16 research outputs found

    Block-iterative Richardson-Lucy methods for image deblurring

    Get PDF

    Trajectory Optimization of a Mobile Camera System for Maximizing Optical Character Recognition

    Get PDF
    Camera systems in motion are subject to significant blurring effects that lead to a loss of information during the image capture. This is especially damaging for optical character recognition for which edge preservation is critical to achieving a high recognition rate. Using non-blind motion deblurring, a trajectory and point spread function can be designed to maximize the recognition rate while meeting endpoint constraints. Optimization through the use of radial basis function networks can therefore be used as a way to find ideal trajectories to reduce blurring effects and preserve text sharpness. This work investigates this problem using simulation of a blurred image capture process. The simulation is automated using radial basis function network optimization and a genetic algorithm to determine trajectories with the best recognition rate. Optimized trajectories yielded recognition scores with up to 57.3% improvement in simulation compared to an analogous linear profile. These results were then verified through physical experimentation with a real-world, controlled-blur image capture process that yielded up to 29.4% improvement across the same comparison. Results were then analyzed using spectral analysis to understand why the chosen trajectories preserve text edges. These findings can be applied to a wide variety of controlled mobile camera platforms, such as autonomous automobiles or unmanned aerial vehicles, to improve their ability to gather information from their environment.M.S

    Computational low-light flash photography

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Data-Driven Image Restoration

    Get PDF
    Every day many images are taken by digital cameras, and people are demanding visually accurate and pleasing result. Noise and blur degrade images captured by modern cameras, and high-level vision tasks (such as segmentation, recognition, and tracking) require high-quality images. Therefore, image restoration specifically, image deblurring and image denoising is a critical preprocessing step. A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. Existing image deblurring techniques often rely on generic image priors that only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does class-specific information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. Specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies. Next, we present a novel image denoising algorithm that uses external, category specific image database. In contrast to existing noisy image restoration algorithms, our method selects clean image “support patches” similar to the noisy patch from an external database. We employ a content adaptive distribution model for each patch where we derive the parameters of the distribution from the support patches. Our objective function composed of a Gaussian fidelity term that imposes category specific information, and a low-rank term that encourages the similarity between the noisy and the support patches in a robust manner. Finally, we propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules (CIMM) for image denoising. The CIMM structure possesses two distinctive features that are important for the noise removal task. Firstly, each residual unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    A Deconvolution Framework with Applications in Medical and Biological Imaging

    Get PDF
    A deconvolution framework is presented in this thesis and applied to several problems in medical and biological imaging. The framework is designed to contain state of the art deconvolution methods, to be easily expandable and to combine different components arbitrarily. Deconvolution is an inverse problem and in order to cope with its ill-posed nature, suitable regularization techniques and additional restrictions are required. A main objective of deconvolution methods is to restore degraded images acquired by fluorescence microscopy which has become an important tool in biological and medical sciences. Fluorescence microscopy images are degraded by out-of-focus blurring and noise and the deconvolution algorithms to restore these images are usually called deblurring methods. Many deblurring methods were proposed to restore these images in the last decade which are part of the deconvolution framework. In addition, existing deblurring techniques are improved and new components for the deconvolution framework are developed. A considerable improvement could be obtained by combining a state of the art regularization technique with an additional non-negativity constraint. A real biological screen analysing a specific protein in human cells is presented and shows the need to analyse structural information of fluorescence images. Such an analysis requires a good image quality which is the aim of the deblurring methods if the required image quality is not given. For a reliable understanding of cells and cellular processes, high resolution 3D images of the investigated cells are necessary. However, the ability of fluorescence microscopes to image a cell in 3D is limited since the resolution along the optical axis is by a factor of three worse than the transversal resolution. Standard microscopy image deblurring techniques are able to improve the resolution but the problem of a lower resolution in direction along the optical axis remains. It is however possible to overcome this problem using Axial Tomography providing tilted views of the object by rotating it under the microscope. The rotated images contain additional information about the objects which can be used to improve the resolution along the optical axis. In this thesis, a sophisticated method to reconstruct a high resolution Axial Tomography image on basis of the developed deblurring methods is presented. The deconvolution methods are also used to reconstruct the dose distribution in proton therapy on basis of measured PET images. Positron emitters are activated by proton beams but a PET image is not directly proportional to the delivered radiation dose distribution. A PET signal can be predicted by a convolution of the planned dose with specific filter functions. In this thesis, a dose reconstruction method based on PET images which reverses the convolution approach is presented and the potential to reconstruct the actually delivered dose distribution from measured PET images is investigated. Last but not least, a new denoising method using higher-order statistic information of a given Gaussian noise signal is presented and compared to state of the art denoising methods

    Point Spread Function Determination in the Scanning Electron Microscope and its Application in Restoring Images Acquired at Low Voltage

    Get PDF
    Electron microscopes have the capability to examine specimens at much finer detail than a traditional light microscope. Higher electron beam voltages correspond to higher resolution, but some specimens are sensitive to beam damage and charging at high voltages. In the scanning electron microscope (SEM), low voltage imaging is beneficial for viewing biological, electronic, and other beam-sensitive specimens. However, image quality suffers at low voltage from reduced resolution, lower signal-to-noise, and increased visibility of beam-induced contamination. Most solutions for improving low voltage SEM imaging require specialty hardware, which can be costly or system-specific. Point spread function (PSF) deconvolution for image restoration could provide a software solution that is cost-effective and microscope-independent with the ability to produce image quality improvements comparable to specialty hardware systems. Measuring the PSF (i.e., electron probe) of the SEM has been a notoriously difficult task until now. The goals of this work are to characterize the capabilities and limitations of a novel SEM PSF determination method that uses nanoparticle dispersions to obtain a two-dimensional measurement of the PSF, and to evaluate the utility of the measured PSF for restoration of low voltage SEM images. The presented results are meant to inform prospective and existing users of this technique about its fundamental theory, best operating practices, the expected behavior of output PSFs and image restorations, and factors to be aware of during interpretation of results

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer
    corecore