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Summary

The rapid growth in demand for cellular communications services has encour-

aged research into the design of wireless communications to improve spectrum

efficiency and link quality. As opposed to their wireline counterpart, wire-

less communication systems pose some unique challenges. One of the main

problems faced in wireless communications is the intersymbol interference (ISI)

caused by channel dispersion and the multiuser interference (MUI) resulting

from frequency reuse. In order to recover the desired transmitted user sig-

nals accurately, advanced space-time signal processing techniques need to be

developed to simultaneously suppress the ISI and MUI. A key aspect of these

is the estimation of the channel. Traditional methods for channel estimation

usually resort to training sequences to enable channel identification. These pe-

riodically transmitted training sequences consume considerable bandwidth and

thus reduce the bandwidth usage efficiency. Over the past decade, a promising

approach called as “blind method” has received significant attention. As com-

pared to the traditional techniques, blind channel estimation methods identify

the unknown wireless channels based only on the received signals and some a

priori statistical information or properties of the input signals, without direct

access to the transmitted signals.

This dissertation focuses on the blind estimation of the wireless channels by
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exploiting the statistical information of the received data. We have developed

a variety of statistics-based blind channel estimation methods for different data

models, i.e., single-input single-output (SISO), single-input multiple-output

(SIMO) and multiple-input multiple-output (MIMO) models. The proposed

algorithms can be directly applied or tailored to diverse wireless communica-

tion systems, such as TDMA and CDMA, to combat the ISI and MUI which

constitute a major impediment to the system performance. In this dissertation,

we, firstly, introduce the background, review, mathematical preliminaries and

basic models for blind channel identification. Next, in Chapter 3, we present a

higher order statistics-based linear method to estimate the SISO wireless chan-

nels. In Chapters 4 and 5, by utilizing the properties of the companion matrices,

a new second-order statistics-based method for blind estimation of SIMO and

MIMO channels driven by colored sources is proposed. In Chapter 6, we derive

a new method to directly estimate the zero-forcing (ZF) or minimum mean-

square-error (MMSE) equalizers of the SIMO channel driven by colored sources

with unknown statistics. We also studied the problem of blind identification

of MIMO channels driven by spatially correlated sources with a priori known

statistics. The results are presented in Chapter 7. Finally, in Chapter 8, we

conclude with a summary of contributions and directions for future research.
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Chapter 1

Introduction

Wireless communication has become one of the fastest growing technologies

during the past century. The wireless era began around 1895 when Guglielmo

Marconi demonstrated the use of radio waves to communicate over large dis-

tances. After over one hundred years advancement, now the wireless systems

have evolved to become a technology capable of providing instantaneous high

data rates links to mobile users. Nevertheless, the rapid growth in demand

for wireless communications services still encourages research into the design of

wireless systems which can render a higher data rate to more mobile users.

Wireless communications systems, as opposed to their wireline counterpart,

pose some unique challenges: (i) the limited allocated spectrum results in a

limit on capacity, (ii) the radio propagation environment and the mobility of

users give rise to signal fading and spreading in time, space and frequency,

and (iii) multiuser interference arises from frequency reuse in cellular wireless

communications systems. The search for effective technologies to mitigate these

effects has been going on in the past two decades, as wireless communication

1



CHAPTER 1. INTRODUCTION 2

is experiencing rapid growth. Among these technologies are multiple access

schemes, channel coding, and space-time signal processing techniques such as

beamforming and blind methods. This thesis is focused on working out a variety

of space-time signal processing algorithms addressing the above problems.

Understanding the physics of radio frequency (RF) wave propagation is crucial

to the development of good models for space-time wireless signal processing.

Radio wave propagation is a very complex phenomenon. In the following sec-

tion, we attempt to characterize some key issues involved in this phenomenon

and proceed to develop a discrete channel model.

1.1 Radio Propagation Model

A signal propagating through the wireless channel usually arrives at the desti-

nation along a number of different paths, referred to as multipath. These paths

arise from scattering, reflection, refraction, or diffraction of the radiated energy

off the objects that lie in the environment. Moreover, the received signal is

much weaker than the transmitted signal due to phenomenon such as path loss

and fading.

1.1.1 Path Loss and Fading

An important measure in mobile communications is the path loss. It is defined

as the ratio between the received and transmitted power. The mean received

signal level varies with distance d as d−n, where n is a parameter in the range

of 2− 5, depending on the type of environment [3, chapter 3]. The more build-

up/obstructed the environment, the larger the n. n = 2 is realistic only for free-

space propagation. In ideal free-space propagation, we have inverse square-law
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spreading phenomenon and the received signal power is given by [3, chapter 3]

Pr =
PtGtGrλ

2

(4πd)2
(1.1)

where Pr and Pt are the received and transmitted powers, respectively, λ is the

wavelength, Gt, Gr are the power gains of the transmit and receive antennas,

respectively, d is the transmitter-receiver (T-R) separation distance in meters.

From the above equation, we can see that path loss increases not only with

increasing transmitter-receiver distance d, but also with increasing operating

frequency.

In addition to path loss, the signal exhibits fluctuations in power level. The

fluctuations in signal level is called fading. There are two types of fading: slow

(or long-term) fading and fast (or short-term) fading.

A signal experiences slow fading when it is shadowed by obstructions in the

environment such as hills, buildings, etc. Thus this type of fading is mainly

caused by terrain configuration and man-made structures between the trans-

mitter and receiver. The envelope of the slow-fading signal is determined by

the local mean of the fast-fading signal, i.e., the average signal level for areas

of a few tens of wavelengths. Experiments have shown that, for paths of length

of a few hundred meters or more, the received local mean power fluctuates as

a log-normal distribution about the mean of the local power, that is, the local

mean power expressed in logarithmic values (e.g. dB) has a Gaussian distribu-

tion [4]. Such a distribution is described by the following probability-density

function:

p(x) =







1√
πσ

exp (− (log x−µ)2

2σ2 ) x > 0

0 x < 0
(1.2)
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where x is a random variable representing the slow signal level fluctuation, µ and

σ are the mean and standard deviation of x, respectively, expressed in decibels.

The mean of this distribution is distance dependent, and the standard deviation

is typically in the range of 5− 12 dB, with 8 dB being typical for macrocellular

applications [5].

Fast fading is caused by the multiple reflections of the transmitted wave by

objects around the mobile such as houses, trees, etc. The waves scattered

by these objects have different attenuations and phases, and thus may add up

constructively or destructively, causing fast fluctuations in the signal level. The

received signal power may change by a few orders of magnitude (e.g., 20−40 dB)

within just a few wavelengths. When the mobile is completely obstructed from

the base-station, i.e., there is no direct line-of-sight (LOS), then the envelope of

the received signal is best modeled statistically as Rayleigh distribution which

is given as follows [3, chapter 4]

p(x) =







x
σ2 e−x2/2σ2

x > 0

0 x < 0.
(1.3)

If there is a direct path present, then it will no longer be a Rayleigh distribution,

but it becomes Rician. The corresponding probability density function (pdf) is

given by [3, chapter 4]

p(x) =







x
σ2 e−(x2+A2)/2σ2

I0(
Ax
σ2 ) x ≥ 0, A ≥ 0

0 x < 0
(1.4)

where the parameter A denotes the peak amplitude of the dominant signal and

I0(·) is the modified Bessel function of the first kind and zero-order. See Figure

1.1 for a summary of all these fading phenomena.
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Figure 1.1: The fading phenomena (this figure is adopted from [2])

1.1.2 Multipath

The multipath phenomenon is caused by objects (scatterers) lying in the en-

vironment a radio signal is propagating in. Multipath causes the spread of

signals in time and space (and also in frequency if the source is moving), i.e.,

the received signal consists of multiple time-delayed replicas of the transmitted

signal, arriving from various directions. The cause lies in the three basic mech-

anisms that govern wave propagation: reflection, diffraction, and scattering [5].

Reflection occurs when a propagating wave impinges upon an obstruction with

dimensions very large compared with its wavelength. Examples are the earth

surface, buildings, etc. Refraction is a related phenomenon by which a com-

ponent of the radio wave travels into the obstruction medium. Most buildings

are made of materials that absorb a lot of the energy of the wave, such that

the refracted wave is not significant in strength, compared to the reflected one.
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Reflection
Diffraction

Scattering

Figure 1.2: The propagation mechanisms

Reflection and refraction occur according to Snell’s laws. Diffraction occurs

when the radio path between the transmitter and receiver is obstructed by an

impenetrable object; then, according to Huyghen’s principle, secondary waves

form behind this object. This phenomenon explains how radio waves arrive at

the receiver even though there is no direct line-of-sight, as is the case in most

urban environments. Lastly, scattering occurs when the wave impinges upon

objects of dimensions that are on the order of the wavelength or less. In urban

environments, such scattering objects are street signs or lamp posts. Scattering

causes the energy of the wave to be radiated in many directions. See Figure 1.2

for a sketch of these propagation mechanisms.

The relative importance of these propagation mechanisms depends on the par-

ticular environment. Thus, if there is a direct line-of-sight between the mobile

and base, then reflection dominates the propagation, while if the mobile is in a
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heavily build-up area with no line-of-sight to the base, diffraction and scattering

will play the major role.

To summarize, multipath propagation results in signal spreading in time (delay

spread), space (angle spread), and frequency (Doppler spread). These three

parameters describe the nature of the wireless communication channels. In a

multipath propagation environment, several time-shifted and scaled versions of

the transmitted signal arrive at the receiver through different paths. The spread

of path delays is called delay spread. Delay spread causes frequency-selective

fading, which implies that fading now depends on the frequency. It can be

characterized in terms of coherence bandwidth, which represents the maximum

frequency separation for which the frequency-domain channel responses at two

frequency shifts remain strongly correlated. The coherence bandwidth is in-

versely proportional to the delay spread [3, chapter 4] and is a measure of the

channel’s frequency selectivity. A small ratio of coherence bandwidth to signal

bandwidth indicates a frequency-selective channel. While delay spread and co-

herence bandwidth are parameters which describe the time dispersive nature of

the channel in a local area, however, they do not offer information about the

time-varying nature of the channel caused by either relative motion between the

mobile and base station, or by movement of objects in the channel. Doppler

spread and coherence time are parameters which describe the time varying na-

ture of the channel in a small-scale region. Doppler spread is a measure of the

spectral broadening caused by the time rate of change of the mobile radio chan-

nel and is defined as the range of frequencies over which the received Doppler

spectrum is essentially non-zero. Coherence time is the time domain dual of

Doppler spread. It is actually a statistical measure of the time duration over

which the channel impulse response is essentially invariant, and quantifies the
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similarity of the channel response at different times. The larger the coherence

time, the slower the channel changes. A popular rule of thumb for modern

digital communications is to define the coherence time as follows [3, chapter 4]

Tc =

√

9

16πf2
m

=
0.423

fm
(1.5)

where fm is the maximum Doppler shift given by fm = v/λ, λ is the wavelength,

v is the velocity of the mobile station. It can be seen that the coherence time

is inversely proportional to the Doppler spread. Time-selective fading is char-

acterized by the coherence time of the channel. Angle spread at the receivers

refers to the spread of angles of arrival of the multipath at the antenna array.

Angle spread causes space-selective fading, which means that signal amplitude

depends on the spatial location of the antenna. Space-selective fading is char-

acterized by the coherence distance. The larger the angle spread, the shorter

the coherence distance. Coherence distance represents the maximum spatial

separation for which the channel responses at two antennas remain strongly

correlated.

1.1.3 Space-Time Channel Model

Given all the considerations of the channel characteristics so far, we now pro-

ceed to derive a signal model for the space-time processing applications. From

the above discussions, we know that the multipath propagation induces delay,

angle and Doppler spreads. These spreads may have distinct effects on the

channel modeling under different wireless communication systems. For exam-

ple, consider a typical example of a global system for mobile communications

(GSM) macrocell channel in a hilly terrain. GSM is a time division multiple
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access (TDMA) cellular standard first developed in Europe and now extensively

deployed around the world. It is characterized by a very short symbol period

(3.7µs), a short time slot (0.577ms), and a high channel bandwidth (200kHz).

Since the delay spread in hilly terrain and urban areas can be much larger

(10 ∼ 15µs, see [3, chapter 4]) than the symbol period, severe intersymbol

interference (ISI) will be present and hence, the channel is highly frequency

selective. On the other hand, as the time slot is short, the channel variation

introduced from the Doppler spread is negligible for several or more time slots,

despite the high velocity of the mobile stations. In contrast, the situation is

reversed in the Interim Standard 54 (IS-54 – an American TDMA standard for

mobile communications) system, where the symbol period is 41.6µs, the time

slot is 6.66ms, and the bandwidth is much smaller (30kHz). We therefore have

negligible ISI as the symbol period is large compared to the delay spread, and

frequency selectivity of the channel is low. For high Doppler spread, the coher-

ence time (say 5ms) is smaller than the time-slot duration, indicating significant

channel variation within the slot.

In this thesis, we focus our study on the high rate dispersive communication

systems such as GSM and DS-CDMA systems where the symbol period is short

in comparison with the delay spread and thus the ISI constitutes a major im-

pediment to the system performance. The channel is usually assumed to be

time-invariant for our space-time processing in these communication systems.

This is because there, the data packets used for space-time processing are rel-

atively shorter in duration relative to the coherence time of the channel.

Consider a multipath channel illustrated in Figure 1.3. The signal from the

mobile travels through a number of paths, each with its own fading and delay.

The fading can be Rayleigh or Rician, with a Doppler spectrum that is flat or
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Figure 1.3: The multipath propagation

classical. These paths arrive at the receiver with different angles of arrival. Let

the transmitted signal be

s̃(t) = s(t)ei2πfct (1.6)

The actual broadcast signal is the real part of s̃(t). Here s(t) is the complex

baseband signal and fc is the carrier frequency. The noiseless received signal

x(t) in this multipath environment, is then a superposition1 of multiple replicas

of the transmitted signal, scaled in amplitude and shifted in time, which is

written as follows

x(t) = A
∑

n

αns(t − τn)ej2πfc(t−τn) (1.7)

where A denotes the antenna gain, αn denotes the amplitude scaling resulted

1The superposition principle applies because the medium (air) is linear.
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from reflection/refraction along the nth path, and τn denotes the time shift

resulted from the propagation delays. Clearly, if dn is the propagation distance

of the nth path, then τn = dn/c, where c is the speed of light.

If the transmitter (or receiver) antenna is moving with velocity v, then the

received signal is also shifted in frequency. This phenomenon is known as

the Doppler effect. The Doppler frequency shift can be shown to be fD,n =

v
λcos(θn), where θn is the direction of the nth wave with respect to the velocity

vector v. Thus the signal model becomes [3, chapter 4]

x(t) = A
∑

n

αns(t − τn)ej2π[(fc+fD,n)t−fcτn] (1.8)

and can be further written as

x(t) = A

[
∑

n

αns(t − τn)ej2π(fD,nt−fcτn)

]

ej2πfct. (1.9)

We note that the parameters A, αn, τn, and fD,n vary with time since the source

and/or other objects in the environment are moving. However, this variation

is usually negligible for short time intervals. Therefore we can assume that

they are constant for short intervals. Moreover, for the short time intervals and

small frequency shift fD,n, the term ej2πfD,nt can also be treated as a constant

scalar, which is denoted as βn. Thus the equivalent lowpass (baseband) noiseless

received signal is

x(t) = A
∑

n

αnβne−j2πfcτns(t − τn). (1.10)

Since the multipath intensity profile (or power delay profile), as a function of

time, is always a continuum of peaks, which implies that there exist a large

number of multipaths, the received baseband signal can be modeled by the
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integral

x(t) =

∫ +∞

−∞
h(τ)s(t − τ)dτ (1.11)

where h(τ) = Aα(τ)β(τ)e−j2πfcτ , α(τ) and β(τ) are the continuous-time forms

of αn and βn, respectively. Eqn.(1.11) reveals that the channel operates as a

linear filter with the impulse response of h(τ). Also, we note that h(τ) is time-

invariant under the assumption that the parameters A, αn, τn, and fD,n are

constant for short time intervals. In conclusion, we can assume that the channel

h(τ) is time-invariant for our space-time processing because, as indicated earlier,

in high rate dispersive wireless communication systems, the data packets used

are relatively short in duration as compared with the coherence time of the

channel. For the digital wireless communication systems, the received signal at

single antenna, x(t), is the convolution of the transmitted sequence {s(k)} with

the channel h(t)

x(t) =
∑

k

s(k)h(t − kT ) + w(t) (1.12)

where w(t) is the additive noise with limited bandwidth. If we sample the

received data x(t) at the symbol rate 1
T , then the sampled signal output is

x(nT ) =

n∑

k=n−L+1

s(k)h((n − k)T ) + w(nT )

=
L∑

l=0

h(lT )s(n − l) + w(nT ). (1.13)

Here the channel h(t) has a finite impulse response (FIR) of L + 1 symbols.

The assumption of a finite channel length of h(t) has been verified by practical

measurements [6]. These experiments show that the bulk of the energy of a
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received symbol is concentrated in a finite time frame from the reception of

the first ray. With a slight abuse of notation, Eqn.(1.13) can be written in a

simpler form

x(n) =
L∑

l=0

h(l)s(n − l) + w(n). (1.14)

The above discussed model is for single-input single-output (SISO) case. We can

easily extend this model to single-input multiple-output (SIMO) by employing

multiple antennas or by oversampling the received data x(t) (we will discuss the

oversampling model in detail in Chapter 2). This multichannel model (SIMO)

arising from multiple sensors or oversampling the received data provides rich

multichannel structures that can be exploited to facilitate algorithm design,

which will be shown in the later part of our thesis. Let the received signal

at the antenna array (q antennas) be arranged into an q × 1 vector x(t)
△
=

[x1(t) x2(t) ... xq(t)]
T . Thus the received signal can be modeled as

x(n) =
L∑

l=0

h(l)s(n − l) + w(n) (1.15)

where h(l)
△
= [h1(l) h2(l) ... hq(l)]

T , and w(n)
△
= [w1(n) w2(n) ... wq(n)]T ,

{hi(l)} denotes the subchannel i from the user to the ith antenna. The channel

model can be written in vector form as

x(n) = H̄s(n) + w(n) (1.16)

where H̄
△
= [h(0) h(1) · · · h(L)] and s(n)

△
= [s(n) s(n − 1) · · · s(n − L)]T .

The signal model in Eqn.(1.16) is simple but rich and allows the application

of many techniques developed in other signal processing contexts. H̄ is the
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Figure 1.4: Smearing of received signal by ISI

symbol response channel that captures the effects of the array response, symbol

waveform or pulse shaping function (note that although we did not consider this

effect in our above derivation, it can be easily included into our model), and

the path fading.

From the studied signal models, we can see that what impinges on the receiver

is not only the transmitted symbol, but a superposition of all the delayed and

scaled transmitted signals. This has the effect of smearing the symbols in time,

which is shown in Figure 1.4. Time dispersion of the channel causes received

symbols to trail for more than its allocated time period. Thus, components of

one symbol begin to affect the received signal of adjacent symbols. This effect

is known as intersymbol interference. It corrupts the received signal, thereby

preventing the accurate reconstruction of the transmitted symbols. Figure 1.4

illustrates how time dispersion ultimately results in a received signal that has
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little or no resemblance to the transmitted symbols. In such cases, accurate

reconstruction of the transmitted symbol sequence is almost impossible without

additional processing.

Besides the intersymbol interference introduced from the channel dispersion,

another kind of interference arises from cellular frequency reuse in cellular mo-

bile communication systems, which is called as multiuser interference (MUI) or

co-channel interference (CCI). In wireless networks, a cellular layout with fre-

quency reuse is exploited to support a large number of geographically dispersed

users. In TDMA and frequency division multiple access (FDMA) systems, when

a co-channel mobile operates in a neighboring cell, MUI will be present. The

average signal-to-interference power ratio (SIR), also called as the protection

ratio, depends on the reuse factor (K). The frequency reuse factor is K = 1

in CDMA networks, that is, the frequency is reused in every cell and, in fact,

in every sector. A user signal is interfered by other users within its own cell

and from neighboring sectors and cells. This leads to higher MUI. However,

the MUI can be tolerated in CDMA because of the processing gain. The overall

signal plus multiuser interference model at the base-station antenna array can

be extended from Eqn.(1.16) and written as

x(n) = H̄1s1(n) +

p
∑

i=2

H̄isi(n) + w(n) (1.17)

where H̄1 and H̄i for i ∈ {2, . . . , p} are channels corresponding to signal and

MUI, respectively, while s1(n) and si(n) are the corresponding data sequences.

Eqn.(1.17) appears to suggest that the signal and interference are baud syn-

chronous. However, this can be relaxed and the time offsets can be absorbed

into channel H̄i for i ∈ {2, . . . , p}. Note that in multiuser cases, all the signals

are desired. The above equation turns into a multiple-input multiple-output
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(MIMO) model.

1.2 Motivation for Blind Channel Estimation

As analyzed in previous section, in high rate dispersive wireless communication

systems, ISI arises from channel dispersion and becomes the major impediment

to reliable wireless communications. We begin with the single-user case where

we are only interested in demodulating the signal of interest. In this case, the

interference from other users, i.e., MUI, can be treated as unknown additive

noise and suppressed by an interference-suppression approach (see, e.g., [7]).

Thus here what we are concerned most is how to cancel the effect of ISI; in order

to do this, we need to estimate the wireless dispersive channel. Once the channel

is estimated, various equalization techniques such as maximum likelihood (ML)

and minimum mean-square-error (MMSE) can be used to compensate the ISI

and recover the transmitted symbols accurately.

Traditional methods for channel estimation require the transmitter to period-

ically send signals that are known to the receiver (also called as “training se-

quences”) in order to enable channel identification. Although the use of training

sequences is probably the most robust way to estimate the channel, however,

these periodically transmitted training sequences consume a considerable band-

width and thus reduce the bandwidth usage efficiency. In fact, almost all of the

current cellular systems embed training signals in the transmitted data, for ex-

ample, in GSM, about 20% of the bandwidth is devoted to training. Moreover,

in rapidly time-varying wireless channels, we may have to retrain frequently,

resulting in poor spectral efficiency. There is, hence, an increased interest in

the so-called “blind methods” that can estimate the channel without an explicit
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training signal. Starting from the seminal work of Sato [8] in 1975, blind channel

estimation methods have received considerable attention over the past decades.

As compared to the traditional techniques, blind channel estimation methods

identify the unknown wireless channels based only on the received signals and

some a priori statistical information or properties of the input signals, without

direct access to the transmitted signals. Therefore, blind methods can be used

to eliminate or reduce the training sequences, thus saving precious bandwidth

and improve the network capacity.

In the multiuser scenarios, our task is to jointly detect or extract all impinging

signals rather than only the signal of interest. Such problems occur in chan-

nel reuse-within-cell (RWC) applications or in situations where we attempt to

demodulate the interference signals in order to improve interference suppres-

sion. In this case, the multiuser interference which comes from other users is

not negligible and can no longer be treated as additive noise. On the contrary,

they now become the desired signals to be demodulated in order to achieve

a better interference suppression effect. Obviously, to jointly demodulate all

the user data sequences, the channels for all the arriving signals have to be

estimated. Multiuser techniques need either training signals or blind methods

to estimate the channels for all users. However, the use of training signals to

estimate the channels becomes much complicated in this case. This is because

the multiple training signals should be designed to have low cross-correlation

properties so as to minimize cross coupling in the channel estimates. Moreover,

training requires synchronization, which may not be feasible in multiuser sce-

narios. Thus, blind methods which do not need training and synchronization

become a desirable alternative.

Outside the communications area, the need for blind channel estimation also
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arises from other applications such as speech recognition and reverberation

cancelation [9], image restoration [10,11], and seismic signal processing [12,13].

Although blind methods present some advantages, they also suffer from certain

drawbacks compared to non-blind techniques. In general, blind algorithms tend

to be computationally more expensive. Some blind methods converge to a local

rather than global minimum due to their nonlinear nature. Also, blind methods,

as opposed to the non-blind methods, introduce some inherent ambiguity in the

channel estimation, e.g., an unknown phase ambiguity. The latter two problems

can be resolved by using a short set of training signals. Although the algorithms

are then no longer blind, they retain many of advantages associated with blind

algorithms. Hence, purely blind versus training correspond to two extremes

of a whole spectrum of system identification algorithms. In practice, system

designers may combine ideas from both approaches to minimize the training

signal requirements of non-blind methods, and yet obtain the robustness of

blind methods at a lower computational cost. This semi-blind approach which

can combine the advantages of blind and training-based (non-blind) techniques

is discussed in [14,15].

1.3 Review of Blind Channel Estimation Techniques

As indicated earlier, the term “blind” refers to methods that do not need train-

ing signals and rather exploit some a priori statistical information or properties

of the input signals. These properties include non-Gaussianity, constant mod-

ulus (CM), finite alphabet (FA), cyclostationarity, etc. It is also noted that

there is another kind of blind methods that exploit the spatial structure such

as array manifold to estimate the direction-of-arrival (DOA) of the impinging
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Figure 1.5: Schematic of blind channel identification

signals. They then use DOA estimates as a basis for determining the optimum

beamformer. These methods were developed vigorously in the 1980s in mili-

tary applications for reception of unknown or noise-like signals. See [16] for a

survey. DOA-based methods, however, suffer from several drawbacks in cellu-

lar applications. First, DOA estimation requires an accurate knowledge of the

array manifold. This needs expensive calibration support. Next, the number

of antennas at cellular base stations varies from four to eight per sector, which

might be insufficient for cellular environments with rich multipath and inter-

ference. Finally, while these methods can be quite effective against co-channel

interference, their effectiveness against ISI depends upon the angle spread of

multipath. In fact, when multipath and delay spread are present, they may

have a poor or even disastrous performance. In this thesis, we focus our study

on the blind methods which exploit the statistical information or properties of

the input signals. The spatial structure, such as array manifold, is not assumed

and exploited in our work.

At first glance, the blind channel estimation/identification problem illustrated

in Figure 1.5 may not seem tractable. How is it possible to distinguish the

signal from the channel when neither is known? The essence of blind channel
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identification rests on the exploitation of structures of the channel (note that

although the array manifold is not assumed, by stacking and arranging the

received data, the channel matrix may still possess some certain structure like

block Toeplitz structure, this will be detailed in Chapter 2) and properties of the

input. A familiar case is when the input has known probabilistic description,

such as probability distributions and moments. In such a case, the problem

of estimating the channel using the output statistics is related to time series

analysis. In communications applications, for example, the input signals may

have the finite alphabet property, or sometimes exhibit cyclostationarity. This

latter property was exploited in [17] to demonstrate the possibility of estimating

a nonminimum phase channel using only second order statistics, which led to the

development of many subspace-based blind channel identification algorithms.

The earliest blind techniques were primarily based on higher order statistics.

They [8, 18–21] exploited higher order statistics (HOS) implicitly or explicitly

to directly estimate the transmitted signal or estimate the single-input single-

output channel/equalizer to combat the intersymbol interference. Since the

phase information of the SISO channel only exists in higher order statistics, the

second-order statistics (SOS) alone cannot recover the unknown SISO channel.

The major breakthrough came in the 1990s. In the pioneering work [17], it was

shown that under multichannel model, direct blind identification/equalization

becomes possible using only the second-order statistics of the received data un-

der quite general assumptions. This multichannel model (SIMO) arises from

resorting to multiple sensors at the receiver or oversampling the received data

by exploiting the receiver-induced cyclostationarity. Following [17], numerous

SOS-based blind identification/equalization methods [1, 22–25] have been pro-

posed. These methods include the matrix pair method [17], channel subspace
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method [22], linear prediction method [23, 26], outer-product method [24], etc.

As compared to HOS-based methods, SOS-based methods usually require much

less received data samples to converge or to generate an accurate statistical es-

timation. Also, they are more computationally efficient, which is in contrast to

the HOS-based methods that suffer from high computational costs in computing

the higher order cumulants. Another advantage is that under the multichan-

nel model, they can provide very elegant closed-form solutions to the channel

estimation, while most previously HOS-based methods are iterative and suffer

from the problem of local convergence. Due to the above mentioned reasons, the

SOS-based methods have attracted significant attention over the past decade.

Moreover, the study on blind channel estimation using SOS is not only confined

to single-user’s scenarios, there is also an increasing interest in blind channel

estimation of MIMO systems because of its wide applications. For the MIMO

systems, the multiple inputs may represent communication signals from multi-

ple users or speech signals from multiple speakers, and the received signals are

the convolutive mixtures of the multiple input signals. Many SOS-based meth-

ods have been proposed for blind MIMO channel estimation for the past decade,

which include the channel subspace method for multiuser’s case [27–29], the lin-

ear prediction method [30–32], the outer-product method [33,34], the whitening

approach [35] and the frequency-domain approaches [36–39].

As in classical system identification problems, certain conditions about the

channel and the source must be satisfied to ensure identifiability. These condi-

tions are called as channel identifiability conditions. Channel identifiability has

always been the issue closely related to various blind channel estimation prob-

lems. For the SIMO case, it is well known [17,40] that unknown channel h can

be blindly identified up to a constant factor from SOS of the received data if and
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only if all SIMO sub-channels share no common zeros, i.e., the channel is irre-

ducible [27,41]. This condition permits a full-rank channel convolution matrix.

The unknown constant factor is an inherent ambiguity for blind multichannel

identification and can be determined by further knowledge available about the

model. As for the MIMO case, for the independent and identically distributed

(i.i.d.) inputs, it is noted that SOS-based algorithms can only estimate MIMO

channels up to an unknown unitary mixing matrix. To further identify this

unknown matrix, we have to resort to higher order statistics or other pertinent

properties of the impinging source signals. Most SOS-based methods require

the MIMO channel H(z) to be irreducible and column-reduced [27, 41], which

guarantees the existence of a finite impulse response inverse to H(z), as shown

in [27, 29]. However, it is shown that the column-reduced condition can be

removed in some SOS-based algorithms [32, 33, 35]. In particular, SOS-based

methods for blind system identification depend on the availability of channel

diversity. In other words, the number of output signals must exceed the number

of source signals in the MIMO system. The identifiability conditions for blind

MIMO identification driven by the colored signals are investigated in [42]. It is

shown that for the colored inputs, the sufficient conditions for the MIMO FIR

channel to be identifiable (up to a scaling and permutation) using second-order

statistics of the channel output are (i) the input colored signals should be of

distinct power spectra; (ii) the channel is irreducible; and (iii) the number

of channel outputs is strictly greater than the number of inputs. To design

less restrictive algorithms, HOS can provide some distinct advantages, which

include providing system phase information without requiring channel diver-

sity, the ability to resolve matrix ambiguity to pure scaling and permutation

indeterminacies, and asymptotic insensitivity to additive Gaussian noise. It

is shown in [43], by exploiting HOS, the proposed algorithms only require a
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weaker identifiability condition, i.e., the number of antennas can be equal to

the number of source signals, and the channel even need not be irreducible.

The various blind channel estimation methods can be classified based on the

modeling of the input signals (see Figure 1.6 for the classification of blind meth-

ods). If inputs are assumed to be random with prescribed statistics (or distribu-

tions), the corresponding blind channel estimation schemes are considered to be

statistical. The methods discussed up to now are all statistical and clearly, they

can be divided into SOS-based or HOS-based methods. On the other hand,

if the sources do not have a statistical description, or although the sources

are random but the statistical properties of the sources are not exploited, the

corresponding estimation algorithms are classified as deterministic.

Deterministic methods do not assume that the input sources have a specific

statistical structure. This class of algorithms can be categorized into subspace

and non-subspace algorithms. The subspace-based deterministic methods were

inspired by the introduction of the multichannel SIMO platform. It has been
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shown that this model provides rich multichannel structures that can be ex-

ploited for channel identification. In [44], a cross-relation (CR) approach was

proposed by utilizing the cross relation between any two subchannels. Later, the

classical channel subspace (CS) method [22] was put forward by Moulines et al..

The channel subspace method exploits the structure of the channel convolution

matrix. It forces the signal subspace to have a block Toeplitz structure, which is

orthogonal to the noise subspace. The channel subspace algorithm has a strong

connection with the cross-relation algorithm. As pointed out in [27], they only

differ in their parameterizations of noise and signal subspaces. Though, the CS

method is relatively more complex than the CR method, it appears to provide

better estimates under most conditions. The dual of the CS approach is to

force the Toeplitz structure of the constructed input symbol matrix. This kind

of approaches is presented in [45–47]. Other deterministic methods include the

two-step maximum likelihood (TSML) algorithm [48], and the mutually refer-

enced equalizers (MRE) method [49]. Perhaps a more striking property of the

subspace-based deterministic methods is the so-called finite sample convergence

property. Namely, when there is no noise, the estimator produces the exact

channel using only a finite number of samples, provided that, of course, the

identifiability conditions (the identifiability conditions for this kind of methods

can be found in [40]) are satisfied. Also, deterministic methods can be applied

to a much wider range of source signals since they do not rely on the specific

assumptions concerning the input statistics. However, not using the source

statistics affects their asymptotic performance. They are not so robust to noise

as the SOS-based algorithms, especially when the identifiability condition is

close to be violated. Therefore, these methods are most effective at high signal-

to-noise ratio (SNR) and for small data samples scenarios. Almost all of the

existing subspace-based deterministic algorithms are derived under a common
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assumption that the channel order must be known a priori ; while some statis-

tical methods, e.g. [23, 24], require only the upper bound of the channel order

L. The assumption that L is known may not be possible in practice. To ad-

dress this problem, there are two approaches. First, there are well-known order

detection schemes that can be used in practice, e.g. [50, 51]. Second, channel

order detection and parameter estimation can be performed jointly. This joint

estimation deterministic method was proposed by Tong et al. in [52, 53]. The

method utilizes the so-called isomorphic relationship between the output and

input subspaces to develop a least squares smoothing algorithm. In contrast

to the subspace-based deterministic methods, the non-subspace deterministic

methods are not dependent on the multichannel structures, instead, they ex-

ploit the properties of the input signals such as constant-modulus (CM) or finite

alphabet (FA). This class of methods includes [54–62], etc. As compared to the

subspace-based deterministic methods which can provide elegant closed-form

identification solution, the non-subspace methods are usually iterative and suf-

fer from local convergence. However, using the CM or FA properties of the input

signals makes these algorithms not only confined to the multichannel models

(SIMO), i.e. they are also capable of handling the model without channel diver-

sity (SISO) and the model of multiuser scenarios (MIMO). It has been shown

in [46, 47] that blind MIMO channel identification can be made more effective

by exploiting the multichannel structures and the finite alphabet properties of

the input signals simultaneously.

As mentioned before, statistical methods can be divided into SOS-based meth-

ods and HOS-based methods. The first SOS-based method was introduced by

Tong et al. in [17] under the multichannel model. Since then, a variety of SOS-

based methods have been proposed [1,22–25,63,64]. The channel subspace (CS)
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method [22], the linear prediction (LP) approaches [23] and the outer-product

decomposition (OPD) algorithm [24] are some of the most popular among them.

The channel subspace method has its deterministic and stochastic versions, re-

spectively. It is developed by exploiting the block Toeplitz structure of the

channel convolution matrix (also called as channel filtering matrix). It has

a simple structure and achieves good performance for SIMO system, but it

requires precise knowledge of the channel order a priori, which may not be

possible in practice. Also, its extension to MIMO channels is not successful be-

cause it generally can only estimate the channels subject to a polynomial matrix

ambiguity [27]. In contrast, the extension of the LP and OPD algorithms to

MIMO systems are quite straightforward, and they are valid even when the

channel order is overestimated. Linear prediction-based approach was first pre-

sented by Slock [26], and was later generalized and refined by Abed-Meriam

et al. [23]. The key idea comes from the recognition that multichannel moving

average (MA) process is also autoregressive (AR). The main disadvantage of

this algorithm is that it is a two-step approach whose performance depends on

the accuracy of the estimated h(0). When noise is present and ‖h(0)‖ is small,

performance degradation may be significant. Ding [24] proposed the OPD al-

gorithm that obtains the channel directly, hence avoiding the problem of small

‖h(0)‖. Although OPD algorithm was not derived from the linear prediction

view point, it has the same identification equation as the multistep linear predic-

tion approach derived by Gesbert and Duhamel [65]. OPD algorithm is similar

in properties and performance to the LP algorithm. There is another kind of

SOS-based algorithms [1, 25] that directly compute the equalizers, unlike most

blind algorithms available to date which first identify the channel and then use

it to estimate the equalizer coefficients. Most existing SOS-based algorithms

including the above mentioned algorithms assume the input signals to be i.i.d..
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The works that consider the correlated (colored) input signals are much less,

see [66–68] for the SIMO case. In fact, colored sources indeed occur in practice.

For example, colored sources arise as a result of channel encoding [69]. Also,

for the i.i.d. input sources, it is well known that the MIMO channel can only

be determined up to an unknown unitary matrix that cannot otherwise be re-

solved using the second-order statistics. To resolve this residual static mixtures,

one of several blind source separation (BSS) techniques should be resorted to.

However, in contrast to the channels driven by white signals, the MIMO FIR

channels driven by colored signals may provide us advantages in developing

a complete closed-form SOS-based method without an extra BSS algorithmic

step. The input colored signals should be of distinct power spectra, which is a

sufficient condition for the MIMO FIR channel to be identifiable up to a scal-

ing and permutation using second-order statistics of the channel output. There

are some works [28,36,37,70,71] which studied blind identification/equalization

of MIMO FIR channel driven by colored signals but with unknown statistics.

For the case where the sources are colored with a priori known statistics, the

proposed algorithms [72–74] may achieve a better performance by utilizing the

knowledge of the input statistics. While most SOS-based methods for blind

channel identification depend on the availability of channel diversity resulting

from either oversampling (by exploiting the receiver-induced cyclostationarity)

or multiple antennas, another class of SOS-based methods termed transmitter

induced cyclostationarity (TIC) algorithms can identify SISO system only from

the output second order statistics by exploiting the transmitter induced cyclo-

stationarity. There are many different schemes proposed to induce cyclostation-

arity at the transmitter, which include periodic modulation [75, 76], repetition

coding [77], combinations of repetition and modulation and filterbank precod-

ing [78]. This class of algorithms do not assume any restrictive assumption on
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the channel zeros, color of additive noise, and do not increase the transmission

rate of the data stream. The blind identification of MIMO systems by utilizing

the transmitter induced cyclostationarity is discussed in [79].

HOS-based methods can usually be classified as either linear or nonlinear. Most

nonlinear methods involve the optimization of a nonlinear cost function con-

structed based on inverse filter criteria [18] or model fitting criteria [80–82].

These nonlinear methods tend to be more accurate than linear methods but usu-

ally require a good initialization to prevent local convergence and to speed up

the searching process. In [83], Boss et al. proposed a novel two-step approach.

It first iteratively ameliorates a blind linear equalizer and then estimates the

channel parameters using the reference signal generated by the equalizer. Mean-

while, a large number of linear HOS approaches also exist in the literature. Lin-

ear approaches normally admit a closed-form solution, which can be used either

as the final result or as an initialization for nonlinear methods. Some original

contributions include [84–86]. Later in [87–90], to improve estimation accuracy,

more advanced approaches were proposed to exploit a larger set of cumulants as

well as certain inherent linear algebraic structure. HOS-based methods for blind

MIMO system identification also have received much attention in the past. A

broad class of HOS algorithms fall into the category of linear approaches [91–94].

Among them, Giannakis et al. generalized their earlier “GM method”, which is

designed for SISO systems, to MIMO systems under a somewhat strict condition

imposed on the channel impulse response [91]. Later on, Swami and his col-

leagues presented a unified Kronecker product formulation to define cumulants

of vector processes of arbitrary orders [93]. Parameter estimation algorithms

for causal and noncausal multichannel AR, MA, ARMA models were devel-

oped under the similar identifiability condition required in [91]. In [94], Tong
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proposed a new channel estimation algorithm for FIR MIMO systems, which

can handle MIMO systems with fewer outputs than inputs. It presents a very

general identifiability condition. Nevertheless, as indicated in the conclusion

of [94], the algorithm implementation still requires further studies to avoid a

number of matrix rank tests that may not be practical for estimated cumulant

matrices. Recently, a new linear MIMO cumulant subspace method was put

forward by Liang et al. [95]. On the other hand, a number of HOS algorithms

were developed based on statistics matching or inverse filtering. Some inverse

filtering-based algorithms [96,97] adopt an iterative procedure that successively

recovers each active source signal using a MIMO equalizer and then estimates

the corresponding subchannels based on the recovered source signal and the ob-

served channel outputs. Clearly, both algorithms [96,97] rely on the premise of

accurately converging MIMO equalizers. The channel estimation performance

tends to suffer from error propagation when the number of users increases. The

main limitation of all HOS-based methods, however, consists of their slow con-

vergence rate due to the large estimation variance of HOS and thus the need of

a large sample size for accurate time-average approximations of HOS. Conse-

quently, HOS-based methods can hardly be applied in applications where fast

channel variations and rapid adaptivity are essential.

In summary, we have seen that there is a wide range of possible blind techniques,

which can be well suited for specific applications. The choice of a particular

technique depends on the characteristics of the signals and the channel. Con-

vergence and computational complexity are also important issues. Although

we have not yet reached the final solution in blind signal processing, previ-

ous research activities have led to many fast converging and good performance

techniques.
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1.4 Motivations and Contributions of the Thesis

Our research interests are mostly inspired by the elegant closed-form solutions

to blind channel identification offered by the SOS-based methods. Following

the ground-breaking paper by Tong et al. [17] that presented a blind channel

identification method that relies only on second-order statistics under the mul-

tichannel model, a number of SOS-based techniques have since been proposed

and dominated the blind identification literature. As compared to HOS-based

methods, the SOS-based methods have a much faster convergence rate and thus

need a smaller data sample size for an accurate channel estimation. Also, by

using the source statistics, the SOS-based techniques gain a stronger robust-

ness to noise than the deterministic methods. Finally, unlike many iterative

algorithms suffering from the problem of local minima, the elegant closed-form

solutions rendered by the SOS-based methods can be used either as the final

result or as an initialization for nonlinear methods. Given so many advantages,

it is no wonder that they have attracted significant attention over the past

decade.

Although numerous SOS-based algorithms have been proposed, however, most

existing SOS-based algorithms [1, 17, 23–25] assume the input signals to be

i.i.d.. The work that consider the case of correlated input signals are much

sparser. In fact, colored sources indeed occur in practice. For example, col-

ored sources arise as a result of channel encoding [69]. Also, in spatial division

multiple access (SDMA) systems, the information bearing signals are filtered

through correlative filters as a means of introducing redundancy for the purpose

of better signal recovery at the receiver [72]. The methods for blind channel

identification driven by colored sources include [66, 67, 70–73]. Usually, they
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can be classified according to whether the input statistics of the sources are

known a priori or unknown. It is clear that using the input statistics can help

improve the performance of the proposed algorithms. On the other hand, the

algorithms without requiring the knowledge of the input statistics may have

wider applications. The previously developed work that address the case of in-

put colored signals with a priori known statistics include [66,67] for the SIMO

systems and [72,73] for the MIMO systems. Among them, the work [66] imposes

a somewhat restrictive condition on the source correlation, where an exponen-

tially decaying autocorrelation function is assumed. The work [67] constitutes

a direct extension of the TXK method [17] by exploiting the inherent struc-

tural relationship between the source autocorrelation matrices Rs[0] and Rs[1].

Both [66] and [67] consider the blind channel estimation/equalization of SIMO

models, and the extension of these algorithms to the MIMO systems is not

straightforward because some of the relationships and properties in these works

are no longer valid in multiuser case. The work [72] provides an elegant closed-

form solution to blind MIMO channel identification. However, it is derived and

presented under a correlative framework which is obtained by utilizing linear

correlative filters at the transmitters, thus assigning distinct spectral patterns

to the sources. Recently, a frequency-domain nonlinear iterative method [73]

was proposed for blind MIMO channel estimation driven by colored sources.

Due to its nonlinear nature, the method requires a good initialization in order

to minimize the problem of local minima.

As we can see, although there already exist some papers addressing the problem

of blind channel identification driven by colored sources with a priori known

statistics, however, the rich information of the input statistics and the multi-

channel structures has not yet been fully exploited. In this thesis, by further
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exploiting the inherent structural relationship between the source autocorrela-

tion matrices and utilizing the new derived properties of the companion ma-

trices, we propose a new closed-form solution for blind channel identification

driven by colored sources. Our proposed method, unlike the works [66, 67], is

applicable to both SIMO and MIMO cases. Also, as compared with [72], our

proposed method achieves better performance with much less computational

complexity and a less restrictive identifiability condition. The contribution of

our work can be summarized as the following three aspects. First, the inherent

structural relationship between the source autocorrelation matrices is further

exploited as compared to the work [67]. Second, we derive some new proper-

ties of the constructed companion matrices. These properties play a key role

in devising and validating our proposed algorithm. Third, the proposed algo-

rithm compares favorably with other existing methods in many aspects. We

will present this part of our work in Chapter 4 (SIMO) and Chapter 5 (MIMO)

of this thesis. The results for SIMO case have been published in IEEE Signal

Processing Letters [68] and the results for MIMO case have been published by

IEEE Trans. Signal Processing [74].

Encouraged by the achieved results for blind channel identification driven by

colored sources with known input statistics, we become interested in investigat-

ing the problem of blind channel identification/equalization driven by colored

sources with unknown input statistics. For the case where the input statistics

are colored but unknown, it seems much more difficult to devise a SOS-based

algorithm since no prior statistical information of the transmitted signals can

be utilized. One solution to this problem is given in [22], which proposed a

subspace-based method by exploiting the block Toeplitz structure of the channel

convolution matrix, and thus required no knowledge of input statistics what-
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soever. The extension of [22] to MIMO systems was studied in [28]. There

are some other work [70, 71] which studied blind identification/equalization of

MIMO FIR channel driven by colored signals with unknown statistics. How-

ever, both work [70, 71] constitute a two-step approach that is based on [22].

They, firstly, determine source separating vectors or decorrelators to separate

the sources. Once the sources are separated, the second step utilizes the sub-

space method [22] to estimate the resulted SIMO systems and the original

MIMO systems. It is also noticed that some deterministic approaches that can

handle arbitrarily correlated source signals have been discussed in [44,48,52,98]

for blind SIMO channel identification/equalization. However, they are most ef-

fective at high SNR and for small data samples scenarios. In this thesis, we

propose a new SOS-based method for blind equalization of SIMO FIR chan-

nel when the input signals are colored but the source statistics are unknown.

It is shown that although the statistical information of the transmitted sig-

nals is not available, we can still estimate the zero-forcing (ZF) and minimum-

mean-square-error (MMSE) equalizers of desired delays from the second-order

statistics of the received data by exploiting the inherent structural relationship

between source autocorrelation matrices of different delay lags. Our proposed

method outperforms the existing methods [22, 49] significantly for the colored

sources that have a weak autocorrelation. This part of our work will be pre-

sented in Chapter 6. The results have been published by IEEE Trans. Signal

Processing [99].

After we obtained results for temporally correlated sources, our research in-

terest then turns to blind identification of MIMO channel driven by spatially

correlated sources (note that in our work [74], we assume the sources are tempo-

rally correlated but spatially uncorrelated). Thus far, although numerous SOS-
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based techniques have been introduced for blind MIMO channel identification,

however, they usually assume that the input sources are spatially mutually in-

dependent or, at least, uncorrelated. The work on blind identification of MIMO

channel driven by spatially correlated sources are scarce. In this thesis, such a

problem is also studied. It is shown that under certain specified conditions, the

MIMO FIR channel can be completely identified using the second-order statis-

tics of the channel output. A SOS-based method is proposed and the proof for

the uniqueness of the system solution is provided. Our method can be success-

fully employed for blind nonlinear SIMO channel equalization. As compared to

other existing methods [100,101], our method renders a wider applicability for

the input sources and exhibits better performance. The part of our work will

be presented in Chapter 7 and also, the results have been submitted to Signal

Processing [102].

Another thread of our research work is to study the problem of blind channel

estimation by utilizing higher order statistics. As indicated earlier, HOS can

provide some distinct advantages to design less restrictive algorithms. HOS-

based methods could be applicable in such a scenario where channel diversity

is not available, i.e. channel is SISO, or blind identifiability condition for SOS-

based methods is close to be violated [103]. The HOS-based approaches have

now evolved into a subspace era. To improve estimation accuracy, many ad-

vanced approaches were proposed to exploit a large set of cumulants as well

as certain inherent linear algebraic structure. Compared with other methods,

these subspace methods [87–90] achieve a better performance with less data

samples. In this thesis, we propose a new linear subspace method that extracts

the channel information by utilizing the so-called interference subspace cancella-

tion vectors. Precisely, we devise our algorithm by exploiting the partial column
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space overlapping relationship between a concatenated cumulant matrix and a

target cumulant matrix to obtain these information-extraction vectors. With a

similar computational complexity, our proposed algorithm compares favorably

with other existing linear HOS-based methods. We will present this part of our

work in Chapter 3. The results have been published by IEEE Trans. Signal

Processing [104].

1.5 Thesis Outline

This thesis is organized as follows.

In Chapter 2, we introduce some mathematical preliminaries about higher order

statistics and the data models for blind system identification.

Next, in Chapter 3, we propose a HOS-based linear method to identify the

SISO channel. The results of this chapter have been published by IEEE Trans.

Signal Processing [104].

In Chapter 4, we present a SOS-based method for blind identification of SIMO

channel driven by colored sources. The input statistics of the source are assumed

known a priori. The results of this chapter have been published in IEEE Signal

Processing Letters [68].

In Chapter 5, the proposed method in Chapter 4 is extended to the MIMO

systems. The properties on companion matrices are further exploited to prove

the uniqueness of the system solution. The results of this chapter have been

published by IEEE Trans. Signal Processing [74].

Chapter 6 introduces a SOS-based method for blind equalization of SIMO chan-

nel driven by colored sources with unknown statistics. The results of this chap-
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ter have been published by IEEE Trans. Signal Processing [99].

Chapter 7 presents a SOS-based method for blind identification of MIMO FIR

channel driven by spatially correlated sources. The proof of the uniqueness

of the system solution is provided and the identifiability conditions are also

investigated. The results of this chapter have been submitted to Signal Pro-

cessing [102].

Finally, in Chapter 8, we conclude with a summary of our contributions and

directions for future research.



Chapter 2

Background – Mathematical

Preliminaries

Our primary goal in this chapter is to introduce all the important definitions

and properties associated with moments and cumulants which are useful in the

following chapters. We also discuss the data model for blind system identifica-

tion that will be used in our work.

2.1 Moments and Cumulants

When signals are non-Gaussian the first two moments are not sufficient to

define their probability density function (pdf) and consequently HOS, namely

of order greater than two, can reveal other information about them than SOS

alone can. Ideally, the entire pdf is needed to characterize a non-Gaussian

signal. In practice this is not available but the pdf may be characterized by

its moments. It should be noted that some distributions do not possess finite

moments of all orders [105]. Moreover, the moments, even when they exist for

37
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all orders, do not necessarily determine the pdf completely. Only under certain

conditions will a set of moments determine a pdf uniquely. It is rather fortunate

that these conditions are satisfied by most of the distributions arisen commonly.

For practical purpose, the knowledge of moments may be considered equivalent

to the knowledge of the pdf. Thus distributions that have a finite number of

the lower moments in common will, in a sense, be close approximations to each

other. In practice, approximations of this kind often turn out to be remarkably

good, even when only the first three or four moments are equated [106].

2.1.1 Definitions and Properties

We focus our presentation on the real random variables. For the complex

case, the readers can refer to [107] and the references therein. Let {y(n)}, n =

0,±1,±2,±3, . . . be a random process, stationary up to order q; then, the pth

order moment, Mp,y(τ1, τ2, . . . , τp−1) is defined as the joint pth order moment of

the random variables, y(n), y(n + τ1), . . . , y(n + τp−1). Because of the assumed

stationarity, the pth order moment is a function only of the (p−1) lags, {τi}
p−1
i=1 .

We now write the moments of a stationary random process as

Mp,y(τ1, τ2, . . . , τp−1)
△
= Mom[y(n), y(n + τ1), . . . , y(n + τp−1)]

= E[y(n)y(n + τ1) . . . y(n + τp−1)] (2.1)

where E[·] is the statistical expectation operator. The pth order cumulant exists,

if all absolute moments of orders q ≤ p exist (and are bounded). Similarly, the

pth order cumulants of {y(n)} are (p − 1)-dimensional functions which we now

write in the form

Cpy(τ1, τ2, . . . , τp−1)
△
= Cum[y(n), y(n + τ1), . . . , y(n + τp−1)]. (2.2)
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The general relationship between moments and cumulants of any order can be

found in [108]. Cumulants of orders greater than one are invariant to shift of

mean. We will assume that the processes of interest are all zero-mean.

Hence, the second-order moment sequence (autocorrelation) of the zero-mean

random process {y(n)} is defined as

M2,y(τ)
△
= E[y(n)y(n + τ)]. (2.3)

In this case, the second-order cumulants C2,y(τ) are the same as M2,y(τ), i.e.

C2,y(τ) = M2,y(τ) ∀τ . The third-order moment sequence is defined as

M3,y(τ1, τ2)
△
= E[y(n)y(n + τ1)y(n + τ2)] (2.4)

and again C3,y(τ1, τ2) = M3,y(τ1, τ2) ∀τ1, τ2, where C3,y(τ1, τ2) is the third-order

cumulant sequence. The fourth-order moment sequence is defined as

M4,y(τ1, τ2, τ3)
△
= E[y(n)y(n + τ1)y(n + τ2)y(n + τ3)] (2.5)

and the fourth-order cumulants are

C4,y(τ1, τ2, τ3) = M4,y(τ1, τ2, τ3)

−C2,y(τ1)C2,y(τ2 − τ3) − C2,y(τ2)C2,y(τ3 − τ1)

−C2,y(τ3)C2,y(τ1 − τ2). (2.6)

As can been seen despite the fact that the second- and third-order cumulants

(of zero-mean processes) are identical with autocorrelation and the third-order

moment respectively, fourth-order moments are different from the fourth-order

cumulants. The third- and higher-order cumulants of Gaussian processes are
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identically zero (proof can be found in [109]). Since cumulants of order p > 2 of

a Gaussian process are zero, cumulants provide a quantitative measure of the

deviation from Gaussianity.

The properties of moments and cumulants can be summarized as follows [108]:

P1 If λi, i = 1, . . . , p are constants, and yi, i = 1, . . . , p are random variables,

then

Mom(λ1y1, . . . , λpyp) = (

p
∏

i=1

λi)Mom(y1, . . . , yp)

and

Cum(λ1y1, . . . , λpyp) = (

p
∏

i=1

λi)Cum(y1, . . . , yp).

P2 Moments and cumulants are symmetric functions in their arguments, i.e.

Mom(y1, . . . , yp) = Mom(yj+1, . . . , yp, y1, . . . , yj)

and

Cum(y1, . . . , yp) = Cum(yj+1, . . . , yp, y1, . . . , yj).

P3 If the random variables {yi}
p
i=1 are independent of the random variables

{zi}
p
i=1, then

Cum(y1 + z1, . . . , yp + zp) = Cum(y1, . . . , yp) + Cum(z1, . . . , zp)
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whereas in general

Mom(y1 + z1, . . . , yp + zp) = E[(y1 + z1)(y2 + z2) · · · (yp + zp)]

6= Mom(y1, . . . , yp) + Mom(z1, . . . , zp).

However, for random variables {z1, y1, y2, . . . , yp}, we have that

Cum(y1 + z1, y2, . . . , yp) = Cum(y1, y2, . . . , yp) + Cum(z1, y2, . . . , yp)

and

Mom(y1 + z1, y2, . . . , yp) = Mom(y1, y2, . . . , yp) + Mom(z1, y2, . . . , yp).

P4 If a subset of the random variables {yi}
p
i=1 is independent of the rest, then

Cum(y1, y2, . . . , yp) = 0

whereas in general

Mom(y1, y2, . . . , yp) 6= 0.

2.1.2 Ergodicity and Moments

Ergodicity deals with the relationship between statistical averages and sample

averages. A process {y(n)} is ergodic in the most general form if, with prob-

ability one, all its moments can be determined from a single realization [108].

In other words, the expected value E[·] (or ensemble averages) can be replaced
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by time averages, i.e.,

E[y(n)y(n + τ1) · · · y(n + τp−1)] = 〈y(n)y(n + τ1) · · · y(n + τp−1)〉

= lim
T→∞

1

2T + 1

+T∑

n=−T

y(n)y(n + τ1) · · · y(n + τp−1) (2.7)

where 〈·〉 is the time-average operator which has the same properties as the

ensemble average operation E[·] if the process is ergodic.

We see from Eqn.(2.7) that time-averages of higher-order moments are functions

of infinitely many random variables and, therefore, can be viewed as random

variables themselves. What ergodicity implies is that the time averages of all

possible sample sequences are equal to the same constant which, in turn, equals

the ensemble average. Clearly, a process might be ergodic for certain higher-

order moments and not for others [109]. Throughout this thesis we assume that

if the process is ergodic, then Eqn.(2.7) holds for all orders up to p.

In practice, when we are given a finite length single realization of an ergodic pro-

cess, i.e., {y(n)}, n = −T, . . . ,+T , we cannot compute the limits of Eqn.(2.7)

but the estimates

〈y(n)y(n + τ1) · · · y(n + τp−1)〉 =
1

2T + 1

+T∑

n=−T

y(n)y(n + τ1) · · · y(n + τp−1).(2.8)

The estimation of higher-order moments and thus of a stochastic process can

be found in details in [108].
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Figure 2.1: Single-input multiple-output model

2.2 Data Model

The data model for blind channel identification has been discussed briefly in

Chapter 1. In this section, we elaborate on the SIMO and MIMO systems.

The SIMO model (see Figure 2.1) arises from employing multiple antennas or

from oversampling the received data. For single user and multiple antennas,

if we sample the received data at symbol rate, as indicated in Chapter 1, the

channel model can be written as

x(n) =
L∑

l=0

h(l)s(n − l) + w(n) (2.9)

where x(n)
△
= [x1(n) x2(n) ... xq(n)]T , h(l)

△
= [h1(l) h2(l) ... hq(l)]

T , and

w(n)
△
= [w1(n) w2(n) ... wq(n)]T . Here q denotes the number of antennas,

{hi(l)} denotes the subchannel i from the user to the ith antenna. For single

user and single antenna, if we oversample the received data at a rate 1
Tos

, and we

assume T/Tos = q, where T is the symbol period, then the received data x(n)



CHAPTER 2. BACKGROUND – MATHEMATICAL PRELIMINARIES 44

is oversampled to obtain q subsequences xi(n) = x(n + i/q), i = 0, 1, . . . , q − 1:

xi(n) =
L∑

l=0

hi(l)s(n − l) + wi(n) (2.10)

where hi(l) = h(l + i/q) and wi(n) = w(n + i/q). Thus we can still arrive at

the model Eqn.(2.9) by stacking these q subsequences. We now derive the most

popular data model widely used in blind system identification from Eqn.(2.9).

By stacking the received data (channel output) vector {x(n)} and defining:

~x(n)
△
= [xT (n) xT (n − 1) . . . xT (n − N)]T , ~s(n)

△
= [s(n) s(n − 1) . . . s(n −

N −L)]T , and ~w(n)
△
= [wT (n) wT (n−1) . . . wT (n−N)]T , where N is called

the stack number or smoothed factor, we can therefore re-express Eqn.(2.9) as

~x(n) = H~s(n) + ~w(n) (2.11)

where the channel convolution matrix H ∈ C(N+1)q×d is a block Toeplitz matrix

written as follows with d
△
= N + L + 1

H
△
=
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The above model Eqn.(2.11) is widely used in blind channel identification and

most time-domain-based methods developed their algorithms based on this.

An important assumption imposed on this model is that H is full column rank:

a condition equivalent to requiring that the channel h(z) is irreducible, i.e.,

the subchannels have no common zero: rank(h(z)) = 1 ∀z 6= 0, where h(z)

denote the Z-transform of the channel impulse response {h(l)}. Under this
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Figure 2.2: Multiple-input multiple-output model

assumption, exploiting the structure of the channel convolution matrix alone

enables the channel identification [22].

For the multiuser scenarios, assume that p source signals {si(n), i = 1, 2, . . . , p}

impinging at an array of q (q > p) antenna elements generate the set of q

observations or measurements {xi(n), i = 1, 2, . . . , q} at the sensor output (see

Figure 2.2), we thus have

x(n) =

p
∑

i=1

hi(n) ⊛ si(n) + w(n)

=

p
∑

i=1

Li∑

l=0

hi(l)si(n − l) + w(n) (2.12)

where ⊛ denotes the convolution operator, {hi(l)
△
= [h1

i (l) h2
i (l) . . . hq

i (l)]
T }

denotes the multichannel filter corresponding to the ith user, {hj
i (l)} denotes

the subchannel from the ith user to the jth antenna, and Li represents the
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channel order corresponding to the ith user. Similarly, by stacking the channel

output vector x(n) and defining ~x(n)
△
= [xT (n) xT (n − 1) . . . xT (n − N)]T ,

~si(n)
△
= [si(n) si(n − 1) · · · si(n − N − Li)]

T and ~w(n)
△
= [wT (n) wT (n −

1) . . . wT (n − N)]T , we can rewrite Eqn.(2.12) as

~x(n) =

p
∑

i=1

Hi~si(n) + ~w(n) = H~s(n) + ~w(n) (2.13)

where Hi ∈ C(N+1)q×di is a block Toeplitz matrix written as follows with di
△
=

N + Li + 1

Hi
△
=












hi(0) . . . hi(Li) 0 . . . 0

0 hi(0) . . . hi(Li)
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 hi(0) . . . hi(Li)












H
△
=

[

H1 H2 · · · Hp

]

~s(n)
△
=

[

~sT
1 (n) ~sT

2 (n) · · · ~sT
p (n)

]T

.

Most time-domain SOS-based methods for blind MIMO FIR channel identifica-

tion are based on the model Eqn.(2.13). As its counterpart for SIMO case, H is

also required to be full column rank for most SOS-based methods. However, for

the multiuser case, the condition “irreducible” is not sufficient to guarantee that

H is full column rank. To ensure a full column rank H, the channel is required to

be irreducible and column-reduced [27]. Define H(l)
△
= [h1(l) h2(l) · · · hp(l)],

let H(z) denote the Z-transform of {H(l)}. Then the channel is irreducible
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if and only if rank(H(z)) = p ∀z 6= 0. Also, H(z) is said to be column-

reduced if and only if its leading column coefficient matrix is nonsingular, i.e.,

rank([H]c) = p, where [H]c is the leading column coefficient matrix defined as

[H]c
△
=

[

h1(L1) h2(L2) · · · hp(Lp)

]

. (2.14)

Given that the channel is irreducible and column-reduced, H is full column

rank if the stack number N is chosen to satisfy (N + 1) ≥
∑p

i=1 Li (see [27]).

It is also noted that this well-known full-rank requirement for the MIMO chan-

nel convolution matrix H is not necessary for some existing SOS-based blind

algorithms [32, 33, 35]. In these algorithms, the channel is only required to be

irreducible, whereas the additional column-reduced condition can be removed.

In our thesis, we still require this channel convolution matrix H to be full col-

umn rank. We will study how to relax this channel identifiability condition in

our future work.

The additive noise w(n)
△
= [w1(n) w2(n) ... wq(n)]T in the SIMO and MIMO

models is usually characterized as spatially and temporally white with same

variance, and statistically independent of the source signals. For SOS-based

methods, the influence of the noise can be minimized by removing the noise

contribution from the estimated autocorrelation matrices of channel output

~x(n). From Eqn.(2.11) or Eqn.(2.13), we have

Rx[0] = HRs[0]HH + σ2
wI

where Rx[0]
△
= E[~x(n)~xH(n)] and Rs[0]

△
= E[~s(n)~sH(n)]. The noise variance σ2

w

can thus be estimated as the smallest eigenvalues of Rx[0] and then subtracted

from the estimated autocorrelation matrix to provide the proposed algorithms
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with denoised autocorrelation estimates.

Up to now, we have discussed the data models for blind SIMO/MIMO channel

identification and the basic assumptions imposed on the channel. The assump-

tions related to the source signals are not made here since they may vary from

chapter to chapter. We will detail these assumptions in the respective chapters.



Chapter 3

Blind Estimation of SISO FIR

Channel

In this chapter, we present a new HOS-based linear method for blind estimation

of SISO FIR channel. The channel can be minimum-phase or nonminimum-

phase channel. The proposed method is based on a series of fourth order cu-

mulant matrices, where it is shown that by employing vectors chosen from the

left null space of a concatenated cumulant matrix, the interference subspace of

the channel convolution matrix can be cancelled and thus, channel information

can be extracted. The proposed method is robust to channel order overestima-

tion, and it has a similar computational complexity as other existing methods.

Simulation results are included to validate the performance of the proposed

algorithm.

49
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3.1 Introduction

We consider the problem of blind identification of SISO FIR channel by using

higher order statistics in this chapter. As indicated in Chapter 1, there have

been a lot of research works [17, 22–24] on blind channel estimation by using

the SOS. However, in this case, channel diversity should be obtained by over-

sampling the output data or by resorting to multiple sensors. Also, to identify

this multichannel system, most SOS-based methods are required to meet a fun-

damental blind identifiability condition [17] that all subchannels do not share

any common zeros, which may not be satisfied in practice [103]. In contrast,

HOS methods could be applicable in such a scenario where channel diversity

is not available, i.e. channel is SISO, or blind identifiability condition for SOS

methods is close to be violated.

Numerous linear HOS-based methods [84–90] have been proposed over the past

decade. Among them, some [87–90] can be considered as subspace methods be-

cause by using a set of cumulants, they exploit the special linear algebraic struc-

ture of the correspondingly constructed channel matrix. Compared to other

methods, these subspace methods achieve better performance with lesser data

samples. However, with the exception of the Weighted Slices (WS) algorithm

proposed in [87], they usually require the precise knowledge of channel order and

are sensitive to channel order overestimation. It is noted that a systematic gen-

eralization of [87] has been proposed in [110]. Compared to [87], [110] presents

an enhanced way in exploiting the special linear algebraic (Toeplitz) structure.

Recently, a matrix pencil technique [111] was adopted to estimate the channel

by utilizing a series of fourth order cumulant matrices. As compared to [87–90],

the work [111] shows an improvement in that it exploits the inherent structure



CHAPTER 3. BLIND ESTIMATION OF SISO FIR CHANNEL 51

relationship between a pair of constructed cumulant matrices rather than only

the linear algebraic structure of the channel matrix, thus demonstrating an

enhanced performance and robustness to channel order overestimation.

In this chapter, we propose a new linear method that extracts the channel

information by utilizing the so-called interference subspace cancellation vec-

tors. It is noted that an implicit connection exists between our work and [111]

because the non-trivial generalized eigenvectors derived in [111] can also be

deemed as the interference subspace cancellation vectors. Compared to [111],

we take a more direct approach to compute these information-extraction vec-

tors. Precisely, we devise our algorithm by exploiting the partial column space

overlapping relationship between a concatenated cumulant matrix and a target

cumulant matrix to obtain these information-extraction vectors. This technique

is essentially different from [111] that devises its algorithm by investigating the

inherent structure of the constructed matrix pencil. As a consequence, our

work induces the following advantages. Firstly, the algorithm in [111] requires

a channel identifiability condition to make sure that the constructed matrix

pencil has at least one unique nontrivial generalized eigenvalue. This identifi-

ability condition is no longer necessary for our proposed algorithm. Secondly,

the selection of interference subspace cancellation vectors can be excluded from

our algorithm without detrimental effects. However, this selection procedure is

necessary in [111] in order to distinguish the trivial from the non-trivial vectors.

This chapter is organized as follows. In Section 3.2, we introduce the system

model and definitions of cumulant matrices. Next, in Section 3.3, we present

the principle for channel identification and practical analysis of the proposed

channel identification method. In the sequel, a practical algorithm based on

the proposed channel identification method is developed in Section 3.4. Finally,
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in Section 3.5, numerical simulation results are presented to demonstrate the

performance of the proposed algorithm.

3.2 Preliminaries

3.2.1 System Model

We consider the SISO linear time-invariant FIR model derived in Chapter 1

(see Eqn.(1.14))

x(n)
△
= h(n) ⊛ s(n) + w(n)

△
=

L∑

l=0

h(l)s(n − l) + w(n) (3.1)

where ⊛ denotes the convolution operator; L denotes the channel order. The

above model can be easily transformed as follows

~x(n) = H~s(n) + ~w(n). (3.2)

If we define ~x(n)
△
= [x(n) x(n − 1) . . . x(n − N)]T , ~s(n)

△
= [s(n) s(n −

1) . . . s(n − N − L)]T , ~w(n)
△
= [w(n) w(n − 1) . . . w(n − N)]T , and the

channel convolution matrix H is an (N + 1) × (N + L + 1) Toeplitz matrix

written as

H
△
=












h(0) . . . h(L) 0 . . . 0

0 h(0) . . . h(L)
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 h(0) . . . h(L)












. (3.3)

We adopt the following assumptions: A1) The input signal is independent and

identically distributed non-Gaussian stationary process with zero mean and
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nonzero kurtosis γ
△
= µ4

µ2

2

, where µi denotes the ith central moment. A2) Additive

noise is a zero-mean Gaussian process, and is statistically independent of the

input signal. A3) The channel order is L. Without loss of generality, we

assume h(0) 6= 0 and h(L) 6= 0. Our objective is to estimate the channel

impulse response {h(l)} by utilizing the fourth order statistics of the observed

data ~x(n).

3.2.2 Cumulant Matrices

We define a series of fourth order cumulant matrices [110, 111] of the channel

output signals C[k] as

C[k]
△
= cum(~x(n), ~x(n)H , x(n − k), x∗(n − k)) (3.4)

where C[k] is an (N + 1) × (N + 1) matrix with its (i, j)th element defined

as Cij [k]
△
= cum(x(n − i + 1), x∗(n − j + 1), x(n − k), x∗(n − k)). Invoking

the cumulant properties P1–P4 introduced in Chapter 2 and the assumptions

A1–A2, we have

C[k] = γHΛ[k]HH (3.5)

Λ[k]
△
= diag(0, . . . , 0

︸ ︷︷ ︸

k

, |h(0)|2, . . . , |h(L)|2, 0, . . . , 0
︸ ︷︷ ︸

(N−k)

). (3.6)

Eqn.(3.5) can be further rewritten as

C[k] = γH[k+1:k+L+1]Λ̄HH
[k+1:k+L+1] (3.7)
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where Λ̄
△
= diag(|h(0)|2, . . . , |h(L)|2), H[k1:k2]

△
= [Hk1

· · · Hk2
] denotes the part

of H from its kth
1 column to its kth

2 column, in which Hi denotes the ith column

of H. In the following section, we will show that the channel information can

be extracted based on a series of cumulant matrices C[k].

3.3 Channel Identification

3.3.1 Principle for Channel Identification

We consider a series of cumulant matrices C[k] with consecutive delay lags k,

where L ≤ k ≤ 2L and N ≥ 2L. From Eqn.(3.7), we have

C[L] = γH[L+1:2L+1]Λ̄HH
[L+1:2L+1]

= γ|h(0)|2H[L+1]H
H
[L+1] + γH[L+2:2L+1]DHH

[L+2:2L+1] (3.8)

where D
△
= diag(|h(1)|2, . . . , |h(L)|2). Note that the column H[L+1] is exactly

an augmented channel vector with the desired channel vector h
△
= [h(L) h(L−

1) · · · h(0)]T padded with zero entries. Thus, the column space of H[L+1:2L+1]

is constructed by a rank-1 signal subspace spanned by H[L+1] and a rank-L

interference subspace spanned by columns of H[L+2:2L+1]. Our objective here

is to find an interference subspace cancellation vector, vc, which is orthogonal

to the interference subspace R(H[L+2:2L+1]), where R(A) denotes the range

(column space) of the matrix A. Such a vector can extract the signal subspace

as follows

vH
c C[L] = γvH

c H[L+1:2L+1]Λ̄HH
[L+1:2L+1]

= γ|h(0)|2vH
c H[L+1]H

H
[L+1]
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= αHH
[L+1] (3.9)

where α
△
= γ|h(0)|2vH

c H[L+1] is a complex scalar. Thus the channel is identified

up to an unknown complex scalar α. In order to find such an interference sub-

space cancellation vector, the interference subspace, R(H[L+2:2L+1]), should be

determined. Since the channel impulse response may contain zero coefficients, it

is very hard for us to get an exact R(H[L+2:2L+1]). However, a subspace which

includes the interference subspace can be obtained by the method described in

the following theorem.

Theorem 3.1 If we concatenate a series of cumulant matrices C[k] with con-

secutive delay lags to construct a new concatenated cumulant matrix

S
△
=
[

C[k1] C[k1 + 1] · · · C[k2]
]

(3.10)

where k1 = L + 1, k2 = 2L, then we have

R(H[L+2:3L+1]) ⊇ R(S) ⊇ R(H[L+2:2L+1]). (3.11)

Proof: Since S is a concatenation of a series of cumulant matrices, it is clear

that

R(S) = R(C[k1]) ∪R(C[k1 + 1]) ∪ · · · ∪ R(C[k2]) (3.12)

where the subspace R(C[k]) is spanned by columns of H whose corresponding

diagonal elements in Λ[k] are non-zero. Since h(0) 6= 0, it is obvious that

R(H[k+1:k+1+L]) ⊇ R(C[k]) ⊇ R(H[k+1]). (3.13)
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We can easily get the results in Eqn.(3.11) by combining Eqn.(3.12) and Eqn.(3.13),

given that k1 = L + 1, k2 = 2L. The proof is completed here. �

On one hand, Theorem 3.1 shows that the interference subspace is included

in R(S); on the other hand, it indicates that rank(S) ≤ 2L, which guarantees

that S must have a non-degenerate left null space (i.e. dimension ≥ 1) when

N ≥ 2L. Here we use R(S⊥
l ) to denote the left null space of S. It is clear that

any vector that belongs to R(S⊥
l ) is orthogonal to the interference subspace.

However, to be an interference subspace cancellation vector, not only the vector

has to be orthogonal to the interference subspace, a hidden condition is that

the vector should not be orthogonal to the signal subspace, otherwise α would

be zero. Hence we are faced with a question: whether or not there exists a

vector that belongs to R(S⊥
l ) satisfying this hidden condition. This problem is

answered by the following theorem.

Theorem 3.2 Suppose V = [v1 v2 · · · vp] is a basis for R(S⊥
l ), where p is

the dimension of R(S⊥
l ), then we have VHH[L+1] 6= 0, which means that there

exists at least one column vector in V that satisfies

vH
i H[L+1] 6= 0 ∃ 1 ≤ i ≤ p. (3.14)

Proof: Since V is a basis for the orthogonal complement of R(S), it is obvious

that, for any vector g, gHV = 0 if and only if g belongs to the left null space of

V, i.e., R(S). Therefore, to prove VHH[L+1] 6= 0, we only need to prove that

H[L+1] * R(S). Note that H[L+1:N+L+1] is a (N +1)× (N +1) lower triangular

matrix with its main diagonal entries equal to h(L) and ith sub-diagonal entries

below the main diagonal equal to h(L − i). This structure guarantees that all

columns except all-zero columns of H[L+1:N+L+1] are linearly independent, i.e.,
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H[L+1:N+L+1] is full column rank after deleting all-zero columns. Therefore

H[L+1:3L+1] is also full column rank after deleting all-zero columns. Thus we

have

H[L+1] * R(H[L+2:3L+1]) ⇒ H[L+1] * R(S) ⇒ VHH[L+1] 6= 0 (3.15)

The proof is completed here. �

Theorem 3.2 indicates that there exists at least one interference subspace can-

cellation vector from the basis for R(S⊥
l ). Such an interference subspace cancel-

lation vector obtained from R(S⊥
l ) can help to extract the channel information

through Eqn.(3.9). In fact, it is noted that, in practice, the computed basis

for R(S⊥
l ) can always render us more than one interference subspace cancel-

lation vector. Since the channel is estimated for each interference subspace

cancellation vector, these multiple interference subspace cancellation vectors

obtained from the basis for R(S⊥
l ) provide us with an estimation diversity that

can be utilized to enhance our final estimation accuracy. For simplicity, here

we assume that all these p column vectors vi (1 ≤ i ≤ p) can be taken as the

interference subspace cancellation vectors. This assumption has been verified

by our numerous simulations. Also, such an assumption can be justified in the

following sense, that is, even if there exist some column vectors in V satisfying

vH
i H[L+1] = 0, our proposed method can still work without any detrimental

effects on the channel estimation. The reason is explained as follows. Without

loss of generality, suppose that we have vH
i H[L+1] 6= 0 for i ∈ {1, · · · , m} and

vH
i H[L+1] = 0 for i ∈ {m + 1, · · · , p}. Thus the estimated channel from the

former vectors vi for i ∈ {1, · · · , m} is vH
i C[L] = λiH

H
[L+1] and the estimated

channel from the latter vectors vi for i ∈ {m + 1, · · · , p} is vH
i C[L] = 0. Since

our final channel estimate is obtained by integrating the channel information
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estimated from every vector vi for i ∈ {1, · · · , p}, theoretically, these all-zero

vectors estimated from vi for i ∈ {m + 1, · · · , p} have no impact on the final

estimation result.

3.3.2 Practical Analysis of Channel Identification

We study our channel identification method under the following two practical

scenarios.

Channel with Small Head Taps

We study how and to what extent the proposed method is influenced when

the multipath channel has small head taps. For simplicity, we assume that

the multipath channel has only one small head tap, i.e., |h(0)| is small and

|h(0)| ≪ |h(1)|. Recalling Eqn.(3.7), we have

C[k] = γ|h0|
2H[k+1]H

H
[k+1] + γH[k+2:k+L+1]DHH

[k+2:k+L+1]. (3.16)

It is clear that a small |h(0)| leads to a much smaller γ|h(0)|2H[k+1]H
H
[k+1],

thus H[k+1] has a negligible contribution in spanning the column space of C[k].

Therefore Eqn.(3.13) should be modified as

R(H[k+2:k+1+L]) ⊇ R(C[k]) ⊇ R(H[k+2]) (3.17)

and, accordingly, Eqn.(3.11) should be modified as

R(H[L+3:3L+1]) ⊇ R(S) ⊇ R(H[L+3:2L+2]). (3.18)
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It can be seen that here R(S) only includes partial subspace of the interference

subspace. Hence the interference subspace cancellation vectors obtained from

R(S⊥
l ) are only orthogonal to partial subspace of the interference subspace

R(H[L+2:2L+1]). Eqn.(3.9) should be rewritten as follows

vH
c C[L] = γvH

c H[L+1:2L+1]Λ̄HH
[L+1:2L+1]

= γ|h(0)|2vH
c H[L+1]H

H
[L+1]

+γ|h(1)|2vH
c H[L+2]H

H
[L+2]

≈ α1H
H
[L+2] (3.19)

where α1
△
= γ|h(1)|2vH

c H[L+2], the term γ|h(0)|2vH
c H[L+1]H

H
[L+1] can be omit-

ted since |h(0)|2 is much smaller as compared to |h(1)|2. Thus the column

H[L+2] is extracted. It is noted that H[L+2] is still an augmented channel vec-

tor surrounded by zero entries. As a generalization, we can conclude that the

column H[L+k+1] could be extracted if the channel has k small head taps, where

k < L. Note that for every k < L, we can guarantee that the column H[L+k+1] is

an augmented channel vector which contains the complete channel information

by choosing N ≥ 2L. Therefore we can see that even if the multipath chan-

nel has small head taps, it will not have a detrimental effect to our proposed

method, and we can still estimate the channel vector up to a delay ambiguity1.

Channel Order Overestimated

In practice, it is almost impossible for us to obtain a precise channel order due

to noise and estimation errors. Therefore it is very meaningful to investigate the

1Since, in practice, we do not know how many small head taps exist in the multipath
channel, thus we also do not know how many zero entries are padded in the forepart of the
estimated augmented channel vector. This can be considered as a delay ambiguity.
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robustness of our proposed algorithm to channel order overestimation. When

channel order is overestimated, Eqn.(3.13) should be revised as (It should be

noted that here we do not consider small head taps)

R(H[k+1:k+1+Le]) ⊃ R(C[k]) ⊇ R(H[k+1]) (3.20)

where Le is the overestimated channel order and Le > L. Accordingly, Eqn.(3.11)

should be revised as

R(H[Le+2:3Le+1]) ⊃ R(S) ⊇ R(H[Le+2:2Le+1]). (3.21)

Since H[Le+1:3Le+1] is also full column rank after deleting all-zero columns when

channel order is overestimated, Theorem 3.2 remains true. Therefore Eqn.(3.9)

still holds and can be rewritten as

vH
c C[Le] = γvH

c H[Le+1:2Le+1]Λ̄[Le]H
H
[Le+1:2Le+1]

= γ|h(0)|2vH
c H[Le+1]H

H
[Le+1]

= α2H
H
[Le+1] (3.22)

where α2
△
= γ|h(0)|2vH

c H[Le+1] and Λ̄[Le]
△
= diag(|h(0)|2, . . . , |h(Le)|

2). Thus

the column H[Le+1] is extracted and the estimated channel vector is obtained

by taking the 1st to (Le + 1)th entries out from H[Le+1]. We can see that

the overestimated channel taps h(l) (Le ≥ l > L) should be zero. It means

that, theoretically, channel order overestimation has no effect on our proposed

method.
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3.4 Algorithm Development

Following the above analysis, we now develop a practical algorithm for channel

identification. Theoretically, the interference subspace cancellation vectors can

be chosen to be the left singular vectors associated with the p smallest singular

value of S, where p = N + 1 − rank(S). Because of the finite sample size, the

estimate Ŝ would not be rank deficient in practice and in order to determine p,

the rank of Ŝ need to be estimated. Nevertheless, the determination of rank is

always a tricky problem, especially for estimated cumulant matrix. Therefore

it is better for us to find a simple way to go around this problem. Notice that

we have L ≤ rank(S) ≤ 2L from Eqn.(3.11); this implies that the number of

interference subspace cancellation vectors is upper-bounded and lower-bounded

by pu = N + 1 − L and pl = N + 1 − 2L respectively. Since every interference

subspace cancellation vector provides us with an estimated channel, we can only

choose pl interference subspace cancellation vectors from pu candidate vectors

which are the left singular vectors associated with the pu smallest singular

values of Ŝ. Of course, a simpler alternative is to choose the left singular

vectors associated with the pl smallest singular values of Ŝ as the pl interference

subspace cancellation vectors, at the expense of mild performance degradation.

For comparison purpose, the former which is more accurate is used in our work.

Here we assume that the channel order L is known a priori. In practice, even

if the channel order is overestimated, we can still determine pu = N + 1 − Le

and pl = N + 1 − 2Le since under this case, we have Le ≤ rank(S) < 2Le (see

Eqn.(3.21)).

Until now, we have successfully circumvented the rank determination problem

by choosing pl qualified vectors from pu candidate vectors. It is clear that these
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pu candidate vectors are not equivalent as they achieve different interference

subspace cancellation effects. Hence, there are two problems faced by us. First,

how to choose pl qualified vectors from pu candidate vectors, i.e. interference

subspace cancellation vectors selection. Second, how to integrate the estimated

channel information obtained from these pl interference subspace cancellation

vectors. We now enumerate the steps for our channel identification procedure.

1. Given the estimated channel order L, let N ≥ 2L, compute a series of

estimated fourth order cumulant matrices Ĉ[k], where L ≤ k ≤ 2L, from

the channel output samples.

2. Concatenate a series of Ĉ[k] to construct a new cumulant matrix Ŝ as

given in Eqn.(3.10).

3. Compute the SVD of Ŝ. Choose pu left singular vectors, v̂1, v̂2, · · · , v̂pu ,

associated with the pu smallest singular values of Ŝ.

4. Interference subspace cancellation vectors selection: For each v̂i, the es-

timated augmented channel vector can be computed as ĥi = Ĉ[L]H v̂i

for each i ∈ {1, . . . , pu}. And the ith estimated channel vector ĥi can be

obtained by deleting the zero entries in ĥi. However, because of the pos-

sible delay ambiguity introduced by small head taps (see Section 3.3.2),

ĥi should be chosen from {ĥj
i}, where j ∈ {1, . . . , L} and ĥ

j
i is obtained

by removing the jth to (j +L)th entries from ĥi. For each ĥ
j
i , we compare

the theoretical C[k] which is computed by using the estimated channel

to Ĉ[k], i.e. the estimated cumulant matrix. The distance between the

theoretical C[k] and the estimated Ĉ[k] is defined as

dis
△
= min

β
‖Ĉ[k] − βC[k]‖2

F (3.23)
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where ‖ · ‖F stands for the Frobenius matrix norm, β is a scalar chosen

to minimize the matrix norm. Thus we can obtain the resulted distance,

denoted by dis(i, j), for each estimated channel vector ĥ
j
i . Finally, from

the computed dis(i, j) for i ∈ {1, . . . , pu}, j ∈ {1, . . . , L}, we select the

best pl vectors from v̂i, i ∈ {1, · · · , pu}, as the interference subspace can-

cellation vectors. The criterion for choosing these pl vectors is as follows.

Let di
△
= min{dis(i, j)} for j ∈ {1, . . . , L}. Then we choose the vector v̂i

as the interference subspace cancellation vectors if di is among the first

pl minimum values of {d1, · · · , dpu}.

5. Channel information integration: Given the selected pl vectors from above,

we have pl corresponding estimated augmented channel vectors {ĥi}. We

next integrate the channel information from these multiple estimated re-

sults. This step is similar to that in [111] and thus we describe it briefly

as follows. First, we select a reference vector ĥir by the following criterion

ir = arg min
i,j

|dis(i, j)|. (3.24)

Given the pl estimated augmented channel vectors, estimate delay differ-

ence {τi} relative to the selected reference vector (the estimation of the

relative delay difference can be found in the counterpart of [111]), and ob-

tain the aligned vectors {ĥ
(τi)
i } with the same delay ambiguity. Concate-

nate all aligned vectors {ĥ
(τi)
i } and compute the SVD of the concatenated

matrix. The ultimate estimation ĥ is obtained as the left singular vector

associated with the largest singular value of the concatenated matrix.

Finally, we compare the computational complexity of our proposed method

to the other existing linear methods [87, 111]. We only consider the linear
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algebraic operations involved in the algorithm implementation. It can be seen

from previous part that our proposed algorithm requires to do SVD operation

in step 3 and step 5 respectively. The dimension of the computed matrices are

as follows

Step 3 (N + 1) × (N + 1)L

Step 5 (N + 1) × pl

where we adopt N = 2L + 1 in our simulations. Thus in step 3, we have to

compute the SVD of a (2L+2)×(2L+2)L matrix. However, it is noted that we

only need to compute the left singular vectors of the matrix S. This is equivalent

to computing the right singular vectors of the tall matrix SH with dimension

(2L + 2)L × (2L + 2). From [112] [p. 254], we know that this computation

requires 2mn2 + 11n3 flops, where m = (2L + 2)L and n = (2L + 2). Hence

the total flops required for our proposed algorithm are (2L + 11)(2L + 2)3 and

of order O(L4). In the case where the channel order L is not very large and

smaller than order of tens, our proposed algorithm has a similar computational

complexity as the algorithm [111]2. Also, the computational complexity of our

algorithm is less than that of the WS algorithm [87] since the latter involves

computing the pseudo-inverse of a (2L+1)×(3L+1)(L+1) matrix and requires

about O(L5) flops.

3.5 Simulation Results

Now we present simulation results to illustrate the performance of our algo-

rithm. We compare our method, namely Cumulant Interference Subspace Can-

2For the proposed algorithm in [111], we need to compute the generalized eigenvalue de-
composition of two (3L+1)× (3L+1) matrices, which requires at least 30(3L+1)3 flops (see
p.385 of [112])
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cellation (CISC) algorithm, to the other two linear methods, Weighted Slices

algorithm (WS) proposed in [87] and Cumulant Weighted Overlapping Matrix

Pencil algorithm (WOMP-SVD) presented in [111]. Among them, the WS

method exploited the inherent linear algebraic structure, i.e. the structure of

H, of the constructed cumulant matrix (say C[k]). The work [111] investi-

gated the non-trivial generalized eigenvectors of the constructed matrix pencil

{C[k1],C[k2]} and showed that these vectors can be used to extract the channel

information. In fact, the non-trivial generalized eigenvectors derived in [111]

are exactly the so-called interference subspace cancellation vectors discussed

in this chapter. For comparison purposes, we will only use the same set of

fourth-order cumulants as CISC and WOMP-SVD for WS. In the implementa-

tion of CISC algorithm, we choose N = 2L + 1, also for simplicity, let k = L in

Eqn.(3.23) when computing the interference subspace cancellation vectors se-

lection criterion. In our simulations, channel outputs are added with complex

white Gaussian noise. The performance is measured by the Normalized Mean

Square Error (NMSE) of the channel estimate, which is obtained by finding the

complex scalar ρ that minimizes ‖h−ρĥ‖2

‖h‖2 , and the symbol error rate (SER) of

the estimated data symbols.

3.5.1 Example A

To study the robustness of the proposed algorithm to various channel condi-

tions, we conduct simulation tests using randomly generated wireless channels,

in which {h(l)} is a complex, zero-mean Gaussian process with the channel or-

der L = 2. Source signals are i.i.d QPSK signals. Results are averaged over 200

Monte Carlo runs and for each Monte Carlo run, a different FIR SISO channel

is randomly generated.
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In Figure 3.1, we show the NMSE of the channel estimate of these three algo-

rithms as a function of SNR, with the number of samples used to estimate the

signal statistics, Ts, varying from 400 to 1600. It can be seen that, as expected,

all algorithms improve consistently as SNR or number of samples Ts increases.

Also the proposed algorithm CISC presents a slightly better performance than

WOMP-SVD and a significant performance advantage over WS. Once the chan-

nel is estimated, we can further detect the information sequences by adopting

the Viterbi algorithm-based maximum likelihood detector. We present the SER

performance of the algorithms in Table 3.1, in which the SER is a function of

SNR and Ts. It can be seen that the SER performance depends on the following

two parameters: SNR and NMSE of the channel estimate. On one hand, the

SER performance deteriorates as SNR decreases. On the other hand, under a

certain SNR, a more accurate channel estimate yields a lower SER. Also we can

see that, in general, CISC shows a lower SER than WOMP-SVD since more

accurate channel estimations are used in the Viterbi detector. Also CISC and

WOMP-SVD outperform WS significantly in terms of SER.

In Figure 3.2, we demonstrate the performance of CISC when channel order

is overestimated with Ts = 800. It can be observed that the performance

degrades more rapidly as SNR deteriorates. The reason, we suspect, is that

the interference subspace cancellation vector selection incurs more errors when

SNR becomes low and channel order becomes large. While at a moderate SNR

level when SNR ≥ 8dB, the performance degradation is mild and acceptable,

thus validating the theoretical analysis of the proposed method’s robustness to

channel order overestimation.
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Figure 3.1: NMSE of the channel estimate versus SNR under different number
of samples used.
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SNR(dB) Ts = 1600
CISC WOMP WS

20 0.0002 0.0003 0.0162

17 0.0005 0.0008 0.0171

14 0.0019 0.0014 0.0254

11 0.0059 0.0082 0.0349

8 0.0415 0.0452 0.1048

5 0.1558 0.1609 0.2234

2 0.3060 0.3126 0.3546

SNR(dB) Ts = 800
CISC WOMP WS

20 0.0005 0.0010 0.0299

17 0.0016 0.0015 0.0318

14 0.0061 0.0039 0.0346

11 0.0093 0.0108 0.0568

8 0.0528 0.0597 0.1324

5 0.1704 0.1794 0.2401

2 0.3226 0.3310 0.3789

SNR(dB) Ts = 400
CISC WOMP WS

20 0.0038 0.0028 0.0393

17 0.0043 0.0043 0.0447

14 0.0048 0.0089 0.0560

11 0.0212 0.0280 0.0847

8 0.0708 0.0801 0.1405

5 0.2012 0.2179 0.2744

2 0.3423 0.3606 0.3950

Table 3.1: SER versus SNR of the respective algorithms under different number
of data samples

3.5.2 Example B

In this example, we consider the source that employs 16-ary QAM digital for-

mat. The channel transfer function is given as h(z) = −0.2039 + 0.4503z−1 +

0.7972z−2−0.3466z−3. In our simulations, results are averaged over 100 Monte

Carlo runs. Figure 3.3 shows the performance of CISC and WOMP-SVD as

1600 and 800 data samples are used respectively. We can see that CISC owns a
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Figure 3.2: NMSE of the channel estimate versus SNR with channel order
overestimated by 1 and 2 respectively
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Figure 3.3: NMSE of the channel estimate versus SNR. Solid lines are for
Ts = 1600; dashed lines for Ts = 800.
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clear performance advantage over WOMP-SVD in both cases. It seems that, in

such a channel scenario, CISC is more favorable than WOMP-SVD to obtain

an accurate channel estimation. Besides, both algorithms suffer from a certain

performance loss when 16-ary QAM digital modulation scheme is used. This is

because, as compared to other simpler digital modulation schemes like QPSK,

the source signals that employs 16-ary QAM digital modulation scheme induce

a larger estimate variances between the estimated cumulants and the theoretical

cumulants.

3.6 Summary

In this chapter, we presented a new linear HOS-based method for blind SISO

FIR channel estimation. The proposed method exploits the partial column

space overlapping relationship between a concatenated cumulant matrix and a

target cumulant matrix to obtain a set of vectors which can be used to extract

the channel information. The robustness of the proposed method to channel

order overestimation was investigated. It was shown that, theoretically, channel

order overestimation has no effect on our proposed method. This claim was also

validated by our simulation examples. Simulation results showed that, with a

similar computational complexity, our proposed algorithm compares favorably

with existing linear HOS-based methods WS [87] and WOMP [111].



Chapter 4

Blind Identification of SIMO

FIR Channel

In this chapter, we present a closed-form solution for blind estimation of SIMO

FIR channel driven by colored source. The SOS of the input source are known a

priori. The uniqueness of the system solution is proved by exploiting the prop-

erty of companion matrices that are constructed from the inherent structural

relationship between the source autocorrelation matrices. Numerical simulation

results are presented to illustrate the performance of the proposed algorithm.

4.1 Introduction

In this chapter, we consider the problem of blind SIMO FIR channel estimation

driven by colored source signals. As mentioned in Chapter 1, the multichannel

model enables blind identification of the channel relying only on second-order

statistics of the received data, which provides a much faster convergence rate

and a more accurate channel estimation as compared with HOS-based methods.

71
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This is the main reason for us to investigate the blind identification problem

under the multichannel models. In particular, we are interested in the case

where the input sources are colored and the second-order statistics of the input

signals are known a priori. Colored sources with known statistics indeed occur

in practice. For example, colored sources arise as a result of channel encod-

ing [69], and the knowledge of the encoding scheme alone provides the required

source statistics to the receiver. There are existing methods [22, 66, 67] that

address the same problem as in this chapter. Among them, the work [22] pro-

posed a subspace-based method by exploiting the block Toeplitz structure of the

channel convolution matrix, and thus required no knowledge of input statistics

whatsoever. Another work [66] imposes a somewhat restrictive condition on the

source correlation, where an exponentially decaying autocorrelation function is

assumed. The work [67] constitutes a direct extension of TXK method [17] by

exploiting the inherent structural relationship between the source autocorrela-

tion matrices Rs[0] and Rs[1]. In this chapter, we propose a new closed-form

solution for blind channel estimation driven by colored source. The contribution

of our work consists of the following three aspects. Firstly, the inherent struc-

tural relationship between source autocorrelation matrices Rs[0] and Rs[±1] is

further exploited. Secondly, we derive a new property of a pair of constructed

companion matrices, which plays a key role in devising and validating our al-

gorithm. Thirdly, unlike other methods [22, 66, 67] which have difficulties in

extending to the multiuser scenarios, the proposed algorithm has the poten-

tial to extend to the MIMO systems (we will show this point in next chapter).

We include computer simulations to study the performance of the proposed

algorithm.
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4.2 System Model and Basic Assumptions

We begin by considering the SIMO FIR channel model derived in Chapter 2

(see Eqn.(2.9))

x(n)
△
= h(n) ⊛ s(n) + w(n)

△
=

L∑

l=0

h(l)s(n − l) + w(n) (4.1)

where {s(n)} is the zero mean, wide sense stationary sequence of transmitted

symbols, {x(n)} is the q × 1 channel output vector, {w(n)} is the q × 1 white

noise vector, and {h(n)} represents the multichannel impulse response. By

stacking the channel output vector {x(n)} and defining: ~x(n)
△
= [xT (n) xT (n−

1) . . . xT (n − N)]T , ~s(n)
△
= [s(n) s(n − 1) . . . s(n − N − L)]T and ~w(n)

△
=

[wT (n) wT (n − 1) . . . wT (n − N)]T , we can re-express Eqn.(4.1) as the fol-

lowing matrix form

~x(n) = H~s(n) + ~w(n) (4.2)

where the channel convolution matrix H ∈ C(N+1)q×d is a block Toeplitz matrix

defined in Chapter 2.

The following assumptions are adopted in this chapter: A1) H is full column

rank: a condition equivalent to requiring that the channel h(z) is irreducible.

A2) Channel order L is assumed to be known a priori. A3) Source signal

is a zero mean, wide sense stationary colored signal whose input statistics

are available. Its autocorrelation matrix with lag k is defined as Rs[k]
△
=

E[~s(n)~sH(n − k)]. A4) Additive noises are spatially and temporally white,

and they are statistically independent of the source. Here A1 and A4 are basic

assumptions for blind channel identification problem and have been elaborated

in Chapter 2. Knowledge of channel order is critical to blind channel identifi-
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cation methods and assumed in A2. In practice, some channel order detection

schemes based on the minimum description length (MDL) principle [50, 51] or

Akaike’s information criterion (AIC) [113] can be employed to estimate the

channel order. In this chapter, our objective is to estimate the channel impulse

response by utilizing the second-order statistics of the observed output data

and the knowledge of the source statistics.

4.3 Proposed Channel Identification Method

In order to simplify the presentation of the proposed channel identification

method, we assume the noiseless case. Thus the autocorrelation matrix of the

received data ~x(n) with lag k can be expressed as

Rx[k] = HRs[k]HH . (4.3)

Our goal is to find an estimate of H from Eqn.(4.3) by using the knowledge of

Rs[k]. We commence by introducing the following lemma.

Lemma 4.1 Given Rx[k] = HRs[k]HH , H is full column rank and Rs[0] is

invertible, we have

Rx[k]R†
x[0] = HRs[k]R−1

s [0]H† (4.4)

Rx[k]R†
x[0]H = HRs[k]R−1

s [0]. (4.5)

Proof: To justify Lemma 4.1, we need to prove that

R†
x[0] = (HH)†R−1

s [0]H†. (4.6)
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Typically, A† is defined to be the unique matrix T that satisfies the four Moore-

Penrose conditions: [112]

(i) ATA = A (iii) (AT)H = AT

(ii) TAT = T (iv) (TA)H = TA.

Therefore we only need to prove that R
†
x[0] defined in Eqn.(4.6) satisfies the

above four Moore-Penrose conditions. This can be easily done and thus omitted

here. �

For convenience, let

Υ2k−1
△
= Rx[k]R†

x[0] Υ2k
△
= Rx[−k]R†

x[0]

Θ2k−1
△
= Rs[k]R−1

s [0] Θ2k
△
= Rs[−k]R−1

s [0].

We can therefore re-express Eqn.(4.5) (choose K ≥ k ≥ 1) as

ΥiH = HΘi 2K ≥ i ≥ 1. (4.7)

The above set of equations can be used to identify the channel H since the

knowledge of Θi is known a priori and the information of Υi can be obtained

from the second-order statistics of the observed data. By exploiting the block

Toeplitz structure of H, we can rewrite Eqn.(4.7) as

T1[Υi]h = T2[Θi]h 2K ≥ i ≥ 1 (4.8)

where h
△
=
[
h(0)T · · · h(L)T

]T
, T1[·] and T2[·] respectively represent a certain

transformation on the bracketed matrix. The transformed matrices T1[Υi] and

T2[Θi] are all of the same dimension C(N+L+1)(N+1)q×(L+1)q. Therefore we may
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estimate h by the following criterion

ĥ = arg min
‖u‖=1

2K∑

k=1

‖

[

T1[Υk] − T2[Θk]

]

u‖2. (4.9)

The above optimization has a closed-form solution which can be obtained as

the right singular vector associated with the smallest singular value. How-

ever, this criterion fails to provide the true channel estimation if the solution

of Eqn.(4.8) is not unique, i.e. there exist other non-zero vectors that are lin-

early independent of h and also satisfy Eqn.(4.8). Hence we are faced with the

following problem, that is, whether or not the solution of Eqn.(4.8) is unique

(up to a scalar factor) and under what conditions the solution of Eqn.(4.8) will

be unique. This problem is studied in the following and we will establish the

uniqueness of the solution to Eqn.(4.8) by using only the autocorrelation ma-

trices Rx[0] and Rx[±1], i.e. the uniqueness of the solution can be guaranteed

by choosing K = 1 in Eqn.(4.8).

We begin by observing the structural relationship between Rs[0] and Rs[±1].

It can be seen that the last d− 1 rows of Rs[1] are the first d− 1 rows of Rs[0],

and the first d − 1 rows of Rs[−1] are the last d − 1 rows of Rs[0]. Hence we

can establish the following relationship

Rs[1] = JRs[0] + e1r
H
1 (4.10)

Rs[−1] = JTRs[0] + edr
H
2 (4.11)

where J (JT ) stands for the one-lag down (up) shift square matrix whose first

sub-diagonal entries below (above) the main diagonal are unity, whereas all

remaining entries are zero; ei denotes the unit column vector with its ith entry
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equal to one, and its other entries equal to zero; and we have

rH
1

△
= eH

1 Rs[1] = E[s(n)~sH(n − 1)] (4.12)

rH
2

△
= eH

d Rs[−1] = E[s(n − d + 1)~sH(n + 1)]. (4.13)

In addition, if we define r1,i and r2,i as the ith entries of the vectors r1 and r2,

respectively, then the entries in these vectors are related as follows

r1,i = r∗2,d+1−i ∀ i ∈ {1, . . . , d}. (4.14)

Using Eqn.(4.10–4.11), we can express Θi, i = 1, 2 as follows

(a) Θ1
△
= J − e1~α

H
1 (b) Θ2

△
= JT − ed~α

H
2

(4.15)

where

~α1 =

[

α1,1 · · · α1,d

]T

= −R−1
s [0]r1 (4.16)

~α2 =

[

α2,1 · · · α2,d

]T

= −R−1
s [0]r2. (4.17)

It is clear that the entries in ~α1 are exactly the coefficients of the dth-order

optimum forward prediction error filter for the process {s(n)} and the entries

in ~α2 are exactly the coefficients of the dth-order optimum backward prediction

error filter for the process {s(n)} [114]. Moreover, the relationship of ~α1 and

~α2 can be formalized in the following lemma.

Lemma 4.2 Given that ~α1 and ~α2 are defined in Eqn.(4.16) and Eqn.(4.17)
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respectively, there holds

α1,i = α∗
2,d+1−i ∀ i ∈ {1, . . . , d}. (4.18)

Proof: We rewrite Eqn.(4.16) as Rs[0]~α1 = −r1. Let ci denote E[s(n)s∗(n− i)],

thus we have

d∑

k=1

ck−iα1,k = −r1,i ∀ i ∈ {1, . . . , d}. (4.19)

Taking conjugate operation on both sides of the above equation, we have

∑d
k=1 ci−kα

∗
1,k = −r∗1,i ∀ i ∈ {1, . . . , d}. If we let k = d+1− k̂ and i = d+1− î,

it is clear that

d∑

k̂=1

ck̂−îα
∗
1,d+1−k̂

= −r∗
1,d+1−î

∀ i ∈ {1, . . . , d}. (4.20)

Hence we have Rs[0][α∗
1,d · · · α∗

1,1]
T = −r2. We can conclude that ~α2 =

[α∗
1,d · · · α∗

1,1]
T . The proof is completed. �

Observe that both Θ1 = J−e1~α
H
1 and Θ2 = JT −ed~α

H
2 are companion matrices

that have some important properties to be investigated and exploited. We

highlight one of the exploited properties as follows

Lemma 4.3 If matrix Y commutes with Θ1 and Θ2 respectively, i.e.

(a) Θ1Y = YΘ1 (b) Θ2Y = YΘ2 (4.21)

where Y ∈ Cd×d and the modulus of α1,d in Θ1 is not equal to one, i.e. |α1,d| 6=

1, then Y = λI, where λ could be any complex scalar including zero.

Proof: See Appendix A. �
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We now prove the uniqueness of the system solution to Eqn.(4.8) by using the

above lemma. Notice that Eqn.(4.8) and Eqn.(4.7) can be derived from each

other. Therefore we only need to prove that the solution of Eqn.(4.7) is unique

(up to a scalar factor). Thus the problem can be formulated as follows: Given

that the following two equations hold

(a) Υ1 = HΘ1H
† (b) Υ2 = HΘ2H

† (4.22)

and H is full column rank, we need to prove that H can be uniquely determined

up to a complex scalar by the following two equations

(a) Υ1H = HΘ1 (b) Υ2H = HΘ2 . (4.23)

It implies that, if any non-zero matrix G which has the same structure as H also

satisfies Eqn.(4.23a–b), then G = λH, where λ is a non-zero complex scalar.

Proof: Suppose a non-zero matrix G which has the same Toeplitz structure as

H also satisfies Eqn.(4.23a–b), then we have

Υ1G = GΘ1 ⇒ HΘ1H
†G = GΘ1 ⇒ Θ1H

†G = H†GΘ1 (4.24)

Υ2G = GΘ2 ⇒ HΘ2H
†G = GΘ2 ⇒ Θ2H

†G = H†GΘ2. (4.25)

By invoking Lemma 4.3, we know that H†G = λI. Therefore we only need to

prove that the solution of G that satisfies H†G = λI is unique and G = λH.

Note that G has the same block Toeplitz structure as H. If we write H† △
=
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[V0 · · · VN ], we can rewrite H†G = λI as

V









g(0)

...

g(L)









= vec(λI) (4.26)

where g(0), · · · ,g(L) are the corresponding column vectors used to construct

the block Toeplize matrix G in the way as we define H using h(0), · · · ,h(L),

V ∈ Cd2×(L+1)q is a block Toeplitz matrix written as

V
△
=



















V0 0 · · · 0

... V0
. . .

...

VN
. . .

. . . 0

0 VN
. . . V0

...
. . .

. . .
...

0 · · · 0 VN



















.

Obviously, from Eqn.(4.26) we know that G can be uniquely determined if V

has full column rank. Recalling Theorem 1 in [95], V has full column rank if

there exists a non-zero z0 (including ∞) such that the polynomial matrix V(z0)

has full column rank, where V(z)
△
= V0 + V1z

−1 + · · · + VNz−N . This mild

condition can be assured with probability one since generally, when L ≥ 1, the

entries of matrix H† can be considered as randomly generated. Thus we can

conclude that the solution of G is unique and G = λH. Note that λ cannot be

zero because G would be zero under the condition λ = 0, which contradicts our

previously made assumption G 6= 0. The proof is completed here. �
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4.4 Simulation Results

We now present simulation results to illustrate the performance of our proposed

algorithm. We compare our method to the other two methods, namely, the

subspace (SS) method proposed in [22] and the so-called linear prediction (LP)

approach presented in [67]. In our simulations, as an approximation of a two-

ray multipath environment, the channel impulse response is obtained from the

two delayed raised cosine pulses with its coefficients given by

[h(0) · · · h(3)] =






−0.1470 0.4461 0.1126 −0.2233

0.0213 0.5356 −0.2911 0.0660




 .

The colored source is induced in the same way as the simulation example in

[67]. The channel order is assumed known a priori and the stack number

(smoothed factor) N is chosen to be 3. For our proposed method, we only

use the autocorrelation matrices Rx[0] and Rx[±1], i.e. K = 1 in criterion

Eqn.(4.9). Once the channel has been estimated, the MMSE equalizers can

be computed. The equalizer with equalization delay, de, equal to 3 is used

in our simulations. We present the equalization performance of the respective

algorithms in Table 4.1. The results are averaged over 500 Monte Carlo runs.

In the first part of Table 4.1, we show the SER as a function of SNR with the

number of samples used to estimate signal statistics Ts = 400. Next, in the

latter part of Table 4.1, the SER is shown to be a function of Ts for SNR =

10dB. From the following table, we can see that the three algorithms perform

similarly with the performance of LP slightly better than that of the other two

algorithms. And our proposed method seems to lie somewhere between LP and

SS.
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SNR(dB) Proposed Method LP SS

20 0.0000 0.0000 0.0000

17.5 0.0000 0.0000 0.0000

15 0.0006 0.0006 0.0023

12.5 0.0268 0.0101 0.0366

10 0.1368 0.0744 0.1417

Ts Proposed Method LP SS

2000 0.0087 0.0055 0.0121

1600 0.0099 0.0077 0.0186

1200 0.0224 0.0129 0.0292

800 0.0598 0.0277 0.0605

400 0.1368 0.0744 0.1417

Table 4.1: SER versus SNR and number of data samples respectively

Our proposed method estimates the channel matrix H by matching HRs[k]R−1
s [0]H†

and Rx[k]R†
x[0] for k ∈ ±1. The accuracy of our estimated channel is subject

to the estimation errors of Rx[k]R†
x[0]. This accounts for the lack of perfor-

mance improvement of our proposed algorithm as compared to LP. Despite of

the slightly degraded performance, our algorithm shows an advantage over [22]

and [67] since its extension to MIMO systems is straightforward. For the mul-

tiuser scenarios, Eqn.(4.7) still holds and under the assumption that all sources

are uncorrelated with each other, we can further decompose Eqn.(4.7) into

ΥiHl = HlΘi,l, where Hl denotes the channel convolution matrix correspond-

ing to the lth user, Θi,l
△
= Rsl

[k̄]R−1
sl

[0], sl represents the lth source, k̄ = (i+1)/2

if i is odd and k̄ = −i/2 if i is even. Each user’s channel convolution matrix, Hl,

can then be identified according to the described algorithm. However, the proof

for the uniqueness of Eqn.(4.7) has to further exploit additional properties on

companion matrices, and also to impose a spectral diversity identifiability con-

dition on the input colored sources (this will be discussed in the next chapter).
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4.5 Summary

In this chapter, we presented a new SOS-based method that admits a closed-

form solution for blind estimation of SIMO FIR channel driven by colored source

signals. The uniqueness of the closed-form solution was proved by exploiting

the inherent structural relationship between Rs[0] and Rs[±1] and the derived

property of one pair of companion matrices. The proposed method is valid

under very mild condition on the source correlation. In fact, our method still

works even if the source signals are white (this can be easily proved by following

the procedure in this chapter). Simulation results showed that our proposed

algorithm achieves a better performance than the classical subspace method

[22]. Also, unlike other methods [22,66,67] which have difficulties in extending

to the multiuser scenarios, our proposed algorithm has the potential to extend

to the MIMO systems, which will be shown in the next chapter.



Chapter 5

Blind Identification of MIMO

FIR Channel

In this chapter, we extend the proposed method in Chapter 4 to blind estimation

of MIMO FIR channel driven by colored sources. We assume that the SOS of

the input sources are known a priori. By further exploiting the properties

of the companion matrices, we provide an original proof for the uniqueness

of the system solution, which serves as a theoretical basis for our new method

that admits a closed-form solution. The corresponding identifiability conditions

and the computational complexity of the proposed method are discussed and

compared to other existing method. Numerical simulation results are presented

to illustrate the performance of the proposed algorithm.

5.1 Introduction

Blind identification of MIMO FIR channel arises in a wide variety of communi-

cation and signal processing applications, which include speech enhancement,

84
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wireless mobile communications and brain signal analysis. In particular, poten-

tial use of blind MIMO channel identification in wireless systems is of strong

interest. Consequently, the study on blind channel identification of MIMO sys-

tems has attracted increasing attention. Thus far, there have been a lot of

research works [17, 23, 24, 35] on blind channel identification driven by white

input signals. In this case, it is well known that the MIMO channel can only

be determined up to an unknown unitary matrix that cannot otherwise be re-

solved using the second-order statistics. To resolve this residual static mixtures,

one of several blind source separation (BSS) techniques should be resorted to.

However, in contrast to the channels driven by white signals, the MIMO FIR

channels driven by colored signals may provide us advantages in developing

a complete closed-form SOS-based method without an extra BSS algorithmic

step. It is also noted that the input colored signals should be of distinct power

spectra, which is a sufficient condition for the MIMO FIR channel to be iden-

tifiable up to a scaling and permutation using second-order statistics of the

channel output.

In this chapter, we consider the problem of blind estimation of MIMO FIR chan-

nel driven by colored signals. Of specific interest, we focus on the case where the

second order statistics of the input signals are known a priori. As mentioned

in previous chapter, colored sources with known statistics may indeed occur in

practice. For example, colored sources may arise as a result of channel encod-

ing [69], and the knowledge of the encoding scheme alone provides the required

source statistics at the receiver. Moreover, correlative filters can be utilized at

the transmitters to induce distinct spectral patterns to the source signals [72].

Interestingly, there have been some works on blind SIMO FIR channel identifi-

cation [22] and blind MIMO FIR channel identification [28,36,37,70,71] dealing
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with the input signals that are colored but with unknown statistics. However,

failing to utilize the information of input signals statistics affects the estima-

tor’s performance to some extent. The previously developed works that address

the case of input colored signals with a priori known statistics include [66, 67]

for the single-input multiple-output (SIMO) systems and [72,73] for the MIMO

systems. Among them, the work [66] imposes a somewhat restrictive condi-

tion on the source correlation, where an exponentially decaying autocorrela-

tion function is assumed. The work [67] constitutes a direct extension of the

TXK method [17] by exploiting the inherent structural relationship between the

source autocorrelation matrices Rs[0] and Rs[1]. Both [66] and [67] consider

the blind channel estimation/equalization of SIMO models, and the extension

of these algorithms to the MIMO systems is not straightforward because when

extended to the multiuser’s case, some of the relationships and properties in

these works are no longer valid. The work [72] provides an elegant closed-form

solution to blind MIMO channel identification. It is presented under a cor-

relative framework which is obtained by utilizing linear correlative filters at

the transmitters, thus assigning distinct spectral patterns to the sources. In

comparison with [72], our work in this chapter addresses a more general case,

i.e. the colored sources need not necessarily be generated from linear correlative

filters, and they can be induced by other nonlinear methods such as channel en-

coding. A more detailed comparison of our work to [72] is discussed in later part

of this chapter. Recently, a frequency-domain nonlinear iterative method [73]

was proposed for blind MIMO channel estimation driven by colored sources.

Due to its nonlinear nature, the method requires a good initialization in order

to minimize the problem of local minima. [101] is another important work on

blind identification of channel driven by sources with a priori known statistics.

Although the paper [101] considers the blind equalization of SIMO nonlinear
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channels, some of the results in [101] can be reformulated into the MIMO setting

(the nonlinear functions of the signal of interest can be seen as the additional

inputs or sources) and induce a different channel identifiability condition from

that of [72] and our work.

In this chapter, we extend the method in Chapter 4 and propose a closed-form

solution for blind MIMO FIR system identification by utilizing the estimated

channel output autocorrelation matrices and the knowledge of the source au-

tocorrelation matrices. The properties of companion matrices are further ex-

ploited to prove the uniqueness of the system solution. The contribution of

this chapter consists of the following three aspects. First, as in Chapter 4, the

inherent structural relationship between the source autocorrelation matrices is

further exploited as compared to the work [5]. Second, we derive some new

properties of the constructed companion matrices. These properties play a key

role in devising and validating our proposed algorithm. Third, our proposed

algorithm compares favorably with other existing methods in many aspects.

This chapter is organized as follows. In Section 5.2, we introduce the MIMO

system model and some basic assumptions. Next, in Section 5.3, we present

our blind channel identification method and provide an original proof for the

uniqueness of the system solution. We compare our method to other existing

method in Section 5.4. Computational complexity and identifiability conditions

are mainly considered. Finally, in Section 5.5, numerical simulation results are

presented to demonstrate the performance of the proposed algorithm.



CHAPTER 5. BLIND IDENTIFICATION OF MIMO FIR CHANNEL 88

5.2 System Model and Basic Assumptions

Consider a noisy linear MIMO channel with p inputs, si(n), i ∈ {1, 2, · · · , p},

and q outputs x(n)
△
= [x1(n) · · · xq(n)]. The MIMO channel model can be

written as follows (also see Eqn.(2.12) in Chapter 2)

x(n) =

p
∑

i=1

Li∑

l=0

hi(l)si(n − l) + w(n) (5.1)

where {hi(l)} denotes the multichannel filter corresponding to the ith user, Li

represents the channel order corresponding to the ith user. Let hi(z) denote

the Z-transform of {hi(l)}.

As discussed in Chapter 2, this channel model can be written in the following

matrix form by stacking the channel output vector x(n) and defining ~x(n)
△
=

[xT (n) xT (n−1) . . . xT (n−N)]T ,~si(n)
△
= [si(n) si(n−1) · · · si(n−N−Li)]

T

and ~w(n)
△
= [wT (n) wT (n − 1) . . . wT (n − N)]T :

~x(n) =

p
∑

i=1

Hi~si(n) + ~w(n) = H~s(n) + ~w(n). (5.2)

The readers can refer to Chapter 2 for the details and the definitions of the

symbols Hi, H and ~s(n).

We adopt the following basic assumptions:

A1 The number of sources is known a priori, and there are more outputs

than inputs, i.e. q > p.

A2 Channel is irreducible and column-reduced (Please refer to Chapter 2 for

the definitions “irreducible” and “column-reduced”).

A3 The channel order of each source is assumed to be known a priori.
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A4 The sources are zero-mean wide-sense stationary colored signals with their

input statistics being available. The sources are uncorrelated with each

other.

A5 Additive noises are spatially and temporally white noises, and they are

statistically independent of the sources.

As a consequence of A1–A2, the MIMO channel matrix H is full column rank

if the stack number N is chosen to satisfy (N + 1) ≥
∑p

i=1 Li (see [27]). Our

objective is to estimate the channel impulse response by utilizing the second-

order statistics of the observed data ~x(n) and the knowledge of the sources’

statistics.

5.3 Proposed Channel Identification Method

We begin by defining the source autocorrelation matrices as follows

Rsi
[k]

△
= E[~si(n)~sH

i (n − k)] (5.3)

Rs[k]
△
= E[~s(n)~sH(n − k)]. (5.4)

By invoking the assumption A4, we know that Rs[k] is a block diagonal matrix

written as

Rs[k] = diag
(
Rs1

[k],Rs2
[k], · · · ,Rsp [k]

)
(5.5)

where diag(·) denotes block diagonal. Also, in order to simplify the presentation

of the proposed channel identification method, we assume the noiseless case.
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Thus the autocorrelation matrices of the received data ~x(n) can be written as

Rx[k]
△
= E[~x(n)~xH(n − k)] = HRs[k]HH . (5.6)

In the following, we will show that the channel convolution matrix H can be

identified up to a block diagonal matrix D
△
= diag(λ1I1, · · · , λpIp) by utilizing

the estimated channel output autocorrelation matrices Rx[k], k ∈ {0,±1} and

the knowledge of Rs[k], k ∈ {0,±1}, where Ii denotes an di×di identity matrix.

We commence by introducing the following lemma.

Lemma 5.1 Given Rx[k] = HRs[k]HH , H is full column rank and Rs[0] is

invertible, then we have

Rx[k]R†
x[0] = HRs[k]R−1

s [0]H† (5.7)

Rx[k]R†
x[0]H = HRs[k]R−1

s [0]. (5.8)

Proof: The proof follows the same way as that of Lemma 4.1. �

For convenience, let

Υ2k−1
△
= Rx[k]R†

x[0] Υ2k
△
= Rx[−k]R†

x[0]

Θ2k−1
△
= Rs[k]R−1

s [0] Θ2k
△
= Rs[−k]R−1

s [0].

We can therefore re-express Eqn.(5.8) (choose K ≥ k ≥ 1) as

Υk̄H = HΘk̄ ∀ k̄ ∈ {1, . . . , 2K} (5.9)
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and further, for every k̄ ∈ {1, . . . , 2K}, we have the following by exploiting the

block diagonal structure of Θk̄
△
= diag(Θk̄,1, Θk̄,2, · · · , Θk̄,p)

Υk̄Hi = HiΘk̄,i ∀ i ∈ {1, . . . , p} (5.10)

where Θk̄,i
△
= Rsi

[k]R−1
si

[0], k = (k̄ + 1)/2 if k̄ is odd and k = −k̄/2 if k̄ is

even. For each i ∈ {1, . . . , p}, the above equation can be used to identify the

channel convolution matrix of user i, i.e. Hi, since the knowledge of Θk̄,i is

known a priori and the information of Υk̄ can be obtained from the second-

order statistics of the observed data. By exploiting the block Toeplitz structure

of Hi, we can rewrite Eqn.(5.10) as

T1[Υk̄]hi = T2[Θk̄,i]hi (5.11)

where hi
△
=
[
hT

i (0) . . . hT
i (Li)

]T
, T1[·] and T2[·] respectively represent a certain

transformation on the bracketed matrix. Therefore we may estimate hi by the

following criterion

ĥi = arg min
‖hi‖=1

2K∑

k̄=1

∥
∥
∥
∥

[

T1[Υk̄] − T2[Θk̄,i]

]

hi

∥
∥
∥
∥

2

. (5.12)

The above optimization has a closed-form solution which can be obtained as

the right singular vector associated with the smallest singular value. However,

this criterion fails to provide the true channel estimation if the solution to

Eqn.(5.11) is not unique, i.e. there exist other non-zero vectors, gi, that are

linearly independent of hi and also satisfy T1[Υk̄]gi = T2[Θk̄,i]gi for any k̄ ∈

{1, . . . , 2K}. Hence we are faced with the following problem, that is, whether

or not the solution to Eqn.(5.11) is unique (up to an unknown scalar factor)

and under what conditions the solution of Eqn.(5.11) will be unique. This
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problem is studied in the following and we will establish the uniqueness of the

solution to Eqn.(5.11) by utilizing only Rx[0] and Rx[±1] and the knowledge

of Rs[0] and Rs[±1], i.e. the uniqueness of the solution can be guaranteed by

choosing k̄ = 1, 2 in Eqn.(5.11). We begin by exploiting the inherent structural

relationship between Rsi
[0] and Rsi

[±1] for any i ∈ {1, . . . , p}.

5.3.1 Inherent Structural Relationship of Source Autocorrela-

tion Matrices

It can be readily seen that for each source si, the last di − 1 rows of Rsi
[1] are

the first di − 1 rows of Rsi
[0], and the first di − 1 rows of Rsi

[−1] are the last

di − 1 rows of Rsi
[0]. Hence we can establish the following relationship

Rsi
[1] = JRsi

[0] + e1r
H
i1 (5.13)

Rsi
[−1] = JTRsi

[0] + edi
rH
i2 (5.14)

where

rH
i1

△
= eH

1 Rsi
[1] = E[si(n)~sH

i (n − 1)] (5.15)

rH
i2

△
= eH

di
Rsi

[−1] = E[si(n − di + 1)~sH
i (n + 1)]. (5.16)

In addition, if we define ri1(k) and ri2(k) as the kth entries of the vectors ri1

and ri2, respectively, then the entries in these vectors are related as follows

ri1(k) = r∗i2(di + 1 − k) ∀ k ∈ {1, . . . , di}. (5.17)
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Using Eqn.(5.13–5.14), we can re-express Θ1,i and Θ2,i as follows

Θ1,i = Rsi
[1]R−1

si
[0] = J − e1~α

H
i (5.18)

Θ2,i = Rsi
[−1]R−1

si
[0] = JT − edi

~βH
i (5.19)

where Θ1,i, Θ2,i ∈ Cdi×di and ~αi and ~βi can be obtained as

~αi =

[

αi,1 · · · αi,di

]T △
= −R−1

si
[0]ri1 (5.20)

~βi =

[

βi,1 · · · βi,di

]T △
= −R−1

si
[0]ri2. (5.21)

It can be seen that the entries in ~αi are exactly the coefficients of the dth
i -

order optimum forward prediction error filter for the process {si(n)} and the

entries in ~βi are exactly the coefficients of the dth
i -order optimum backward

prediction error filter for the process {si(n)} [114]. Also it is well known that

the relationship between ~αi and ~βi can be formulated in the following lemma.

Lemma 5.2 Given that ~αi and ~βi are defined as in Eqn.(5.20) and Eqn.(5.21)

respectively, there holds

αi,k = β∗
i,di+1−k ∀ k ∈ {1, . . . , di}. (5.22)

Proof: The proof follows the same way as that of Lemma 4.2. �

Observe that both Θ1,i and Θ2,i are companion matrices and they are related

by the following relationship Θ2,i = MΘ∗
1,iM, where M represents the exchange

matrix with ones on the antidiagonal and zeros elsewhere. Due to their special
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structures, these companion matrices have some important properties we shall

investigate in the following.

5.3.2 Properties of Companion Matrices and The Identifiability

Conditions

The properties of the companion matrices are highlighted as follows

Lemma 5.3 Given that Y ∈ Cdi×dj satisfies the following two equations

(a) Θ1,iY = YΘ1,j (b) Θ2,iY = YΘ2,j (5.23)

and the modulus of the last entry in ~αj is not equal to one, i.e. |αj,dj
| 6= 1, we

have

• If di = dj, Θ1,i = Θ1,j and Θ2,i = Θ2,j, then Y = λI, where λ could be

any complex scalar including zero.

• If di = dj, Θ1,i 6= Θ1,j and Θ2,i 6= Θ2,j, then Y = 0.

• If di > dj, then Y = 0.

• If di < dj, and |αi,mi
| 6= |αj,dj−ti |, where ti

△
= di − mi, αi,mi

denotes the

last non-zero entry in ~αi, then Y = 0. Such a condition |αi,mi
| 6= |αj,dj−ti |

can be removed if there exists a non-zero entry for αj,k, k ∈ {dj − ti +

1, . . . , dj}.

Proof: See Appendix B. �

The significance of Lemma 5.3 not only lies in the fact that it provides a theoret-

ical basis for Theorem 5.1, but also it establishes the identifiability conditions

imposed on the input colored sources. We describe these identifiability condi-

tions as follows
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IC1 The modulus of the last entry in each ~αi is not equal to one, i.e.

|αi,di
| 6= 1 ∀ i ∈ {1, . . . , p}. (5.24)

This condition can be guaranteed if for every user si, i ∈ {1, . . . , p}, the

source autocorrelation matrix Rsi
[0] is positive definite. This is because

|αi,di
| will be strictly less than one under the assumption that Rsi

[0] is

positive definite (see Theorem 1 in [67]).

IC2 For each pair of sources {si, sj}, we have

Θ1,i 6= Θ1,j Θ2,i 6= Θ2,j (5.25)

i.e. ~αi 6= ~αj and ~βi 6= ~βj . Because of the relationship between ~αi and

~βi, this condition can be reduced as ~αi 6= ~αj for each pair of {i, j}. This

condition is satisfied if all sources have distinct second order statistics

(power spectra).

IC3 Sources have distinct second order statistics (power spectra) such that for

each pair of sources {si, sj}, where dj ≥ di, the corresponding {~αi, ~αj}

does not satisfy the following two conditions simultaneously

(i) |αi,mi
| = |αj,dj−ti |

(ii) αj,k = 0 ∀ k ∈ {dj − ti + 1, . . . , dj}

where αi,mi
is the last non-zero entry in ~αi. This condition is very mild

such that it is less restrictive than the following more comprehensible

condition: for each pair of sources {si, sj}, the moduli of the last non-
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zero entries of ~αi and ~αj are not equal, i.e.

|αi,mi
| 6= |αj,mj

| ∀ i, j ∈ {1, . . . , p} (5.26)

where αj,mj
denotes the last non-zero entry in ~αj . Considering that the

channel order of each source may possibly change in practice, it means

that every pair of {~αi, ~αj} from {~α1, . . . , ~αp} should satisfy the condition

in Eqn.(5.26) for every possible {di, dj}, where di = N + Li + 1, N is the

stack number chosen at the receiver.

Remark: First, we emphasize that IC1–IC3 are sufficient identifiability con-

ditions in order to distinguish them from necessary conditions. Among the

identifiability conditions, IC2 can be considered as a redundant condition since

IC3 alone guarantees that all sources have distinct power spectra. IC3 is the so-

called spectral diversity condition required to ensure that the MIMO channel H

can be unambiguously determined from the second-order statistics of received

data. Otherwise the channel can only be determined up to an unknown unitary

matrix due to the spectral symmetry.

5.3.3 Proof of The Solution Uniqueness and The Proposed Al-

gorithm

We now prove the uniqueness of the system solution to Eqn.(5.11) by utilizing

the above lemma. We, firstly, prove that the solution to Eqn.(5.10) is unique

(up to a scalar factor). The problem is formulated as the following theorem.

Theorem 5.1 Given that (note that the following two equations are directly



CHAPTER 5. BLIND IDENTIFICATION OF MIMO FIR CHANNEL 97

from Eqn.(5.7))

(a) Υ1 = HΘ1H
† (b) Υ2 = HΘ2H

† (5.27)

if H is full column rank and the input colored sources satisfy the identifiability

conditions IC1–IC3, then any non-zero matrix Gi, i ∈ {1, . . . , p}, that has the

same block Toeplitz structure as Hi and also satisfies Eqn.(5.10) for k̄ = 1, 2,

i.e. Υ1Gi = GiΘ1,i and Υ2Gi = GiΘ2,i, can be written as Gi = λiHi, where λi is

a non-zero complex scalar.

Proof: Suppose a non-zero matrix Gi ∈ C(N+1)q×di with the same block Toeplitz

structure as Hi also satisfies Eqn.(5.10) for k̄ = 1, 2, then we have

Υ1Gi = GiΘ1,i ⇒ HΘ1H
†Gi = GiΘ1,i ⇒ Θ1H

†Gi = H†GiΘ1,i (5.28)

Υ2Gi = GiΘ2,i ⇒ HΘ2H
†Gi = GiΘ2,i ⇒ Θ2H

†Gi = H†GiΘ2,i. (5.29)

Let X
△
= H†Gi

△
=

[

XT
1 · · · XT

p

]T

, where Xk ∈ Cdk×di , then we have

Θ1,kXk = XkΘ1,i ∀ k ∈ {1, . . . , p} (5.30)

Θ2,kXk = XkΘ2,i ∀ k ∈ {1, . . . , p}. (5.31)

Since the input sources satisfy the identifiability conditions IC1–IC3, by apply-

ing the results in Lemma 5.3, we know that Xk = 0 for any k 6= i and Xk = λiIi

for k = i, i.e.

H†Gi =

[

0 · · · λiIi · · · 0

]T △
= λiEi. (5.32)
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Therefore we only need to prove that the solution of Gi that satisfies Eqn.(5.32)

is unique and Gi = λiHi. Notice that Gi has the same block Toeplitz structure

as Hi. If we write H† △
= [V0 · · · VN ], we can transform H†Gi = λiEi as

V









gi(0)

...

gi(Li)









= vec(λiEi) (5.33)

where gi(0), · · · ,gi(Li) are the corresponding column vectors used to construct

the block Toeplize matrix Gi in the way as we define Hi using hi(0), · · · ,hi(Li),

V ∈ Cdi(d1+···+dp)×(Li+1)q is a block Toeplitz matrix written as

V =



















V0 0 · · · 0

... V0
. . .

...

VN
. . .

. . . 0

0 VN
. . . V0

...
. . .

. . .
...

0 · · · 0 VN



















.

Obviously, from Eqn.(5.33) we know that Gi can be uniquely determined if V

has full column rank. Recalling Theorem 1 in [95], V has full column rank

if the following condition holds, i.e. there exists a nonzero z0 (including ∞)

such that the polynomial matrix V(z0) has full column rank, where V(z)
△
=

V0+V1z
−1+· · ·+VNz−N . This mild condition can be satisfied with probability

one since generally, when L ≥ 1, the entries of matrix H† can be considered as

randomly generated. Thus we can conclude that the solution of Gi is unique

and Gi = λiHi. Note that λi can not be zero here because Gi would be zero

under the condition λi = 0, which contradicts our previously made assumption
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Gi 6= 0. The proof is completed here. �

Since Eqn.(5.10) and Eqn.(5.11) can be derived from each other, it implies

that the solution to Eqn.(5.11) is unique up to a scaling constant of the “true”

channel hi. Therefore hi can be estimated by the criterion in Eqn.(5.12) with

K = 1, i.e.

ĥi = arg min
‖hi‖=1

∥
∥
∥
∥
∥
∥
∥






T1[Υ1] − T2[Θ1,i]

T1[Υ2] − T2[Θ2,i]




hi

∥
∥
∥
∥
∥
∥
∥

2

. (5.34)

As mentioned before, the above optimization has a closed-form solution which

can be obtained as the right singular vector associated with the smallest singular

value. The matrix involved in singular value decomposition (SVD) operation

is of dimension C2(N+Li+1)(N+1)q×(Li+1)q. Now the channel convolution matrix

H has been identified up to a block diagonal matrix D = diag(λ1I1, · · · , λpIp),

where λi for each i ∈ {1, . . . , p} is an unknown nonzero complex scalar. It is

noted that the amplitude ambiguity of this unknown complex scalar can be

removed if we insert the estimated channel Ĥ back into Eqn.(5.6). Thus the

channel convolution matrix H can be further identified up to the block diagonal

matrix D = diag(eiθ1I1, · · · , e
iθpIp).

5.3.4 Joint Order Detection and Channel Estimation

In this subsection, we consider the problem of joint order detection and channel

estimation. Our previous work assumed that the channel order of each user is

known a priori or can be correctly estimated. However, in practice, channel

order determination of each user from second order statistics of received data

may not be possible since only the total number of channel order, i.e. Ltotal =
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L1 + · · · + Lp, can be estimated from Rx[0] by applying MDL criterion [51].

Therefore a joint order detection and channel estimation algorithm is desirable.

We present the following theorem as a theoretical basis for our joint estimation

algorithm.

Theorem 5.2 Let L = {[M1, . . . , Mp] ∈ Np} denote the finite set of p-tuple

points, where M1 + · · · + Mp = Ltotal, Np denotes the set of p-tuple points with

natural number entries. Then ~le = [L1, . . . , Lp] is the unique p-tuple point in

L that can render us a non-zero solution {X1, . . . ,Xp} satisfying the following

sets of equations, where for each i ∈ {1, . . . , p}, Xi ∈ C(N+1)q×(N+Mi+1) is a

non-zero block Toeplitz matrix.

Υ1Xi = XiΘ1,i(Mi) ∀ i ∈ {1, . . . , p} (5.35)

Υ2Xi = XiΘ2,i(Mi) ∀ i ∈ {1, . . . , p} (5.36)

where Θ1,i(Mi) and Θ2,i(Mi) are the corresponding companion matrices con-

structed using the estimated channel order Mi. It implies that for any other

p-tuple point ~l = [M1, . . . , Mp] in L, ~l 6= ~le, there does not exist a non-zero

solution {X1, . . . ,Xp} that satisfies Eqn.(5.35–5.36).

Proof: See Appendix C. �

From Theorem 5.1 and Theorem 5.2, it is easy to ascertain that ϕ(~le;
h1

‖h1‖ , . . . ,
hp

‖hp‖)

is the unique zero of the function ϕ subject to ‖ui‖ = 1 ∀ i ∈ {1, . . . , p}.

ϕ(~l;u1, . . . ,up) =

p
∑

i=1

∥
∥
∥T (~l; i)ui

∥
∥
∥

2
(5.37)
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where

T (~l; i)
△
=






T1[Υ1] − T2[Θ1,i(Mi)]

T1[Υ2] − T2[Θ2,i(Mi)]




 . (5.38)

Therefore we can jointly determine the channel order and estimate the channel

parameters by the following criterion

{~̂le; ĥ1, . . . , ĥp} = arg min
~l∈L,‖ui‖=1

p
∑

i=1

∥
∥
∥T (~l; i)ui

∥
∥
∥

2
. (5.39)

For each~l ∈ L, the above optimization admits a closed-form solution of {u1, . . . ,up}

involving a series of right singular vectors associated with the smallest singular

values. To search for the optimal p-tuple point ~̂le that minimizes the above

criterion, we need to let ~l run over L.

5.3.5 Noise Compensation

In our previous presentation, we have ignored the noise effect in order to simplify

our presentation. In practice, the influence of the noise can be minimized by

removing the noise contribution from the estimated autocorrelation matrices of

channel output. Since the additive noises are assumed spatially and temporally

white with same variance, we have

Rx[0] = HRs[0]HH + σ2
wI.

The noise variance σ2
w can thus be estimated as the smallest eigenvalues of

Rx[0] and then subtracted from any estimated autocorrelation matrix Rx[k]

to provide our proposed algorithm with denoised autocorrelation estimates. In

fact, even doing in this way, the noise effect cannot yet be completely canceled.
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This results in estimation errors of Υk̄ and thus directly affects the accuracy

of the estimated channel, which can be easily observed through Eqn.(5.34). A

full study of the theoretical asymptotic performance analysis of our proposed

method is still under investigation and thus not included in this chapter.

5.4 Discussions

In this section, we compare our method to another existing method [72] that

addresses the same problem. The work in [72] also provides a closed-form

solution to blind estimation of MIMO channel driven by colored sources. The

method [72] and our proposed method may share a certain similarity in that

both methods are developed by matching theoretical and observed time-domain

second-order statistics of the observations. However, the work in [72] involves a

two-step estimation algorithm. In the first step, the channel convolution matrix

H is determined up to a unitary matrix Q from Rx[0], i.e.

Rx[0] = HRs[0]HH = (HR1/2
s [0])(HR1/2

s [0])H (5.40)

G0 = HR1/2
s [0]QH . (5.41)

Next, the residual unknown unitary matrix Q is resolved and estimated as an

isometry fitter which matches the observed second-order statistics G
†
0Rx[k](G†

0)
H

and the theoretical second-order statistics QR
−1/2
s [0]Rs[k]R

−1/2
s [0]QH . On the

contrary, our proposed method directly estimates the channel convolution ma-

trix H by matching the estimated second-order statistics Rx[k]R†
x[0] and the

theoretical second-order statistics HRs[k]R−1
s [0]H†. We now consider and dis-
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cuss the computational complexity and the channel identifiability conditions of

the respective methods.

5.4.1 Computational Complexity

One key advantage of our method is our ability in exploiting the block Toeplitz

structure of H, which results in great reduction in computational complexity.

This can be illustrated as follows. We consider the linear algebraic operations

involved in the respective algorithms. In [72], the unknown unitary matrix Q =

[Q1 · · · Qp] is computed in p parallel threads, the ith thread leading to Qi. Qi

is estimated as a closed-form minimizer that can be obtained by computing the

singular value decomposition (SVD) of a matrix with the following dimension:

rows : K̄ × ((N + 1)p +
∑p

i=1 Li) × (N + 1 + Li)

columns : ((N + 1)p +
∑p

i=1 Li) × (N + 1 + Li)

where K̄ = 2K is the number of autocorrelation matrices used for matching

purposes. Comparatively, our method also estimates H = [H1 · · · Hp] in p

parallel threads, the ith thread leading to Hi. Hi is obtained by computing the

SVD of a matrix with the following dimension:

rows : K̄ × (N + 1)q × (N + Li + 1)

columns : (Li + 1)q.

It can be seen that the dimension of the matrix involved in SVD operation in

our method is much less than that of [72], except when q ≫ p. As a simple

illustrative example, if p = 2, q = 3, (L1, L2) = (3, 3), K̄ = 2 for both methods

and the stack number N is chosen to be 6 to ensure that H is full column rank,

then, the matrix involved in SVD operation in [72] is of size 400 × 200 while
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in our method it is of size 420 × 12. Based on [112], for an m × n matrix with

m ≥ n, it needs about 2mn2 + 11n3 flops to compute singular values and right

singular vectors. Thus the flops needed by [72] is about 103 ∼ 203 times the

flops required by our proposed method.

5.4.2 Channel Identifiability Condition

We now consider the identifiability conditions induced by respective methods.

As compared to [72], our work shows an improvement in that it relaxes the

identifiability conditions further by specifying and minimizing the exact number

of autocorrelation matrices required for channel estimation. For our method,

it has been proved that only Rx[±1] and Rx[0], i.e. K̄ = 2, suffice to provide

us with a unique closed-form system solution. On the other hand, it can be

seen that both methods have established respective spectral diversity conditions

imposed on the input colored sources. In our work, the coefficients of the

optimum forward prediction error filters for the input colored processes are

used to characterize the spectral diversity, and the spectral diversity condition

(IC3) requires that for each pair of sources {si, sj}, the moduli of the last non-

zero entries of ~αi and ~αj are not equal (Note that here we adopt the more

restrictive but more comprehensible condition), i.e.

|αi,mi
| 6= |αj,mj

| ∀ i, j ∈ {1, . . . , p}. (5.42)

In [72], the sources autocorrelation matrices’ eigenvalues are used to character-

ize the spectral diversity, and the spectral diversity condition requires that for

each pair of sources {si, sj}, there is a correlation lag k such that

σ(Ai(k)) ∩ σ(Aj(k)) = ∅ (5.43)
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where Ai(k)
△
= R

−1/2
si [0]Rsi

[k]R
−1/2
si [0], σ(A) = {σ1, . . . , σn} denotes the set of

eigenvalues of matrix A ∈ Cn×n. From probability perspective, if the correla-

tion lag k is confined to {±1}, it seems that our spectral diversity condition is

more likely to be satisfied since our spectral diversity condition requires only

one pair of random variables to be unequal for each pair of sources, while the

spectral diversity condition of [72] requires that every pair of entries selected

respectively from the two set of eigenvalues must be unequal.

5.5 Simulation Results

In this section, we present simulation results to illustrate the performance of

our proposed algorithm. We compare our method to the second-order statistics

isometry fitting (SIF) method proposed in [72] and the subspace (SS) method

developed in [27, 28]. The subspace method yields an estimate of H(z)
△
=

[h1(z) h2(z) · · · hp(z)] up to a constant matrix factor if H(z) is irreducible,

column-reduced and of equal column degrees. To retrieve the unknown constant

matrix, the method [115] is shown to be a good choice for incorporation into

the subspace method for blind estimation of MIMO FIR channel driven by

colored signals. Such a combined scheme does not require the knowledge of the

input statistics, and it is free of local minima and has demonstrated a superior

performance as compared to other methods [70, 71]. In our simulations, the

performance is measured by the normalized root-mean-square error (NRMSE)

of the channel estimate and the SER of the estimated data symbols. The

NRMSE of each user’s channel estimate is defined as

NRMSE(i) =

√
√
√
√ 1

Nmc

Nmc∑

t=1

‖ρ(t)ĥ
(t)
i − hi‖2

‖hi‖2
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where Nmc is the number of Monte Carlo runs, ρ(t) is a complex scalar that

minimizes ‖ρ(t)ĥ
(t)
i −hi‖

2. Also, in our simulations, the additive noise w(n) is

taken as spatial-temporal white Gaussian noise with variance σ2
w. The SNR is

defined as

SNR = 10 · log
E[‖H~s(n)‖2]

E[‖~w(n)‖2]
.

In the following examples, the noise variance is estimated as the smallest eigen-

values of the matrix Rx[0] and thus subtracted to provide the respective algo-

rithms with denoised estimated autocorrelation matrices.

5.5.1 Scenario with Multiple Sources – Channel Estimation

We consider p = 2 sources which are i.i.d. information sequences with 4-QPSK

digital modulation format, i.e. S = {1,−1, i,−i}. To generate the colored

sources, we pass these two i.i.d. information sequences through correlative

filters prior to transmission. The correlative filters are chosen to be f1(z) =

k1(1 + 1
4e−iπ/2z−1) and f2(z) = k2(1 + 1

2eiπ/4z−1) respectively for user 1 and

user 2, where k1 and k2 are normalizing constants to ensure unit-power outputs.

We consider a wireless communication scenario with these two colored user

signals arriving at a single sensor via a multipath channel. The channel impulse

responses of the users are respectively given as

h1(t) = (c(t, 0.1) − 0.7c(t − 0.5T, 0.1))W4T (t)

h2(t) = (c(t − 0.2T, 0.1) − 0.5c(t − 0.6T, 0.1))W4T (t)

where c(t − t0, θ) denotes a raised cosine pulse with roll-off factor θ and delay

t0, W4T (t) is a square window of duration 4 symbols intervals. We sample
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the received signal three times the symbol rate, thus generating a two-input

three-output linear system with channel order L1 = L2 = 3. For simplicity,

knowledge of the channel order of each user is assumed. The rank of Rx[0] is

estimated as r =
∑p

i=1(N +Li +1). Results are averaged over 100 Monte Carlo

runs.

In the following, we illustrate the channel estimate performance of the respec-

tive algorithms, and show how it depends on the SNR of the received data and

the number of samples used to estimate signal statistics, Ts. We choose stack

number N = 8. For the SIF identification technique, six autocorrelation matri-

ces are used for matching purposes, i.e. k = {±1,±2,±3} in Eqn.(5.6). Figure

5.1 shows the performance of the three algorithms as SNR is varied. Ts = 2000

samples are used to estimate signal statistics in each Monte Carlo run. Next,

in Figure 5.2, the NRMSE of the channel estimate is shown as a function of the

number of samples, with SNR = 30dB. Clearly, we can see that all three algo-

rithms improve consistently as SNR or number of samples Ts increases. Also it

seems that, for this specified channel, the performance of the subspace method

is more liable to be affected by the number of samples used for estimation as

compared to the other two algorithms. And our proposed algorithm presents

a clear performance advantage over SIF and SS methods. Notice that due to

the variation between the channel impulse responses of user 1 and user 2, the

SNR of received signals of user 1 is higher, and as a consequence, the channel

estimate of user 1 is better.

5.5.2 Scenario with Multiple Sources – Channel Equalization

In this example, we are interested in the equalization performance of the respec-

tive algorithms. We consider two colored sources arriving at q = 3 antennas.
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Figure 5.1: NRMSE of the estimated channel versus SNR, Ts = 2000
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Figure 5.2: NRMSE of the estimated channel versus number of samples Ts,
SNR = 30dB
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The two colored sources are induced in the same way as in the example above.

The polynomial channel matrix H(z) thus has dimension 3 × 2 and its degree

is chosen to be 2, i.e. L1 = L2 = 2. In our simulations, all parameters of H(z)

are randomly chosen from N (0, 1) + iN (0, 1) (i.e. complex Gaussian variable

with independent real and imaginary parts) at each run. The stack number N

is chosen to be 4 and knowledge of the channel order is assumed.

Once the channel matrix has been estimated by the respective algorithms, we

can compute the ZF equalizers and the MMSE equalizers respectively as

EZF = Ĥ†

EMMSE = EZF(I − σ2
wR̂−1

x [0])

where R̂x[0] is the estimated autocorrelation matrix before denoised. The above

expression for the MMSE equalizers was first derived in [116] for white inputs

and then readily extended in [67] for colored inputs. The different rows of

EMMSE[1 : N + L1 + 1, :] correspond to equalizers with different equalization

delays of user 1; the different rows of EMMSE[N +L1 +2 : 2(N +1)+L1 +L2, :]

correspond to equalizers with different equalization delays of user 2. The scalar

ambiguity of equalizers per user is removed before we perform the equalization.

After channel equalization, the filtered information sequences (the outputs of

the information sequences passing through the correlative filters) of each source

are recovered and we can further detect the information sequences by adopt-

ing the Viterbi algorithm-based maximum likelihood detector. We present the

equalization performance of the algorithms in the following three tables. The

results are averaged over 500 Monte Carlo runs. In Figure 5.3, we show the SER

associated with the two sources as a function of SNR with Ts = 2000 and equal-

ization delay de = 2. It can be seen that, as expected, all the three algorithms
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improve with increasing SNR. And our proposed algorithm shows a consistently

lower SER than SIF and SS. Next, in Figure 5.4, the SER associated to the two

sources are shown as a function of Ts for SNR = 19dB and de = 2. Once again

our proposed algorithm presents a clear advantage over SIF and SS in terms

of SER. Finally, keeping the SNR constant at 19dB and Ts = 2000, we investi-

gate the relationship between SER performance and the equalization delays de.

Figure 5.5 shows that for all these three algorithms, the equalizers associated

with intermediate delays yield lower SER than those associated with extremal

delays. And at almost all equalization delays, our proposed algorithm achieves

better performance than the other two algorithms.

It is also interesting to consider the scenario where the spectral diversity condi-

tion of the input colored sources is ‘weakly’ satisfied. Although, theoretically,

this spectral diversity condition can be satisfied with probability one for all

three algorithms, however, a weakly satisfied spectral diversity condition does

not stand strong against noise and estimation errors. Hence, this scenario tends

to be a non-identifiable one in practice. Consider the two colored sources which

are induced in the same way as in the previous example with the correlative fil-

ters replaced by f1(z) = k1(1−0.25iz−1) and f2(z) = k2(1−0.5iz−1). The zeros

of these two filters are near and thus, the induced colored source signals have

similar power spectra and only ‘weakly’ satisfy the spectral diversity condition.

Figure 5.6 shows the equalization performance of the respective algorithms as a

function of SNR with Ts = 2000 and de = 2. It can be seen that, as compared

to Figure 5.3, all these three algorithms suffer from a certain performance loss

in this case, and the performance degrades more rapidly as SNR deteriorates.

This numerical example shows that a sufficiently diverse power spectra of the

input colored sources is required to enhance the algorithm’s robustness to the



CHAPTER 5. BLIND IDENTIFICATION OF MIMO FIR CHANNEL 112

10 15 20 25
10

−3

10
−2

10
−1

10
0

S
E

R

SNR(dB)

Proposed method
SIF
SS

(a) user 1

10 15 20 25
10

−3

10
−2

10
−1

10
0

S
E

R

SNR(dB)

Proposed method
SIF
SS

(b) user 2

Figure 5.3: SER versus SNR, Ts = 2000
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Figure 5.4: SER versus number of data samples Ts, SNR = 19dB
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Figure 5.5: SER versus equalization delays, SNR = 19dB, Ts = 2000
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Figure 5.6: SER versus SNR for the ‘weakly’ satisfied spectral diversity condi-
tion, Ts = 2000
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noise and estimation errors.

5.6 Summary

In this chapter, we extended our proposed method in Chapter 4 to MIMO sys-

tems and presented a closed-form solution for blind estimation of MIMO FIR

channel driven by colored sources. The original proof for the uniqueness of

the closed-form system solution was provided by exploiting the inherent struc-

tural relationship between Rs[0] and Rs[±1] and the derived properties of the

companion matrices. It is noted that the properties of the companion matrices

were further exploited in this chapter to prove the uniqueness of the system

solution. Theoretical analysis showed that our method requires a much less

computational complexity and induces a less restrictive identifiability condi-

tion as compared to the method [72]. Simulation results showed that the new

method compares favorably with the SOS-based methods [28, 72]. Also, the

numerical example demonstrated that a sufficiently diverse power spectra of

the input colored sources is required to enhance the algorithms’ robustness to

the noise and estimation errors.



Chapter 6

Blind Equalization of SIMO

FIR Channel

In this chapter, we consider the blind equalization of SIMO FIR channel driven

by colored signals. The statistics of the input colored signals are unknown a

priori. By exploiting the inherent structural relationship between the source

autocorrelation matrices of different delay lags, the closed-form ZF and MMSE

equalizers of desired delays are estimated from the SOS of the received data.

The blind equalizability conditions of the proposed method are investigated.

Numerical simulation results are presented to illustrate the performance of the

proposed algorithm.

6.1 Introduction

Encouraged by the achieved results (Chapter 4) for blind identification of chan-

nel driven by colored sources with known input statistics, in this chapter, we

are interested in investigating the problem of blind identification/equalization of

117
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channel driven by colored sources with unknown input statistics. It is shown in

the pioneering work [17] that the SIMO FIR channel can be perfectly iden-

tified/equalized from the second-order statistics of the received data under

quite general assumptions. Following [17], numerous SOS-based blind iden-

tification/equalization methods [1, 23–25] have been proposed. Nevertheless,

most existing SOS-based methods are applied to the i.i.d. input signals. The

work that consider the case of correlated input signals are much less, see [66–68].

Specifically, the work [66–68] treated the case where the input signal statistics

are colored and known. As for the case where the input statistics are colored but

unknown, it seems much more difficult to devise a SOS-based algorithm since no

prior statistical information of the transmitted signals can be utilized. One so-

lution to this problem is given in [22], which proposed a subspace-based method

by exploiting the block Toeplitz structure of the channel convolution matrix,

and thus required no knowledge of input statistics whatsoever. The extension

of [22] to MIMO systems was studied in [28]. There are some other work [70,71]

which studied blind identification/equalization of MIMO FIR channel driven by

colored signals with unknown statistics. However, both work [70,71] constitute

a two-step approach that is based on [22]. They, firstly, determine source sep-

arating vectors or decorrelators to separate the sources. Once the sources are

separated, the second step utilizes the subspace method [22] to estimate the

resulting SIMO systems and the original MIMO systems. Some determinis-

tic approaches that can handle arbitrarily correlated source signals have been

discussed in [44, 48, 52, 98] for blind SIMO channel identification/equalization.

They are most effective at high SNR and for small data samples scenarios. Note

that the deterministic method [44] has its statistical version whose performance

is similar as the subspace method [22]. Besides the above mentioned methods,

the mutually referenced equalizers (MRE) method proposed in [49] and the
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constrained minimum output energy (MOE) algorithm presented in [117] are

also important work in blind SIMO channel identification/equalization. The

work [49] was developed on the concept of the mutually referenced equaliz-

ers, i.e., the outputs of the set of filters (equalizers) act as training signals for

each other. The method does not rely on the specific assumptions concerning

the input statistics, and several variations of the MRE criterion including a

stochastic criterion using the second-order statistics have been derived. An-

other interesting work [117] explored the popular constrained minimum output

energy approach to derive the optimal blind equalizers. As indicated in [117],

the method is also insensitive to the color of the input signals.

In this chapter, we study the blind equalization of SIMO FIR channel when the

input signals are colored but the source statistics are unknown. It is shown that

although the statistical information of the transmitted signals is not available,

we can still estimate the equalizers of desired delays from the second-order

statistics of the received data by exploiting the inherent structural relationship

between source autocorrelation matrices of different delay lags. The proposed

method is essentially different from the subspace method [22] since it does not

exploit the structure of the channel convolution matrix. As a consequence,

our proposed method can be applied to the special case where the receiver

diversity is of high dimension such that the observations are not necessary to

be stacked (or smoothed) in time, and thus the resulting channel convolution

matrix will not have a block Toeplitz structure. Another important property

of our proposed method is that it directly computes the equalizers of desired

delays, which is different from most SOS-based methods available to date that

identify the channel first and then use it to estimate the equalizer coefficients.

Direct blind equalization algorithms have been proposed in [1, 25] for white
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input signals and in [49,117] for colored input signals. In [1], the equalizers are

estimated from the eigenvectors of certain rank-one matrices constructed from

the autocorrelation matrices of the received data. However, when the input

signals are colored, the correspondingly constructed matrices will not be rank-

one and the described properties about the matrices in [1] will not hold. The

contribution of this chapter consists of the following two aspects. First, the

inherent structural relationship between the source autocorrelation matrices of

different delay lags is exploited. Second, we generalize the proposed algorithm

in [1] to the colored sources. As will be evident in this chapter, such an extension

is not so straightforward and is highly nontrivial.

The chapter is organized as follows. In Section 6.2, the SIMO system model and

some basic assumptions are introduced. Next, in Section 6.3, we present our

blind channel equalization method and investigate the corresponding equaliz-

ability conditions. The closed-form ZF and MMSE equalizers are derived from

the matrices constructed by the autocorrelation matrices of received data. Fi-

nally, in Section 6.4, numerical simulation results are presented to demonstrate

the performance of the proposed algorithm.

6.2 System Model and Basic Assumptions

The SIMO FIR channel model considered in this chapter is the same as that

discussed in Chapter 4:

x(n)
△
= h(n) ⊛ s(n) + w(n)

△
=

L∑

l=0

h(l)s(n − l) + w(n) (6.1)
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where {s(n)} is the zero mean, wide sense stationary sequence of transmit-

ted symbols; {x(n)} is the q × 1 channel output vector; {w(n)} is the q × 1

white noise vector, and {h(n)} represents the multichannel impulse response;

the number of subchannels is q. This multichannel model arises by deploying

multiple sensors or by fractionally sampling the channel output.

As we did before, we stack the channel output vector {x(n)} and define: ~x(n)
△
=

[xT (n) xT (n − 1) . . . xT (n − N)]T , ~s(n)
△
= [s(n) s(n − 1) . . . s(n − N −

L)]T , and ~w(n)
△
= [wT (n) wT (n− 1) . . . wT (n−N)]T , where N is called the

stack number or smoothed factor. Therefore we can re-express Eqn.(6.1) as the

following matrix form

~x(n) = H~s(n) + ~w(n) (6.2)

where the channel convolution matrix H ∈ C(N+1)q×d is a block Toeplitz matrix

defined in the previous chapter.

We adopt the following basic assumptions: A1) H is full column rank: a con-

dition equivalent to requiring that the channel h(z) is irreducible. A2) Chan-

nel order L is assumed to be known a priori. A3) The input signals {s(n)}

are zero-mean wide-sense stationary colored signals whose input statistics are

unavailable. A4) Additive noises {w(n)} are spatially and temporally white

noises, and they are statistically independent of the source. Note that the as-

sumptions made in this chapter are the same as Chapter 4, with the exception

of A3. Our objective is to estimate the channel impulse response by utilizing

the second-order statistics of the observed output data.
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6.3 Proposed Channel Equalization Method

We begin by defining the source autocorrelation matrix with delay lag k as

follows

Rs[k]
△
= E[~s(n)~sH(n − k)]. (6.3)

In order to simplify the presentation of the proposed channel equalization

method, we assume the noiseless case. Thus, from Eqn.(6.2), the autocorre-

lation matrix of the received data ~x(n) with delay lag k can be expressed as

Rx[k]
△
= E[~x(n)~xH(n − k)] = HRs[k]HH . (6.4)

If the input signals are i.i.d., then the source autocorrelation matrix Rs[k] is

given by







Rs[k] = Jk k > 0

Rs[k] = I k = 0

Rs[−k] = JT
k k > 0

where the symbol Jk (JT
k ) stands for the k-lag down (up) shift square ma-

trix whose kth sub-diagonal entries below (above) the main diagonal are unity,

whereas all remaining entries are zero. This special structure possessed by the

source autocorrelation matrix has facilitated the design of numerous SOS-based

algorithms, e.g. [17]. However, when the input signals are colored, the source

autocorrelation matrix degenerates into a more general form that is hard to

be exploited directly. Moreover, for the case where the knowledge of the input

statistics is not available, the exact values of the entries of the source auto-

correlation matrix are unknown. To overcome all these difficulties, we need to
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exploit the inherent structural relationship between the source autocorrelation

matrices. Such a structural relationship is first observed in [67] between Rs[0]

and Rs[1], and later developed in [68] for Rs[0] and Rs[±1]. In this chapter,

we will further explore this structural relationship between Rs[0] and Rs[±k]

for 1 ≤ k ≤ d − 1.

6.3.1 Inherent Structural Relationship Between Source Auto-

correlation Matrices

We begin by observing the structural relationship between Rs[0] and Rs[±k],

where 1 ≤ k ≤ d − 1. It can be seen that the last d − k rows of Rs[k] are the

first d − k rows of Rs[0], and the first d − k rows of Rs[−k] are the last d − k

rows of Rs[0]. Hence we can establish the following relationship

Rs[k] = JkRs[0] +
k∑

i=1

eir
H
k,i (6.5)

Rs[−k] = JT
k Rs[0] +

d∑

i=d−k+1

eit
H
k,i (6.6)

where rk,i and tk,i are defined as follows with 1 ≤ i ≤ k for Eqn.(6.7) and

d − k + 1 ≤ i ≤ d for Eqn.(6.8) respectively

rH
k,i

△
= eH

i Rs[k] = E[s(n − i + 1)~sH(n − k)] (6.7)

tH
k,i

△
= eH

i Rs[−k] = E[s(n − i + 1)~sH(n + k)] (6.8)
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In addition, for any pairs (i, j) which satisfy i+j = d+1, we have the following

relationship

rk,i[m] = t∗k,j [d + 1 − m] ∀ m ∈ {1, . . . , d} (6.9)

where rk,i[m] denotes the mth entry of rk,i; tk,i[m] denotes the mth entry of tk,i.

6.3.2 Channel Equalization

In order to utilize the above structural relationship between source autocorrela-

tion matrices, we introduce the following lemma that has been used in previous

chapters.

Lemma 6.1 Given Rx[k] = HRs[k]HH , H is full column rank and Rs[0] is

invertible, we have

Rx[k]R†
x[0] = HRs[k]R−1

s [0]H†. (6.10)

Proof: See the proof of Lemma 4.1. �

Using Eqn.(6.5–6.6), we can express Rs[k]R−1
s [0] as follows

Rs[k]R−1
s [0] = Jk +

k∑

i=1

ei~α
H
k,i 0 < k < d (6.11)

Rs[−k]R−1
s [0] = JT

k +
d∑

i=d−k+1

ei
~βH

k,i 0 < k < d (6.12)
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where

~αk,i
△
= R−1

s [0]rk,i (6.13)

~βk,i
△
= R−1

s [0]tk,i. (6.14)

It can be seen that the entries in ~αk,i are exactly the coefficients of the multistep

dth-order optimum forward prediction error filter for the process {s(n)} and the

entries in ~βk,i are the coefficients of the multistep dth-order optimum backward

prediction error filter for the process {s(n)} [114]. Rs[k]R−1
s [0] is constructed

by Jk with its ith row of the first all-zero k rows replaced by the row vector

~αH
k,i; likewise, Rs[−k]R−1

s [0] is constructed by JT
k with its ith row of the last

all-zero k rows replaced by the row vector ~βH
k,i. It is still hard to directly utilize

the structure of Rs[k]R−1
s [0] and Rs[−k]R−1

s [0]. Intuitively, it may be better

if the ones of the constructed matrices are on the diagonal instead of on the

sub-diagonal. Hence we have the following further transformation. Define

Γk
△
= Rx[k]R†

x[0]Rx[−k]R†
x[0].

Using Eqn.(6.10), we can express Γk as

Γk = HRs[k]R−1
s [0]Rs[−k]R−1

s [0]H† △
= HΩkH

† (6.15)

where we let Ωk
△
= Rs[k]R−1

s [0]Rs[−k]R−1
s [0]. Using Eqn.(6.11–6.12), we get

the following

Ωk =

(

Jk +
k∑

i=1

ei~α
H
k,i

)

JT
k +

d∑

j=d−k+1

ej
~βH

k,j
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= Îd−k +
k∑

i=1

ei~α
H
k,i



JT
k +

d∑

j=d−k+1

ej
~βH

k,j





= Îd−k +
k∑

i=1

eia
H
k,i (6.16)

where

Îd−k
△
= JkJ

T
k = diag([01×k,11×(d−k)])

aH
k,i

△
= ~αH

k,i



JT
k +

d∑

j=d−k+1

ej
~βH

k,j





and the term Jk
∑d

j=d−k+1 ej
~βH

k,j is equal to zero. Similarly, Ω−k = Rs[−k]R−1
s [0]Rs[k]R−1

s [0]

is given as

Ω−k =

(

JT
k +

d∑

i=d−k+1

ei
~βH

k,i

)

Jk +
k∑

j=1

ej~α
H
k,j





= Ĭd−k +
d∑

i=d−k+1

ei
~βH

k,i



Jk +
k∑

j=1

ej~α
H
k,j





= Ĭd−k +
d∑

i=d−k+1

eib
H
k,i (6.17)

where

Ĭd−k
△
= JT

k Jk = diag([11×(d−k),01×k])

bH
k,i

△
= ~βH

k,i



Jk +
k∑

j=1

ej~α
H
k,j
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and the term JT
k

∑k
j=1 ej~α

H
k,j is equal to zero. Substituting Ωk and Ω−k with

the obtained relations in Eqn.(6.16–6.17), we thus have

Γk = H

(

Îd−k +
k∑

i=1

eia
H
k,i

)

H† (6.18)

Γ−k = H

(

Ĭd−k +
d∑

i=d−k+1

eib
H
k,i

)

H†. (6.19)

In the later part of this chapter, we will show that the closed-form channel

equalizers of any desired delays can be estimated from these two matrices Γk,

Γ−k and their matrix product. We, first, define the following notation.

Υ
△
= H

(
∑

i∈S

eic
H
i +

∑

i∈Sc

eic
H
i

)

H† (6.20)

where S is a subset of {1, 2, · · · , d}, Sc denotes the complement of S, i.e. S∪Sc =

{1, 2, · · · , d}. Also for any i ∈ S, we have ci = ei. Clearly, the above defined

matrix Υ is a generalized form of the matrices Γk, Γ−k and the matrix product

Γk1
Γ−k2

(It can be easily verified that Γk1
Γ−k2

can also be written as the form

in Eqn.(6.20)). We would like to investigate this generalized form and exploit

some property of this matrix Υ in the following theorem. Before we proceed,

we define

C
△
= [c1 c2 · · · cd] .

Let ci,j denote the (i, j)th element of C. C1 is defined as the matrix formed

by taking the entries ci,j out from C for any i ∈ S or j ∈ S. C1 is a square

matrix of dimension |Sc| × |Sc|, where |Sc| represents the number of elements

in the set Sc. In a similar way, C2 is defined as the matrix formed by taking
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the entries ci,j out from C for any i ∈ Sc or j ∈ S. C2 is a matrix of dimension

|S| × |Sc|. As we can see, the matrices C1 and C2 are all constructed from the

vectors ci for i ∈ Sc.

Theorem 6.1 Given that the matrix Υ defined in Eqn.(6.20), for any i ∈ S,

we have ci = ei; also, for i ∈ Sc, the vectors ci satisfy the following condition,

that is, the constructed matrix by the vectors ci for i ∈ Sc, C̄
△
=




C1 − I

C2



, is

full column rank, then for any non-zero vector g that satisfies gHΥ = gH , gH

is a linear combination of the rows H†[i, :] for i ∈ S, that is,

gH =
∑

i∈S

wiH
†[i, :] (6.21)

where H†[i, :] denotes the ith row of the matrix H†.

Proof: It is easy to see that if gH =
∑

i∈S wiH†[i, :], then

gHΥ =
∑

i∈S

wiH
†[i, :]H




∑

j∈S

ejc
H
j +

∑

j∈Sc

ejc
H
j



H†

=
∑

i∈S

wie
H
i




∑

j∈S

eje
H
j +

∑

j∈Sc

ejc
H
j



H†

=
∑

i∈S

wie
H
i H†

= gH . (6.22)

Now we prove that for any vector g that satisfies gHΥ = gH , we have gH =

∑

i∈S wiH
†[i, :]. Since gH = gHΥ = gHH(

∑

i∈S eic
H
i +

∑

i∈Sc eic
H
i )H†, it

indicates that gH is a linear combination of the rows of H†. Hence we can
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write

gH =
d∑

i=1

wiH
†[i, :] (6.23)

therefore we have

gHΥ =
d∑

j=1

wjH
†[j, :]H

(
∑

i∈S

eic
H
i +

∑

i∈Sc

eic
H
i

)

H†

=

d∑

j=1

wje
H
j

(
∑

i∈S

eie
H
i +

∑

i∈Sc

eic
H
i

)

H†

=
∑

i∈S

wie
H
i H† +

∑

i∈Sc

wic
H
i H†

=
∑

i∈S

wiH
†[i, :] +

∑

i∈Sc

wic
H
i H†. (6.24)

By combining Eqn.(6.23–6.24), we have

gHΥ − gH =
∑

i∈Sc

wic
H
i H† −

∑

i∈Sc

wiH
†[i, :]

=
d∑

j=1

(
∑

i∈Sc

wic
∗
j,i

)

H†[j, :] −
∑

j∈Sc

wjH
†[j, :]. (6.25)

Since H† is full row rank and the rows of H† are independent, in order to make

gHΥ = gH , it is required that

(i)
∑

i∈Sc wic
∗
j,i = wj for j ∈ Sc

(ii)
∑

i∈Sc wic
∗
j,i = 0 for j ∈ S.

The above first condition is equivalent to the following condition in matrix form

wT
scC

H
1 = wT

sc (6.26)
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where wsc is a column vector formed by taking the entries wi out from the

vector w
△
= [w1 w2 · · · wd]

T for any i ∈ S. The number of entries in wsc is

thus the same as the number of elements in the set Sc, which is denoted by

|Sc|. Also, the above second condition can be written as

wT
scC

H
2 = 0. (6.27)

These two conditions are combined and transformed as follows






C1 − I

C2




w∗

sc = 0. (6.28)

Since the matrix C̄ =






C1 − I

C2




 is full column rank, we can conclude that

wsc = 0. Clearly, if there exists only an all-zero solution of wsc to satisfy the

above two conditions, then the vector g that satisfies gHΥ = gH has the form

gH =
∑

i∈S wiH
†[i, :]. Therefore our theorem is valid under the condition that

C̄ is full column rank. Such a condition is only related to the vectors ci for

i ∈ Sc. It can be easily verified that this condition, in fact, has excluded the

possibility that any vector ci, for i ∈ Sc, is equal to ei. The proof is completed

here. �

From Theorem 6.1, it is easy to know that if S includes only one element m,

i.e. S = {m}, then the non-zero vector gH that satisfies gHΥ = gH will be

equal to wmH†[m, :], which is exactly the desired zero-forcing equalizer of delay

m−1. Inspired by this, we have the following two lemmas that provide the key

to estimate the zero-forcing equalizers of desired delays.

Lemma 6.2 If gHΓk = gH for k = d − 1, then gH is the zero-forcing channel
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equalizer of delay d − 1; also if gHΓ−k = gH for k = d − 1, then gH is the

zero-forcing channel equalizer of delay 0.

Proof: From Eqn.(6.18–6.19), we have

Γd−1 = H

(

ede
H
d +

d−1∑

i=1

eia
H
d−1,i

)

H† (6.29)

Γ−(d−1) = H

(

e1e
H
1 +

d∑

i=2

eib
H
d−1,i

)

H†. (6.30)

The proof is obvious from Theorem 6.1 if we let ci = ad−1,i and ci = bd−1,i for

i ∈ Sc, respectively. �

Lemma 6.3 Let Fk1,k2

△
= Γk1

Γ−k2
. If gHFk1,k2

= gH for any {k1, k2} satisfy-

ing k1 + k2 = d − 1, where 1 ≤ k1 ≤ d − 2, then gH is the zero-forcing channel

equalizer of delay k1.

Proof: For k1 + k2 = d − 1, we have

Fk1,k2

△
= Γk1

Γ−k2

= H

(

Îd−k1
+

k1∑

i=1

eia
H
k1,i

)

×



Ĭd−k2
+

d∑

j=d−k2+1

ejb
H
k2,j



H†

= H



ek1+1e
H
k1+1 +

d∑

i=k1+2

eib
H
k2,i +

k1∑

i=1

eif
H
k1,i



H† (6.31)

where

fH
k1,i

△
= aH

k1,i



Ĭd−k2
+

d∑

j=d−k2+1

ejb
H
k2,j



 .
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Again, the proof is evident from Theorem 6.1 if we let ci = fk1,i for i ∈

{1, · · · , k1} and ci = bk2,i for i ∈ {k1 + 2, · · · , d}. �

Up to now, we have shown that the zero-forcing equalizers with extreme delays

can be estimated directly from Γk and Γ−k for k = d − 1, and the zero-forcing

equalizers with intermediate delays can be estimated from Fk1,k2
= Γk1

Γ−k2
for

k1 +k2 = d− 1. As an important note, from the above, all equalizers of desired

delays are estimated independently of those of other delays. The solution to

gHΓk = gH or gHFk1,k2
= gH admits a closed-form and can be solved as the left

singular vector associated with the smallest singular value of matrix (Γk − I)

or (Fk1,k2
− I). Of course, all these results are valid under the assumption

that the so-called equalizability condition is satisfied, i.e. C̄ =






C1 − I

C2




 is

full column rank, where C1 and C2 are constructed from the vectors ci for

Sc = {1, · · · , m − 1, m + 1, · · · , d}. C1 is a (d − 1) × (d − 1) square matrix and

C2 turns into a 1× (d− 1) row vector. In the following, we discuss this crucial

issue of equalizability condition and ascertain its implications.

6.3.3 Equalizability Condition and Relation with Other Work

As mentioned above, the equalizability condition requires that the matrix C̄ =




C1 − I

C2




 constructed by the vectors ci for i ∈ Sc = {1, · · · , m − 1, m +

1, · · · , d} is full column rank, where C̄ is a d× (d− 1) matrix. From Lemma 6.2

and 6.3, it can be seen that the entries in C̄ are determined by the second-order

statistics of the colored input signals. Hence the equalizability is only related

to its “colorness” or power spectrum of the source. In fact, the equalizability

condition described above is not very restrictive and can be met by most col-
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ored sources. The reason can be explained as follows. The vectors ci for i ∈ Sc

used to construct the matrices C1 and C2 are all explicitly expressed by the

coefficients of the multistep dth-order optimum forward/backward prediction

error filters for the process {s(n)}. For example, in Lemma 6.2, the vectors ci

for i ∈ Sc are equal to ad−1,i (bd−1,i), where ad−1,i (bd−1,i) are functions of the

coefficients of the multistep dth-order optimum forward/backward prediction

error filters. Generally, for most colored sources, the coefficients of the multi-

step optimum forward/backward prediction error filters are small and scarcely

greater than unity. Accordingly, the entries in the vectors ci for i ∈ Sc are also

of small values. Thus, C1 − I is a matrix whose diagonal elements are close to

minus one and whose off-diagonal elements are relatively small. Such a matrix

scarcely collapses into a rank-deficient matrix. Hence C̄ is full column rank

and the equalizability condition can be assured for most colored sources. For

an illustrative example, for the colored source in Section 6.4 Example A of this

chapter, we have

CH =









05×7

0.09i 0.19 −0.28i −0.37 0.47i 0.56 0.22i

0 0 0 0 0 0 1









for d = 7 and S = {7}. It can be easily verified that C1 − I is full rank, where

CH
1 =






05×6

0.09i 0.19 −0.28i −0.37 0.47i 0.56




 .
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Also, for the colored source in Section 6.4 Example B of this chapter, we have

CH ≈















0 0 0 0 −0.04i

0 0 0 0 0.05 − 0.03i

0 0 0 0 0.13 − 0.04i

0 0 0 0 0.35 − 0.02i

0 0 0 0 1















for d = 5 and S = {5}. It can also be verified that C1 − I is full rank, where

CH
1 = 04×4.

If the input signals are white, then we have ci = 0 for each i ∈ Sc, i.e. i 6= m.

Hence the matrices C1 = 0 and C2 = 0. It is clear that the equalizability

condition is automatically satisfied in this case. This implies that our pro-

posed algorithm devised for colored sources also applies to the white signals.

In fact, in the case where the input signals are white, the matrices Γk, Γ−k

for k = d − 1 and Fk1,k2
for k1 + k2 = d − 1 are all reduced into rank-one

matrices Am
△
= HemeH

mH† = H[:, m]H†[m, :]. Clearly, we can estimate the mth

column of H and the mth row of H† as the principal left singular vector and

right singular vector of these rank-one matrices respectively. Thus the channel

impulse response and the zero-forcing equalizers are obtained simultaneously

by computing the singular value decomposition (SVD) of Am. On the other

hand, it is easy to prove that for any vector g that satisfies gHAm = gH , then

gH is the zero-forcing equalizer of delay (m− 1); for any vector g that satisfies

Amg = g, then g is the mth column of H. These are also the main results

of work reported in [1]. As we can see, these special rank-one matrices have

useful structure facilitating us to identify the channel and estimate the zero-

forcing equalizers simultaneously. However, when the input signals are colored,
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the matrices Γk, Γ−k and Fk1,k2
degenerate into a more general form and the

structure does not hold any more. Nevertheless, it is shown that under certain

equalizability conditions satisfied, the zero-forcing equalizers can still be esti-

mated from gHFk1,k2
= gH or gHΓk(Γ−k) = gH . Therefore, our work can be

considered as a generalization or extension of work [1] to the colored sources.

It is noted that for the colored sources, we can not estimate the channel from

Fk1,k2
g = g or Γk(Γ−k)g = g although this is valid for the white input signals.

The reason lies in that the special structure of rank-one matrices does not hold

for the colored signals.

6.3.4 Channel Estimation

The identification of the channel for the colored sources is more complicated

since the relationship E[s(n−m)~xH(n)] = HH [m + 1, :] which is only valid for

the white inputs does not hold any more. Thus we can not expect to estimate

the channel from (gm
zf )

HRx[0], where gm
zf denotes the zero-forcing equalizer of

delay m. One possible way to identify the channel needs to use the zero-forcing

equalizers of different delays from 0 to d− 1. Let Gzf
△
= [g0

zf g1
zf · · · gd−1

zf ], we

have GH
zfH = D and HHGzf = DH , where D is an unknown diagonal matrix

(Note that D 6= I because there exists a scalar ambiguity between the estimated

zero-forcing equalizer and the ideal zero-forcing equalizer). We obtain

DRs[0]DH = GH
zfRx[0]Gzf . (6.32)

On the other hand, we have

Rx[0]Gzf = HRs[0]DH . (6.33)
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Hence the channel convolution matrix H can be estimated up to an unknown

diagonal matrix as follows

Ĥ = Rx[0]Gzf(G
H
zfRx[0]Gzf)

−1

= HRs[0]DH(DRs[0]DH)−1

= HD−1. (6.34)

Observe that for N ≥ L, each column of Ĥ, except the first L and the last L

columns, contains the estimated entire channel impulse response.

6.3.5 Noise Compensation and MMSE Equalizers

In our previous presentation of this chapter, we have ignored the noise effect

in order to simplify our presentation. In practice, the influence of the noise

can be minimized by removing the noise contribution from the autocorrelation

matrices. Since the additive noises are assumed spatially and temporally white

with same variance, we have

Rx[0] = HRs[0]HH + σ2
nI.

The noise variance σ2
n can be estimated as the smallest (N +1)×q−(N +L+1)

eigenvalues of Rx[0], in which the channel order L is assumed known or can be

estimated by applying the MDL criterion [51]. After the noise variance σ2
n is

estimated, we can subtract the noise effect from any estimated autocorrelation

matrix Rx[k].

We now study how to derive the MMSE equalizers from the estimated ZF

equalizers. This is meaningful because equalization using zero-forcing equalizers
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results in noise enhancement in some channels. The MMSE equalizers are

estimated by the following MMSE criterion

gm
mmse = arg min

g
E[|s(n − m) − gH~x(n)|2] (6.35)

where gm
mmse is the sought-after MMSE equalizer of delay m. The solution to

the criterion Eqn.(6.35) is given as

(gm
mmse)

H = E[s(n − m)~xH(n)](E[~x(n)~xH(n)])−1

= E[s(n − m)~xH(n)]R−1
x [0]. (6.36)

Although, when the input signals are colored, the relationship E[s(n−m)~xH(n)] =

HH [m + 1, :] does not hold, we still have

E[s(n − m)~xH(n)] = (gm
zf )

H(Rx[0] − σ2
nI) (6.37)

where gm
zf is the zero-forcing equalizer with delay m. From Eqn.(6.36–6.37), we

obtain

(gm
mmse)

H = (gm
zf )

H(Rx[0] − σ2
nI)R

−1
x [0]

= (gm
zf )

H(I − σ2
nR

−1
x [0]). (6.38)

Thus we have established the relationship between the ZF equalizer and MMSE

equalizer, and we can now obtain the MMSE equalizers from our estimated ZF

equalizers. It should be noted that here Rx[0] is not denoised in computing

the MMSE equalizers and, hence, its inverse is not a pseudo-inverse. This is

different from our previous parts that use the denoised autocorrelation matrices

to compute the ZF equalizers, and, consequently, the inverse of Rx[0] is a



CHAPTER 6. BLIND EQUALIZATION OF SIMO FIR CHANNEL 138

pseudo-inverse.

6.3.6 Discussions

It can be seen that our proposed method does not impose/exploit any structure

on the channel convolution matrix H, which is fundamentally different from the

classical subspace method [22]. This characteristic makes our method applicable

to the case where the channel convolution matrix has no special structure.

For example, when the environment is multipath-dominated and the receiver

diversity is of high dimension, the stack number N can thus be chosen as zero

and the channel convolution matrix H degenerates into the following form:

H = [h(0) h(1) · · · h(L)] (Note that the receiver diversity is sufficiently high

to make H full column rank). Our proposed method can be applied to this case

without any change, whereas the classical subspace method [22] which relies on

the structure of the channel convolution matrix fails.

6.4 Simulation Results

We now present simulation results to illustrate the performance of our proposed

algorithm. We compare our method to the classical subspace (SS) method [22],

the mutually referenced equalizers (MRE) method [49], and the linear prediction

method for colored sources (LPC) proposed in [67]. It is noted that the LPC

method requires the knowledge of the second-order statistics of the colored

sources. In our simulations, the performance is measured by the NRMSE of

the channel estimate and the SER of the estimated data symbols. The NRMSE



CHAPTER 6. BLIND EQUALIZATION OF SIMO FIR CHANNEL 139

of the user’s channel estimate is defined as

NRMSE =

√
√
√
√ 1

Nmc

Nmc∑

t=1

‖ρ(t)ĥ(t) − h‖2

‖h‖2

where Nmc is the number of Monte Carlo runs, h
△
=
[
h(0)T · · · h(L)T

]T
, ρ(t)

is a complex scalar that minimizes ‖ρ(t)ĥ(t) − h‖2. Also, in our simulations,

the additive noise w(n) is taken as spatial-temporal white Gaussian noise with

variance σ2
n. The SNR is defined as

SNR = 10 · log
E[‖H~s(n)‖2]

E[‖~w(n)‖2]
.

Two examples are considered to show the performance of our proposed channel

equalization and identification algorithms.

6.4.1 Example One

In this example, we generate the colored source by following the same manner

as in [67]. The input signal {s(n)} draws symbols from a 4-QAM constellation

S = {−1 − i,−1 + i, 1 − i, 1 + i} according to the following rule

s(n) =







−1 + i if (a(n) a(n − 1)) = (0 0)

+1 + i if (a(n) a(n − 1)) = (0 1)

−1 − i if (a(n) a(n − 1)) = (1 0)

+1 − i if (a(n) a(n − 1)) = (1 1)



CHAPTER 6. BLIND EQUALIZATION OF SIMO FIR CHANNEL 140

where {a(n)} are the digital i.i.d. sequences and a(n) ∈ {0, 1}. This makes the

input symbols {s(n)} to be colored with autocorrelation as

E[s(n)s∗(n − k)] =







2 k = 0

±i k = ±1

0 else.

We consider a wireless communication scenario with the colored source sig-

nals arriving at a single sensor via a multipath channel. The channel impulse

response is given by

h(t) = (0.8c(t, 0.11) − 0.5c(t − 0.5T, 0.11))W4T (t)

where c(t − t0, θ) denotes a raised cosine pulse with roll-off factor θ and delay

t0, W4T (t) is a square window of duration 4 symbols intervals. The channel is

non-minimum phase and introduces significant intersymbol interference (ISI).

We sample the received data two times the symbol rate, thus generating a

single-input two-output linear system with channel order equal to 3.

In our simulations, the channel order is assumed known a priori and the stack

number (smoothed factor) N is chosen to be 3. The scalar ambiguity of the

estimated equalizers is removed before we perform channel equalization. Re-

sults are averaged over 500 Monte Carlo runs. We, firstly, illustrate the channel

equalization performance of our proposed algorithm. Figure 6.1 shows the vari-

ation of SER with SNR for the MMSE equalizers with delays 0, 2, 4, 6 using

Ts = 1000 data samples. Clearly, we can see that, the equalizers of intermedi-

ate delays are superior to those of extremal delays in performance. The SER of

the MMSE equalizer with de = 2 using different number of data samples is dis-

played in Figure 6.2. As expected, the performance improves with an increasing
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Ts. Figure 6.3 depicts the NRMSE of the estimated channel impulse response

obtained using the identification algorithm proposed in Section 6.3.4. In Figure

6.4, we show the SER of the MMSE equalizers with best delays as the stack num-

ber N varies from 3 to 7. Ts = 1000 data samples are used to estimate the signal

statistics and autocorrelation matrices. It can be seen that the SER decreases

with an increasing N . This improved performance results from the “length-

ened” length of the equalizers as N increases. We now compare our proposed

method to the other three methods. The performance comparison is shown in

Figure 6.5, where the MMSE equalizer with de = 2 is used for all methods, and

the stack number N is chosen to be 3. We can see that, in this case, the LPC

method achieves the best performance and the subspace method follows after

the LPC method, while our proposed method performs similarly as the MRE

method but not so well as the LPC and SS methods. The possible reason for

the lack of performance improvement of our proposed algorithm in this exam-

ple can be explained as follows. Note that the equalizers of intermediate delays

are directly estimated from the matrix Fk1,k2
(see Lemma 6.3), where Fk1,k2

is constructed from the multiple matrix products of the estimated autocorrela-

tion matrices. These multiple matrix products of the estimated autocorrelation

matrices result in noise enhancement and thus deteriorate the performance,

especially when the coefficients of the multistep optimum forward/backward

prediction error filters are not negligible, which is exactly the case for this

example, e.g. we have ~αH
1,1 = [0.88i 0.75 − 0.63i − 0.50 0.38i 0.25 − 0.13i].

6.4.2 Example Two

We adopt another kind of colored source in this example. The digital mes-

sage sequence {s(n)} is generated from the 4-QAM constellation S = {−1 −
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Figure 6.1: Example 1: SER versus SNR for the MMSE equalizers with different
delays; Ts = 1000.
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Figure 6.2: Example 1: SER of the MMSE equalizer with de = 2 versus SNR
using different number of data samples.
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Figure 6.3: Example 1: NRMSE of the estimated channel versus SNR using
different number of data samples.
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Figure 6.4: Example 1: SER of the MMSE equalizers with best delays versus
SNR as the stack number varies from 3 to 7, Ts = 1000.
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Figure 6.5: Example 1: SER of the respective algorithms versus SNR, de = 2,
Ts = 1000.

p(sk|sk−1) sk = −1 − i sk = −1 + i sk = 1 − i sk = 1 + i

sk−1 = −1 − i 0.5 0.3 0.1 0.1

sk−1 = −1 + i 0.2 0.4 0.2 0.2

sk−1 = 1 − i 0.2 0.1 0.4 0.3

sk−1 = 1 + i 0.1 0.2 0.2 0.5

Table 6.1: Transition probabilities for Markov source

r(0) 2.0000 r(5) 0.0173 r(10) 0.0085 r(15) 0.0020

r(1) 0.6584 r(6) 0.0088 r(11) 0.0095 r(16) 0.0047

r(2) 0.2343 r(7) 0.0017 r(12) -0.0029 r(17) 0.0047

r(3) 0.0893 r(8) 0.0053 r(13) -0.0068 r(18) 0.0027

r(4) 0.0384 r(9) 0.0082 r(14) 0.0031 r(19) 0.0039

Table 6.2: Autocorrelation function of the Markov source

i,−1 + i, 1 − i, 1 + i} according to the following model. The model simulates a

Markov source by implementing the transition probabilities of Table 6.1. The

autocorrelation function of this source is given in Table 6.2. Consider this col-



CHAPTER 6. BLIND EQUALIZATION OF SIMO FIR CHANNEL 145

ored source arriving at a uniform linear array of q = 6 sensors via a frequency

selective multipath channel. The array elements are spaced half a wavelength

apart. The signalling pulse shape for the user is a raised cosine pulse with a

roll-off factor of 0.11, the pulse being truncated to a length of four symbols

duration (4T ). A three-ray multipath is assumed, with attenuation factors

[0.5 − 0.7 0.6], delays [0.8T 1.0T 1.2T ] and angles of arrival [30◦ 60◦ 110◦].

The array measurements are sampled at baud rate. In our simulations, the

channel order L = 3 is assumed known a priori and the stack number N is

chosen to be 1. The MMSE equalizer with equalization delay, de, equal to

2 is used. Results are averaged over 500 Monte Carlo runs. We present the

equalization performance of the respective algorithms in Figure 6.6, in which

the SER is shown as a function of SNR with Ts = 800. Figure 6.7 shows

the variation of SER with the number of data samples Ts for SNR = 15dB.

From Figures 6.6 and 6.7, we can see that our proposed algorithm presents

the best performance among all these algorithms, even better than the LPC

method which utilizes the knowledge of the input statistics. As compared with

the previous example, our proposed algorithm shows a significant performance

improvement. This is because, in this case, the coefficients of the multistep

optimum forward/backward prediction error filters are relatively small, e.g.

~αH
1,1 = [0.32−0.04i 0.01+0.013i 0.012+0.015i −0.005−0.004i 0.023+0.020i],

and thus the noise enhancement caused by the multiple matrix products is neg-

ligible.

To study the performance of respective algorithms under various channel con-

ditions, we conduct simulation tests using randomly generated channel where

each subchannel {hi(l)} is a complex zero-mean Gaussian process, where {hi(l)}

denotes the subchannel from the colored source to the ith antenna. We assume
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Figure 6.6: Example 2: SER of the respective algorithms versus SNR, de = 2,
Ts = 800.
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Figure 6.7: Example 2: SER of the respective algorithms versus SNR using
different number of data samples, de = 2, SNR = 15dB.
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(a) Ts = 400
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(b) Ts = 100

Figure 6.8: Example 2: SER of the respective algorithms versus SNR, de = 2.
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Figure 6.9: Example 2: SER of the respective algorithms versus SNR, de = 1,
Ts = 400.

q = 6 antennas. Therefore there are totally six subchannels and all subchannels

are generated independently of each other. The channel order L is chosen to

be 3. We select N = 1 to compare our proposed algorithm with other methods.

For the respective algorithms, the MMSE equalizer with de = 2 is used. The

equalization performance of the respective algorithms is presented in Figure 6.8,

in which we show the SER as a function of SNR with the number of samples

used to estimate signal statistics equal to 400 and 100, respectively. We can

see that our proposed algorithm performs similarly as LPC and SS methods

and slightly better than these two methods at low SNR. Moreover, for our pro-

posed algorithm, the stack number can be chosen to be zero. In this case, the

proposed algorithm is used to invert the channel with baud-length equalizers.

The performance of the baud-length equalizer with de = 1 is shown in Figure

6.9 (note that the subspace method no longer applies to this case). The perfor-
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mance degradation of this case as compared to the case where N = 1 mainly

results from the “shortened” length of the equalizers.

6.5 Summary

In this chapter, we presented a new SOS-based method for blind equalization

of SIMO FIR channel driven by colored sources whose statistics are unknown

a priori. It has been shown that, even if without utilizing the knowledge of the

input signals’ statistics and exploiting the structure of the channel convolution

matrix, the closed-form ZF and MMSE equalizers of desired delays can still

be estimated from the second-order statistics of the received data by exploring

the inherent structure relationship between source autocorrelation matrices of

different delay lags. The estimation of these equalizers is direct and does not

require to identify the channel impulse response in advance. The equalizers

of any desired delays are estimated independently of those of other delays.

Simulation results showed that our proposed method outperforms the other

existing methods [22,49,67] clearly for the colored sources whose coefficients of

the multistep optimum forward/backward prediction error filters are small. The

extension of our proposed method to multiple-input multiple-output systems is

under investigation.



Chapter 7

Further Studies on MIMO

FIR Channel Identification

Our previous work (Chapter 5) studies the problem of blind identification of

MIMO FIR channel driven by spatially uncorrelated input signals. In this

chapter, we consider the problem of blind MIMO FIR channel identification

driven by spatially correlated signals. The SOS of the input sources are assumed

known a priori. It is shown that under certain specified conditions, the MIMO

FIR channel can be completely identified using the second-order statistics of

the channel output. A SOS-based method is proposed and the proof for the

uniqueness of the system solution is provided. As a special case, our proposed

method can still entirely identify the MIMO channel even if the input source

signals are spatially and temporally uncorrelated, given that the channel orders

corresponding to each pair of users are different from each other. Extensive

numerical simulation results are included to illustrate the performance of the

proposed algorithm.

150
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7.1 Introduction

Blind identification of MIMO FIR channel arises in a wide variety of communi-

cation and signal processing applications, which include speech enhancement,

wireless mobile communications and brain signal analysis. Thus far, numerous

SOS-based techniques [24, 29, 32, 34, 35, 70, 71] have been proposed within such

a framework. Nevertheless, they usually assume that the input sources are mu-

tually independent or, at least, uncorrelated (note that this assumption is also

adopted in Chapter 5 of our thesis). In contrast, blind channel estimation driven

by spatially correlated sources has not received much attention. Spatially cor-

related sources may indeed occur in practice. For example, the nonlinear SIMO

channels can be reformulated into multiple-input linear systems in which the

additional inputs are nonlinear functions of the signal of interest (the details

of this reformulation can be referred to [100]). Clearly, in this case, the inputs

of this reformulated linear MIMO channel may be correlated with each other.

Specifically, this reformulated MIMO channel can be written as follows

x(n) =

p
∑

i=1

Li∑

l=0

hi(l)si(n − l) + w(n) (7.1)

where s1(n)
△
= a(n) is exactly the input signal to the nonlinear channels and

also called as “linear kernel”; the terms si(n) = fi(a(n), a(n − 1), . . .) for i ∈

{2, . . . , p} are nonlinear functions of a(·) and also called as “nonlinear kernels”;

{hi(l)} are q×1 multichannel vectors; x(n) and w(n) represent the received data

and the additive noise, respectively. In this case, if the statistical information

of the input signal a(n) and the functions fi(·) generating the nonlinearities

are known a priori, then the second-order statistics of the reformulated inputs

to the MIMO channel are available. It is noted that both [100] and [101] were



CHAPTER 7. FURTHER STUDIES ON MIMO FIR CHANNEL IDENTIFICATION 152

presented under such a framework described by Eqn.(7.1). In [100], the authors

proposed a deterministic method that exploited the channel order disparity

between the linear kernel and nonlinear kernels. In fact, the techniques of

[100] only resolve the kernel which has the largest channel order, irrespective of

whether this kernel is a linear kernel or a nonlinear one. In the event that there

are many kernels with maximum channel order, [100] has to resort to higher

order methods to equalize the channel. On the other hand, the work in [101]

shows that the linear kernel is resolvable under the right conditions imposed on

the statistics of the signals a(n) and si(n), without the need to adhere to the

particular channel order condition required by [100]. A SOS-based approach

was put forward to determine the equalizers for the i.i.d. input signals {a(n)}.

In this chapter, we address the problem of blind identification of MIMO FIR

channel driven by spatially correlated signals. A closed-form solution is pro-

posed for blind MIMO FIR system identification by utilizing the estimated

channel output autocorrelation matrices and the knowledge of the source auto-

correlation matrices. As compared to [100] and [101], the problem we address

here is more general because our goal is to identify the entire MIMO channel

and recover all the source signals, which is different from the works [100, 101]

that focus on extracting and equalizing only one source signals. It is noted

that, in our case, the terms si(n) for i ∈ {2, . . . , p} in Eqn.(7.1) may not nec-

essarily be the functions of s1(n). In fact, even if we would only consider the

MIMO models resulted from the nonlinear SIMO channels, our work has its

own advantages over [100] and [101] in the following two aspects. Firstly, the

particular channel order condition required by [100] is no longer necessary for

our proposed method to identify and equalize the channel. Secondly, unlike the

proposed algorithm in [101] which is only specified for the i.i.d. input signals
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{a(n)}, our proposed method applies to both i.i.d. and colored input signals

{a(n)}. As a special case of our work, our proposed method can entirely iden-

tify the MIMO channel even when the input source signals are spatially and

temporally uncorrelated, given that the channel orders corresponding to each

pair of users are different. This result is different from most existing SOS-

based methods that can only identify such a channel up to an unknown unitary

matrix.

This chapter is organized as follows. In Section 7.2, the MIMO system model

and some basic assumptions are introduced. Next, in Section 7.3, we present our

method for blind channel identification driven by spatially correlated sources.

The channel identifiability conditions are investigated and an original proof for

the uniqueness of the system solution is provided. In Section 7.4, we extend our

method to the case of spatially and temporally uncorrelated input sources. Fi-

nally, in Section 7.5, numerical simulation results are presented to demonstrate

the performance of the proposed algorithm.

7.2 System Model and Basic Assumptions

The linear MIMO channel with p inputs, si(n), i ∈ {1, 2, · · · , p}, and q outputs

x(n)
△
= [x1(n) · · · xq(n)] is the same as the model in Chapter 5:

x(n) =

p
∑

i=1

Li∑

l=0

hi(l)si(n − l) + w(n). (7.2)
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Its corresponding matrix form is written as (see Chapter 2 or Chapter 5 for

details)

~x(n) =

p
∑

i=1

Hi~si(n) + ~w(n) = H~s(n) + ~w(n). (7.3)

Some basic assumptions are adopted throughout this chapter: A1) The num-

ber of sources is known a priori, and there are more outputs than inputs, i.e.

q > p. A2) Channel is irreducible and column-reduced. A3) The channel or-

der corresponding to each source is assumed to be known a priori. A4) The

sources are zero-mean wide-sense stationary colored signals or white signals and

their input statistics (include autocorrelation of the single source signals and

cross-correlation between any two source signals) are available. A5) The source

correlation matrix Rs[0] is positive definite, where Rs[0]
△
= E[~s(n)~sH(n)]. A6)

Additive noises w(n) are spatially and temporally white noises with same vari-

ance, and they are statistically independent of the sources. As a consequence

of A1–A2, the MIMO channel matrix H is full column rank if the stack number

N is chosen to satisfy N + 1 ≥
∑p

i=1 Li (see [27]). In the sequel, we assume

that H is full column rank.

7.3 Proposed Channel Identification Method for Spa-

tially Correlated Sources

We begin by defining the source autocorrelation matrices with delay lag k as

follows

Rs[k]
△
= E[~s(n)~sH(n − k)]. (7.4)
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Also, in order to simplify the presentation of the proposed channel identifica-

tion method, we consider the noiseless case. In fact, since the additive noises

are assumed spatially and temporally white with same variance, and statis-

tically independent of the sources, the noise variance can be estimated in a

standard way [51] and subtracted from any estimated autocorrelation matrix

Rx[k]. Henceforth, we can write the autocorrelation matrices of the received

data ~x(n) as follows

Rx[k]
△
= E[~x(n)~xH(n − k)] = HRs[k]HH . (7.5)

In the following, we will show that, given that certain identifiability conditions

are satisfied, the channel convolution matrix H can be completely identified

up to a scalar factor by utilizing the estimated channel output autocorrelation

matrices Rx[k], k ∈ {0,±1} and the knowledge of Rs[k], k ∈ {0,±1}.

It is clear that from A5, we can write the following relationship

Rs[0] = PPH (7.6)

where P is an invertible matrix. Also, if we write the eigenvalue decomposition:

Rs[0]
△
= UsDsU

H
s , we have

P = UsD
1/2
s M (7.7)

where M is a unitary matrix that can be properly chosen to facilitate our

algorithm design. Now we consider the eigenvalue decomposition of Rx[0]:

Rx[0]
△
=

[

Ux,1 Ux,2

]






Dx,1 0

0 0











UH
x,1

UH
x,2




 . (7.8)



CHAPTER 7. FURTHER STUDIES ON MIMO FIR CHANNEL IDENTIFICATION 156

Let G
△
= Ux,1D

1/2
x,1 . Since Rx[0] = HPPHHH = GGH , it is clear that we have

G = HPQ (7.9)

where Q is an unknown unitary matrix to be determined. To resolve this

unknown matrix, we have to further explore the relationship imposed on this

unitary matrix Q. Recalling Eqn.(7.5) for k 6= 0, we have

G†Rx[k](G†)H = QHP−1H†HRs[k]HH(H†)HP−HQ

= QHP−1Rs[k]P−HQ. (7.10)

For notational convenience, let R̄x[k]
△
= G†Rx[k](G†)H and R̄s[k]

△
= P−1Rs[k]P−H .

Thus Eqn.(7.10) can be rewritten as

R̄x[k] = QHR̄s[k]Q ∀ k 6= 0 (7.11)

and furthermore

R̄x[k]QH = QHR̄s[k] ∀ k 6= 0. (7.12)

Eqn.(7.12) defines the relationship the unknown unitary matrix Q must satisfy.

Since R̄x[k] can be estimated from the second-order statistics of the channel

output, R̄s[k] can also be computed for a properly chosen P, the above equation

can thus be used to estimate the unknown unitary matrix Q. By utilizing the

property of Kronecker product, we rewrite Eqn.(7.12) as

Id ⊗ R̄x[k] · vec(QH) = R̄T
s [k] ⊗ Id · vec(QH) (7.13)

where d
△
=
∑p

i=1 di is the dimension of the matrices Q and R̄s[k]. By defining
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q
△
= vec(QH), we may estimate the unknown unitary matrix Q by the following

criterion

q̂ = arg min
‖q‖=1

K∑

k=−K

∥
∥
∥
∥

[

Id ⊗ R̄x[k] − R̄T
s [k] ⊗ Id

]

q

∥
∥
∥
∥

2

. (7.14)

The above optimization has a closed-form solution which can be obtained as

the right singular vector associated with the smallest singular value. However,

this criterion fails to provide the true channel estimation if the solution to

Eqn.(7.13) is not unique, i.e. there exist other non-zero vectors, g, that are

linearly independent of q and also satisfy Id ⊗ R̄x[k] · g = R̄T
s [k] ⊗ Id · g for

any k ∈ {−K, . . . , K}. Hence we are faced with the following problem, that is,

whether or not the solution to Eqn.(7.13) is unique (up to an unknown scalar

factor) and under what conditions the solution to Eqn.(7.13) will be unique.

This problem is studied in the following and we will show that, under certain

identifiability conditions and for a properly chosen P, the uniqueness of the

solution to Eqn.(7.13) can be established for k ∈ {±1}.

7.3.1 Property of Triangular Matrix

Notice that we have

R̄s[k] = P−1Rs[k]P−H

= MHD−1/2
s UH

s Rs[k]UsD
−1/2
s M

= MHR̈s[k]M (7.15)

where R̈s[k]
△
= D

−1/2
s UH

s Rs[k]UsD
−1/2
s can be computed a priori, M is a uni-

tary matrix that can be properly selected to facilitate our algorithm design and
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the proof for the uniqueness of the proposed system solution. Intuitively, it

may be helpful if the chosen unitary matrix can make matrix R̄s[k] to possess

some special structure. Therefore, it is natural for us to resort to the Schur

decomposition that can transform any square matrix into an upper triangular

matrix using a unitary matrix, i.e. MHAM = T, where T is an upper tri-

angular matrix. By exploiting the special (upper triangular) structure of the

upper triangular matrix, we are able to derive some important property in the

following lemma. This newly derived property plays a key role in the proof of

the solution uniqueness.

Lemma 7.1 Given that T ∈ Cn×n is an upper triangular matrix, Y ∈ Cn×n

and we have

TY = YT (7.16)

if any pair of diagonal elements in T are different from each other, i.e. ti,i 6= tj,j

for any i 6= j, then Y is also an upper triangular matrix.

Proof: See Appendix D. �

7.3.2 Proof of The Solution Uniqueness and The Proposed Al-

gorithm

From the previous discussion, it is clear that we can choose a proper matrix

P = UsD
1/2
s M to make R̄s[1] = P−1Rs[1]P−H an upper triangular matrix.

We now proceed to prove the uniqueness of the system solution based on our

properly chosen matrix P and the derived property of the upper triangular

matrix. We, firstly, prove that the solution to Eqn.(7.12) is unique (up to a

scalar factor). The problem is formulated in the following theorem.
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Theorem 7.1 Given that

R̄x[k] = QHR̄s[k]Q k ∈ {±1} (7.17)

where R̄s[1] is an upper triangular matrix which satisfies the following two

identifiability conditions: IC1) the diagonal entries are all unequal; IC2) for

any i ∈ {2, . . . , d}, there exists at least one non-zero entry rj1,i for j1 < i, or

for any i ∈ {1, . . . , d−1}, there exists at least one non-zero entry ri,j2 for j2 > i,

where ri,j denotes the ith row and jth column entry in R̄s[1]. If there is any

non-zero matrix C that satisfies the following

R̄x[k]C = CR̄s[k] k ∈ {±1} (7.18)

then we have C = λQH , where λ can be any non-zero complex scalar.

Proof: From Eqn.(7.17–7.18), it is easy to obtain

QHR̄s[k]QC = CR̄s[k] ⇒ R̄s[k]QC = QCR̄s[k]. (7.19)

Let Z
△
= QC, we can rewrite the above equation as

R̄s[k]Z = ZR̄s[k] k ∈ {±1} (7.20)

. We now only need to prove that Z = λI. Since we have R̄s[1]Z = ZR̄s[1],

where R̄s[1] is an upper triangular matrix whose diagonal entries are all un-

equal, by utilizing Lemma 7.1, it is easy to conclude that Z is an upper

triangular matrix. For R̄s[−1]Z = ZR̄s[−1], by exploiting the symmetry

R̄s[−1] = R̄H
s [1], we have

R̄s[−1]Z = ZR̄s[−1] ⇒ R̄H
s [1]Z = ZR̄H

s [1] ⇒ R̄s[1]ZH = ZHR̄s[1]. (7.21)
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Thus ZH is also proved to be an upper triangular matrix. Therefore we can

conclude that Z must be a diagonal matrix. Obviously, under the identifiability

condition IC2, the diagonal elements in Z must be equal in order to satisfy

R̄s[1]Z = ZR̄s[1]. Hence we have Z = λI and C = λQH . The proof is

completed here. �

Notice that Eqn.(7.12) and Eqn.(7.13) can be derived from each other. This

implies that the solution to Eqn.(7.13) is also unique and the solution is a

scaling constant of the “true” vector q. Therefore q can be estimated by the

criterion of Eqn.(7.14) with k ∈ {±1}, i.e.

q̂ = arg min
‖q‖=1

∥
∥
∥
∥
∥
∥
∥






Id ⊗ R̄x[1] − R̄T
s [1] ⊗ Id

Id ⊗ R̄x[−1] − R̄T
s [−1] ⊗ Id




q

∥
∥
∥
∥
∥
∥
∥

2

. (7.22)

As indicated earlier, the above optimization has a closed-form solution which

can be obtained as the right singular vector associated with the smallest singular

value. For clarity, we now enumerate the steps for our channel identification

procedure.

1. Compute the eigenvalue decomposition of Rs[0] = UsDsU
H
s . Let R̈s[1] =

D
−1/2
s UH

s Rs[1]UsD
−1/2
s .

2. Compute the Schur decomposition of R̈s[1] = MR̄s[1]MH , where R̄s[1] is

an upper triangular matrix, M is a unitary matrix. Let P = UsD
1/2
s M.

3. Compute the eigenvalue decomposition of Rx[0] as Eqn.(7.8) and let G =

Ux,1D
1/2
x,1 .

4. Compute R̄x[k] = G†Rx[k](G†)H for k ∈ {±1}.

5. Estimate the unknown unitary matrix Q by using the criterion in Eqn.(7.22).
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And the channel is thus estimated as Ĥ = GQ̂HP−1.

7.3.3 Discussions

To guarantee that our proposed channel identification method works, two iden-

tifiability conditions IC1–IC2 are proposed and stated in Theorem 7.1. Since the

conditions are only related to the second-order statistics of the input sources,

they can be checked a priori to determine whether the channel identifiability

conditions are satisfied. Also, we emphasize that IC1–IC2 are sufficient while

not necessary identifiability conditions for the channel identification. This im-

plies that even if these two identifiability conditions are not met, the channel

may still be identified using our proposed method. The reasons are as follows.

Firstly, IC1 is a sufficient but not necessary condition to determine that Z is a

diagonal matrix. For example, for the special case where the sources are spa-

tially and temporally uncorrelated, the source autocorrelation matrices possess

some special structure other than upper triangular structure that can be uti-

lized to arrive at the same inference. This will be shown in the later part of this

chapter. Secondly, IC2 is also a sufficient but not necessary condition to ensure

that the diagonal elements of Z are equal. Furthermore, in some special cases,

IC2 can be further relaxed or removed because the diagonal elements of Z are

not necessary to be equal. It can be elucidated as follows. From the proof for

Theorem 7.1, it is evident that if IC2 is not assumed, then we can only con-

clude that Z = QC is a diagonal matrix, while the diagonal elements may not

be equal. Thus the unknown unitary matrix is only identified up to an unknown

diagonal matrix, i.e. Q̂H = QHZ, where Z is a diagonal matrix. In this case,

the channel H is estimated as Ĥ = GQHZP−1. Obviously, only when Z = λI

can the channel be estimated up to a scalar factor, otherwise the channel can
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not be correctly estimated since generally, P 6= I. Nevertheless, in the special

case where P = I, the diagonal elements of Z need not be equal. This is because

in this case, we have Ĥ = HZ. Since the channel equalization can be achieved

if only the channel per user Hi for i ∈ {1, . . . , p} rather than the MIMO channel

H is identified up to a scalar factor, it allows that Z = diag(λ1Id1
, · · · , λpIdp

).

However, in this case, we can not directly adopt the criterion of Eqn.(7.22)

to estimate the unitary matrix QH because the uniqueness of the solution to

Eqn.(7.18) has been spoilt by the disparity of the diagonal elements in Z, and

now we have to estimate QH in p parallel threads. This estimation can be

illustrated as follows. Specifically, if we assume that λi = 0 for all i except for

λ1 in Z, then any non-zero matrix C that satisfies Eqn.(7.18) can be written as

C = QHZ =
[
λ1Q̄1 0

]
, where Q̄1

△
= Q̄[:, 1 : d1], Q̄

△
= QH . Hence the solution

of C to Eqn.(7.18) is unique up to a scalar factor and Q̄1 can be estimated as

follows by defining q1
△
= vec(Q̄1)

q̂1 = arg min
‖q1‖=1

‖Ω[:, 1 : d1d]q1‖
2 (7.23)

where

Ω
△
=






Id ⊗ R̄x[1] − R̄T
s [1] ⊗ Id

Id ⊗ R̄x[−1] − R̄T
s [−1] ⊗ Id




 .

Similarly, Q̄l
△
= Q̄[:,

∑l−1
i=1 di + 1 :

∑l
i=1 di] can be estimated as

q̂l = arg min
‖ql‖=1

∥
∥
∥
∥
∥
Ω

[

:,
l−1∑

i=1

did + 1 :
l∑

i=1

did

]

ql

∥
∥
∥
∥
∥

2

. (7.24)

In the following, a special example where the input sources are spatially and

temporally uncorrelated is considered, and we will show that for this special
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case, the channel can still be identified despite the violation of IC1–IC2, given

that the channel orders corresponding to each pair of users are different from

each other.

7.4 Channel Identifiability Condition for Spatially

and Temporally Uncorrelated Inputs

For the spatially and temporally uncorrelated input sources, we have Rs[0] = Id

and

Rs[1] = diag
(
Jd1

,Jd2
, · · · ,Jdp

)
(7.25)

where diag(·) denotes block diagonal; Jn stands for the n × n one-lag down

shift square matrix whose first sub-diagonal entries below the main diagonal

are unity, whereas all remaining entries are zero; In denotes the n × n identity

matrix. Clearly, in this case, P is chosen to be the exchange matrix with ones

on the antidiagonal and zeros elsewhere (see Eqn.(7.15)). And the transformed

upper triangular matrix is written as

R̄s[1] = P−1Rs[1]P−H = diag
(

JT
d1

,JT
d2

, · · · ,JT
dp

)

. (7.26)

We can see that the upper triangular matrix R̄s[1] does not satisfy IC1–IC2 of

Theorem 7.1. Nevertheless, we will show that the channel can still be identified

unambiguously from the second-order statistics of the channel output provided

that another identifiability condition is satisfied. Notice that R̄s[1] is exactly

equal to Rs[−1] and R̄s[−1] is exactly equal to Rs[1]. For simplicity, we can

let P be an identity matrix instead of the exchange matrix. And we thus have
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R̄s[k] = Rs[k]. We now formulate our results in the following theorem.

Theorem 7.2 Given that

R̄x[k] = QHRs[k]Q k ∈ {±1} (7.27)

if for every pair of sources {si, sj}, Li 6= Lj, then any non-zero matrix C that

satisfies R̄x[k]C = CRs[k] for k ∈ {±1} can be written as C = QHD, where

D
△
= diag(λ1Id1

, · · · , λpIdp
), λi for i ∈ {1, . . . , p} can be any complex scalar

including zero.

Before we proceed to prove Theorem 7.2, we first introduce the following lemma

that exploits the properties of the one-lag down and up shift square matrices.

Lemma 7.2 Given that Y ∈ Cm×n satisfies the following two equations

(a) JmY = YJn (b) JT
mY = YJT

n
(7.28)

then we have

• If m = n, then Y = λI, where λ could be any complex scalar including

zero.

• If m 6= n, then Y = 0.

Proof: See Appendix E. �

Now we proceed to prove Theorem 7.2.

Proof: Similarly as the proof of Theorem 7.1, we have

QHRs[k]QC = CRs[k] ⇒ Rs[k]QC = QCRs[k] (7.29)
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Let Z
△
= QC, we can rewrite the above equation as

Rs[k]Z = ZRs[k] k ∈ {±1}. (7.30)

We now prove that Z = diag(λ1Id1
, · · · , λpIdp

). We partition matrix Z as follows

Z =












Z11 Z12 · · · Z1p

Z21 Z22 · · · Z2p

...
...

. . .
...

Zp1 Zp2 · · · Zpp












where Zij ∈ Cdi×dj . Since the matrices Rs[k] for k ∈ {±1} are block diagonal

matrices, it is straightforward for us to obtain the following from Eqn.(7.30)

(a) Jdi
Zij = ZijJdj

(b) JT
di
Zij = ZijJ

T
dj

. (7.31)

Obviously, for the case where di 6= dj (note that Li 6= Lj is equivalent to

di 6= dj since di = N + Li + 1) for each pair of {i, j}, we can conclude that

Z = diag(λ1Id1
, · · · , λpIdp

) by utilizing the results of Lemma 7.2. Hence we

have C = QHZ = QHD. The proof is completed here. �

We now develop the corresponding algorithm for the channel identification. Let

C
△
=

[

C1 C2 · · · Cp

]

Q̄
△
= QH △

=

[

Q̄1 Q̄2 · · · Q̄p

]

where Ci ∈ Cd×di and Q̄i ∈ Cd×di . By exploiting the block diagonal structure

of Rs[k], the set of equations R̄x[k]C = CRs[k] for k ∈ {±1} can be decoupled
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into the following p sets of equations

R̄x[k]Ci = CiRsi
[k] i ∈ {1, . . . , p} (7.32)

where Rsi
[k]

△
= E[~si(n)~sH

i (n − k)]. Using Theorem 7.2, it is easy to see that

any matrix Ci that satisfies the above equation for k ∈ {±1} can be written

as Ci = λiQ̄i. Thus the unknown unitary matrix Q̄ can be estimated in p

parallel threads with the ith thread leading to the estimation of Q̄i, where Q̄i

is estimated as a closed-form minimizer of the following criterion by defining

qi
△
= vec

(
Q̄i

)

q̂i = arg min
‖u‖=1

∥
∥
∥
∥
∥
∥
∥






Idi
⊗ R̄x[1] − RT

si
[1] ⊗ Id

Idi
⊗ R̄x[−1] − R̄T

si
[−1] ⊗ Id




qi

∥
∥
∥
∥
∥
∥
∥

2

. (7.33)

It can be easily verified that, in this special case, the above criterion is equiv-

alent to the proposed criterion in Eqn.(7.24). Clearly, the above proposed

identification algorithm estimates the unknown unitary matrix Q̄ up to a diag-

onal matrix D = diag(λ1Id1
, · · · , λpIdp

), where λi for i ∈ {1, · · · , p} can be any

non-zero complex scalar. Hence we have

Ĥ = GQ̂HP−1 = GQHD = HD. (7.34)

Thus the channel per user Hi for i ∈ {1, . . . , p} is identified up to a scalar

factor. This result, of course, is only valid under the condition that for each

pair of users {si, sj}, we have Li 6= Lj . In fact, this identifiability condition

can be further relaxed if only the desired user channels rather than the MIMO

channels for all users are identified and equalized. This result is formulated

in Theorem 7.3 and for simplicity, we consider the case where only one user
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channel is desired.

Theorem 7.3 Given that

R̄x[k] = QHRs[k]Q k ∈ {±1} (7.35)

if for a desired user sl, we have Ll 6= Li for i ∈ {1, . . . , l − 1, l + 1, . . . , p}, then

any non-zero matrix Cl that satisfies R̄x[k]Cl = ClRsl
[k] for k ∈ {±1} can be

written as Cl = λlQ̄l.

Proof: See Appendix F. �

Based on Theorem 7.3, we can estimate Q̄l using the criterion of Eqn.(7.33)

with i replaced by l and the desired user channel Hl can be estimated as Ĥl =

Gˆ̄Ql. It is noted that identifying Hl alone allows us to compute the MMSE

equalizers to recover the transmitted signals sl by removing the intersymbol

interference and canceling the multiuser interference [118]. For clarity and

comparison purpose, we also enumerate the steps for channel identification for

the spatially and temporally uncorrelated sources.

1. Compute the eigenvalue decomposition of Rx[0] as Eqn.(7.8) and let G =

Ux,1D
1/2
x,1 .

2. Compute R̄x[k] = G†Rx[k](G†)H for k ∈ {±1}.

3. Estimate Q̄i by using the criterion in Eqn.(7.33). And the desired user

channel is estimated as Ĥi = Gˆ̄Qi.

Remark: As we can see, for the spatially and temporally uncorrelated sources,

the identifiability conditions IC1–IC2 proposed in previous section are no longer
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necessary for the complete channel identification. This point can also be cor-

roborated by [72, 74] for the spatially uncorrelated but temporally correlated

sources. Since the identifiability conditions IC1–IC2 are proposed for generally

correlated sources, i.e. the sources can be spatially and temporally correlated,

it is no surprise that these conditions can be further relaxed for the special

cases where the sources are spatially and temporally uncorrelated or spatially

uncorrelated but temporally correlated because, as mentioned previously, for

the special cases, the source autocorrelation matrices and their revised forms

possess some special structure other than upper triangular structure that can

be better utilized.

7.5 Simulation Results

We now present simulation results to validate the performance of our proposed

algorithm. Four examples are studied in this chapter. In the first example, we

show the equalization performance of our proposed algorithm for the case where

the sources are spatially and temporally uncorrelated, and consequently we in-

vestigate how the equalization performance hinges on the following parameters:

equalization delays de, number of samples used for statistics estimation Ts and

SNR. In the rest of the examples, we consider the SIMO nonlinear channels

which have been adopted by the work [100, 101], and we compare our method

to the SOS-based method proposed in [101] and the deterministic method pre-

sented in [100], which are named as “RS” method (R. López-Valcarce and S.

Dusgupta) and “GE” method (G. B. Giannakis and E. Serpedin), respectively.

Both the cases of i.i.d. input signals and colored input signals to the nonlinear

channels are investigated in our examples. Also, in our simulations, the addi-
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tive noise w(n) is taken as spatial-temporal white complex Gaussian noise with

variance σ2
w. The SNR is defined as

SNR = 10 · log
E[‖H~s(n)‖2]

E[‖~w(n)‖2]
.

7.5.1 Example One

We consider p = 2 sources arriving at q = 3 sensors via a multipath chan-

nel. The source signals are i.i.d. information sequences drawn from a 4-QPSK

constellation S = {1,−1, i,−i}. The channel is randomly generated as

{h1(l)} =









0.0572 0.2074 −0.0466 0.1085

0.2475 −0.1004 0.0213 −0.2331

0.0968 −0.2527 −0.3888 0.2701









{h2(l)} =









0.2885 0.4926 0.2480 0

0.1714 −0.2387 0.1945 0

0.0455 −0.0463 −0.0256 0









.

It can be seen that the channel orders corresponding to these two users are

different and this suffices for the complete channel identification. Once the

channel has been estimated by our algorithm, we can compute the ZF equalizers

and the MMSE equalizers respectively as

EZF = Ĥ†

EMMSE = EZF(I − σ2
wR̂−1

x [0])
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where R̂x[0] is the estimated autocorrelation matrix before denoised. The above

expression for the MMSE equalizers was derived in [116], which is applicable

for (spatially and temporally) uncorrelated sources and correlated sources. The

inherent phase ambiguity of equalizers per user is removed before we perform

the equalization. In the simulations, we choose stack number N = 5. The chan-

nel order of each user is assumed known a priori. Results are averaged over

500 Monte Carlo runs. Figure 7.1 shows the SER as a function of SNR for the

MMSE equalizers with delays 1, 3, 5 and 7. Ts = 2000 data samples are used

for the estimation of the autocorrelation matrices of the received data. Clearly,

we can see that, the SER decreases as SNR increases. And the equalizers of

intermediate delays are superior to those of extremal delays in performance.

Figure 7.2 depicts the SER of the MMSE equalizer with de = 5 using differ-

ent number of data samples. As expected, the performance improves with an

increasing Ts. From these results, we can see that, even for the spatially and

temporally uncorrelated sources, the channel can still be completely identified

by exploiting the channel order disparity.

7.5.2 Example Two

In this example, we consider the following SIMO nonlinear channel which was

adopted by the third example of [100]

x(n) =
3∑

l=0

h1(l)a(n − l) +
1∑

l=0

h2(l)s2(n − l) + w(n)

where now, s2(n)
△
= a(n)a(n − 1)a∗(n − 2), a(n) are i.i.d. symbols drawn from

the 4-QPSK constellation S = {1,−1, i,−i}. It can be easily verified that s2(n)

is also a temporally uncorrelated sequence, and the “two sources” a(n) and
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Figure 7.1: Example 1: SER versus SNR for different equalization delays de;
Ts = 2000
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Figure 7.2: Example 1: SER versus Ts for different SNR; de = 5
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s2(n) are spatially uncorrelated with different channel order. Thus our pro-

posed method can be applied to this nonlinear channel example. We compare

our proposed algorithm with the RS method [101] and the GE method [100].

In our simulations, the stack number N is chosen to be 4 for our method and

the RS method, and we use the equalizer with de = 7 which achieves the best

performance. For the GE method, it only provides equalizers with minimal

and maximal delays, and here we employ the maximal delay de = 6 which has

a better performance. Figures 7.3 displays the equalization performance (for

the nonlinear channel input a(n)) of the three algorithms as a function of SNR

and Ts, respectively. From the figures, we can see that our proposed algorithm

presents a clear performance advantage over RS and GB methods. Also, we ob-

served that the second-order statistics methods (RS and our proposed method)

are more favorable than the deterministic method (GB) to obtain an accurate

symbol estimation. It seems that using the source statistics can help to gain a

stronger robustness to the noise.

7.5.3 Example Three

We investigate the case where the input signal {a(n)} to the nonlinear channel

is colored. The SIMO nonlinear channel used by the first example of [101] is

adopted.

x(n) =
2∑

l=0

h1(l)a(n − l) +
1∑

l=0

h2(l)s2(n − l) + w(n).

where s2(n)
△
= a(n)a(n−1). The input signals {a(n)} are generated from the 4-

QAM constellation S = {−1−i,−1+i, 1−i, 1+i} according to the model which

simulates a Markov source by implementing the transition probabilities of Table
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6.1. The autocorrelation function of this source is given in Table 6.2. Clearly,

these two reformulated “sources” a(n) and s2(n) are spatially and temporally

correlated. Also, it can be verified that the identifiability conditions IC1–IC2

required by our proposed algorithm in Section 7.3 are satisfied. Since the input

signals are correlated, the RS method no longer applies in this example. We

compare our proposed algorithm with the GE method. In our simulations, we

choose the stack number N = 3 for our method, and the equalizer with de = 4

is used for both methods. Figure 7.4(a) shows the SER (for the nonlinear input

signals) of the respective algorithms as a function of SNR using Ts = 500 data

samples. Figure 7.4(b) shows the variation of SER (for the nonlinear input

signals) with the number of data samples Ts for SNR = 10dB. We can see that,

for both cases, our proposed algorithm clearly outperforms the GE method.

7.5.4 Example Four

In this example, we consider the nonlinear channel which was used by the third

example of [101].

x(n) =
1∑

l=0

h1(l)a(n − l) +
1∑

l=0

h2(l)s2(n − l) + w(n)

The two “sources” a(n) and s2(n) are spatially, temporally correlated and gen-

erated in the same way as the above example. Observe that in this case, the

linear and nonlinear kernels have the same channel order. Nevertheless, given

that the conditions IC1–IC2 are satisfied, our proposed method still applies. In

our simulations, the stack number N is chosen to be 2. Figure 7.12(a) shows the

SER (for the nonlinear input signals) versus SNR for the different equalization

delays. It can be seen that the equalizer with de = 1 yields the best perfor-
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mance. The poorest results are obtained for de = 3. In Figure 7.12(b), the

variation of the SER (for the nonlinear input signals) with the number of data

samples Ts for SNR = 10, 12.5, 15dB is displayed. The equalizer with de = 1 is

used.

7.6 Summary

In this chapter, we considered the problem of blind identification of MIMO FIR

channel driven by spatially correlated sources whose second-order statistics are

known a priori. A SOS-based method that admits a closed-form solution was

proposed and its corresponding identifiability conditions were investigated. As

a further result, we showed that our method still applies to the spatially and

temporally uncorrelated sources given that a certain channel order disparity

condition is satisfied. Simulation results showed that our method can be suc-

cessfully employed for blind nonlinear SIMO channel equalization. As compared

to other existing methods [100,101] for blind nonlinear SIMO channel equaliza-

tion, our method renders a wider applicability for the input sources than [101]

and exhibits a better performance than [100].



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we have presented a variety of statistics-based methods

for blind channel estimation and equalization in wireless systems. The pro-

posed methods include the higher order statistics-based linear method for SISO

channel estimation (Chapter 3), the second-order statistics-based methods for

SIMO channel identification and equalization (Chapter 4 and Chapter 6, re-

spectively), and the second-order statistics-based methods for MIMO channel

identification (Chapter 5 and Chapter 7, respectively). In particular, through-

out this dissertation, our work (except Chapter 3) focused on the problem of

blind estimation/equalization of channels driven by colored source(s). As indi-

cated previously, this problem has not received much attention as compared to

its counterpart of blind channel estimation problem with white (or i.i.d.) in-

put source signals. However, blind estimation/equalization of channels driven

by colored source(s) never lacks its applications. In fact, this problem arises

in a wide variety of communication and signal processing applications, which

179
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include speech enhancement, wireless mobile communications and brain signal

analysis.

In Chapters 4 and 5, we considered the problem of blind SIMO/MIMO channel

identification driven by colored source(s) with a priori known statistics. By ex-

ploiting the inherent structural relationship between the source autocorrelation

matrices and utilizing the derived properties of the companion matrices, we

proposed a new closed-form solution for blind identification of channels driven

by colored sources. The proposed algorithm compares favorably with existing

methods in performance and computational complexity. Next, in Chapter 6,

the problem of blind SIMO channel identification/equalization driven by colored

source with unknown input statistics was investigated. It has been shown that

although the statistical information of the transmitted signals is not available,

we can still estimate the ZF and MMSE equalizers of desired delays from the

second-order statistics of the received data by exploiting the inherent structural

relationship between source autocorrelation matrices of different delay lags. The

proposed method outperforms the existing methods significantly for the colored

sources whose coefficients of the multistep optimum forward/backward predic-

tion error filters are small. Finally, in Chapter 7, our research interest went

to blind identification of MIMO channel driven by spatially and temporally

correlated sources. We have shown that, under certain specified identifiabil-

ity conditions, the MIMO FIR channel can be completely identified using the

second-order statistics of the channel output. The method can be successfully

employed for blind nonlinear SIMO channel equalization. As compared to other

existing methods for blind nonlinear SIMO channel equalization, our method

renders a wider applicability for the input sources and exhibits a better perfor-

mance.
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8.2 Future Work

Several future work are enumerated below.

In Chapter 6, we proposed a SOS-based method for blind equalization of SIMO

channel driven by colored sources with unknown statistics. The method can di-

rectly estimate the ZF and MMSE equalizers of desired delays from the second-

order statistics of the received data. The proposed method has the potential

to be extended to multiuser scenarios, that is, MIMO systems. The theorem in

Chapter 6 is still valid when extended to the multiuser case. For the case where

the channel orders of each user are equal, the estimated equalizers cancel the

intersymbol interference of all source signals and the equalized signals are the

instantaneous mixtures of the source signals. We can easily recover the source

signals from the equalized signals using the blind source separation techniques.

If the channel orders of each user are different, then the channel order dispar-

ity alone enables us to extract the source signals successively. In this case, an

effective successive extraction algorithm needs to be worked out.

It is also very meaningful for us to devise computationally efficient on-line adap-

tive algorithms for our proposed statistics-based methods because the existing

off-line batch algorithms involve a high computation cost, and thus unsuit-

able for practical implementations. The high computational cost of the off-line

batch algorithms mainly results from matrix decompositions such as eigen-

value decomposition (EVD) or singular value decomposition (SVD). For our

proposed methods, the computation involves that of some minimal eigenvec-

tor or singular vector in the quadratic constraint or least square case. Thus

the eigenvector tracking methods, e.g. [119], can be used to perform the blind

estimation/equalization of our proposed method.
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As mentioned before, channel identifiability conditions are closely related to

blind channel estimation problems. An important issue is how to relax the

channel identifiability conditions in the proposed methods. For our proposed

methods [74, 102] (in Chapters 5 and 7) for blind MIMO channel identifica-

tion, we require that the channel is irreducible and column-reduced to ensure

a full column rank channel convolution matrix. However, in [33], the condition

“column-reduced” is shown to be unnecessary for blind identification. Inspired

by this, we may also design a channel identification algorithm in our scenarios

with a relaxed identifiability condition.
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Proof of Lemma 4.3

We present our proof of Lemma 4.3 in the following three steps.

Step 1: For notational convenience, let G1
△
= Θ1Y = YΘ1 and G2

△
= Θ2Y =

YΘ2, yi denotes the ith column of Y. We consider the last column of G1,

denoted by G1[:, d], and the first column of G2, denoted by G2[:, 1]. Thus we

have

G1[:, d] =

[

−~αH
1 yd y1,d · · · yd−1,d

]T

= −α∗
1,d

[

y1,1 y2,1 · · · yd,1

]T

G2[:, 1] =

[

y2,1 · · · yd,1 −~αH
2 y1

]T

= −α1,d

[

y1,d y2,d · · · yd,d

]T
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and we can obtain

yk,d = |α1,d|
2yk,d ∀ k ∈ {1, . . . , d − 1} (A.1)

yk+1,1 = |α1,d|
2yk+1,1 ∀ k ∈ {1, . . . , d − 1}. (A.2)

It is known that (see Theorem 1 in [67]) |α1,d| will be less than one under the

assumption that the (d + 1) × (d + 1) source autocorrelation matrix Rs[0] is

positive definite. In fact, even if this assumption does not hold, the probability

of |α1,d| = 1 is still almost equal to zero. Therefore we can conclude that

yk,d = 0 ∀ k ∈ {1, . . . , d − 1}

yk+1,1 = 0 ∀ k ∈ {1, . . . , d − 1}.

Step 2: We consider the sub-matrix of G1 from second row to dth row and from

first column to (d−1)th column, denoted by G1[2 : d, 1 : d−1]. This sub-matrix

can be easily computed if we write Θ1 and Y as follows

Θ1 =






−~αH
1 [1 : d − 1] −α∗

1,d

I 0






Y =






Y[1 : d − 1, 1 : d − 1] Y[1 : d − 1, d]

Y[d, 1 : d − 1] yd,d




 .

Obviously, from G1 = Θ1Y, we have

G1[2 : d, 1 : d − 1] = Y[1 : d − 1, 1 : d − 1]. (A.3)
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On the other hand, if we rewrite Y as follows

Y =






y1,1 Y[1, 2 : d]

Y[2 : d, 1] Y[2 : d, 2 : d]






then from G1 = YΘ1, we have (note that Y[2 : d, 1] = 0 from step 1)

G1[2 : d, 1 : d − 1] = Y[2 : d, 2 : d]. (A.4)

By combining Eqn.(A.3) and Eqn.(A.4), we conclude that

yi,j = yi+1,j+1 (A.5)

for any i ∈ {1, . . . , d−1}, j ∈ {1, . . . , d−1}, which shows that Y has a Toeplitz

form.

Step 3 : Based on the results of previous steps, we know that all entries of Y

on the main diagonal are equal, and all entries of Y off the main diagonal are

zero. Therefore we can write Y = λI, where λ could be any complex scalar

including zero.
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Proof of Lemma 5.3

We present our proof of Lemma 5.3 in the following three steps.

• In the first step, we will show that the entries of Y in first column except

y1,1 and the entries of Y in the last column except ydi,dj
are zero.

• Next, we will show that the entries in Y satisfy the following relation-

ship: ym,n = ym+1,n+1, for any m ∈ {1, . . . , di − 1}, n ∈ {1, . . . , dj − 1},

indicating that Y has a Toeplitz form.

• In the last step, we prove that Y = λI or Y = 0 under the following four

cases

– If di = dj , Θ1,i = Θ1,j and Θ2,i = Θ2,j , then Y = λI, where λ could

be any complex scalar including zero.

– If di = dj , Θ1,i 6= Θ1,j and Θ2,i 6= Θ2,j , then Y = 0.

– If di > dj , then Y = 0.

– If di < dj , and |αi,mi
| 6= |αj,dj−ti |, where ti

△
= di − mi, αi,mi

denotes

the last non-zero entry in ~αi, then Y = 0. Such a condition |αi,mi
| 6=

186
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|αj,dj−ti | can be removed if there exists a non-zero entry for αj,k, k ∈

{dj − ti + 1, . . . , dj}.

Now we provide a complete proof step by step.

Step 1 : For notational convenience, let G1
△
= Θ1,iY = YΘ1,j , G2

△
= Θ2,iY =

YΘ2,j , and ym denotes the mth column of Y. Consider the last column of G1,

denoted by G1[:, dj ], and the first column of G2, denoted by G2[:, 1]. We have

G1[:, dj ] =

[

−~αH
i ydj

y1,dj
· · · ydi−1,dj

]T

= −α∗
j,dj

[

y1,1 y2,1 · · · ydi,1

]T

G2[:, 1] =

[

y2,1 · · · ydi,1 −βH
i y1

]T

= −αj,dj

[

y1,dj
y2,dj

· · · ydi,dj

]T

thus we obtain

yk,dj
= |αj,dj

|2yk,dj
∀ k ∈ {1, . . . , di − 1} (B.1)

yk+1,1 = |αj,dj
|2yk+1,1 ∀ k ∈ {1, . . . , di − 1}. (B.2)

It is known that (see Theorem 1 in [67]) |αj,dj
| will be less than one under the

assumption that the (dj + 1)× (dj + 1) source autocorrelation matrix Rsj
[0] is

positive definite. In fact, even if this assumption does not hold, the probability

of |αj,dj
| = 1 is still almost equal to zero because αj,dj

can be considered as a

continuous random variable for the randomly generated colored source sj , and
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the probability of this random variable occurring at a specified point is zero.

Therefore we can conclude that

yk,dj
= 0 ∀ k ∈ {1, . . . , di − 1}

yk+1,1 = 0 ∀ k ∈ {1, . . . , di − 1}.

Step 2 : Now we consider the sub-matrix of G1 from second row to dth
i row and

from first column to (dj − 1)th column, denoted by G1[2 : di, 1 : dj − 1]. This

sub-matrix can be easily computed if we write Θ1,i and Y as follows

Θ1,i =






−~αH
i [1 : di − 1] −α∗

i,di

I 0






Y =






Y[1 : di − 1, 1 : dj − 1] Y[1 : di − 1, dj ]

Y[di, 1 : dj − 1] ydi,dj




 .

Obviously from G1 = Θ1,iY we have

G1[2 : di, 1 : dj − 1] = Y[1 : di − 1, 1 : dj − 1]. (B.3)

On the other hand, we can write Θ1,j and Y as

Y =






y1,1 Y[1, 2 : dj ]

Y[2 : di, 1] Y[2 : di, 2 : dj ]






Θ1,j =






−~αH
j [1 : dj − 1] −α∗

j,dj

I 0
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then from G1 = YΘ1,j we have (note that Y[2 : di, 1] = 0 from step 1)

G1[2 : di, 1 : dj − 1] = Y[2 : di, 2 : dj ]. (B.4)

By combining Eqn.(B.3) and Eqn.(B.4), we conclude that

ym,n = ym+1,n+1 (B.5)

for any m ∈ {1, . . . , di − 1}, n ∈ {1, . . . , dj − 1}, which shows that Y has a

Toeplitz form.

Step 3 : This step is proved by dividing into the following four cases. Before

proceeding, we summarize the results derived from previous two steps as follows

(i) ym,n = 0 if m > n

(ii) ym,n = 0 if n > m − (di − dj)

(iii) ym,n = ym+1,n+1.

(B.6)

1. If di = dj , from Eqn.(B.6), it is easy to know that all entries on the main

diagonal are equal, and all entries off the main diagonal are zero. Thus

we conclude that Y = λI, where λ could be any complex scalar including

zero. The proof of case 1 is completed here.

2. From the analysis of Case 1, we can still write Y = λI. Since Θ1,i 6= Θ1,j

and Θ2,i 6= Θ2,j , it is clear that λ = 0 and Y = 0. The proof of case 2 is

completed here.

3. Also from the results Eqn.(B.6), we can conclude that

ym,n = 0 if m > n

ym,n = 0 if n ≥ m.
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The latter part of the above equation can be easily derived since any entry

with n ≥ m also satisfies the condition n > m−(di−dj) when di−dj > 0.

Thus, we can conclude that Y = 0. The proof of case 3 is completed here.

4. Now we consider the case where di < dj . We assume that αi,mi
is the last

non-zero entry in ~αi and αi,k = 0, k ∈ {mi + 1, . . . , di}. Let ti = di − mi,

where 0 ≤ ti ≤ di − 1. Considering G1 = Θ1,iY = YΘ1,j and by using

the results in Eqn.(B.6), we have

G1[1, dj − ti : dj ] =
[
−α∗

i,mi
ydi−ti,dj−ti 0 . . . 0

]

=
[

−α∗
j,dj−ti

y1,1 . . . − α∗
j,dj

y1,1

]

.

Obviously if there exists a non-zero entry for αj,k, k ∈ {dj −ti+1, . . . , dj},

then we can infer that y1,1 = 0 and ydi−ti,dj−ti = ydi,dj
= 0.

On the other hand, if αj,k = 0, k ∈ {dj − ti +1, . . . , dj}, then we only have

α∗
j,dj−ti

y1,1 = α∗
i,mi

ydi−ti,dj−ti . (B.7)

In this case, we need to consider G2. From G2 = Θ2,iY = YΘ2,j , we

know that

G2[di, ti + 1] = −αi,mi
yti+1,ti+1

= −αj,dj−tiydi,dj
. (B.8)

Since y1,1 = yti+1,ti+1 and ydi−ti,dj−ti = ydi,dj
, by combining Eqn.(B.7)

and Eqn.(B.8), we have

|αj,dj−ti |
2

|αi,mi
|2

ydi,dj
= ydi,dj

. (B.9)
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Under the condition |αj,dj−ti | 6= |αi,mi
|, it is clear that we still have

ydi,dj
= 0 and y1,1 = 0.

In the following, we will show that all remaining entries in Y are zero.

Based on the relationship ym,n = ym+1,n+1, we only need to show that

{y1,2, . . . , y1,dj−di
} or {ydi,di+1, . . . , ydi,dj−1} are zero. This can be proved

in an iterative way. Considering G1 = Θ1,iY = YΘ1,j , we have

G1[1, dj − ti − 1] = −α∗
i,mi

ydi−ti,dj−ti−1 = y1,dj−ti . (B.10)

Here y1,dj−ti can be proved to be equal to zero. If ti = di − 1, then

y1,dj−ti = ydi,dj
= 0; if ti < di −1, then y1,dj−ti satisfies the condition n >

m − (di − dj) in Eqn.(B.6), also y1,dj−ti = 0. Therefore from Eqn.(B.10),

we have

ydi−ti,dj−ti−1 = ydi,dj−1 = 0. (B.11)

Now suppose {ydi,di+k, . . . , ydi,dj−1} are zero, where dj − di − 1 > k > 1,

we need to prove that ydi,di+k−1 = 0. Considering G1 = Θ1,iY = YΘ1,j ,

we have

G1[1, di + k − 1 − ti] = −α∗
i,mi

ydi−ti,di+k−1−ti

= y1,di+k−ti . (B.12)

Also y1,di+k−ti can be proved to be equal to zero. If ti = di − 1, then

y1,di+k−ti = ydi,di+k = 0; if ti < di − 1, y1,di+k−ti will be equal to some

entry in {ydi,di+k+1, . . . , ydi,dj
} or satisfy the condition n > m− (di − dj)
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in Eqn.(B.6), still we have y1,di+k−ti = 0. Therefore

ydi−ti,di+k−1−ti = ydi,di+k−1 = 0. (B.13)

The proof of case 4 is completed here.

Remark: In case 4, we assumed that there exists at least one non-zero entry in

~αi and did not consider the case where ~αi = 0. This is because we assume that

the input signals are all colored. Hence, generally, ~αi 6= 0 for i ∈ {1, . . . , p}. In

the case where ~αi = 0, it can be easily verified (considering only G1 = Θ1,iY =

YΘ1,j) that a sufficient condition for Y = 0 is that there exists a non-zero

entry for αj,k, k ∈ {dj −di +1, . . . , dj}. Such a condition can be further relaxed

if we consider the relationship G2 = Θ2,iY = YΘ2,j in the mean time.



Appendix C

Proof of Theorem 5.2

Obviously ~le = [L1, . . . , Lp] is a p-tuple point that can render us a non-zero so-

lution {X1, . . . ,Xp} = {H1, . . . ,Hp} satisfying Eqn.(5.35–5.36). Now we prove

that for any other p-tuple point, ~l 6= ~le, there does not exist a non-zero solu-

tion {X1, . . . ,Xp} that satisfies Eqn.(5.35–5.36), where for each i ∈ {1, . . . , p},

Xi ∈ C(N+1)q×(N+Mi+1) is a non-zero block Toeplitz matrix.

We prove it by contradiction. Suppose for ~lm = [T1, . . . , Tp], ~lm 6= ~le, there

exists a non-zero solution {G1, . . . ,Gp} that satisfies Eqn.(5.35–5.36), where for

each i ∈ {1, . . . , p}, Gi ∈ C(N+1)q×(N+Ti+1) is a non-zero block Toeplitz matrix.

Since ~lm 6= ~le, we can always find i such that Ti < Li and also

Υ1Gi = GiΘ1,i(Ti) (C.1)

Υ2Gi = GiΘ2,i(Ti). (C.2)
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By utilizing Eqn.(5.7), we have

HΘ1H
†Gi = GiΘ1,i(Ti) ⇒ Θ1H

†Gi = H†GiΘ1,i(Ti) (C.3)

HΘ2H
†Gi = GiΘ2,i(Ti) ⇒ Θ2H

†Gi = H†GiΘ2,i(Ti) (C.4)

where Θ1 and Θ2 can be written as

Θ1 = diag(Θ1,1(L1), Θ1,2(L2), · · · , Θ1,p(Lp)) (C.5)

Θ2 = diag(Θ2,1(L1), Θ2,2(L2), · · · , Θ2,p(Lp)). (C.6)

Let X
△
= H†Gi

△
=

[

XT
1 · · · XT

p

]T

, where Xk ∈ Cdk×(N+Ti+1), thus we have

Θ1,k(Lk)Xk = XkΘ1,i(Ti) ∀ k ∈ {1, . . . , p} (C.7)

Θ2,k(Lk)Xk = XkΘ2,i(Ti) ∀ k ∈ {1, . . . , p}. (C.8)

If k 6= i, since all sources satisfy the identifiability conditions IC1–IC3, it is easy

to conclude that Xk = 0 for any k 6= i by applying Lemma 5.3; if k = i, since

Li > Ti, the dimension of Θ1,i(Lk) is strictly greater than the dimension of

Θ1,i(Ti), by applying the third case in Lemma 5.3, we have Xi = 0. Therefore

H†Gi = 0. From the proof of Theorem 5.1, we know that the solution of

H†Gi = 0 is unique and Gi = 0. This result contradicts the assumption Gi 6= 0

we made. The proof is completed here.



Appendix D

Proof of Lemma 7.1

For notational convenience, let G1
△
= TY and G2

△
= YT. Also let g1

i,j denote

the (i, j)th element of G1 and g2
i,j the (i, j)th element of G2, respectively.

Step 1 : We first consider the first column of G1 and G2. Clearly, we have

g1
n,1 = tn,nyn,1 g2

n,1 = yn,1t1,1.

Since g1
n,1 = g2

n,1 and tn,n 6= t1,1, we have yn,1 = 0. By utilizing this result, we

can further derive that

g1
n−1,1 = tn−1,n−1yn−1,1 g2

n−1,1 = yn−1,1t1,1.

Also, we have yn−1,1 = 0 because g1
n−1,1 = g2

n−1,1 and tn−1,n−1 6= t1,1. In this

iterative way, by comparing g1
k,1 with g2

k,1 for k ∈ {2, . . . , n − 2}, it is not hard

to conclude that

yk,1 = 0 ∀ k ∈ {2, . . . , n}. (D.1)
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Step 2 : Now we proceed to consider the second column of G1 and G2. We

have the following by using the derived results in step 1

g1
n,2 = tn,nyn,2 g2

n,2 = yn,2t2,2.

Thus we have yn,2 = 0. By a similar iterative way as in step 1, we can conclude

that

yk,2 = 0 ∀ k ∈ {3, . . . , n}. (D.2)

Step 3 : Now we assume that yi,j = 0 if j ≤ m and i > j, where m is a

certain value between 2 and n − 2, we need to prove that yk,m+1 = 0 for

k ∈ {m + 2, . . . , n}. Similarly as the previous steps, it is easy to derive that

g1
n,m+1 = tn,nyn,m+1 g2

n,m+1 = yn,m+1tm+1,m+1.

Since g1
n,m+1 = g2

n,m+1 and tn,n 6= tm+1,m+1, we have yn,m+1 = 0. And also in

an iterative way, we can conclude that

yk,m+1 = 0 ∀ k ∈ {m + 2, . . . , n}. (D.3)

The proof is completed here.



Appendix E

Proof of Lemma 7.2

We present our proof in the following three steps.

Step 1 : For notational convenience, let G1
△
= JmY = YJn, G2

△
= JT

mY = YJT
n .

Considering the relationship of G1, we have

G1[2 : m, n] =

[

y1,n y2,n · · · ym−1,n

]T

=

[

0 0 · · · 0

]T

(E.1)

G1[1, 1 : n − 1] =

[

0 0 · · · 0

]

=

[

y1,2 y1,3 · · · y1,n

]

. (E.2)

Similarly, considering the relationship of G2, we have

G2[1 : m − 1, 1] =

[

y2,1 y3,1 · · · ym−1,1

]T

=

[

0 0 · · · 0

]T

(E.3)
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G2[m, 2 : n] =

[

0 0 · · · 0

]

=

[

ym,1 ym,2 · · · ym,n−1

]

. (E.4)

Therefore we can conclude that all entries located at the edges of the matrix Y

are zero except the entries y1,1 and ym,n.

Step 2 : Now we consider the sub-matrix of G1 from second row to mth row

and from first column to (n−1)th column, denoted by G1[2 : m, 1 : n−1]. This

sub-matrix can be easily computed as if we write Jm and Y as follows

Jm =






01×(m−1) 0

I(m−1)×(m−1) 0(m−1)×1






Y =






Y[1 : m − 1, 1 : n − 1] Y[1 : m − 1, n]

Y[m, 1 : n − 1] ym,n




 .

Obviously from G1 = JmY we have

G1[2 : m, 1 : n − 1] = Y[1 : m − 1, 1 : n − 1]. (E.5)

On the other hand, we can write Jn and Y as

Y =






y1,1 Y[1, 2 : n]

Y[2 : m, 1] Y[2 : m, 2 : n]






Jn =






01×(n−1) 0

I(n−1)×(n−1) 0(n−1)×1




 .
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Then from G1 = YJn we have

G1[2 : m, 1 : n − 1] = Y[2 : m, 2 : n]. (E.6)

By combining Eqn.(E.5) and Eqn.(E.6), we can conclude that

yi,j = yi+1,j+1 (E.7)

for i ∈ {1, . . . , m − 1}, j ∈ {1, . . . , n − 1}, which shows that Y has a Toeplitz

form.

Step 3 : If m = n, based on the above derived results, it is easy to know that all

entries on the main diagonal are equal, and all entries off the main diagonal are

zero. Therefore we conclude that Y = λI, where λ could be any complex scalar

including zero. If m 6= n, since Y has a Toeplitz form and all entries located

at the edges of the matrix Y are zero (note that y1,1 and ym,n can be easily

proved to be zero by utilizing the Toeplitz form when m 6= n), hence Y = 0.

The proof is completed here.



Appendix F

Proof of Theorem 7.3

We can derive the following

QHRs[k]QCl = ClRsl
[k] ⇒ Rs[k]QCl = QClRsl

[k]. (F.1)

Let Zl
△
= QCl, we can rewrite the above equation as

Rs[k]Zl = ZlRsl
[k] k ∈ {±1}. (F.2)

If we partition matrix Zl as Zl
△
=

[

ZT
1l ZT

2l · · · ZT
pl

]T

, where Zil ∈ Cdi×dl ,

then, by exploiting the block diagonal structure of Rs[k], we have the following

(a) Jdi
Zil = ZilJdl

(b) JT
di
Zil = ZilJ

T
dl

. (F.3)

By utilizing the results of Lemma 7.2, we can conclude that

Zl =

[

0 · · · 0 λlIdl
0 · · · 0

]T

. (F.4)

Hence we have Cl = QHZl = λlQ̄l. The proof is completed here.
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of constant modulus signals using support vector machines,” IEEE Trans.

Signal Processing, vol. 52, pp. 1773–1782, June 2004.

[58] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous

co-channel digital signals using an antenna array – part I: Algorithms,”

IEEE Trans. Signal Processing, vol. 44, pp. 1184–1197, May 1996.

[59] K. Anand, G. Mathew, and V. U. Reddy, “Blind separation of multi-

ple co-channel BPSK signals arriving at an antenna array,” IEEE Signal

Processing Lett., vol. 2, pp. 176–178, Sept. 1995.

[60] A. J. van der Veen and A. Paulraj, “An analytical constant modulus

algorithm,” IEEE Trans. Signal Processing, vol. 44, pp. 1136–1155, May

1996.

[61] L. K. Hansen and G. Xu, “A hyperplane-based algorithm for the digi-

tal co-channel communications problem,” IEEE Trans. Signal Processing,

vol. 43, pp. 1536–1548, Sept. 1997.

[62] Q. Li, E.-W. Bai, and Z. Ding, “Blind source separation of signals with

known alphabets using ǫ-approximation algorithms,” IEEE Trans. Signal

Processing, vol. 51, pp. 1–10, Jan. 2003.



BIBLIOGRAPHY 211

[63] H. Gazzah, P. A. Regalia, J. P. Delmas, and K. A. Meraim, “A blind mul-

tichannel identification algorithm robust to order overestimation,” IEEE

Trans. Signal Processing, vol. 50, pp. 1449–1458, June 2002.

[64] J. K. Tugnait, “Multistep linear predictors-based blind equalization

of FIR/IIR single-input multiple-output channels with common zeros,”

IEEE Trans. Signal Processing, vol. 47, pp. 1689–1700, June 2000.

[65] D. Gesbert and P. Duhamel, “Robust blind identification and equalization

based on multi-step predictors,” Proc. ICASSP, Munich, Germany, pp.

2621–2624, 1997.

[66] K. H. Afkhamie and Z.-Q. Luo, “Blind identification of FIR systems

driven by markov-like input signals,” IEEE Trans. Signal Processing,

vol. 48, pp. 1726–1736, June 2000.
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