643 research outputs found

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeo® between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel o®ers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Reliable Multicast transport of the video over the WiFi network

    Get PDF
    Le transport multicast est une solution efficace pour envoyer le même contenu à plusieurs récepteurs en même temps. Ce mode est principalement utilisé pour fournir des flux multimédia en temps réel. Cependant, le multicast classique de l IEEE 802.11 n'utilise aucun mécanisme d acquittement. Ainsi, l échec de réception implique la perte définitive du paquet. Cela limite la fiabilité du transport multicast et impact la qualité des applications vidéo. Pour résoudre ce problème, 802.11v et 802.11aa sont définis récemment. Le premier amendement propose Direct Multicast Service (DMS). D'autre part, le 802.11aa introduit GroupCast with Retries (GCR). GCR définit deux nouvelles politiques de retransmission : Block Ack (BACK) et Unsolicited Retry (UR).Dans cette thèse, nous évaluons et comparons les performances de 802.11v/aa. Nos résultats montrent que tous les nouveaux protocoles multicast génèrent un overhead de transmission important. En outre, DMS a une scalabilité très limitée, et GCR-BACK n'est pas approprié pour des grands groupes multicast. D autre part, nous montrons que DMS et GCR-BACK génèrent des latences de transmission importantes lorsque le nombre de récepteurs augmente. Par ailleurs, nous étudions les facteurs de pertes dans les réseaux sans fil. Nous montrons que l'indisponibilité du récepteur peut être la cause principale des pertes importantes et de leur nature en rafales. En particulier, nos résultats montrent que la surcharge du processeur peut provoquer un taux de perte de 100%, et que le pourcentage de livraison peut être limité à 35% lorsque la carte 802.11 est en mode d économie d'énergie.Pour éviter les collisions et améliorer la fiabilité du transport multicast, nous définissons le mécanisme Busy Symbol (BS). Nos résultats montrent que BS évite les collisions et assure un taux de succès de transmission très important. Afin d'améliorer davantage la fiabilité du trafic multicast, nous définissons un nouveau protocole multicast, appelé Block Negative Acknowledgement (BNAK). Ce protocole opère comme suit. L AP envoi un bloc de paquets suivi par un Block NAK Request (BNR). Le BNR permet aux membres de détecter les données manquantes et d envoyer une demande de retransmission, c.à.d. un Block NAK Response (BNAK). Un BNAK est transmis en utilisant la procédure classique d accès au canal afin d'éviter toute collision avec d'autres paquets. En plus, cette demande est acquittée. Sous l'hypothèse que 1) le récepteur est situé dans la zone de couverture du débit de transmission utilisé, 2) les collisions sont évitées et 3) le terminal a la bonne configuration, très peu de demandes de retransmission sont envoyées, et la bande passante est préservée. Nos résultats montrent que BNAK a une très grande scalabilité et génère des délais très limités. En outre, nous définissons un algorithme d'adaptation de débit pour BNAK. Nous montrons que le bon débit de transmission est sélectionné moyennant un overhead très réduit de moins de 1%. En plus, la conception de notre protocole supporte la diffusion scalable de lavvidéo. Cette caractéristique vise à résoudre la problématique de la fluctuation de la bande passante, et à prendre en considération l'hétérogénéité des récepteurs dans un réseau sans fil.The multicast transport is an efficient solution to deliver the same content to many receivers at the same time. This mode is mainly used to deliver real-time video streams. However, the conventional multicast transmissions of IEEE 802.11 do not use any feedback policy. Therefore missing packets are definitely lost. This limits the reliability of the multicast transport and impacts the quality of the video applications. To resolve this issue, the IEEE 802.11v/aa amendments have been defined recently. The former proposes the Direct Multicast Service (DMS). On the other hand, 802.11aa introduces Groupcast with Retries (GCR) service. GCR defines two retry policies: Block Ack (BACK) and Unsolicited Retry (UR).In this thesis we evaluate and compare the performance of 802.11v/aa. Our simulation results show that all the defined policies incur an important overhead. Besides, DMS has a very limited scalability, and GCR-BACK is not appropriate for large multicast groups. We show that both DMS and GCR-BACK incur important transmission latencies when the number of the multicast receivers increases. Furthermore, we investigate the loss factors in wireless networks. We show that the device unavailability may be the principal cause of the important packet losses and their bursty nature. Particularly, our results show that the CPU overload may incur a loss rate of 100%, and that the delivery ratio may be limited to 35% when the device is in the power save mode.To avoid the collisions and to enhance the reliability of the multicast transmissions, we define the Busy Symbol (BS) mechanism. Our results show that BS prevents all the collisions and ensures a very high delivery ratio for the multicast packets. To further enhance the reliability of this traffic, we define the Block Negative Acknowledgement (BNAK) retry policy. Using our protocol, the AP transmits a block of multicast packets followed by a Block NAK Request (BNR). Upon reception of a BNR, a multicast member generates a Block NAK Response (BNAK) only if it missed some packets. A BNAK is transmitted after channel contention in order to avoid any eventual collision with other feedbacks, and is acknowledged. Under the assumption that 1) the receiver is located within the coverage area of the used data rate, 2) the collisions are avoided and 3) the terminal has the required configuration, few feedbacks are generated and the bandwidth is saved. Our results show that BNAK has a very high scalability and incurs very low delays. Furthermore, we define a rate adaptation scheme for BNAK. We show that the appropriate rate is selected on the expense of a very limited overhead of less than 1%. Besides, the conception of our protocol is defined to support the scalable video streaming. This capability intends to resolve the bandwidth fluctuation issue and to consider the device heterogeneity of the group members.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Scalable and rate adaptive wireless multimedia multicast

    Get PDF
    The methods that are described in this work enable highly efficient audio-visual streaming over wireless digital communication systems to an arbitrary number of receivers. In the focus of this thesis is thus point-to-multipoint transmission at constrained end-to-end delay. A fundamental difference as compared to point-to-point connections between exactly two communicating sending and receiving stations is in conveying information about successful or unsuccessful packet reception at the receiver side. The information to be transmitted is available at the sender, whereas the information about successful reception is only available to the receiver. Therefore, feedback about reception from the receiver to the sender is necessary. This information may be used for simple packet repetition in case of error, or adaptation of the bit rate of transmission to the momentary bit rate capacity of the channel, or both. This work focuses on the single transmission (including retransmissions) of data from one source to multiple destinations at the same time. A comparison with multi-receiver sequentially redundant transmission systems (simulcast MIMO) is made. With respect to feedback, this work considers time division multiple access systems, in which a single channel is used for data transmission and feedback. Therefore, the amount of time that can be spent for transmitting feedback is limited. An increase in time used for feedback transmissions from potentially many receivers results in a decrease in residual time which is usable for data transmission. This has direct impact on data throughput and hence, the quality of service. In the literature, an approach to reduce feedback overhead which is based on simultaneous feedback exists. In the scope of this work, simultaneous feedback implies equal carrier frequency, bandwidth and signal shape, in this case orthogonal frequency-division multiplex signals, during the event of the herein termed feedback aggregation in time. For this scheme, a constant amount of time is spent for feedback, independent of the number of receivers giving feedback about reception. Therefore, also data throughput remains independent of the number of receivers. This property of audio-visual digital transmission is taken for granted for statically configured, single purpose systems, such as terrestrial television. In the scope of this work are, however, multi-user and multi-purpose digital communication networks. Wireless LANs are a well-known example and are covered in detail herein. In suchlike systems, it is of great importance to remain independent of the number of receivers, as otherwise the service of ubiquitous digital connectivity is at the risk of being degraded. In this regard, the thesis at hand elaborates at what bit rates audio-visual transmission to multiple receivers may take place in conjunction with feedback aggregation. It is shown that the scheme achieves a multi-user throughput gain when used in conjunction with adaptivity of the bit rate to the channel. An assumption is the use of an ideal overlay packet erasure correcting code in this case. Furthermore, for delay constrained transmission, such as in so-called live television, throughput bit rates are examined. Applications have to be tolerant to a certain level of residual error in case of delay constrained transmission. Improvement of the rate adaptation algorithm is shown to increase throughput while residual error rates are decreased. Finally, with a consumer hardware prototype for digital live-TV re-distribution in the local wireless network, most of the mechanisms as described herein can be demonstrated.Die in vorliegender Arbeit aufgezeigten Methoden der paketbasierten drahtlosen digitalen Kommunikation ermöglichen es, Fernsehinhalte, aber auch audio-visuelle Datenströme im Allgemeinen, bei hoher Effizienz an beliebig große Gruppen von Empfängern zu verteilen. Im Fokus dieser Arbeit steht damit die Punkt- zu Mehrpunktübertragung bei begrenzter Ende-zu-Ende Verzögerung. Ein grundlegender Unterschied zur Punkt-zu-Punkt Verbindung zwischen genau zwei miteinander kommunizierenden Sender- und Empfängerstationen liegt in der Übermittlung der Information über erfolgreichen oder nicht erfolgreichen Paketempfang auf Seite der Empfänger. Da die zu übertragende Information am Sender vorliegt, die Information über den Erfolg der Übertragung jedoch ausschließlich beim jeweiligen Empfänger, muss eine Erfolgsmeldung auf dem Rückweg von Empfänger zu Sender erfolgen. Diese Information wird dann zum Beispiel zur einfachen Paketwiederholung im nicht erfolgreichen Fall genutzt, oder aber um die Übertragungsrate an die Kapazität des Kanals anzupassen, oder beides. Grundsätzlich beschäftigt sich diese Arbeit mit der einmaligen, gleichzeitigen Übertragung von Information (einschließlich Wiederholungen) an mehrere Empfänger, wobei ein Vergleich zu an mehrere Empfänger sequentiell redundant übertragenden Systemen (Simulcast MIMO) angestellt wird. In dieser Arbeit ist die Betrachtung bezüglich eines Rückkanals auf Zeitduplexsysteme beschränkt. In diesen Systemen wird der Kanal für Hin- und Rückweg zeitlich orthogonalisiert. Damit steht für die Übermittlung der Erfolgsmeldung eine beschränkte Zeitdauer zur Verfügung. Je mehr an Kanalzugriffszeit für die Erfolgsmeldungen der potentiell vielen Empfänger verbraucht wird, desto geringer wird die Restzeit, in der dann entsprechend weniger audio-visuelle Nutzdaten übertragbar sind, was sich direkt auf die Dienstqualität auswirkt. Ein in der Literatur weniger ausführlich betrachteter Ansatz ist die gleichzeitige Übertragung von Rückmeldungen mehrerer Teilnehmer auf gleicher Frequenz und bei identischer Bandbreite, sowie unter Nutzung gleichartiger Signale (hier: orthogonale Frequenzmultiplexsignalformung). Das Schema wird in dieser Arbeit daher als zeitliche Aggregation von Rückmeldungen, engl. feedback aggregation, bezeichnet. Dabei wird, unabhängig von der Anzahl der Empfänger, eine konstante Zeitdauer für Rückmeldungen genutzt, womit auch der Datendurchsatz durch zusätzliche Empfänger nicht notwendigerweise sinkt. Diese Eigenschaft ist aus statisch konfigurierten und für einen einzigen Zweck konzipierten Systemen, wie z. B. der terrestrischen Fernsehübertragung, bekannt. In dieser Arbeit werden im Gegensatz dazu jedoch am Beispiel von WLAN Mehrzweck- und Mehrbenutzersysteme betrachtet. Es handelt sich in derartigen Systemen zur digitalen Datenübertragung dabei um einen entscheidenden Vorteil, unabhängig von der Empfängeranzahl zu bleiben, da es sonst unweigerlich zu Einschränkungen in der Güte der angebotenen Dienstleistung der allgegenwärtigen digitalen Vernetzung kommen muss. Vorliegende Arbeit zeigt in diesem Zusammenhang auf, welche Datenraten unter Benutzung von feedback aggregation in der Verteilung an mehrere Empfänger und in verschiedenen Szenarien zu erreichen sind. Hierbei zeigt sich, dass das Schema im Zusammenspiel mit einer Adaption der Datenrate an den Übertragungskanal inhärent einen Datenratengewinn durch Mehrbenutzerempfang zu erzielen vermag, wenn ein überlagerter idealer Paketauslöschungsschutz-Code angenommen wird. Des weiteren wird bei der Übertragung mit zeitlich begrenzter Ausführungsdauer, z. B. dem sogenannten Live-Fernsehen, aufgezeigt, wie sich die erreichbare Datenrate reduziert und welche Restfehlertoleranz an die Übertragung gestellt werden muss. Hierbei wird ebenso aufgezeigt, wie sich durch Verbesserung der Ratenadaption erstere erhöhen und zweitere verringern lässt. An einem auf handelsüblichen Computer-Systemen realisiertem Prototypen zur Live-Fernsehübertragung können die hierin beschriebenen Mechanismen zu großen Teilen gezeigt werden

    Multicast MAC extensions for high rate real-time traffic in wireless LANs

    Get PDF
    Nowadays we are rapidly moving from a mainly textual-based to a multimedia-based Internet, for which the widely deployed IEEE 802.11 wireless LANs can be one of the promising candidates to make them available to users anywhere, anytime, on any device. However, it is still a challenge to support group-oriented real-time multimedia services, such as video-on-demand, video conferencing, distance educations, mobile entertainment services, interactive games, etc., in wireless LANs, as the current protocols do not support multicast, in particular they just send multicast packets in open-loop as broadcast packets, i.e., without any possible acknowledgements or retransmissions. In this thesis, we focus on MAC layer reliable multicast approaches which outperform upper layer ones with both shorter delays and higher efficiencies. Different from polling based approaches, which suffer from long delays, low scalabilities and low efficiencies, we explore a feedback jamming mechanism where negative acknowledgement (NACK) frames are allowed from the non-leader receivers to destroy the acknowledgement (ACK) frame from the single leader receiver and prompts retransmissions from the sender. Based on the feedback jamming scheme, we propose two MAC layer multicast error correction protocols, SEQ driven Leader Based Protocol (SEQ-LBP) and Hybrid Leader Based Protocol (HLBP), the former is an Automatic Repeat reQuest (ARQ) scheme while the later combines both ARQ and the packet level Forward Error Correction (FEC). We evaluate the feedback jamming probabilities and the performances of SEQ-LBP and HLBP based on theoretical analyses, NS-2 simulations and experiments on a real test-bed built with consumer wireless LAN cards. Test results confirm the feasibility of the feedback jamming scheme and the outstanding performances of the proposed protocols SEQ-LBP and HLBP, in particular SEQ-LBP is good for small multicast groups due to its short delay, effectiveness and simplicity while HLBP is better for large multicast groups because of its high efficiency and high scalability with respect to the number of receivers per group.Zurzeit vollzieht sich ein schneller Wechsel vom vorwiegend textbasierten zum multimediabasierten Internet. Die weitverbreiteten IEEE 802.11 Drahtlosnetzwerke sind vielversprechende Kandidaten, um das Internet für Nutzer überall, jederzeit und auf jedem Gerät verfügbar zu machen. Die Unterstützung gruppenorientierter Echtzeit-Dienste in drahtlosen lokalen Netzen ist jedoch immer noch eine Herausforderung. Das liegt daran, dass aktuelle Protokolle keinen Multicast unterstützen. Sie senden Multicast-Pakete vielmehr in einer "Open Loop"-Strategie als Broadcast-Pakete, d. h. ohne jegliche Rückmeldung (feedback) oder Paketwiederholungen. In der vorliegenden Arbeit, anders als in den auf Teilnehmereinzelabfragen (polling) basierenden Ansätzen, die unter langen Verzögerungen, geringer Skalierbarkeit und geringer Effizienz leiden, versuchen wir, Multicast-Feedback bestehend aus positiven (ACK) und negativen Bestätigungen (NACK) auf MAC-Layer im selben Zeitfenster zu bündeln. Die übrigen Empfänger können NACK-Frames senden, um das ACK des Leaders zu zerstören und Paketwiederholungen zu veranlassen. Basierend auf einem Feedback-Jamming Schema schlagen wir zwei MAC-Layer-Protokolle für den Fehlerschutz im Multicast vor: Das SEQ-getriebene Leader Based Protocol (SEQ-LBP) und das Hybrid Leader Based Protocol (HLBP). SEQ-LBP ist eines Automatic Repeat reQuest (ARQ) Schema. HLBP kombiniert ARQ und paketbasierte Forward Error Correction (FEC). Wir evaluieren die Leistungsfähigkeit von ACK/NACK jamming, SEQ-LBP und HLBP durch Analysis, Simulationen in NS-2, sowie Experimenten in einer realen Testumgebung mit handelsüblichen WLAN-Karten. Die Testergebnisse bestätigen die Anwendbarkeit der Feedback-Jamming Schemata und die herausragende Leistungsfähigkeit der vorgestellten Protokolle SEQ-LBP und HLBP. SEQ-LBP ist durch seine kurze Verzögerung, seine Effektivität und seine Einfachheit für kleine Multicast-Gruppen nützlich, während HLBP auf Grund seiner hohen Effizienz und Skalierbarkeit im Bezug auf die Größe der Empfänger eher in großen Multicast-Gruppen anzuwenden ist

    Development of a Reliable Multicast Protocol in Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc network is a collection of mobile nodes forming dynamic and temporary network. The mobile nodes work in collaborative nature to carry out a given task. It can receive and transmit data packets without the use of any existing network infrastructure or centralized administration. Multicasting is among the pertinent issues of communication in such networks. The reliable delivery of multicast data packets needs feedback from all multicast receivers to indicate whether a retransmission is necessary. The Feedback Implosion Problem (FIP) states that reliable multicast in ad hoc networks suffers from redundant feedback packets, loss, duplication, and out-of-order delivery of data packets. To carry out this task, several reliable multicast protocols have been proposed to reduce the number of feedback packets from the receiver nodes. This is achieved by placing the responsibility to detect packet loss and initiating loss recovery timer on the receiver nodes which is complemented by feedback suppression. The initiating loss recovery timer depends on the number of hops between the nodes. As the dynamic nature of the number of hops between the nodes in ad hoc networks is unstable the loss recovery timer become inaccurate. Thus, the inaccuracy of the loss recovery timer, in return, causes extra overhead and more delays. The main objectives of this research are to enhance the FIP and decrease the recovery delays in reliable multicast protocol for mobile ad hoc networks using suggested approaches. First, the Source Tree Reliable Multicast (STRM) protocol adopting a novel technique to select a subset of one-hop neighbors from the sender node as its Forward Servers (FS). The key idea behind selecting this subset one-hop neighbors is to forward the retransmitted lost data packets and to receive the feedback packets from the receiver nodes. Second, proposed two algorithms to improve the performance of the STRM protocol. The first algorithm is developed to avoid the buffer overflow in the FS nodes. This is achieved by managing the buffer of the FS nodes; by selecting the FS nodes depending on the empty buffer size it has and reducing the amount of feedback sent from the receiver nodes to their FS node. The second algorithm is developed to decrease the number of duplicated packets in the multicast members in the local group. This is achieved by sending the repair packets only to the member that has requested it. The FS in the local group should create a dynamic and temporary sub group whose members are only the members that requested the retransmission of the repair packet. The approaches were tested using detailed discrete-event simulation model which was developed encompassing messaging system that includes error, delay and mobility models to characterize the performance benefits of the proposed algorithms in comparison to ReMHoc protocol. Our approaches achieve up to 2.19% improvement on average packet delivery ratio, 3.3% on requested packets, and 46% on recovery latency time without incurring any additional communication or intense computation

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    IEEE 802.11n aggregation performance study for the multicast

    Full text link
    corecore