81 research outputs found

    Robust Lossless Data Hiding by Feature-Based Bit Embedding Algorithm

    Get PDF

    A Study of Data Security on E-Governance using Steganographic Optimization Algorithms

    Get PDF
    Steganography has been used massively in numerous fields to maintain the privacy and integrity of messages transferred via the internet. The need to secure the information has augmented with the increase in e-governance usage. The wide adoption of e-governance services also opens the doors to cybercriminals for fraudulent activities in cyberspace. To deal with these cybercrimes we need optimized and advanced steganographic techniques. Various advanced optimization techniques can be applied to steganography to obtain better results for the security of information. Various optimization techniques like particle swarm optimization and genetic algorithms with cryptography can be used to protect information for e-governance services. In this study, a comprehensive review of steganographic algorithms using optimization techniques is presented. A new perspective on using this technique to protect the information for e-governance is also presented. Deep Learning might be the area that can be used to automate the steganography process in combination with other method

    An improved image steganography scheme based on distinction grade value and secret message encryption

    Get PDF
    Steganography is an emerging and greatly demanding technique for secure information communication over the internet using a secret cover object. It can be used for a wide range of applications such as safe circulation of secret data in intelligence, industry, health care, habitat, online voting, mobile banking and military. Commonly, digital images are used as covers for the steganography owing to their redundancy in the representation, making them hidden to the intruders, hackers, adversaries, unauthorized users. Still, any steganography system launched over the Internet can be cracked upon recognizing the stego cover. Thus, the undetectability that involves data imperceptibility or concealment and security is the significant trait of any steganography system. Presently, the design and development of an effective image steganography system are facing several challenges including low capacity, poor robustness and imperceptibility. To surmount such limitations, it is important to improve the capacity and security of the steganography system while maintaining a high signal-to-noise ratio (PSNR). Based on these factors, this study is aimed to design and develop a distinction grade value (DGV) method to effectively embed the secret data into a cover image for achieving a robust steganography scheme. The design and implementation of the proposed scheme involved three phases. First, a new encryption method called the shuffle the segments of secret message (SSSM) was incorporated with an enhanced Huffman compression algorithm to improve the text security and payload capacity of the scheme. Second, the Fibonacci-based image transformation decomposition method was used to extend the pixel's bit from 8 to 12 for improving the robustness of the scheme. Third, an improved embedding method was utilized by integrating a random block/pixel selection with the DGV and implicit secret key generation for enhancing the imperceptibility of the scheme. The performance of the proposed scheme was assessed experimentally to determine the imperceptibility, security, robustness and capacity. The standard USC-SIPI images dataset were used as the benchmarking for the performance evaluation and comparison of the proposed scheme with the previous works. The resistance of the proposed scheme was tested against the statistical, X2 , Histogram and non-structural steganalysis detection attacks. The obtained PSNR values revealed the accomplishment of higher imperceptibility and security by the proposed DGV scheme while a higher capacity compared to previous works. In short, the proposed steganography scheme outperformed the commercially available data hiding schemes, thereby resolved the existing issues

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power

    Triple scheme based on image steganography to improve imperceptibility and security

    Get PDF
    A foremost priority in the information technology and communication era is achieving an effective and secure steganography scheme when considering information hiding. Commonly, the digital images are used as the cover for the steganography owing to their redundancy in the representation, making them hidden to the intruders. Nevertheless, any steganography system launched over the internet can be attacked upon recognizing the stego cover. Presently, the design and development of an effective image steganography system are facing several challenging issues including the low capacity, poor security, and imperceptibility. Towards overcoming the aforementioned issues, a new decomposition scheme was proposed for image steganography with a new approach known as a Triple Number Approach (TNA). In this study, three main stages were used to achieve objectives and overcome the issues of image steganography, beginning with image and text preparation, followed by embedding and culminating in extraction. Finally, the evaluation stage employed several evaluations in order to benchmark the results. Different contributions were presented with this study. The first contribution was a Triple Text Coding Method (TTCM), which was related to the preparation of secret messages prior to the embedding process. The second contribution was a Triple Embedding Method (TEM), which was related to the embedding process. The third contribution was related to security criteria which were based on a new partitioning of an image known as the Image Partitioning Method (IPM). The IPM proposed a random pixel selection, based on image partitioning into three phases with three iterations of the Hénon Map function. An enhanced Huffman coding algorithm was utilized to compress the secret message before TTCM process. A standard dataset from the Signal and Image Processing Institute (SIPI) containing color and grayscale images with 512 x 512 pixels were utilised in this study. Different parameters were used to test the performance of the proposed scheme based on security and imperceptibility (image quality). In image quality, four important measurements that were used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Histogram analysis. Whereas, two security measurements that were used are Human Visual System (HVS) and Chi-square (X2) attacks. In terms of PSNR and SSIM, the Lena grayscale image obtained results were 78.09 and 1 dB, respectively. Meanwhile, the HVS and X2 attacks obtained high results when compared to the existing scheme in the literature. Based on the findings, the proposed scheme give evidence to increase capacity, imperceptibility, and security to overcome existing issues

    A novel multipurpose watermarking scheme capable of protecting and authenticating images with tamper detection and localisation abilities

    Get PDF
    Technologies that fall under the umbrella of Industry 4.0 can be classified into one of its four significant components: cyber-physical systems, the internet of things (IoT), on-demand availability of computer system resources, and cognitive computing. The success of this industrial revolution lies in how well these components can communicate with each other, and work together in finding the most optimised solution for an assigned task. It is achieved by sharing data collected from a network of sensors. This data is communicated via images, videos, and a variety of other signals, attracting unwanted attention of hackers. The protection of such data is therefore pivotal, as is maintaining its integrity. To this end, this paper proposes a novel image watermarking scheme with potential applications in Industry 4.0. The strategy presented is multipurpose; one such purpose is authenticating the transmitted image, another is curtailing the illegal distribution of the image by providing copyright protection. To this end, two new watermarking methods are introduced, one of which is for embedding the robust watermark, and the other is related to the fragile watermark. The robust watermark's embedding is achieved in the frequency domain, wherein the frequency coefficients are selected using a novel mean-based coefficient selection procedure. Subsequently, the selected coefficients are manipulated in equal proportion to embed the robust watermark. The fragile watermark's embedding is achieved in the spatial domain, wherein self-generated fragile watermark(s) is embedded by directly altering the pixel bits of the host image. The effective combination of two domains results in a hybrid scheme and attains the vital balance between the watermarking requirements of imperceptibility, security and capacity. Moreover, in the case of tampering, the proposed scheme not only authenticates and provides copyright protection to images but can also detect tampering and localise the tampered regions. An extensive evaluation of the proposed scheme on typical images has proven its superiority over existing state-of-the-art methods

    Image steganography applications for secure communication

    Get PDF
    To securely communicate information between parties or locations is not an easy task considering the possible attacks or unintentional changes that can occur during communication. Encryption is often used to protect secret information from unauthorised access. Encryption, however, is not inconspicuous and the observable exchange of encrypted information between two parties can provide a potential attacker with information on the sender and receiver(s). The presence of encrypted information can also entice a potential attacker to launch an attack on the secure communication. This dissertation investigates and discusses the use of image steganography, a technology for hiding information in other information, to facilitate secure communication. Secure communication is divided into three categories: self-communication, one-to-one communication and one-to-many communication, depending on the number of receivers. In this dissertation, applications that make use of image steganography are implemented for each of the secure communication categories. For self-communication, image steganography is used to hide one-time passwords (OTPs) in images that are stored on a mobile device. For one-to-one communication, a decryptor program that forms part of an encryption protocol is embedded in an image using image steganography and for one-to-many communication, a secret message is divided into pieces and different pieces are embedded in different images. The image steganography applications for each of the secure communication categories are discussed along with the advantages and disadvantages that the applications have over more conventional secure communication technologies. An additional image steganography application is proposed that determines whether information is modified during communication. CopyrightDissertation (MSc)--University of Pretoria, 2012.Computer Scienceunrestricte

    Free vibration of symmetric angly-plane layered truncated conical shells under classical theory

    Get PDF
    Truncated conical shell finds wide ranging of engineering applications. They are used in space crafts, robots, shelters, domes, tanks, nozzles and in machinery devices. Thus, the study of their vibrational characteristics has long been of interest for the designers. The use of the lamination for the structures leads to design with the maximum reliability and minimum weight. Moreover, the study of free vibration of laminated conical shells has been treated by a number of researchers. Irie et al. (1982) studied free vibration of conical shells with variable thickness using Rayleigh-Ritz method of solution. Wu and Wu (2000) provided 3D elasticity solutions for the free vibration analysis of laminated conical shells by an asymptotic approach. Wu and Lee (2001) studied the natural frequencies of laminated conical shells with variable stiffness using the differential quadrature method under first-order shear deformation theory (FSDT). Tripathi et al. (2007) studied the free vibration of composite conical shells with random material properties of the finite element method. Civalek (2007) used the Discrete Singular Convolution (DSC) to investigate the frequency response of orthotropic conical and cylindrical shells. Sofiyez et al. (2009) studied the vibrations of orthotropic non-homogeneous conical shells with free boundary conditions. Ghasemi et al. (2012) presented their study of free vibration of composite conical shells which was investigated under various boundary conditions using the solution of beam function and Galerkin method. Viswanathan et al. (2007, 2011) studied free vibration of laminated cross-ply plates, including shear deformation, symmetric angle-ply laminated cylindrical shells of variable thickness with shear deformation theory using the spline collocation method. In the present work, free vibration of symmetric angle-ply laminated truncated conical shells is analyzed and displacement functions are approximated using cubic and quantic spline and collocation procedure is applied to obtain a set of field equations. The field equations along with the equations of boundary conditions yield a system of homogeneous simultaneous algebraic equations on the assumed spline coefficients which resulting to the generalized eigenvalue problem. This eigenvalue problem is solved using eigensolution technique to get as many eigenfrequencies as required. The effect of circumferential mode number, length ratio, cone angle, ply angles and number of layers under two boundary conditions on the frequency parameter is studied for three- and five- layered conical shells consisting of two types of layered materials

    Big Data Security (Volume 3)

    Get PDF
    After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology
    corecore