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SUMMARY

Camera systems in motion are subject to significant blurring effects that lead to a loss

of information during the image capture. This is especially damaging for optical character

recognition for which edge preservation is critical to achieving a high recognition rate. Us-

ing non-blind motion deblurring, a trajectory and point spread function can be designed to

maximize the recognition rate while meeting endpoint constraints. Optimization through

the use of radial basis function networks can therefore be used as a way to find ideal tra-

jectories to reduce blurring effects and preserve text sharpness. This work investigates

this problem using simulation of a blurred image capture process. The simulation is auto-

mated using radial basis function network optimization and a genetic algorithm to deter-

mine trajectories with the best recognition rate. Optimized trajectories yielded recognition

scores with up to 57.3% improvement in simulation compared to an analogous linear pro-

file. These results were then verified through physical experimentation with a real-world,

controlled-blur image capture process that yielded up to 29.4% improvement across the

same comparison. Results were then analyzed using spectral analysis to understand why

the chosen trajectories preserve text edges. These findings can be applied to a wide vari-

ety of controlled mobile camera platforms, such as autonomous automobiles or unmanned

aerial vehicles, to improve their ability to gather information from their environment.

xiv



CHAPTER 1

MOTIVATION AND BACKGROUND

1.1 Motivation

Cameras allow systems to extract visual information from their environment but can be

subject to many types of error and degradation. The proliferation of autonomous vehicles

and other systems has only increased the need for improvement in the retrieval of relevant

data from natural scenes [1]. During operation, many systems cannot simply stop and wait

for a stable capture in order to receive additional environmental information, but capture

in motion can lead to blurring that renders such information essentially useless. Motion

blur can occur either as movement of the camera or movement of objects in the scene. Due

to the nature of a limited exposure window, motion blur is a result of light being captured

across multiple photosensitive elements. In some cases, the trajectory of the camera may

be known due to its positioning on a controlled mobile platform, such as an autonomous

vehicle or unmanned aerial vehicle. Knowledge of the camera movement allows for non-

blind motion deblurring, which can, under the correct assumptions and conditions, yield a

final image with high accuracy compared to the ground truth image [2].

One particular problem that has become more prevalent is the need to read street signs

using machine vision for the purpose of autonomous vehicles as shown in Figure 1.1. In

cases such as these, motion can be estimated as one-dimensional due to the velocity in the

vertical direction relative to the horizontal being negligible. Text recognition is a unique

problem in regards to motion deblurring as it has an emphasis on strong edge preservation

as opposed to noise reduction seen in general motion deblurring. Specifically, the devel-

opment of a motion deblurring optimization tailored specifically to text recognition would

lead to improvement in the readability of natural scene text, such as street and road signs,
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while in motion. Therefore, the goal of this work is to develop an algorithm to determine

the ideal trajectory type for planned motion text-deblurring as well as identify these trajec-

tories and why they yield positive results

Figure 1.1: Vehicle application of a mobile camera platform for street sign text recognition

1.2 Overview

This work will first identify common issues and gaps in the existing research to show the

need for text recognition-based path planning optimization. Using a combination of tradi-

tional non-blind deblurring procedures and the use of radial basis function network-based

path planning optimization, an algorithm was developed in order to automatically cycle

through endpoint constrained trajectories with direct feedback based on text recognition

scores. A simulation was created to first find trajectories based on a simulated capture and

blur system; the results of these studies, including their trajectory shapes and final images,

were analyzed using methods such as spectral analysis to understand why they have the

greatest reduction on blurring effects. The found trajectories were then verified using a

linear stage mounted camera to induce blur in a controlled manner during a real capture

process. Tests in both the simulated and physical environment were completed to assess

overall best performance, the relationship between allowable acceleration and score, and

the exposure time and score.

2



1.3 Research Objectives

This work seeks to achieve the following goals:

• Use the existing understanding of non-blind motion deblurring and radial basis func-

tion network motion planning to develop an algorithm that can automatically de-

termine the best trajectory given endpoint constraints for text recognition in natural

images

• Apply this algorithm in both simulated and real world experiments to find general

trends of ideal solutions such as trajectory shape under a variety of initial settings

and conditions

• Analyze the results of experimentation using spectral analysis in order to determine

why the trajectories found yield the best results in text recognition

3



CHAPTER 2

LITERATURE REVIEW

2.1 General Motion Deblurring

Image deblurring is the process of taking a blurred image and restoring it as best as pos-

sible to a ground truth image through the removal of blurring artifacts. These artifacts are

typically the result of movement of the camera within the exposure window that results

in blur in the direction of the movement. There are two well-established types of motion

deblurring: blind deblurring and non-blind deblurring [3]. Blind motion deblurring is an

approach where the conditions of the motion blurring are unknown and generally concerns

methods of estimating the motion in order to then deblur the image [4, 5]. On the other

hand, non-blind motion deblurring focuses on deblurring the image as best as possible

given the motion without introducing its own artifacts [6]. There is also increasing inves-

tigation in model and machine learning based deblurring techniques [7]. There has been

much research conducted on motion deblurring with a variety of goals. For example, in-

creased interest in autonomous vehicles has created a need to read text from road signs [1,

8]. Deblurring for object recognition generally seeks to restore an image with relatively

low noise [9, 10, 11]. Text recognition, as is relevant for this study, depends less on image

noise and significantly more on edge preservation in order for text features to be extracted

by text recognition engines [12].

2.2 Non-blind Motion Deblurring

Non-blind motion deblurring is an approach to motion deblurring based upon a given as-

sumption that either the blur kernel or information directly relating to the blur kernel is

known. Often, the information is in the form of inertial data [13] or planned motion tra-
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jectory information [14]. Katoch [15] developed a framework relating one-dimensional

trajectory information to the blur kernel through residence time distribution. Ultimately,

there are multiple methods for obtaining the blur kernel, but the deblurring process must

still be applied. Two common methods for non-blind motion deblurring include Wiener

deconvolution and Richardson-Lucy deconvolution [16]. Wiener deconvolution is used for

real-time, rapid processing of images as it is a single deconvolution operation applied to

the whole of the image [17]. On the other hand, Richardson-Lucy deblurring is an itera-

tive method that yields significantly better results in image accuracy compared to Wiener

deblurring at the expense of greater computational time [18]. Non-blind motion deblurring

success is highly dependent on the trajectory that creates the blur kernel as well as how

accurate the blur kernel is and a variety of approaches have been used to improve overall

results [19]. One way to improve the quality of deblurred results is to apply motion plan-

ning when possible to an image capture in order to ensure blur kernel accuracy as well as

design the blur kernel so as to create blurring artifacts that are easy to negate [2].

2.3 Motion Planning

Motion planning is critical in non-blind motion deblurring as the design of the camera

trajectory directly relates to the formation of the blur kernel. The known previous work

in dynamics-based motion deblurring utilized linear, inverse error, and fourth order poly-

nomial functions as proposed trajectories for improving image sharpness [12]. However,

these functions are limited in shape variation given position and velocity endpoint con-

straints. Linear and inverse error functions with constrained endpoints only have a single

possible trajectory, and polynomial functions can change coefficients, but are limited in

function variation at specific points in the trajectory. One way to increase the complexity

of potential trajectories is to use radial basis function networks while maintaining endpoint

constraints. Radial basis function network optimization [20, 21] is a well-known method

for using discretized, finite, parameters to generate paths with predictable shape based on
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its inputs.

2.4 Optical Character Recognition

Optical Character Recognition (OCR) is the process of extracting machine text from im-

age text. Most modern OCR engines are machine learning based, such as Google’s open

source Tesseract used in this work [22]. There is a wide range of research in OCR including

improvements to model based approaches as well as various applications [23]. One par-

ticular problem relevant to this research’s main goals is the use of OCR in natural images

containing text, such as street signs and storefronts. OCR engines are often designed for

or best used on document text with significantly diminished results when applied to these

natural scenes. Unique solutions such as preprocessing or temporal fusion have been used

in order to improve accuracy [24]. Binarization, blob detection, and image segmentation

are all methods used in order to prepare image text for feature extraction [25]. OCR also

dramatically deteriorates under the effect of motion blur due to the loss of text features

[26]. This is a unique challenge that can benefit from OCR-based optimization.

2.5 Optimization Methods

Optimization is widely used in both motion deblurring and optical character recognition.

There are many existing, well-tested optimization methods, such as the genetic algorithm

used in this work [27, 28]. This algorithm works well for finding solutions to large, non-

linear problem formulations and has been used previously in optimizing non-blind motion

deblurring [29]. For problems such as this, establishing a cost function is critical; various

evaluation methods can be used depending on the specific application of the completed

optimization. Variation from a ground truth image [30], image sharpness [31], string edit

distance [32], and OCR word confidence [33] are all potential, previously described scoring

methods for optimizing motion deblurring for text recognition.
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2.6 Spectral Analysis

Spectral analysis is a method of evaluating signals by converting them from the time do-

main to the frequency domain using a Fourier Transform. Two-dimensional spectral anal-

ysis is a well established method of observing images both qualitatively and quantitatively

[34]. Specifically, the frequency domain is useful for determining in what direction and

to what extent blur has been imposed on an image [35]. This is especially useful for this

case of text detection as edge preservation is critically important, and edges are represented

as high frequency signals in the frequency domain perpendicular to their direction in the

image plane [36]. Various averaging and scoring methods can be directly applied to the

two-dimensional transform for objective measurement [37]. Comparison of the frequency

domain images before and after some process, such as blurring and deblurring, can be es-

pecially useful as it allows for viewing of what edge information has been lost in the image

[38].
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CHAPTER 3

METHODOLOGY

3.1 Problem Statement

The goal of this work is to establish an optimal camera trajectory that, compared to other

trajectories with the same motion and endpoint constraints, can be used to plan the motion

of a mobile camera that will allow for the greatest rate of correct text recognition in natural

images after image reconstruction. Trajectories are generated using radial basis function

networks in a one-dimensional space and subject to optimization via a cost function based

on the incorrect text recognition rate. Numerical optimization is used to attempt motion

deblurring in an automated fashion against a library of text-based natural images.

3.2 Dynamics Based Motion Deblurring and Point Spread Function Determination

3.2.1 Image Formation

Images are formed based on the intensity of light exposed onto the photosensitive elements

of the camera sensor. During this image capture process, two types of noise are introduced:

shot noise and thermal noise [12]. Shot noise is the result of variance in the number of

photons received by each photosensitive element over time due to changes in the scene or

changes in the camera position xxx(t). Thermal noiseNNN is created within the camera sensor

via variation in the electrical signal due to changes in temperature and is modeled as an

additive zero-mean Gaussian N with variance σ2. Shot noise can be modeled as a blurry

imageBBB generated by a stationary Poisson process P with intensity λ:

BBB ∼P

(
λ

∫
Te

LLL(xxx(t))dt

)
,NNN ∼ N (0, σ2), (3.1)
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where LLL is the latent image. The captured image III can then be defined as:

III = BBB(xxx(t), Te, λ) +NNN, (3.2)

or as:

III = KKK ⊗LLL+NNN, (3.3)

where Te is the exposure window,KKK is the blur kernel or Point Spread Function (PSF) and

⊗ is the convolution operator. A visual representation of the capture process is shown in

Figure 3.1.

Captured Image I Blur Kernel K Latent Image L Noise N

+=

Figure 3.1: A visual representation of the components that comprise a captured image

3.2.2 Residence Time Distribution and Point Spread Function

Knowledge of the camera’s motion is critical as it is needed to generate a Residence Time

Distribution (RTD). An RTD describes the amount of time the camera spends over a certain

section of the image [15]. These image sections evenly divide the image based upon a set

step size, image capture exposure time, and linear capture distance. The RTD is represented

graphically in Figure 3.2 and in the equation below:

τ(xxx) =
1

‖ẋxx(xxx)‖ 2
, ẋxx(xxx) 6= [0, 0], (3.4)

where ẋxx(xxx) is the velocity of the camera at a given point over the image and τ(xxx) is the

RTD. In the case that the camera is stationary, the result is a Dirac delta function centered

on the trajectory center point with a value of the image exposure time. The sum of the RTD
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is equal to the total exposure time ∆T for any given trajectory.

Using the RTD found via the known trajectory, the PSF can be determined. This PSF

is used as the blur kernel for any deconvolution method as it describes the light energy

distribution for a pixel in a captured image. For a one dimensional case, the PSF is repre-

sented by the RTD normalized and equally sampled to the size of the blur kernel imposed

on the center row with all other elements equal to zero. The size of the blur kernel is deter-

mined by scaling the image width in pixels to the ratio of the image capture width and the

displacement traveled during capture.

Figure 3.2: Residence time distribution across a non-stationary trajectory with exposure
position xe

3.2.3 Non-Blind Motion Deblurring

The reconstruction of a blurred image via non-blind deblurring is based upon the formation

of the captured image described in Equation 3.3. Richardson-Lucy deconvolution is a well-

known iterative approach that is computationally slower and more intensive than other

methods, but produces more accurate results and is therefore used here. It can be modeled

as:

IIIj+1 = (BBB � (IIIj ⊗KKK)⊗KKK)� IIIj, (3.5)

where IIIj is the image estimate at the j-th iteration, KKK is the blur kernel flipped along
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the central horizontal and central vertical axes, � is the Hadamard product, and � is the

Hadamard divide [39]. In a one-dimensional case, the KKK matrix is the same as KKK as this

matrix is a single row of symmetric values along the center row with all other values equal

to zero. While Richardson-Lucy deconvolution generally performs better than other com-

mon methods, it generally cannot perfectly recreate images even with a known blur kernel.

It can also introduce ”ringing” artifacts, shown as bands near the edges of the image in

Figure 3.3 that can be detrimental to procedures like text recognition.

Richardson-Lucy Deconvolution

Captured Image Deblurred Image

Figure 3.3: Example of an image deblurred with Richardson-Lucy deconvolution with
strong ringing artifacts

3.3 Motion Planning

Motion planning for non-blind motion deblurring describes the design of a blur kernel

via control of an RTD through the trajectory profile. For the purposes of this work, it is

assumed that the velocity in the vertical direction is negligible relative to the velocity in

the horizontal direction, establishing one-dimensional motion. For a camera in motion,

an exposure position xe is established as the average or center position during the entire

exposure window Te:

xe =
1

∆T

∫
Te

x(t)dt, (3.6)

There are several limitations imposed on the designed trajectory including that it is one-

dimensional, is symmetric centered upon xe, must be completed within ∆T , and must

meet position and velocity endpoint constraints. In order to meet these conditions, this

thesis proposes the implementation of radial basis function networks for path planning.
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3.4 Radial Basis Function Networks

A radial basis function (RBF) is any real valued function in which the value is solely de-

pendent on the difference between the input and some given center, defined as ϕ(x) =

ϕ(||x − c||) where x is the primary function variable and c is the RBF center [20]. The

most common RBF used is the Gaussian function:

ϕ(r) = e−(εr)2 , (3.7)

where r is the primary function variable and ε is the Gaussian shape factor. The shape

factor is directly related to the standard deviation of the Gaussian and therefore controls

each function’s spread around a particular center. It is typically fixed for a given set of

RBFs. Radial basis function networks use multiple RBFs and an equal number of weights

and function offsets to generate a weighted sum of the functions:

s(t) =
n∑
k=0

wkϕ(||t− tk||), (3.8)

where s(t) is the RBF network function, n is the number of RBF functions used, wk is the

function weight, tk is the function offset, and t is the trajectory timescale. An example of

the formation of an RBF network is shown in Figure 3.4.

One advantage of RBF networks is the ability to easily and predictably vary their shape

using the weight and offset values [21]. Given an RBF network of n RBF functions, pa-

rameters to fully describe the network can be formed as a series of n [wk, tk] pairs. This

set of parameters can be used as inputs for a number of optimization or search methods to

determine optimal sets with a given cost function. It is also known that any combination of

values is guaranteed to produce a smooth function.
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Figure 3.4: An example five function symmetric RBF network with ε = 3 and individual
functions shown

3.5 Optimization

Proposed RBF based trajectories must be assessed and continually modified in order to

find the ideal trajectory for planned deblurring. To do this, an optimization problem can be

created using weights of the RBF as an input, and the assigned score as output to minimize.

The RBF offsets are not modified, and instead are equally spaced across the timescale. This

is because with a sufficiently large number of functions and sufficiently large shape factor,

the RBF function summation can still achieve a wide range of trajectories. Constraints are

also imposed on the position endpoints x0 and xf , velocity endpoints v0 and vf via a chosen

velocity v̄, and acceleration a(t) through a maximum allowable acceleration aallow deter-

mined by the performance limit of a mobile camera platform actuator. The optimization

problem formation is shown below:
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minimize
www∈Rn

ROCR(www) (3.9.1)

subject to x0 = 0 (3.9.2)

xf = dexp (3.9.3)

vi = vf = v̄ (3.9.4)

max(a(t)) ≤ aallow,∀t ∈ [0, Te] (3.9.5)

wherewww is the RBF weights vector:

www = (w1, w2, ...wn)T . (3.9.6)

The position vector is calculated as the numerical integral of the velocity vector x(t) =∫ ∆T

0
v(t)dt while the acceleration is the numerical derivative a(t) = d

dt
v(t). Maximum

acceleration is defined as the largest acceleration value over [0, Te]. aallow is chosen based

upon the limits of the physical system for which the trajectory optimization is to be applied

and imposes a non-linear constraint in this problem.

The velocity profile is the function generated by the RBF network so that the position

endpoints can easily be constrained. The total distance traveled for any RBF is the area

under the given function (in this case, the Gaussian) multiplied by the sum of all weights.

From Equation 3.8:

dexp =

(∫
Te

e−(εr)2dr
n∑
k=1

wk

)
+ v̄∆T. (3.10)

The v̄∆T term accounts for the distance traveled using a linear trajectory with the same

endpoint constraints. This equation can be used as a linear constraint to ensure the intended

distance traveled is always met. The cost function ROCR(www) is the percent of incorrect

characters in the text recognized string compared to the correct string measured by the

Levenshtein distance algorithm.
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3.5.1 Image Evaluation

Determination of an image evaluation method is a common issue for problems involving

image restoration [40]. For this experiment, the returned character recognition text is com-

pared to the ground truth text to form the rate of incorrect text recognition as determined

by the Levenshtein distance algorithm [41]. This algorithm determines the number of in-

sertions, deletions, or character changes needed to be applied to a string in order to make

it match the goal. The number of changes is divided by the ground truth string length to

create an incorrect text recognition rate:

ROCR(www) =
nL

lText
, (3.11)

where ROCR is the rate, nL is the number of string changes according to the Levenshtein

distance algorithm, and lText is the length of the ground truth text of the image. One issue

with this evaluation metric is the possibility of a significant difference in returned and actual

string length, which may cause ROCR to be significantly greater than 1. For this reason, a

response of no text being recognized in the image is given a score of 3 to encourage the

simulation to move towards any text recognition even if it contains many extra or missing

characters. Any ROCR over 3 are also reduced to 3 as well. Finally, any score values under

3 are scaled based on the mean ROCR value of the ground truth image as a correction for

some images being inherently more difficult to extract text from. The values of the mean

recognition rate for these images can be found in Table A1.

3.5.2 Optical Character Recognition

Optical Character Recognition (OCR) is the process of converting text within images into

machine-encoded text. A well known and widely used OCR software is Google’s open

source Tesseract [22], which was used within MATLAB’s optimization process. Although

many OCR algorithms exist, this experiment required the use of one that could be auto-
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mated to run continuously without user input, making Tesseract an obvious choice. This

engine performs well with its primary use for document text, but can struggle with natu-

ral scene text. A number of methods have previously been implemented in order to tailor

OCR engines to natural scenes [24, 25]. Here, any input image is simply converted to gray

scale and given to the OCR. This process is done automatically for every image during the

optimization cycle.

3.6 Spectral Analysis

Spectral analysis is the process of deconstructing a signal in the time domain into compo-

nents in the frequency domain. For the purposes of this study, a two-dimensional Discrete

Fourier Transform is used to view and analyze frequency information within the both static

and deblurred images. Specifically, edges, such as those formed by text, appear as high

frequency values in the direction perpendicular to the edge in the two-dimensional power

spectrum [40]. In the case of this one-dimensional, horizontal motion, the appearance and

retention of high frequency values in the center horizontal region is critical to OCR’s per-

formance [36]. A methodology proposed here is to compute the difference between the

power spectrum of a ground truth and a deblurred image power spectrum as shown in Fig-

ure 3.5. All images evaluated are proportionally resized to a 600 by 600 pixel image in

order to maintain consistency across all samples. The resulting power spectrum difference

describes the frequency information lost through the blurred capture and deblurring pro-

cess. In order to convert this into a quantitative metric, the difference across all indices

can be summed to find a total intensity difference. However, due to the limitation of the

motion applied being one-dimensional in the horizontal direction, only the middle third of

the image is considered as the horizontal edges in the image are not subject to blur. This

yields a singular measurement of vertical edge information lost in the image which can be

directly compared with OCR recognition rates.
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Figure 3.5: Power spectra of a static and deblurred image and the formation of the differ-
ence power spectrum with separated central horizontal third
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CHAPTER 4

SIMULATION

4.1 Simulation Setup

Determining an ideal trajectory for character recognition requires an automated optimiza-

tion process that can quickly evaluate many sets of RBF weights. A simulation of the

process of capturing an image, deblurring it based on a known trajectory, and evaluating it

was created in MATLAB. For any single iteration, a ground truth image, in this case, an

image from the image library, is supplied and subjected to horizontal linear motion blur

determined by the motion of an RBF trajectory with arbitrary weights. Noise is added to

the blurred image, and the image is then deblurred with Richardson-Lucy deconvolution

using the same blur kernel as the original blurring. OCR is then completed on the image,

and the extracted text is compared to a correct text string using Levenshtein distance. The

score is calculated using Equation 3.11 and scaled based on the static image’s mean OCR

score. The entire scoring process is completed for each image in the set using the same tra-

jectory, and each individual image score is averaged for the set to form the set score. The

set score is returned to MATLAB’s genetic algorithm to determine the next suitable trajec-

tory parameters to test. This process is repeated until a trajectory is found that satisfies the

constraints in Equation 3.9 as well as the optimization parameters. Figure 4.1 shows this

optimization algorithm in flowchart form.
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Figure 4.1: Flowchart of the simulation’s optimization algorithm

One issue with the genetic algorithms is that it takes a very long time to converge while

not necessarily providing significant improvement over time. Here, the goal of the genetic

algorithm is to function as a random walk, so for this reason, a run-time limit of 1 hour

was applied to each optimization. Based on the results obtained from the simulation being

similar in shape, this did not affect the overall quality of the simulation’s results.

Because individual natural images have only a small portion of text, a set of images is

used for the optimization. For this experiment, a combination of the training and test set

of images from the ICDAR 2015 OCR competition as well as the Street View Text Dataset

was used [42, 43]. This comprises a library of 812 images, however, this was reduced down

to 27 by filtering for images that scored an average of no greater than 0.5 in ROCR value

when evaluated as static images. This was done to prevent an overly high rate of incorrect

recognition from images that would be particularly difficult for the OCR engine. The final

set contains 788 total characters. The image library can found in Figure A1.

Three different sets of simulations were completed. The first is the main optimization

comprising a single large search from which the best five unique trajectories were selected.

Linear and inverse error trajectories were also tested as a comparison method, with the

inverse error function defined as the inverse of the Gaussian error function. For each tra-

jectory, five trials of the image set were run in order to mitigate variability introduced by
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the OCR engine. The parameters for this simulation are shown in Table 4.1.

Table 4.1: Main search simulation parameters

Simulation Parameter Value

Number of Images 27

Maximum Run Time 1 hour

Simulated Image Width 0.5 m

Number of RBF Functions 13 (7 unique)

ε 4

v̄ 0.2 m/s

amax 5g

∆T 0.2 s (5 FPS)

dexp 40 mm

The number of RBFs and ε value were chosen based upon what combination could rea-

sonably be used to fully represent almost any trajectory between endpoints while reducing

computation time. v̄ is based upon the linear velocity needed to meet position endpoint

constraints and amax was chosen based upon what could be achieved with the hardware

setup. Simulated image width, dexp, and camera exposure ∆T were also based on experi-

ment setup.

The second series of simulation runs attempts to draw a relationship between the ac-

celeration limit of the optimization and the overall score. The optimization search was

completed four times using the same parameters above except for the acceleration limit,

which was changed to 1g, 2g, 3g, and 4g. For every search, five trials were run, just as

above. The best performing 5g test is used for comparison.

The last set of tests again used the same simulation parameters as the first test except

for a change in camera exposure time and corresponding endpoint velocity. Four searches

were completed with exposure times of 1/15, 1/30, 1/45, and 1/60 seconds with endpoint
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velocities necessary to create a linear trajectory. Once again, the best non-linear trajectory

from each search was selected to be run for five trials.

4.2 Simulation Results

A representation of the first optimization is shown in Figure 4.2. The plots show the scores

for every image as well as the output score used to generate new outputs by the genetic

algorithm. The circled low scores are the trajectories pulled from the optimization for

further testing (some points are skipped due to being identical to other already selected

points). The bottom plots show the range of trajectories attempted by the optimization. This

representation is similar to the optimization run for the rest of the attempted simulations.

Figure 4.2: Output plots of the optimization search including individual and set scores as
well as trajectories attempted

Sample results for the first image in the image set are shown in Figures 4.3 to 4.9 for

the linear, inverse error, and RBF trajectories 1 through 5 as well as their position, velocity,

and residence time distribution profiles.
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Figure 4.3: Sample of simulated deblurred image using linear trajectory with position,
velocity, and residence time distribution plots

Figure 4.4: Sample of simulated deblurred image using inverse error trajectory with posi-
tion, velocity, and residence time distribution plots
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Figure 4.5: Sample of simulated deblurred image using RBF1 trajectory with position,
velocity, and residence time distribution plots

Figure 4.6: Sample of simulated deblurred image using RBF2 trajectory with position,
velocity, and residence time distribution plots
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Figure 4.7: Sample of simulated deblurred image using RBF3 trajectory with position,
velocity, and residence time distribution plots

Figure 4.8: Sample of simulated deblurred image using RBF4 trajectory with position,
velocity, and residence time distribution plots
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Figure 4.9: Sample of simulated deblurred image using RBF5 trajectory with position,
velocity, and residence time distribution plots

The RBF trajectories shown above represent potential optimal trajectories given the study

parameters and constraints used in the optimization. It is immediately noticeable that all of

the deblurred images from the RBF trajectories are less blurred than those of the linear and

inverse error trajectories, indicating the optimization has yielded improved results com-

pared to the default linear trajectory. There is also a general trend of the RBF trajectories

having either single or multi-peak RTDs around the center of the trajectory, which repre-

sents the camera stalling at the image center. This is confirmed in the velocity plots which

show the camera rapidly moving to the image center, stopping or significantly slowing, and

then rapidly moving to the end of the trajectory.

Table 4.2 shows the mean, standard deviation, and t-test values compared to the linear

trajectory of all trajectories across all images and trials. All t-tests for this and other com-

parisons are left-tailed tests to compare if the suspected trajectory performs better than the

baseline trajectory. The RBF trajectories significantly outperform the linear and inverse
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error, up to 57.3% when comparing the best performing RBF4 to linear, all with p� 0.05

statistical significance. One other interesting trend is a relationship between the highest

time achieved in the RTD and the overall performance. RBF 4 and 2 are the best scoring

trajectories and have the highest RTD times with the remaining trajectories following in

order of highest RTD time. Sample simulation score and OCR data for RBF4 can be found

in Table A2.

Table 4.2: Main search simulation score means µOCR, standard deviations σOCR, and t-test
scores tOCR by trajectory over five trials

Trajectory µOCR σOCR tOCR

Linear 2.684 0.121 -

Inverse 2.872 0.082 0.974

RBF1 1.180* 0.232 1.241E-04

RBF2 1.196* 0.103 4.715E-05

RBF3 1.200* 0.183 3.510E-05

RBF4 1.146* 0.150 1.002E-06

RBF5 1.362* 0.103 5.299E-05

Note: *p < 0.05 compared to linear trajectory

In addition to the above calculations, all t-test p-values comparing each trajectory to each

other are shown in Table 4.3. This is presented in order to compare the performance be-

tween RBF trajectories; the trajectory on the row is being tested for statistical significance

against the trajectory on the column. Ultimately, no RBF trajectories show significantly

different performance than others except for some statistical significance of RBF5 being

slightly under performing compared to the other RBF trajectories.
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Table 4.3: Main search simulation t-test p-values matrix by trajectory

Trajectory Linear Inverse RBF1 RBF2 RBF3 RBF4 RBF5

Linear - 0.026* 1 1 1 1 1

Inverse 0.974 - 1 1 1 1 1

RBF1 1.241E-04* 1.783E-05* - 0.454 0.458 0.621 0.032*

RBF2 4.715E-05* 7.284E-06* 0.546 - 0.486 0.660 0.029*

RBF3 3.510E-05* 4.574E-05* 0.542 0.514 - 0.683 0.133

RBF4 1.002E-06* 6.726E-06* 0.379 0.340 0.317 - 0.035*

RBF5 5.299E-05* 8.215E-07* 0.968 0.971 0.867 0.965 -

Note: *p < 0.05

The output plots shown in Figures 4.10 to 4.13 show sample deblurred images for tra-

jectories attempted with various acceleration limits.

Figure 4.10: Sample of simulated deblurred image using an optimized trajectory for a 1g
acceleration limit with position, velocity, and residence time distribution plots
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Figure 4.11: Sample of simulated deblurred image using an optimized trajectory for a 2g
acceleration limit with position, velocity, and residence time distribution plots

Figure 4.12: Sample of simulated deblurred image using an optimized trajectory for a 3g
acceleration limit with position, velocity, and residence time distribution plots
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Figure 4.13: Sample of simulated deblurred image using an optimized trajectory for a 4g
acceleration limit with position, velocity, and residence time distribution plots

The score results from these four trajectories are tabulated in Table 4.4 with the best per-

forming RBF trajectory from the original 5g set, RBF 4, being used for comparison. Once

again, all trajectories have p � 0.05 statistical significance compared to the linear trajec-

tory. The results from this set of trajectories are very similar to the results of the first set in

both shape and RTD values, except for the trajectory with a 1g acceleration limit. At this

limit, the score significantly deteriorates as the velocity can no longer sustain high or low

enough speeds to create peaks in the RTD. Instead, very short double peaks appear outside

of the center. This creates strong ringing artifacts and worse deblurring compared to the

other trajectories.
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Table 4.4: Acceleration limit simulation score means µOCR, standard deviations σOCR, and
t-test scores tOCR by trajectory over five trials

Trajectory µOCR σOCR tOCR

1g Limit 2.396* 0.131 1.251E-02

2g Limit 1.188* 0.125 2.210E-05

3g Limit 1.300* 0.133 2.083E-06

4g Limit 1.067* 0.174 3.380E-06

5g Limit 1.146* 0.150 1.002E-06

Note: *p < 0.05 compared to linear trajectory

The t-test p-value matrix for these tests is shown in Table 4.5. From the table, the lack of

deblurring ability in the 1g case is confirmed as all trajectories perform better than it. The

4g and 5g case also show improvement over the 3g case, which is expected.

Table 4.5: Acceleration limit simulation t-test p-values matrix by trajectory

Trajectory 1g 2g 3g 4g 5g

1g - 1 1 1 1

2g 3.452E-05* - 0.155 0.881 0.661

3g 2.602E-04* 0.845 - 0.969 0.980

4g 1.451E-05* 0.119 0.031* - 0.113

5g 7.513E-05* 0.339 0.020* 0.887 -

Note: *p < 0.05

The final set of optimized trajectories for various exposure times is shown below in

Figures 4.14 to 4.17.
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Figure 4.14: Sample of simulated deblurred image using an optimized trajectory for a a
1/15 second exposure time with position, velocity, and residence time distribution plots

Figure 4.15: Sample of simulated deblurred image using an optimized trajectory for a a
1/30 second exposure time with position, velocity, and residence time distribution plots
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Figure 4.16: Sample of simulated deblurred image using an optimized trajectory for a a
1/45 second exposure time with position, velocity, and residence time distribution plots

Figure 4.17: Sample of simulated deblurred image using an optimized trajectory for a a
1/60 second exposure time with position, velocity, and residence time distribution plots
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These trajectories cause the images to remain heavily blurred because the trajectories must

meet increasingly more difficult endpoint constraints. Summary values in Table 4.6 confirm

that these trajectories perform similarly to a linear trajectory as they are essentially linear.

However, it does appear that these trajectories did attempt to create peaks in the RTD with

the difference between the maximum and minimum value decreasing with a decrease in

exposure time. The p-value matrix in Table 4.7 shows no major difference in performance

between these trajectories.

Table 4.6: Exposure time simulation score means µOCR, standard deviations σOCR, and
t-test scores tOCR by trajectory over five trials

Trajectory µOCR σOCR tOCR

15 FPS 2.727 0.077 0.812

30 FPS 2.766 0.044 0.898

45 FPS 2.728 0.153 0.715

60 FPS 2.701 0.070 0.585

Note: *p < 0.05 compared to linear trajectory

Table 4.7: Exposure time simulation t-test p-values matrix by trajectory

Trajectory 15FPS 30FPS 45FPS 60FPS

15FPS - 0.086 0.495 0.679

30FPS 0.914 - 0.688 0.900

45FPS 0.505 0.312 - 0.641

60FPS 0.321 0.100 0.359 -

Note: *p < 0.05
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4.3 Spectral Analysis

Spectral analysis was performed on all of the simulated trajectories. First, Figure 4.18

shows the power spectrum for the static image that is used in the following difference

spectrum for each trajectory. The power spectrum of the deblurred image and its difference

from the base power spectra for the linear, inverse error, and five base RBF trajectories are

shown in Figures Figures 4.19 to 4.25.

Figure 4.18: Static image 1 and its power spectra

Figure 4.19: Deblurred image power spectra from simulated linear trajectory and power
spectra difference from static image power spectra
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Figure 4.20: Deblurred image power spectra from simulated inverse error trajectory and
power spectra difference from static image power spectra

Figure 4.21: Deblurred image power spectra from simulated RBF1 and power spectra dif-
ference from static image power spectra

Figure 4.22: Deblurred image power spectra from simulated RBF2 and power spectra dif-
ference from static image power spectra
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Figure 4.23: Deblurred image power spectra from simulated RBF3 and power spectra dif-
ference from static image power spectra

Figure 4.24: Deblurred image power spectra from simulated RBF4 and power spectra dif-
ference from static image power spectra

Figure 4.25: Deblurred image power spectra from simulated RBF5 and power spectra dif-
ference from static image power spectra
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On the difference power spectrum, lines are imposed to show the central third of the image

that most represents the relevant horizontal frequencies. The static image power spectrum

shows high frequency components in both the purely vertical and horizontal directions

representing the edges of the box in the image as well as the edges of the letters in these

directions, especially for characters such as “N”, “d”, and “P”. There is also a large amount

of lower frequency information in all directions representing the curved and slanted edges

of the other letters. For the linear and inverse trajectory plots, there is a significant removal

of these regions as this information has been distorted by the blur. The difference plots

show loss of both the high frequency horizontal components as well as lower frequency

near-horizontal regions. This loss is much less prevalent in all of the RBF trajectory power

spectra. The sum of the intensity differences for the central horizontal third of each image

is calculated in Table 4.8. This shows a very close correlation between the maintenance of

these image frequencies and the text recognition rate undergoing one-dimensional blur.

Table 4.8: Main search simulated power spectra difference means µPS , standard deviations
σPS , and t-test scores tPS by trajectory over five trials

Trajectory µPS σPS tPS

Linear 7065.0 2.803 -

Inverse 7248.8 2.267 1

RBF1 5994.4* 1.176 3.645E-12

RBF2 6448.8* 3.048 8.861E-10

RBF3 6475.9* 0.439 5.517E-11

RBF4 6615.9* 1.411 3.701E-10

RBF5 6513.1* 2.756 1.756E-10

Note: *p < 0.05 compared to linear trajectory

The power spectra t-test p-value matrix is calculated in Table 4.9. The results here show

significance in many tests, however, this is likely due to the low standard deviation of the
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score and is not necessarily indicative of specific performance comparisons.

Table 4.9: Main search simulation power spectra score t-test p-values matrix by trajectory

Trajectory Linear Inverse RBF1 RBF2 RBF3 RBF4 RBF5

Linear - 2.520E-09* 1 1 1 1 1

Inverse 1 - 1 1 1 1 1

RBF1 3.645E-12* 1.356E-12* - 3.488E-10* 1.127E-12* 1.159E-11* 3.067E-10*

RBF2 8.861E-10* 1.636E-10* 1 - 1.939E-05* 1.553E-08* 5.235E-06*

RBF3 5.517E-11* 1.028E-11* 1 1 - 2.546E-09* 5.226E-06*

RBF4 3.701E-10* 9.731E-12* 1 1 1 - 1

RBF5 1.756E-10* 3.426E-11* 1 1 1 1.065E-07* -

Note: *p < 0.05

For the acceleration limit tests, similar results are present with the spectra difference

sum being very closely related to the OCR score. Once again, the low acceleration limit test

performed much more poorly than the other four trajectories. Figures 4.26 to 4.29 shows

these results and Table 4.10 presents the statistical information relating to these values. In

the p-value matrix in Table 4.11, all other trajectories showed statistical significance against

the 1g case while no major correlation is seen among the other cases.

Figure 4.26: Deblurred image power spectra from simulated 1g acceleration limit trajectory
and power spectra difference from static image power spectra
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Figure 4.27: Deblurred image power spectra from simulated 2g acceleration limit trajectory
and power spectra difference from static image power spectra

Figure 4.28: Deblurred image power spectra from simulated 3g acceleration limit trajectory
and power spectra difference from static image power spectra

Figure 4.29: Deblurred image power spectra from simulated 4g acceleration limit trajectory
and power spectra difference from static image power spectra
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Table 4.10: Acceleration limit simulated power spectra difference means µPS , standard
deviations σPS , and t-test scores tPS by trajectory over five trials

Trajectory µPS σPS tPS

1g Limit 7058.1* 2.684 3.166E-03

2g Limit 6438.1* 1.242 8.014E-11

3g Limit 6956.4* 2.134 9.979E-09

4g Limit 5480.7* 2.814 2.641E-12

5g Limit 6615.9* 1.411 3.701E-10

Note: *p < 0.05 compared to linear trajectory

Table 4.11: Acceleration limit simulation power spectra score t-test p-values matrix by
trajectory

Trajectory 1g 2g 3g 4g 5g

1g - 1 1 1 1

2g 4.012E-11* - 9.841E-11* 1 1.212E-09*

3g 1.316E-08* 1 - 1 1

4g 1.338E-11* 1.878E-11* 6.726E-12* - 3.606E-12*

5g 3.723E-10* 1 8.385E-10* 1 -

Note: *p < 0.05

For the final set of exposure time tests, the power spectra plots very closely resemble

that of the linear trajectory with similar losses of horizontal information and introduction of

ringing artifacts as shown in Figures 4.30 to 4.33. Their power spectra difference scores are

accordingly very similar to the linear trajectory due to the new power spectra being nearly

indistinguishable from the linear power spectra, equating to a very significant loss of edges

perpendicular to the horizontal direction. These scores are calculated in Table 4.12. p-

value comparisons in Table 4.13 show some statistical significance but no major correlation

40



between the trajectories.

Figure 4.30: Deblurred image power spectra from simulated 1/15 second exposure time
trajectory and power spectra difference from static image power spectra

Figure 4.31: Deblurred image power spectra from simulated 1/30 second exposure time
trajectory and power spectra difference from static image power spectra

41



Figure 4.32: Deblurred image power spectra from simulated 1/45 second exposure time
trajectory and power spectra difference from static image power spectra

Figure 4.33: Deblurred image power spectra from simulated 1/60 second exposure time
trajectory and power spectra difference from static image power spectra

Table 4.12: Exposure time simulated power spectra difference means µPS , standard devia-
tions σPS , and t-test scores tPS by trajectory over five trials

Trajectory µPS σPS tPS

15 FPS 7091.9 2.868 9.999E-01

30 FPS 7070.7 1.208 9.913E-01

45 FPS 7064.9 1.625 4.833E-01

60 FPS 7063.4 3.310 2.228E-01

Note: *p < 0.05 compared to linear trajectory
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Table 4.13: Exposure time simulation power spectra score t-test p-values matrix by trajec-
tory

Trajectory 15FPS 30FPS 45FPS 60FPS

15FPS - 1 1 1

30FPS 7.717E-06* - 1 0.992

45FPS 3.637E-06* 1.793E-04* - 0.765

60FPS 2.037E-04* 7.862E-03* 0.235 -

Note: *p < 0.05

4.4 Discussion

The results of the simulation show an interesting trend; all of the RTDs for the RBF-based

trajectories show either a single or multiple spikes in residence time at the center of the

trajectory. This makes sense, as this translates to a blur kernel with the highest values

very close to the center that generates less blur to begin with as well as one that would be

easier and more predictable to deblur with. In an ideal case, as is true in the simulation,

where the motion and blur kernel are perfectly known, Richardson-Lucy deconvolution

would create a very close recreation of the original image. However, this is shown to be

false as more linear-shaped trajectories failed to yield useful results. The single peak RTD

maximizes the residence time around the center of the image, while the multi-peak RTD

is likely a consequence of a less ideal optimization that could generally be achieved with

a lower acceleration limit. This generates multiple phase distortions in the image that can

be stitched together during the deblurring process which leads to strong artifacts, but still

produces high contrast edges for text recognition. The concentration of residence time

at the trajectory center is directly related to the overall OCR performance and indicates a

possible attempt of saccade-like motion [39].
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CHAPTER 5

EXPERIMENTATION

5.1 Experiment Setup

In order to verify the various results found in the optimization, an experimental setup was

designed to replace the simulated capture process with a real, controlled-blur capture pro-

cess. Figure 5.1 shows the setup used. It comprises a global shutter camera (model XiC,

2.3 MP CMOS, Ximea Co.) with a 12 mm fixed lens (model: M118FM12 C-Mount 12

mm, Tamron Co. Ltd., Saitama, Japan) attached to a 50 mm stroke voice coil stage (model:

VCS24-029-LB-12, H2W Technologies, Inc.,CA, USA ) controlled via a single axis motion

controller with power supply (model: DMC-30012, Galil, California, USA). The motion

controller is connected to a computer via Ethernet for socket messaging communication

while the camera is connected via USB and are synchronized based on a timed delay be-

tween motion start and the beginning of image capture.

The voice coil type linear stage was chosen due to the high level of acceleration it can

achieve as well as high speed and accuracy. To conduct a capture, a time-series of position

points from one of the selected optimization trials is sent to the motion controller while

the camera is timed to capture at the start of movement and finish at the end of motion.

A trajectory width of 40 mm was chosen in order to allow some buffer space to prevent

accidental collision with the ends of the linear stage. The camera was also placed at a

distance of 0.785 m from the image in order to make the camera capture an image 0.5 m

in width. Every test image used was printed with a width of 0.216 m. A studio light was

placed behind the camera facing the image wall in order to ensure even lighting for all

captures.

Trials were run to replicate the data obtained in the first and second simulation tests.
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The third set could not be replicated because the voice coil was not capable of producing

trajectories at that high velocity.

Image to be Captured

Motion Controller and 

Power Supply

Camera and Lens

Voice Coil Linear Stage

Figure 5.1: Experimental setup for the controlled-blur capture process

5.2 Experiment Results

For the first set of trials, samples from the first image in the image set are shown in Fig-

ures 5.2 to 5.8. These figures show the deblurred image and the attempted trajectory as

well as the recorded trajectory.
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Figure 5.2: Sample of experiment deblurred image using linear trajectory with position,
velocity, and residence time distribution plots

Figure 5.3: Sample of experiment deblurred image using inverse error trajectory with po-
sition, velocity, and residence time distribution plots

Figure 5.4: Sample of experiment deblurred image using RBF1 trajectory with position,
velocity, and residence time distribution plots
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Figure 5.5: Sample of experiment deblurred image using RBF2 trajectory with position,
velocity, and residence time distribution plots

Figure 5.6: Sample of experiment deblurred image using RBF3 trajectory with position,
velocity, and residence time distribution plots

Figure 5.7: Sample of experiment deblurred image using RBF4 trajectory with position,
velocity, and residence time distribution plots
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Figure 5.8: Sample of experiment deblurred image using RBF5 trajectory with position,
velocity, and residence time distribution plots

Although the linear stage is supposedly following the simulated trajectory, one of the most

noticeable observations of the sample images is that these images are significantly more

blurred. This is likely due to the slight differences in the trajectories creating discrepancy

with the blur kernel used in deconvolution and the actual blur kernel that is affecting the

image capture. Table 5.1 details these discrepancies by calculating the cross correlation

between the all trajectories and showing their statistical significance against either all at-

tempted or all recorded trajectories. All but two values have (trec for Inverse and RBF2)

show p < 0.05 statistical significance, showing that the linear stage is mostly capable of

producing trajectories that are distinctly different from each other and are within an accept-

able error range.
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Table 5.1: Main search experiment recorded vs. attempted normalized cross correlation X
with t-test scores vs. all attempted tatt and t-test scores vs. all recorded trec

Trajectory X tatt trec

Linear 0.99941*** 1.726E-02 7.593E-03

Inverse 0.99773* 3.203E-02 1.670E-01

RBF1 0.99898*** 7.141E-03 3.513E-02

RBF2 0.99816* 2.715E-02 8.052E-02

RBF3 0.99839*** 7.009E-05 5.277E-04

RBF4 0.99795*** 2.899E-03 5.332E-03

RBF5 0.99956*** 5.478E-03 5.856E-03

Notes: *p < 0.05 for tatt, **p < 0.05 for trec, ***p < 0.05

for both tatt and trec

Despite small variation from the planned path, the RBF trajectories still significantly out-

performed the linear trajectory up to 29.4% in the case of best performing RBF4. The

results for all trajectories are shown in Table 5.2.

Table 5.2: Main search experiment score means µOCR, standard deviations σOCR, and t-test
scores tOCR by trajectory

Trajectory µOCR σOCR tOCR

Linear 2.744 0.742 -

Inverse 2.776 0.647 5.738E-01

RBF1 2.045* 1.289 5.507E-03

RBF2 2.109* 1.290 8.775E-03

RBF3 2.314* 1.080 2.853E-02

RBF4 1.937* 1.340 6.406E-03

RBF5 2.035* 1.324 5.897E-03

Note: *p < 0.05 compared to linear trajectory
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Similar to the simulated tests, the left-tailed t-test p-value matrix is calculated to com-

pare relative performance between all trajectories in Table 5.3. In this case, there is no

discernible difference in performance outside of the obvious improvement of all RBF tra-

jectories over the linear and inverse error trajectories. Sample experiment score and OCR

data for RBF4 can be found in Table A3.

Table 5.3: Main search experiment t-test p-values matrix by trajectory

Trajectory Linear Inverse RBF1 RBF2 RBF3 RBF4 RBF5

Linear - 0.426 0.994 0.991 0.971 0.994 0.994

Inverse 0.574 - 0.997 0.995 0.982 0.998 0.997

RBF1 5.507E-03* 3.012E-03* - 0.349 0.136 0.656 0.520

RBF2 8.775E-03* 5.482E-03* 0.651 - 0.209 0.783 0.755

RBF3 2.853E-02* 0.018* 0.864 0.791 - 0.869 0.842

RBF4 6.406E-03* 1.582E-03* 0.344 0.217 0.131 - 0.301

RBF5 5.897E-03* 3.260E-03* 0.480 0.245 0.158 0.699 -

Note: *p < 0.05

Sample images for the acceleration limit experiments and their respective trajectory

plots are shown in Figures 5.9 to 5.12.

Figure 5.9: Sample of experiment deblurred image using an optimized trajectory for a 1g
acceleration limit with position, velocity, and residence time distribution plots
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Figure 5.10: Sample of experiment deblurred image using an optimized trajectory for a 2g
acceleration limit with position, velocity, and residence time distribution plots

Figure 5.11: Sample of experiment deblurred image using an optimized trajectory for a 3g
acceleration limit with position, velocity, and residence time distribution plots

Figure 5.12: Sample of experiment deblurred image using an optimized trajectory for a 4g
acceleration limit with position, velocity, and residence time distribution plots
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Once again, the cross correlation and statistical significance of each trajectory set is calcu-

lated in Table 5.4. Only one value here is not statistically significant (tacc for the 2g limit

trajectory). This reaffirms the ability of the experimental setup to recreate the simulated

trajectories.

Table 5.4: Acceleration limit experiment recorded vs. attempted normalized cross correla-
tion X with t-test scores vs. all attempted tatt and t-test scores vs. all recorded trec

Trajectory X tatt trec

1g Limit 0.99917*** 1.008E-02 2.584E-02

2g Limit 0.99847** 5.397E-02 4.987E-02

3g Limit 0.99951*** 1.174E-02 7.852E-03

4g Limit 0.99907*** 3.021E-05 3.320E-04

5g Limit 0.99795*** 2.899E-03 5.332E-03

Notes: *p < 0.05 for tatt, **p < 0.05 for trec, ***p < 0.05

for both tatt and trec

The results in this series of tests very closely match those of the simulated series. In fact,

a direct relationship between acceleration limit and OCR performance becomes more clear

here as shown in Table 5.5. All of the trajectories showed statistically significant improve-

ment against the linear trajectory except for the 1g limit trajectory. It is interesting to note

that due to the lower acceleration, the voice coil linear stage was better able to replicate the

attempted trajectory, yet this still resulted in worse overall performance.
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Table 5.5: Acceleration limit experiment score means µOCR, standard deviations σOCR,
and t-test scores tOCR by trajectory

Trajectory µOCR σOCR tOCR

1g Limit 2.857 0.516 7.676E-01

2g Limit 2.174* 1.308 1.629E-02

3g Limit 2.138* 1.266 3.666E-03

4g Limit 2.061* 1.267 5.837E-03

5g Limit 1.937* 1.340 6.406E-03

Note: *p < 0.05 compared to linear trajectory

Table 5.6 confirms the degraded performance of the 1g case while also showing no differ-

ence in the remaining cases via p-value comparison.

Table 5.6: Acceleration limit experiment t-test p-values matrix by trajectory

Trajectory 1g 2g 3g 4g 5g

1g - 0.998 0.999 0.999 1

2g 2.434E-03* - 0.570 0.758 0.838

3g 1.197E-03* 0.430 - 0.644 0.812

4g 5.229E-04* 0.242 0.356 - 0.707

5g 2.877E-04* 0.162 0.188 0.293 -

Note: *p < 0.05

5.3 Spectral Analysis

As with the simulated results, the experimental results were analyzed using spectral analy-

sis. The static experiment image for image 1 and its power spectra is shown in Figure 5.13.

The power spectra for the same sample image and difference from the static image are

shown in Figures 5.14 to 5.20 for the linear, inverse error, and RBF trajectories 1-5.

53



Figure 5.13: Static experiment image 1 and its power spectra

Figure 5.14: Deblurred image power spectra from experiment linear trajectory and power
spectra difference from static image power spectra

Figure 5.15: Deblurred image power spectra from experiment inverse error trajectory and
power spectra difference from static image power spectra
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Figure 5.16: Deblurred image power spectra from experiment RBF1 and power spectra
difference from static image power spectra

Figure 5.17: Deblurred image power spectra from experiment RBF2 and power spectra
difference from static image power spectra

Figure 5.18: Deblurred image power spectra from experiment RBF3 and power spectra
difference from static image power spectra
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Figure 5.19: Deblurred image power spectra from experiment RBF4 and power spectra
difference from static image power spectra

Figure 5.20: Deblurred image power spectra from experiment RBF5 and power spectra
difference from static image power spectra

The decreased deblurring performance is immediately noticeable across all of the power

spectra with the increased presence of vertical bands that are produced by ringing artifacts

in the deblurred images. That being said, all of the RBF trajectories still outperform the

linear trajectory by a significant margin as shown in Table 5.7. There is a less distinctive

loss in purely horizontal components in these power spectra as the original image has less

relative horizontal high frequency information, likely due to the smaller text in the frame

and lower contrast due to the real capture process. This explains why the loss in the dif-

ference spectrum is more distributed around lower frequencies. The p-values in Table 5.8
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show under-performance by RBF3, which matches the OCR results.

Table 5.7: Main search experiment power spectra difference means µPS , standard devia-
tions σPS , and t-test scores tPS by trajectory

Trajectory µPS σPS tPS

Linear 8419.5 8837.7 -

Inverse 7192.1 1786.9 2.288E-01

RBF1 4548.8* 824.1 1.554E-02

RBF2 4583.4* 840.4 1.576E-02

RBF3 4995.7* 944.4 2.796E-02

RBF4 4562.9* 947.6 1.564E-02

RBF5 4476.8* 500.8 1.366E-02

Note: *p < 0.05 compared to linear trajectory

Table 5.8: Main search experiment power spectra score t-test p-values matrix by trajectory

Trajectory Linear Inverse RBF1 RBF2 RBF3 RBF4 RBF5

Linear - 0.771 0.984 0.984 0.972 0.984 0.986

Inverse 0.229 - 1 1 1 1 1

RBF1 0.016* 6.709E-09* - 0.414 0.015* 0.469 0.739

RBF2 0.016* 3.677E-08* 0.586 - 2.513E-04* 0.552 0.789

RBF3 0.028* 1.045E-06* 0.985 1 - 0.985 0.998

RBF4 0.016* 5.847E-09* 0.531 0.448 0.015* - 0.709

RBF5 0.014* 6.487E-09* 0.261 0.211 2.209E-03* 0.291 -

Note: *p < 0.05

Spectral analysis results for the experimental acceleration limit tests are shown in Fig-

ures 5.21 to 5.24.
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Figure 5.21: Deblurred image power spectra from experiment 1g acceleration limit trajec-
tory and power spectra difference from static image power spectra

Figure 5.22: Deblurred image power spectra from experiment 2g acceleration limit trajec-
tory and power spectra difference from static image power spectra

Figure 5.23: Deblurred image power spectra from experiment 3g acceleration limit trajec-
tory and power spectra difference from static image power spectra
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Figure 5.24: Deblurred image power spectra from experiment 4g acceleration limit trajec-
tory and power spectra difference from static image power spectra

The results here confirm the results seen in the simulated deblurring, simulated power spec-

tra, and the experimental deblurring results. The 2g, 3g, and 4g spectra all look and score

similarly as calculated in Table 5.9, while the 1g case shows significantly greater intensity

loss in both higher and lower frequency horizontal components with confirmed statistical

significance shown in Table 5.10.

Table 5.9: Acceleration limit experiment power spectra difference means µPS , standard
deviations σPS , and t-test scores tPS by trajectory

Trajectory µPS σPS tPS

1g Limit 7114.2 1634.9 2.136E-01

2g Limit 4751.0* 884.0 1.712E-02

3g Limit 4791.8* 1004.3 1.804E-02

4g Limit 4665.9* 1080.4 1.913E-02

5g Limit 4562.9* 947.6 1.564E-02

Note: *p < 0.05 compared to linear trajectory
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Table 5.10: Acceleration limit experiment power spectra score t-test p-values matrix by
trajectory

Trajectory 1g 2g 3g 4g 5g

1g - 1 1 1 1

2g 2.038E-10* - 0.408 0.689 0.850

3g 6.114E-08* 0.592 - 0.721 0.851

4g 7.744E-11* 0.311 0.279 - 0.746

5g 1.899E-09* 0.150 0.149 0.254 -

Note: *p < 0.05

5.4 Discussion

The goal of the experimental tests was to verify and confirm the results found in the simu-

lation and they do in fact reach these conclusions. The controlled capture process models

a real-world application of motion planning for dynamics-based deblurring and introduces

all of the difficulties of actual implementation. Lower contrast images and smaller text

contribute to more challenging OCR. In addition, the minor deviation from the planned tra-

jectory creates issues not only by creating variation from the optimal trajectory, but also by

creating discrepancy between the true blur kernel and the blur kernel used for deblurring.

That being said, the RBF trajectories still perform with statistically significant improve-

ment compared to the linear and inverse error trajectories. The best scoring RBF trajectory,

RBF4, yielded improvements of up to 29.4% with these improvements also showing in the

spectral analysis. One key difference between the real and simulated trials is the difference

in frequency components present in the power spectra. Examining the static images and

their power spectra, the real capture shows much greater higher frequency radial compo-

nents than the simulated image, likely due to the corners and edges of all text being weaker

in the image. This has corresponding effects in the deblurred power spectra and the power
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spectra differences, contributing to the weaker edge preservation.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Conclusion

This thesis has identified the need for investigation into motion planning for deblurring nat-

ural text images and proposed a novel optimization method for determining ideal, endpoint

constrained trajectories for maximizing optical character recognition rates. RBF networks

provide the ability to automatically generate smooth functions with a high degree of vari-

ability while being controlled by a relatively small set of tunable parameters that can be

easily associated to the character recognition-based output score. It was found that trajec-

tories with residence time distributions consisting of a single or multiple peaks performed

best at maintaining edge features while still meeting all physical constraints. Trajecto-

ries fitting this general shape require a threshold of allowable acceleration in order to be

achieved and falling below this value significantly impacts performance. While theoreti-

cally any trajectory in non-blind motion deblurring with a perfectly modeled blur kernel

should be able to reproduce high accuracy deblurred images, this has been shown to not

be the case potentially due to discretization introducing error into the deblurring process.

For this reason, it can be said that high peak residence time distributions contribute to edge

preservation and ultimately text recognition both by preventing image blur in the first place

as well as by providing a well modeled blur kernel. The spectral analysis performed on

the trajectory results confirm that RBF derived trajectories more effectively maintain text

features by maintaining the high frequency components perpendicular to the blur direction.

The contributions of this thesis can be summarized in the list below.

• A novel optimization method for one-dimensional, dynamics-based motion deblur-

ring using radial basis function network trajectory planning is developed specifically
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with the goal of maximizing the recognition rates of text in natural images. Simula-

tions and real-world experimental testing of these planned trajectories show signif-

icantly improved text recognition rates, validating the use of the optimization algo-

rithm.

• Parameter constrained trajectories found using the optimization are identified and

compared to analogous linear trajectories to show significant improvement. Features

of the residence time distribution are identified that explain why certain trajectories

are ideal for motion deblurring.

• Spectral analysis with an emphasis on edge preservation in text is implemented as a

subsequent evaluation method of deblurred images from the optimized trajectories.

A unique evaluation method of comparing the base image and deblurred image power

spectra is related to the character recognition performance.

6.2 Future Work

Future work on this subject should focus on improving the overall text recognition rate

using the proposed algorithm. Because the optimization developed is ambiguous to any

particular method of image processing or deblurring algorithm, other unique approaches

should be attempted in order to yield even greater improvement. The optimization can also

be expanded to a two-dimensional or greater environment to find ideal trajectories for a

wide variety of applications. Further work should also be done in real-world environments,

such as on an autonomous vehicle, in order to further evaluate planned trajectories. In such

cases, hardware platforms with varying capabilities, such as linear stage speed, should

be tested to draw a clear relationship between maximum deblurring ability and hardware

specifications. In addition, factors like camera resolution would affect the blur kernel size

and accuracy and contribute to deblurring performance as well.
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Figure A1: Image set used by the optimization consisting of score filtered images from the
ICDAR 2015 competition and Street View Text Dataset
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Table A1: Image set ground truth text and mean static OCR score

Image Set

Number

Mean Static

OCR Score
Ground Truth OCR Text

1 0.068
Nounauthorizedentryintothisarea!PermittoworksysteminoperationEstate

sManagementSection

2 0.111 Telephone

3 0.492 TouristinformationCastle

4 0 RESTAURANT

5 0.453 StudentAccountsDoyouknowanyonestartinguniversitythisyear?

6 0.341 ESPANOL-INGLESINGLESESPANOL

7 0.269 USEONLYDRI-WIPEMARKERSONTHESEBOARDS

8 0.392 SUMMERWHATEVERTHEWEATHER

9 0.186 Stationcarpark

10 0.150 StationaryBox

11 0.038 NeedaBrolly?-JustAsk!

12 0 OverseasRelationsOffice

13 0 RAFCAREERS

14 0.489 4B.5222NGRADUATEOFFICEMarisaBostockJennyDixon

15 0.020 BAESYSTEMS

16 0 HealthCentreGreenwoodHouse

17 0.383 BoundaryRoad

18 0.420 PPark&RideSats.only

19 0.497 PENNSYLVANIALIVINGROOMLOUNGE

20 0.448 CROWNEPLAZATHEGRANDHALLANDCONFERENCECENTER

21 0.436
PAKISTANTEAHOUSEATouchofTraditionalCuisine212-240-980017

6CHURCHST.

22 0.478
TimkenMuseumofArtEuropeanWorksOfArtAmericanPaintingsAndRus

sionIcons

23 0.200 TARARESTAURANT

24 0.311 1660WASHINGTONSQUAREINN

25 0.280 SanJoseMuseumofQuilts&Textiles

26 0.400 GOODWILL

27 0.135 EEMBASSYSUITESCenterCityPARKINGDONOTENTERENTER
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Table A2: Sample simulation scores for RBF4 with trial 1 OCR text by image

Image Set

Number

Mean RBF4

OCR Score
Trial 1 OCR Text

1 0.064
NounauthorisedentryintothisarealPermittoworksysteminoperationEstate

sManagementSection

2 3 NO TEXT RECOGNIZED

3 0.440 faTourist,R”Ctormationia;Castle

4 0 RESTAURANT

5 1.846 StudentAccounts\DoyouKnowanyone\\startinguniversity\thisyear?

6 0.200 ESPANOL-INGLESINCE]Bstowotc}DNN(O)

7 3 NO TEXT RECOGNIZED

8 0.798 WHATEV

9 0.233 StationcarPoke4

10 1.514 |StationeryBox

11 0.128 |NeedaBrolly?EeJustAsk!

12 0.017 OverseasRelationsOffice

13 0 RAFCAREERS

14 0.141 ∼GRADUATEOFFICE*MarisaBostockfiJennyDixon—Kiscats

15 2.584 NO TEXT RECOGNIZED

16 0 HealthCentreGreenwoodHouse

17 0.703 BoundaryRoad—

18 3 NO TEXT RECOGNIZED

19 1.462 LIVINGROOMLOUNGELYi|i

20 1.010 NO TEXT RECOGNIZED

21 0.155
PAKISTANTEAHOUSEATouchofTraditionalCuisine|242-240-9800:is

recancn

22 0.284 TimkenMuseumofArtEarapeanWorksOFAntAnsericanPaiety:|

23 3 NO TEXT RECOGNIZED

24 2.538 reomeerrmeni

25 1.493 SealemelsCOuilts&Textiles:ae

26 3 NO TEXT RECOGNIZED

27 0.342 BARKING”=DONOTENTER>4ENTERS
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Table A3: Sample experiment scores for RBF4 with OCR text by image

Image Set

Number

RBF4

OCR Score
OCR Text

1 0.789 UiaksleacalelabcisieAlia’miaicomdali:rea!

2 3 NO TEXT RECOGNIZED

3 0.254 Touristfoldaatehucele

4 0 RESTAURANT

5 0.471 apAccstudent

6 0.122 naeESPANOL-INGLESINGLES-ESPANOI

7 3 NO TEXT RECOGNIZED

8 3 NO TEXT RECOGNIZED

9 3 NO TEXT RECOGNIZED

10 3 NO TEXT RECOGNIZED

11 0 NeedaBrolly?-JustAsk!

12 0 OverseasRelationsOffice

13 3 NO TEXT RECOGNIZED

14 3 NO TEXT RECOGNIZED

15 3 NO TEXT RECOGNIZED

16 0.885 PeGe

17 1.490 5eaaeancreaneeniaceaiattatatenit

18 3 NO TEXT RECOGNIZED

19 0.251 LIVINGROOMLOUNGEin

20 3 NO TEXT RECOGNIZED

21 3 NO TEXT RECOGNIZED

22 3 NO TEXT RECOGNIZED

23 3 NO TEXT RECOGNIZED

24 0.030 1660WASHINGTON.SQUAREINN

25 3 NO TEXT RECOGNIZED

26 3 NO TEXT RECOGNIZED

27 3 NO TEXT RECOGNIZED
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