is that of xT LLT x/xT L̂L̂T x, and the question becomes: if L̂ is a
good approximation of L, does this imply that L̂L̂T is a good approximation of LLT ? In general
this is in fact not the case; however, as observed by Braess and Peisker in [11], if one takes L̂
to be m steps of a convergent iterative process applied to a symmetric L, one may state that

xT L2x
xT L̂L̂T x

∈
[
(1−ωm)

2,(1+ωm)
2
]
.

Here ωm relates to the rate of convergence of the iterative method for L, and satisfies ωm→ 0
as m→ ∞. Similar observations can possibly be applied to nonsymmetric matrices L, as LLT

itself is clearly symmetric.
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Using this property, we may bound the constants σmin and σmax as follows:

σmin ≥

√
1−ζ

2κ(A)
(1−ωm), σmax ≤

√
(1+η)κ(A) (1+ωm),

where κ(A) denotes the condition number of A. Inserting the bounds for µmin, µmax, σmin and
σmax into the result of Theorem 2 tells us that λ (P̃−1

3 A ) ∈ [−ã,−b̃]∪ [c, d̃], where

ã =
1
2

(
−1+ζ +

√
(1−ζ )2 +4(1+η)(1+ωm)2κ(A)

)
,

b̃ =
1
2

(
−1−η +

√
(1+η)2 +

2(1−ζ )

κ(A)
(1−ωm)2

)
,

d̃ =
1
2

(
1+η +

√
(1+η)2 +4(1+η)(1+ωm)2κ(A)

)
.

We note that these bounds for the eigenvalues of P̃−1
3 A are weak, sometimes extremely so, as

when the approximations of L become increasingly accurate (i.e. ωm→ 0), the values of ã, b̃, d̃
should tend to those of a,b,d in (4). However, in the above expressions, the factors of κ(A)
remain when inserting ωm = 0. Therefore, if κ(A) is well conditioned, as for many problems
in PDE-constrained optimization for example, the theoretical guarantee of the effectiveness
of P̃3 is obtained straightforwardly. If this is not the case, this highlights the necessity of a
potent scheme to approximate the (inverse action of) L and LT appropriately. In practice, a
number of cycles of a tailored multigrid scheme is often found to perform this function, for
instance.

We highlight that the theoretical issues surrounding the approximation of matrices of the
form LLT is not restricted to the matching strategy presented in this paper, and arises when
using many different preconditioners for saddle-point systems, due to the structure of the
Schur complement of the saddle-point system itself.

Comments on 2×2 and 1×1 block cases

The analysis presented in this section has focused on solving matrix systems of the structure
A3 using preconditioner P̂3 within the MINRES algorithm. Of course, it is perfectly legitimate
to reduce the system to the form A2, and solve this using MINRES with preconditioner

P̂2 :=
[

α2Â 0
0 Ŝ

]
.

Literature such as [33] considers eigenvalue bounds for saddle-point systems with non-zero
(2,2) block, which arise when considering the matrix of importance in this case:

P̂
−1/2
2 A2P̂

−1/2
2 =

[
Â−1/2AÂ−1/2 α−1Â−1/2BT Ŝ−1/2

α−1Ŝ−1/2BÂ−1/2 −γ−2Ŝ−1/2AŜ−1/2

]
.

The analysis in this case of 2×2 blocks is more standard and is summarised, for example in
Chapter 4 of [13], or [28]. It can be applied to demonstrate that a similar MINRES convergence
rate to the 3×3 case is to be expected for such 2×2 systems when the same approximations
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are employed within the preconditioner. The matching strategy is also, therefore, an effective
approach for systems of the form A2.

It is also possible to consider the Schur complement (1×1 block) system itself, and apply
preconditioned Conjugate Gradients with our matching strategy. In this case the potency of
the iterative method will depend directly on the effectiveness of the matching strategy, which
we have ascertained to guarantee compact eigenvalue bounds. However, we emphasize that
such a solver will require a matrix-vector multiplication with S or S1, and therefore an exact
representation of A−1 will generally be required. Such a method should therefore only be
applied if A has a simple structure, for instance if it is a diagonal matrix.

4 Applications of Matching Approach

In this section, we wish to briefly survey applications in which the matching strategy discussed
in this paper has been applied.

PDE-constrained optimization: The class of problems for which the authors originally
derived this approach was that of PDE-constrained optimization problems of the following
form:

min
y,c

1
2
‖y− ŷ‖2

L2(Ω) +
β

2
‖c‖2

L2(Ω)

s.t. L y = c, in Ω ,

y = h, on ∂Ω .

Here, y and c denote state and control variables which we wish to find, with ŷ a given desired
state and β > 0 a regularization parameter. The constraints of the optimization problem are
derived from a PDE operator L on a domain Ω , and given Dirichlet boundary conditions h
on the boundary ∂Ω of the domain. Other boundary conditions are possible, though boundary
control problems have a slightly different form [18].

If the PDE operator L = −∇2 +w ·∇, where w is some given wind vector, then the
problem under consideration is that of convection–diffusion control, and upon discretization
of this problem the matrix system to be solved is [26, 27]M 0 K̄T

0 βM −M
K̄ −M 0

 y
c
p

=

 f
0
h

 , (5)

with y, c and p the discretized state, control and adjoint variables, and f and h including terms
arising from the desired state and boundary conditions. Here, M is a finite element mass matrix
which is symmetric positive definite, and K̄ is a finite element matrix relating to L which has
the property that K̄+ K̄T is positive semidefinite. If w = 0, then the control problem reduces to
that of Poisson control, and K̄ = K̄T = K is a stiffness matrix. For either problem, the system
(5) is of the form A3, with A = M, B = K̄, α = 1, γ =

√
β , and the theory of this paper can be

applied (see [26, 27]). Such problems have the additional convenient property that the mass
matrix M is well conditioned.

This theory has been extended to a range of other PDE-constrained optimization problems
of different structure, for example to time-independent and time-dependent fluid flow control
problems [23, 24, 37], reaction-diffusion control problems from chemical reactions and pattern
formation processes in mathematical biology [25, 36], and active set Newton methods for
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problems with additional bound constraints [29]. Further, the papers [3, 4] examine PDE-
constrained optimization problems with uncertain inputs using this strategy, low-rank methods
are derived for a class of time-dependent problems in [35], and optimization problems with
fractional differential equation constraints are studied in [12] (where a result of the type shown
in Theorem 1 is proved using the Binomial Theorem).

Complex valued linear systems: Matrix systems of similar type to the 2×2 block form
A2 are discussed in [1] in the context of complex valued linear systems. In more detail, con-
sider the solution of the complex matrix system Cz = d, where C = A+ iB, z = u+ iw and
d = f+ ih. Therefore (A+ iB)(u+ iw) = f+ ih, whereupon comparing real and imaginary
parts gives the matrix system [

A −B
B A

][
u
w

]
=

[
f
h

]
. (6)

It is clear that, if A and B are symmetric, one may rearrange the system (6) to a symmetric
matrix of form A2, with α = γ = 1.

In [1], the authors derive a preconditioner for the system (6) based on the matching
strategy. Further, in [2], preconditioned modified Hermitian and skew-Hermitian splitting
(PMHSS) iteration methods for 2× 2 block linear systems are considered using the same
methodology.

Cahn–Hilliard models: Another major application area of the approach we have outlined
is that of the numerical solution of Cahn–Hilliard models describing phase separation. For
instance, in [9] the authors consider the H−1–gradient flow of the Ginzburg–Landau energy

E(u) :=
∫

Ω

δε

2
|∇u|2 + 1

ε
ψ(u) dΩ ,

with δ ,ε > 0, and an obstacle potential given by ψ(u) = 1
2 (1−u2)+ I[−1,1](u) with an indi-

cator function I (though there are other possible choices for this potential).
Upon discretizing the resulting PDEs, the authors are required to solve matrix systems of

the form [
−H M
M τK

][
u
w

]
=

[
f
h

]
,

where M,K are defined as above, H is a symmetric matrix which involves the sum of a stiffness
matrix and terms involving ψ ′(u), and τ > 0 is the time-step used within the numerical method.
Although this system is not precisely of the form A2, the authors were able to use convenient
properties of H to obtain good numerical results for certain restrictions of the time-step (i.e.
τ < ε2). In [8] some theoretical guarantees are provided for similar preconditioners for image
inpainting problems.

We note that many scientists have applied the matching strategy to Cahn–Hilliard models.
In [10] preconditioners for large scale binary Cahn–Hilliard models are considered, matrix
systems arising from the evolution of diblock copolymer melts are tackled in [14], and solvers
for the phase field crystal equation, which is itself of Cahn–Hilliard type, are constructed in
[30].

We note that the fields categorised above do not represent an exhaustive list of applications
for the approach presented in this paper. For instance, see [34] for a discussion of precondi-
tioners for discontinuous Galerkin time-stepping methods, and many other papers discussing
optimal control problems and Cahn–Hilliard equations, for other recent developments of this
method.
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5 Concluding Remarks

We have considered block preconditioners for a particular class of saddle-point matrices which
arise in various applications. Specifically, we have demonstrated the efficacy of an approach
which employs a ‘matching strategy’ for the approximation of a Schur complement. The use
of the resulting preconditioners is shown to enable the iterative solution of corresponding
systems of equations in a number of iterations independent of parameters in the problem and
of the dimension of the relevant matrices. This is therefore a highly effective solution approach
for such systems of equations.

Acknowledgement. Ian Sloan has been a great friend and mentor over many years. Through
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throughout his long career. We wish to express our deep appreciation for his leadership in our
field and to acknowledge his encouragement of all those who seek to contribute to it.
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