12,360 research outputs found

    Low-complexity iterative frequency domain decision feedback equalization

    No full text
    Single-carrier transmission with frequency domain equalization (SC-FDE) offers a viable design alternative to the classic orthogonal frequency division multiplexing technique. However, SC-FDE using a linear equalizer may suffer from serious performance deterioration for transmission over severely frequency-selective fading channels. An effective method of solving this problem is to introduce non-linear decision feedback equalization (DFE) to SC-FDE. In this contribution, a low complexity iterative decision feedback equalizer operating in the frequency domain of single-carrier systems is proposed. Based on the minimum mean square error criterion, a simplified parameter estimation method is introduced to calculate the coefficients of the feed-forward and feedback filters, which significantly reduces the implementation complexity of the equalizer. Simulation results show that the performance of the proposed simplified design is similar to the traditional iterative block DFE under various multipath fading channels but it imposes a much lower complexity than the latter

    Cyclic-Coded Integer-Forcing Equalization

    Full text link
    A discrete-time intersymbol interference channel with additive Gaussian noise is considered, where only the receiver has knowledge of the channel impulse response. An approach for combining decision-feedback equalization with channel coding is proposed, where decoding precedes the removal of intersymbol interference. This is accomplished by combining the recently proposed integer-forcing equalization approach with cyclic block codes. The channel impulse response is linearly equalized to an integer-valued response. This is then utilized by leveraging the property that a cyclic code is closed under (cyclic) integer-valued convolution. Explicit bounds on the performance of the proposed scheme are also derived

    Analytical BER Performance Evaluation in SISO and MIMO Environments with SC-FDE Modulations and IB-DFE Receivers

    Get PDF
    This paper preseThis paper presents the analysis of the obtainment of the theoretical bit error rate (BER) performance in single-input-single-output and multiple-input-multiple-output systems with single-carrier with frequency-domain equalization modulations and iterative receivers based on the iterative block decision feedback equalization concept. Through the consideration of a Gaussian-based approach to obtain the BER performance, we present a simple and accurate model to improve such method by compensating the difference between the theoretical performance results and the ones obtained by simulation.info:eu-repo/semantics/acceptedVersio

    Diffusive MIMO Molecular Communications: Channel Estimation, Equalization and Detection

    Full text link
    In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.Comment: Accepted paper at IEEE transaction on Communicatio

    Nonlinear effects of radio over fiber transmission in base station cooperation systems

    Get PDF
    In this paper we consider the uplink of Base Station (BS cooperation) systems, where each Mobile Terminal (MT) employs a Single-Carrier with Frequency-Domain Equalization (SC-FDE) modulation scheme. The combined signals at each BS are detected and/or separated by a Central Processing Unit (CPU) with Iterative Block Decision Feedback Equalization (IB-DFE) receivers. We consider a Radio-over-Fiber (RoF) link between the BS and the CPU, the electrical and optical conversions are performed by a Mach-Zehnder (MZ) modulator, which introduces nonlinear distortion. We design robust receivers that take advantage of the statistical characteristics of the nonlinear distortion.info:eu-repo/semantics/acceptedVersio

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    On the Performance of LDPC-Coded MIMO Schemes for Underwater Communications Using 5G-like Processing

    Get PDF
    UIDB/EEA/50008/2020This article studies the underwater acoustic (UWA) communications associated with multiple input–multiple output (MIMO), single carrier with frequency-domain equalization (SC-FDE), and with low-density parity-check (LDPC) codes. Low-complexity receivers such as equal gain combining (EGC), maximum ratio combining (MRC), and iterative block—decision feedback equalization (IB-DFE) are studied in the above-described scenarios. Furthermore, due to the low carrier frequencies utilized in UWA communications, the performance of the proposed MIMO scenarios is studied at different levels of channel correlation between antennas. This article shows that the combined schemes tend to achieve good performances while presenting low complexity, even in scenarios with channel correlation between antennas.publishersversionpublishe

    MIMO decision feedback equalization from an H∞ perspective

    Get PDF
    We approach the multiple input multiple output (MIMO) decision feedback equalization (DFE) problem in digital communications from an H∞ estimation point of view. Using the standard (and simplifying) assumption that all previous decisions are correct, we obtain an explicit parameterization of all H∞ optimal DFEs. In particular, we show that, under the above assumption, minimum mean square error (MMSE) DFEs are H∞ optimal. The H∞ approach also suggests a method for dealing with errors in previous decisions

    SIC and PIC multiuser detection for prefix-assisted DS-CDMA systems

    Get PDF
    In this paper we present iterative frequency-domain multiuser detection (MUD) receivers for the uplink transmission of direct sequence code division multiple access systems (DS-CDMA) that combine iterative block decision feedback equalization (IB-DFE) principles with interference cancelation techniques. Both successive interference cancelation (SIC) and parallel interference cancelation (PIC) structures are considered. Our performance results show that the proposed receiver structures have excellent bit error rate (BER) performances, that can be close to the single-user matched filter bound (MFB), even for fully loaded systems and severely time-dispersive channels1

    Frequency-domain multiuser detection for CP-assisted DS-CDMA signals

    Get PDF
    In this paper we consider the use of CP-assisted (cyclic prefix) DS-CDMA schemes (direct sequence code division multiple access) in broadband wireless systems. We present an iterative, frequency-domain MUD (multiuser detection) receiver for the uplink transmission that combines IB-DFE (iterative block decision feedback equalization) principles with serial interference cancellation. It is shown that the performance proposed receiver can be close to the single-user MFB (matched filter bound), even for fully loaded systems, in severely time-dispersive channel and/or in the presence of strong interfering signals
    corecore