121 research outputs found

    Optimal channel equalization for filterbank transceivers in presence of white noise

    Get PDF
    Filterbank transceivers are widely employed in data communication networks to cope with inter-symbol-interference (ISI) through the use of redundancies. This dissertation studies the design of the optimal channel equalizer for both time-invariant and time-varying channels, and wide-sense stationary (WSS) and possible non-stationary white noise processes. Channel equalization is investigated via the filterbank transceivers approach. All perfect reconstruction (PR) or zero-forcing (ZF) receiver filterbanks are parameterized in an affine form, which eliminate completely the ISI. The optimal channel equalizer is designed through minimization of the mean-squared-error (MSE) between the detected signals and the transmitted signals. Our main results show that the optimal channel equalizer has the form of state estimators, and is a modified Kalman filter. The results in this dissertation are applicable to discrete wavelet multitone (DWMT) systems, multirate transmultiplexers, orthogonal frequency division multiplexing (OFDM), and direct-sequence/spread-spectrum (DS/SS) based code division multiple access (CDMA) networks. Design algorithms for the optimal channel equalizers are developed for different channel models, and white noise processes, and simulation examples are worked out to illustrate the proposed design algorithms

    Sparse Nonlinear MIMO Filtering and Identification

    Get PDF
    In this chapter system identification algorithms for sparse nonlinear multi input multi output (MIMO) systems are developed. These algorithms are potentially useful in a variety of application areas including digital transmission systems incorporating power amplifier(s) along with multiple antennas, cognitive processing, adaptive control of nonlinear multivariable systems, and multivariable biological systems. Sparsity is a key constraint imposed on the model. The presence of sparsity is often dictated by physical considerations as in wireless fading channel-estimation. In other cases it appears as a pragmatic modelling approach that seeks to cope with the curse of dimensionality, particularly acute in nonlinear systems like Volterra type series. Three dentification approaches are discussed: conventional identification based on both input and output samples, semi–blind identification placing emphasis on minimal input resources and blind identification whereby only output samples are available plus a–priori information on input characteristics. Based on this taxonomy a variety of algorithms, existing and new, are studied and evaluated by simulation

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters

    Blind channel identification/equalization with applications in wireless communications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Interference suppression and parameter estimation in wireless communication systems over time-varing multipath fading channels

    Get PDF
    This dissertation focuses on providing solutions to two of the most important problems in wireless communication systems design, namely, 1) the interference suppression, and 2) the channel parameter estimation in wireless communication systems over time-varying multipath fading channels. We first study the interference suppression problem in various communication systems under a unified multirate transmultiplexer model. A state-space approach that achieves the optimal realizable equalization (suppression of inter-symbol interference) is proposed, where the Kalman filter is applied to obtain the minimum mean squared error estimate of the transmitted symbols. The properties of the optimal realizable equalizer are analyzed. Its relations with the conventional equalization methods are studied. We show that, although in general a Kalman filter has an infinite impulse response, the Kalman filter based decision-feedback equalizer (Kalman DFE) is a finite length filter. We also propose a novel successive interference cancellation (SIC) scheme to suppress the inter-channel interference encountered in multi-input multi-output systems. Based on spatial filtering theory, the SIC scheme is again converted to a Kalman filtering problem. Combining the Kalman DFE and the SIC scheme in series, the resultant two-stage receiver achieves optimal realizable interference suppression. Our results are the most general ever obtained, and can be applied to any linear channels that have a state-space realization, including time-invariant, time-varying, finite impulse response, and infinite impulse response channels. The second half of the dissertation devotes to the parameter estimation and tracking of single-input single-output time-varying multipath channels. We propose a novel method that can blindly estimate the channel second order statistics (SOS). We establish the channel SOS identifiability condition and propose novel precoder structures that guarantee the blind estimation of the channel SOS and achieve diversities. The estimated channel SOS can then be fit into a low order autoregressive (AR) model characterizing the time evolution of the channel impulse response. Based on this AR model, a new approach to time-varying multipath channel tracking is proposed

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    corecore