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Abstract 

Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the 

mortality rate of this disease has been decreasing over the last three decades, largely due to the 

screening programs for early detection. For many years, both screening and clinical diagnosis 

were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast 

Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, 

which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established 

and is approved as a stand-alone modality to replace DM.  

The main objective of this thesis is to develop computational tools to improve the visualization 

and interpretation of DBT data. 

Several methods for an enhanced visualization of DBT data through volume rendering were 

studied and developed. Firstly, important rendering parameters were considered. A new ap-

proach for automatic generation of transfer functions was implemented and two other parame-

ters that highly affect the quality of volume rendered images were explored: voxel size in z 

direction and sampling distance. Next, new image processing methods that improve the render-

ing quality by considering the noise regularization and the reduction of out-of-plane artifacts 

were developed.  

The interpretation of DBT data with automatic detection of lesions was approached through 

artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) 

were implemented and trained to classify a complete DBT image for the presence or absence 

of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to 

detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with 

the developed 3D rendering software, which provided an enhanced visualization of the volume 

of interest. The combination of volume visualization with lesion detection may, in the future, 

improve both diagnostic accuracy and also reduce analysis time. 

This thesis promotes the development of new computational imaging methods to increase the 

diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT 

volumes and diagnosing breast cancer. 
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Resumo  

O cancro da mama é um dos exemplos onde os avanços da tecnologia e terapêutica têm feito 

uma enorme diferença na redução da mortalidade. Apesar de ser o tipo de cancro com maior 

incidência e de ainda representar a principal causa de morte por cancro nas mulheres, esta taxa 

de mortalidade tem vindo a diminuir ao longo das últimas três décadas. Este declínio está dire-

tamente relacionado com a implementação e sucesso dos programas de rastreio para uma dete-

ção precoce de cancro da mama (nomeadamente nos países desenvolvidos). É sabido que, 

quanto mais cedo uma lesão maligna for detetada, menor é a probabilidade desta se desenvolver 

num cancro mais agressivo e metastizado, aumentando assim a sobrevida das mulheres diag-

nosticadas.  

Até há cerca de dez anos, o principal meio de diagnóstico de cancro da mama era a mamografia, 

quer em rastreio, quer na prática clínica diária. Num exame de mamografia, a mama é compri-

mida entre duas placas e são adquiridas duas projeções de raios-x de baixa dose. Esta técnica 

de imagiologia apresenta uma enorme desvantagem: a sua aquisição bidimensional (2D) resulta 

numa imagem da sobreposição dos tecidos mamários, sem qualquer informação de profundi-

dade dos mesmos. Este facto levanta essencialmente dois problemas: (1) alguns falsos negati-

vos, onde lesões são escondidas por tecidos mais densos circundantes ou (2) elevado número 

de falsos positivos, nos quais a sobreposição de tecidos imita uma lesão. Ambas as situações 

são bastante prejudiciais para as pacientes uma vez que, no primeiro caso, há uma lesão maligna 

que pode não ser detetada atempadamente, podendo originar posteriormente um cancro mais 

agressivo. Na segunda situação, a paciente tem de fazer mais exames complementares e bióp-

sias, resultando numa enorme angústia e ansiedade, bem como custos financeiros adicionais 

que seriam completamente desnecessários. 

Desta forma, em 2011 foi aprovada uma nova técnica de imagiologia com base na mamografia 

mas que permite adquirir várias projeções da mama e, assim, reconstruir um objeto tridimensi-

onal (3D) com alguma noção de profundidade: a Tomossíntese Mamária (TM). Com a TM, é 

possível analisar o tecido mamário adquirido ao longo de vários cortes e, assim, “separar” me-

lhor a informação obtida em profundidade. Este exame é realizado atualmente com aproxima-

damente a mesma dose de radiação para o paciente que um exame convencional de mamografia. 

Apesar de ser uma técnica relativamente recente, já consolidou o seu papel na imagiologia do 

cancro da mama. Inicialmente começou por ser realizada em conjunto com a mamografia, quer 

para ser possível uma comparação com mamografias anteriores, quer porque ainda decorriam 
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estudos que comprovassem a verdadeira mais-valia de TM na substituição da mamografia. A 

utilização de TM+mamografia demonstrou um aumento nas taxas de deteção do cancro da 

mama e uma redução significativa nas taxas de rechamada, particularmente em mulheres com 

mamas densas. Atualmente, com a possibilidade de gerar uma mamografia sintética através dos 

dados de TM (ultrapassando assim o problema de comparar mamografias da mesma mama ao 

longo do tempo), a TM está aprovada como uma modalidade de imagiologia autónoma que 

pode substituir a mamografia convencional 2D. No entanto, como qualquer técnica recente, 

todos os aspetos da sua utilização têm ainda lacunas que devem ser exploradas e corrigidas, 

passando pelo hardware, aquisição, reconstrução, visualização e interpretação de dados.  

O trabalho desenvolvido nesta tese teve como objetivo principal o desenvolvimento de ferra-

mentas computacionais para a visualização e interpretação de dados da TM. Todo o software 

de visualização foi escrito em C++ utilizando a biblioteca open-source VTK (do inglês, Visu-

alization Toolkit). Os algoritmos de processamento e de inteligência artificial foram implemen-

tados em MATLAB. 

Atualmente, a visualização dos dados é feita através de um modo corte a corte ou num loop 

contínuo onde os radiologistas exploram e avaliam cada exame. Tal procedimento permite uma 

verificação de estruturas anatómicas apenas em duas dimensões, enquanto a terceira é recons-

truída mentalmente pelo radiologista olhando para cortes adjacentes. Além disso, há lesões, 

como aglomerados de microcalcificações, que podem estar dispersos por vários cortes em pro-

fundidade, dificultando a análise da sua distribuição espacial e, assim, a sua interpretação e 

diagnóstico. Por outro lado, como um exame de TM tem aproximadamente 60 imagens de corte 

para analisar, em comparação com apenas uma da mamografia convencional, avaliar cada 

exame de TM leva a uma inspeção mais demorada. Assim, uma forma de visualização de dados 

de TM diferente poderá desempenhar um papel complementar importante, como é feito nos 

casos da Tomografia Computorizada ou da Imagiologia por Ressonância Magnética.  

A visualização por renderização volumétrica consiste na criação de uma cena 3D através de 

imagens computacionais realistas, produzindo uma verdadeira perceção de profundidade. Atra-

vés da observação do objeto segundo vários ângulos (e não apenas num plano da imagem, como 

acontece com a visualização corte a corte), é possível fazer uma inspeção global imediata e ter 

uma compreensão dos dados subjacentes de uma só vez. Neste trabalho foram desenvolvidas 

técnicas e ferramentas necessárias para uma visualização adequada dos dados de TM através 

de renderização volumétrica. 
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As funções de transferência (que atribuem opacidade e cor a certos elementos, como valores de 

intensidade e/ou de magnitude de gradiente) são um parâmetro crítico na renderização, afetando 

diretamente o que se vê e de que forma. Assim, encontrar funções de transferência adequadas 

é um dos maiores desafios da renderização volumétrica. Por esse motivo, foi desenvolvida me-

todologia que permitisse gerar estas funções de forma automática, resultando em renderizações 

úteis e apropriadas dos dados de TM. A abordagem implementada permitiu a produção auto-

mática de várias funções de opacidade/cor Vs. intensidade escalar e magnitude de gradiente. 

Adicionalmente, este trabalho explorou outros dois parâmetros que também afetam a qualidade 

da imagem renderizada: dimensão dos voxeis na direcção z e a distância de amostragem. Como 

os dados reconstruídos de TM têm voxeis anisotrópicos, ao efectuar uma rotação em 3D em 

torno do objeto, observa-se distorção e perda de qualidade. Assim, para estudar o efeito de 

voxeis isotrópicos neste tipo de visualização, o tamanho de voxel foi alterado de 0,085 × 0,085 

× 1,0 mm3 para 0,085 × 0,085 × 0,085 mm3 usando várias funções de interpolação da biblioteca 

VTK. Por outro lado, vários valores de distância de amostragem foram introduzidos no software 

de visualização desenvolvido e a sua influência na qualidade da imagem renderizada foi avali-

ada.  

Além dos parâmetros referidos, também foi necessário desenvolver técnicas de processamento 

de imagem que melhorassem o aspeto da renderização em dois pontos: (1) diminuição de ruído 

e (2) redução do artefacto “out-of-plane”. Para o primeiro ponto foram implementados algorit-

mos 3D de minimização da variação total dos dados (do inglês, Total Variation – TV), uma vez 

que estes têm demonstrado excelentes resultados na diminuição do ruído enquanto preservam 

as bordas dos objetos. Para o segundo ponto foi desenvolvida uma nova abordagem em TM 

para redução de artefactos “out-of-plane” usando desconvolução cega (do inglês, blind decon-

volution) e regularização do ruído através de minimização da variação total. Com os parâmetros 

de renderização apropriados e as duas metodologias de processamento desenvolvidas especifi-

camente para melhorar as imagens renderizadas, este trabalho alcançou uma melhoria signifi-

cativa da qualidade da renderização volumétrica de dados de TM. 

Como mencionado, além da visualização, este trabalho focou-se também na interpretação dos 

dados de TM através de classificação e deteção automática de lesões. Até recentemente, apesar 

dos esforços e desenvolvimentos dos sistemas convencionais de Deteção Assistida por Com-

putador (do inglês, Computer-Aided Detection – CAD) para auxiliar na interpretação de exames 

de TM, as suas elevadas taxas de falsos positivos e baixa especificidade, fizeram com que não 



 

XVIII 

 

alcançassem um nível de desempenho que pudesse ser traduzido numa verdadeira melhoria na 

deteção do cancro da mama. Nos últimos anos, o aumento do poder computacional e o cresci-

mento das bases de dados têm permitido o desenvolvimento de algoritmos de inteligência arti-

ficial de aprendizagem profunda compostos por redes neuronais convolucionais (do inglês, 

Convolutional Neural Networks - CNNs) de várias camadas. Estes algoritmos têm surgido 

como uma potencial solução para a deteção/interpretação automatizada do cancro da mama. 

Desta forma, numa primeira fase, foram implementadas e treinadas várias CNNs e o seu de-

sempenho foi avaliado no que respeita à sua capacidade para classificar uma imagem completa 

de TM quanto à presença ou ausência de aglomerados de microcalcificações (sem qualquer 

identificação prévia de regiões candidatas). Numa segunda fase, uma faster R-CNN (do ingês, 

faster region-based CNN) foi treinada para detetar e localizar os aglomerados de microcalcifi-

cações nas imagens de TM. Depois de detetados, a informação acerca da localização destes 

aglomerados é fornecida ao software de renderização 3D desenvolvido previamente e, ao invés 

de toda a mama ser renderizada, é possível visualizar apenas o volume de interesse contendo as 

microcalcificações detetadas. Esta parte do trabalho focou-se neste tipo de lesões uma vez que 

os aglomerados de microcalcificações são um dos biomarcadores mais importantes para o can-

cro da mama, especialmente em casos de lesões não palpáveis. Além disso, a sua reduzida di-

mensão requer bastante resolução espacial e, portanto, maior poder computacional, fazendo 

com que a maioria dos trabalhos desenvolvidos com inteligência artificial em TM até à data 

fosse acerca de lesões de tecidos moles, como massas ou distorções arquiteturais. 

Este trabalho promoveu assim a investigação e desenvolvimento de novos métodos de imagem 

computacional para aumentar o valor de diagnóstico de TM, com o objetivo de auxiliar os ra-

diologistas na sua tarefa de analisar volumes de TM e diagnosticar cancro de mama. 

 

Palavras-chave: Cancro da mama; Tomossíntese mamária; renderização volumétrica; 

inteligência artificial; microcalcificações.
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1.1. Breast cancer 

Along with cardiovascular disease, cancer is a major public health concern today and the 

number of new cancer cases is expected to continue to increase over the next two decades. In 

2020, an estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths 

occurred worldwide. Cancer represents one of the four leading causes of premature death under 

the age of 70 years [1]. Currently, among all cancers and both sexes, breast cancer is the one 

with the highest incidence rate (followed by lung and prostate cancer), representing the fourth 

highest mortality rate [1, 2]. Although breast cancer mortality has been decreasing by about 

40% from its peak in 1989, it still represents the biggest cause of cancer mortality among 

women [2]. The simultaneous increase in incidence and reduction in mortality are directly 

related to the increase in early stage-detection of this type of pathology. This early detection is 

possible due to the implemented screening programs, which are crucial in identifying early 

stage breast cancers that would, otherwise, be detected later when they could be more invasive 

and have metastasized. This initial intervention is extremely important to obtain a better 

outcome of treatments. It is estimated that women who chose to participate in an organized 

breast cancer screening program have 60% lower risk of dying from breast cancer within 10 

years after diagnosis [3]. These screening programs are implemented all over the world, 

predominantly in developed countries. Asymptomatic women aged mainly between 50 and 69 

years should have an x-ray imaging exam every two years to detect possible unknown lesions 

[4].  

The main lesions and abnormalities related to breast cancer that are searched by the radiologists 

in these screening exams are: masses, microcalcifications and architectural distortions [5]. A 

mass results from an abnormal aggregation of breast tissue cells and is defined as a lesion seen 

in at least two different projections (if a suspicious mass is seen in only a single projection, it 

should be called an “asymmetry”). Masses are often difficult to detect, sometimes becoming 

imperceptible, because their features are similar to those of normal breast tissue (Figure 1.1). 

Microcalcifications are very small calcium deposits in breast tissue that appear as bright spots 

on images acquired with x-rays. Although most are considered benign, if they appear in the 

form of a cluster with a specific pattern, microcalcifications are more likely a sign of cancer 

[6]. Indeed, microcalcifications are often the only indication of the presence of breast cancer, 

essentially in non-palpable lesions (Figure 1.2) [7]. Architectural distortions of the parenchyma 

occurs when the normal architecture of the breast tissue is distorted with no visible mass. 

Although its frequency is small compared to masses or microcalcifications, it is also more 
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difficult to diagnose as it can be very subtle and be presented in a variety of forms (Figure 1.3). 

Proof of this is that architectural distortions are one of the most common findings in 

retrospective analyses of false-negative mammography and may represent the earliest 

manifestation of breast cancer [8]. The three types of lesions/abnormalities mentioned can be 

benign or malignant thus representing the absence or presence of breast cancer, respectively.  

 

Figure 1.1. Examples of typically benign breast masses (up) and suspected malignant masses (down) [9, 10]. 

 

Figure 1.2. Examples of typically benign microcalcifications (up) and suspected malignant microcalcifications (down)  

(adapted from [11]). 

 

Figure 1.3. Examples of typically benign architectural distortions (up) and suspected malignant distortions (down) [8, 10, 

12]. 
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1.2. Digital Breast Tomosynthesis  

Mammography is one of the most challenging technical areas of radiology as it requires high 

spatial resolution to capture small lesions such as microcalcifications and, simultaneously, high 

contrast to allow the detection of soft tissue lesions. In the 1970s, mammography was performed 

analogically, with the x-ray beams being captured on a radiographic film, which was then 

developed and reviewed by the physician. However, with the development of flat panel 

detectors, these films were replaced by converting information into a digital image displayed 

on high-resolution monitors [13]. This new approach, named full field Digital Mammography 

(DM), had its first equipment approved by the Food and Drug Administration (FDA) in 2000 

[14] and since then it has been widely used in diagnosis of breast disease and as a screening 

modality. 

Indeed, until recently, the gold standard for performing breast cancer screenings was DM. 

However, due to its two-dimensional (2D) acquisition nature that originates tissue overlap 

(Figure 1.4), it presents two recurrent limitations: (1) Lesions that are hidden by adjacent 

tissues, resulting in low sensitivity in dense breasts with pathology; and (2) normal regions that, 

when superimposed, resemble a lesion, resulting in low specificity. These two aspects raise 

several problems when using this technique. In many situations, when malignant lesions are not 

detected early enough as breast cancer, these lesions may spread, making the treatment much 

more complicated. In fact, missed cancers in DM are one of the most common reasons for 

malpractice lawsuits in radiology [15]. Conversely, the high rate of false positives causes a huge 

number of women to be recalled for complementary exams and/or biopsies that, in such cases, 

are completely unnecessary, causing anxiety for patients and additional financial costs [16]. 

 

Figure 1.4. 2D DM Acquisition schematic. 
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In 2011, a technique that combines the concepts of DM and Computed Tomography (CT) was 

approved by the FDA [17]. This technique is Digital Breast Tomosynthesis (DBT) and it has 

an acquisition geometry similar to DM. With the breast compressed (such as in DM), the main 

difference is that in DBT the x-ray tube rotates around the breast and a set of low-dose 2D 

projections are acquired over a limited angular range allowing a “quasi” three-dimensional (3D) 

acquisition of the breast tissue (unlike CT, which acquires over 360°). The projection data are 

then reconstructed to produce several slice images of the breast tissue (Figure 1.5) and the depth 

information is added, addressing the limitations imposed by the 2D nature of DM. As a result, 

DBT improves the perception of the location and shape of lesions, without a significant increase 

of the radiation dose to the patient, when compared to 2D DM [18].  

 

Figure 1.5. 3D DBT Acquisition schematic. 

The number of acquired projections, as well as the angular range and the image reconstruction 

algorithm may vary by manufacturer, as shown in the Table 1.1.  

 

Table 1.1. Some characteristics of FDA approved DBT systems [19]. 

 
Hologic Selenia 

Dimensions 

GE SenoClaire/ 

Sengraphe 

Siemens 

MAMMOMAT 

Inspiration 

Fujifilm 

ASPIRE 

No. of projections 15 9 25 15 

Angular range ±7.5º ±12.5º ±25º ±7.5º / ±20º 

X-ray tube motion Continuous Step and shoot Continuous Continuous 

Reconstruction 

algorithm 
FBP ASiR FBP FBP 

FBP: Filtered Back Projection / ASiR: Adaptive Statistical iterative Reconstruction 

 

Initially, DBT was studied and approved in combination with DM, demonstrating an increase 

in breast cancer detection rates and a significant reduction in recall rates [20-25], particularly 
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with dense breasts [22]. Currently, by including synthetic mammography generated from DBT 

data, DBT alone is accepted as a stand-alone modality to replace DM [26-32].  In Figure 1.6 

and Figure 1.7 are two examples of how DBT images provided a more accurate diagnosis. 

 

Figure 1.6. Example of a cancer detected by DBT alone and missed with DM [28]. 

 

Figure 1.7. Example showing that structures at different levels in the breast can summate to create suspicious region on DM 

that may be identified as negative or superimposed tissue on DBT images. Left: DM with a suspicious area (arrow); right: three 

slices of DBT with no suspicious area [23]. 

1.3. Visualization of DBT 

The 3D visualization of DBT is one of the most important and crucial aspects to correctly 

extract all the information provided by this technique. So far, DBT images are analyzed with a 

2D slice-by-slice visualization or sequentially as a continuous cine loop [33]. This procedure 

leads to a subjective perception and a qualitative judgment since a 2D visualization of 3D data 

only allows an immediate inspection of anatomical structures in two dimensions of the plane, 

while the third dimension is mentally reconstructed looking at adjacent slices [34]. This can 

make the judgment of potential lesions, such as microcalcification clusters (MCs), difficult 

since MCs can be spread across several slices and may be difficult to interpret in a 2D 

visualization [35]. In addition, DBT presents, on average, sixty slices per exam (about thirty 

times more images than 2D DM), which results in time-consuming analysis both in screening 

and daily clinical use [36-38], directly influencing the number of interpreted examinations [38].  
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Currently, two other new approaches have emerged for the visualization of DBT data: synthetic 

mammography (SM) build upon DBT data [30, 39] and thicker slabs obtained by combining 

several slices [40, 41]. The existence of SM is very important because it allows a fair 

comparison with previous DM examinations (for retrospective analysis) and, in some situations, 

SM could benefit from the Computer Aided Detection/Diagnosis (CAD) systems developed for 

2D application. However, SM still presents the same disadvantages as 2D DM (tissue 

overlapping) [42]. On the other hand, a system that uses artificial intelligence (AI) to reduce 

the number of slices to be analyzed and is based on thicker 6 mm slices (slabs) combined with 

synthesized 2D information was recently approved by the FDA [43, 44]. The construction of 

thicker slabs has demonstrated good results in terms of reducing time and false positives but 

originates a lower sensitivity, which can reach about 10% inferiority compared to the standard 

protocol that includes observation by planes [41]. 

A different type of visualization may play an important complementary role in breast cancer 

diagnosis [45]. Volume rendering (VR) is the process of creating realistic computer-generated 

scenes of volumetric data, yielding a true depth perception. VR can display data from any angle, 

resulting in an immediate global inspection and providing an understanding of the underlying 

data at once [34]. This type of supplementary visualization is already used in other tomographic 

medical imaging modalities such as CT, Magnetic Resonance Imaging, or Positron Emission 

Tomography [46-48]. There are some works mentioning a few aspects of 3D VR for DBT [49-

51] and its importance to detect MCs [52]. As in CT, the integration  of a 3D visualization in a 

2D reading can be seen as a problem solver in some situations (for example, the need to better 

understand the shape of a MC) [53]. 

Ray casting is the classic algorithm used for VR, where rays are cast from the eye or other 

viewpoints and traverse a scene containing a volumetric data set. This process encompasses 

several parameters that define the appearance of the final rendered image. The ray function and 

the transfer functions are two of the most critical rendering parameters. In fact, the basic idea 

of VR can be divided into two interconnected phases that rely on these parameters: (1) a ray is 

projected through the data and the value of each voxel is determined according to a predefined 

ray function; and (2) this value is assigned to a specific color or opacity through the transfer 

functions. 

Maximum Intensity Projection (MIP) and the compositing technique are the most commonly 

used ray functions for rendering medical data sets. These techniques evaluate the data along a 

line from the viewer’s eye through the data set in a different way. With the MIP technique, each 
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voxel is evaluated and the maximum value is selected (Figure 1.8 (a)). As the displayed 

intensity will represent only the material with the highest intensity along the projected ray, a 

high intensity material, for example skin or calcifications may obscure information [54]. On the 

other hand, the compositing technique considers all the values of the data along that line, sums 

the contribution of each voxel and displays the resulting composite for each voxel (Figure 1.8 

(b)). Two practical examples of Magnetic Resonance data rendered using each ray function are 

shown in Figure 1.9. 

 

Figure 1.8. Illustrative scheme of MIP (a) and compositing (b) technique [54]. 

 

Figure 1.9. Examples of magnetic resonance rendered images obtained with (a) MIP and (b) the compositing technique [55]. 

Transfer functions are other fundamental parameter in VR and are particularly important to the 

quality of volume rendered images because they define how much and which data are visible 

by assigning optical properties like color and opacity to the voxel data [54]. These voxel data 

may refer to one (scalar intensity values) or two components (scalar intensity and gradient 

magnitude values) [56]. 1D transfer functions are based only on scalar intensity values and are 

the most commonly used form of transfer function. For medical image data, the 1D transfer 

function is often inadequate as tissues are represented by similar and overlapping intensities 
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[57]. In addition, DBT is very noisy, which may further reduce the ability of 1D transfer 

functions to correctly classify different tissue types [58]. If the transfer function takes into 

account more than one quantity on its domain, it is termed a 2D transfer function [58]. For 

medical imaging in general and for breast imaging in particular, a useful second dimension is 

the gradient magnitude because it measures how quickly values are changing in the image 

space. In this way, introducing it in the domain of a transfer function allows some 

discrimination between homogeneous and border regions [59]. Since tissues are relatively 

homogeneous, their gradient magnitudes are low and the peaks in the gradient histograms 

correspond to intensity changes, which means there are boundaries between two materials [60].  

Due to the complexity of DBT data, the compositing technique becomes useful if used with the 

information extracted from the gradient. As it considers that all data contributes to the VR (not 

only the higher intensity, as in the case of MIP), it accumulates more information, which can 

only be distinguished with the gradient information. 

Finding proper transfer functions is extremely difficult and is one of the major challenges in 

volume visualization. For example, in breast data, although a feature of interest may be easily 

identifiable in the spatial domain, the range of intensity values that characterize the feature are 

difficult to isolate in the transfer function domain. This results from the fact that other regions 

(not related to the feature of interest) contain the same range of intensities [60]. Even if the only 

variable which needs to be set is intensity (1D Transfer functions), it is time consuming and 

accomplished by a frustrating trial and error process [56, 59, 60]. Automatic and semi-automatic 

generation of transfer functions is the ultimate goal in many applications since they enable a 

more widespread use of VR [56, 61, 62]. 

1.4. Automatic classification and detection of lesions 

In a screening environment, only a small part of the exams are representative of cancer, meaning 

that there are many more normal screens than those with pathology. For example, in Europe, in 

1000 screens, only about 6.4 and 8.8 cancer cases are detected with DM and DBT, respectively 

[63]. In other words, among so many "normal" slices that the radiologist analyzes, there will be 

only a few that represent breast cancer lesions (sometimes with a very subtle presentation) that 

will be flagged. For this reason, automatic or semi-automatic computer systems that contribute 

to the detection and/or classification of potential lesions are extremely important, especially in 

a screening environment. 
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1.4.1. CAD systems 

CAD systems are intended to assist radiologists in this arduous task. The CAD software for 

screening mammography was first approved by the FDA in 1998 [64] and has been widely 

adopted in clinical practice [65]. In general, these systems place markers in suspicious areas 

that are later evaluated by the radiologists, thus alleviating the task of detecting/finding tiny 

spots in the middle of many exams. If they are responsible for an initial detection and 

localization of suspicious lesions (benign or malignant), they are called Computer Aided 

Detection (CADe). If, on the other hand, their function is to interpret suspicious regions, 

assigning for example a score to the level of malignancy, they are called Computer Aided 

Diagnosis (CADx). 

DBT CAD systems were implemented and evaluated in an attempt to shorten the reading time 

while maintaining the radiologist performance. In fact, some results were very encouraging 

with reading time reductions between 14% and 29.2% without loss of diagnostic performance 

[66-68]. However, despite the efforts and improvements already achieved (such as decreasing 

the false negative rate), these CAD systems have not reached a level of performance that can 

be translated into a true improvement in the real screening of breast cancer due to the high false 

positive rates and low specificity [69-72]. 

1.4.2. Deep Convolutional Neural Networks (CNNs) 

The human brain is considered the best organized system for efficient processing of information 

obtained from different senses. One of the mechanisms used in this processing is the treatment 

of high-level information through the collaboration/connection of a large number of simple 

structural elements (neurons). In machine learning, artificial neural networks are complex 

hierarchical models that intended to mimic the thought processes in the human brain and learn 

patterns present in observations [73]. Since 2012, with the success of deep convolutional neural 

networks (CNNs) in the ImageNet Large Scale Visual Recognition Challenge [74], the 

advances in computational power (with the wide availability of graphics processing units 

(GPU)) and the introduction of large scale datasets, there has been a new interest in developing 

better automatic methods of image analysis in general and medical imaging in particular. 

CNNs are used to analyze images because the structural information between neighboring 

pixels or voxels is a crucial source of information in those cases. CNNs include a set of filters 

(convolutional kernels) that are convolved with a given input to generate an output feature map. 

These complex features are used to identify essential information that is needed to generate the 
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final output. When multiple layers are used, we refer to deep CNNs. In addition to convolutional 

layers, typical CNNs consist of many other layers: input layers, Rectified Linear Unit (ReLU) 

layers (also referred as activation function, which performs a threshold operation in each 

element of the input where any value less than zero is set to zero), normalization layers, dropout 

layers (randomly set input elements to zero with a given probability), max/average pooling 

layers (perform downsampling by dividing the input into rectangular pooling regions and then 

computing the maximum/average of each region), fully connected layers (that generally 

comprise the last few layers of the CNN and that connects all neurons of the final max-pooling 

or convolution layer to each of the output neurons), output layers, etc.  

A CNN typically follows sequential stages of convolutional layers combined with pooling 

layers which are then followed by fully connected layers (Figure 1.10). These models have the 

ability to decompose the image information into different representations from low to high level 

features. The layers near the input layer are more general and the layers next to the output layer 

are more specific regarding the source image [75]. 

 

Figure 1.10. Illustration of the sequential arrangement of layers in a very simple CNN (adapted from [73]). 

The models can be divided according to their main task: Classification models whose main 

function is to identify the probability of an image or part of the image belonging to a predicted 

class; Object detection models whose aim is to locate specific objects in an image; and 

segmentation models that label pixels or voxels individually as belonging or not to a certain 

class [76]. 

1.4.3. Learning 

The CNN stores information in the form of weights and bias. A weight is assigned to each 

connection between two elements of two consecutive layers, which means that the weight 

assigned to each feature will decide its influence on the output prediction. The bias are constants 

added to the product of inputs and weights, used to give more flexibility to the models, shifting 

the activation function towards the positive or negative side. It is important to have a powerful 

model but also an algorithm to learn the model’s parameters (weights and bias) efficiently.  
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The learning process is performed through optimization algorithms to minimize the loss 

function that represents the error of the model. Gradient descent requires calculating the 

gradient of the loss function for each variable in the model and is probably the most used 

minimization algorithm in deep learning [77]. The calculation of this gradient is efficiently 

performed through an algorithm called back-propagation that uses the chain rule to speed up 

the computation [73, 77]. Together, the gradient descent and the back-propagation algorithms 

are usually used to train a neural network, i.e., to adjust the weights to reduce the error. 

This parameter update can be done based on the gradients evaluated over all the training sam-

ples (batch gradient descent) or sequentially by calculating the gradient based on one sample at 

a time (stochastic gradient descent). Typically, to have a trade-off between these two ap-

proaches, the computation and update of the parameters are performed by stochastic gradient 

descent with a mini-batch that contains a small set of samples, rather than a single sample [73]. 

In this case, each parameter update is called an iteration and a full pass through the entire data 

set is called an epoch. 

1.4.4. CNNs in breast cancer detection 

Recently, there have been several large-scale published studies whose aim was to analyze AI 

systems based on CNNs as a potential solution in the field of automated breast cancer in DM 

and DBT [72]. In some cases, the performance of the AI system has been compared to that of 

the breast radiologist alone, achieving a comparable or even improved cancer detection 

accuracy [78-80]. In other studies, where the performance of the radiologist with and without 

AI was evaluated, physicians improved their cancer detection when using an AI system for 

support [68, 80-83]. With these promising results and the need for an automatic detection 

system for lesions in DBT and in screening, much research is being carried out in this regard. 

1.5. Thesis outline 

The main objective of this thesis is to answer to some daily clinical challenges related to the 

visualization of DBT data, as well as lesion detection. For that, new computational imaging 

methods are developed to increase the diagnostic value of DBT by helping the radiologists in 

their task of reading DBT volumes and diagnose breast cancer. Different methods involving 

visualization and automatic lesion detection are studied. These methods can potentially aid in 

the early detection of breast cancer and speed up the process of assessing DBT volumes, 

allowing an inspection of the entire dataset at once.  
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The thesis is composed of eight chapters. In addition to the introduction (chapter 1) and the 

final considerations (chapter 8), this thesis consists of six main chapters that describe the 

developed work. Chapters 2, 3, 4 and 5 include methodology related to the VR visualization of 

DBT data and improvement of rendered images, and chapters 6 and 7 are related to the 

automatic detection of lesions in DBT. 

Chapter 1 consists of a general introduction, where the concepts of the work are described. 

Chapter 2 describes a methodology to automatically generate transfer functions that result in 

appropriate and useful VR visualizations of DBT data. This function is probably the factor that 

most influences the rendered images in the sense that it defines what is made opaque and what 

is transparent. It is usually through a trial-and-error exploration of the transfer functions that 

the desired renderings attempt to be achieved. However, this is a time-consuming process and 

often does not directly result in the visualization of what is desired. In this way, the generation 

of transfer functions in an automatic or semi-automatic way is extremely important not only to 

somehow standardize these types of visualizations, but also to make this process more accessi-

ble to the radiologists, so that they can see in VR a complementary way of analyzing DBT data. 

This chapter was published as a conference paper in the renowned conference on breast imaging 

– the 15th International Workshop on Breast Imaging (IWBI2020). 

Chapter 3 presents the study of the influence of two rendering parameters (sampling distance 

and voxel dimension in z direction) on DBT rendered data. Both the parameters have a 

significant impact on the quality of the final rendered volume. If the sampling distance is too 

large, our sampling might miss important features in the data and generate major aliasing 

artifacts. Alternatively, if a very small distance is considered, the number of samples collected 

along the ray is increased and the amount of time required to render the image will significantly 

increase. On the other hand, reconstructed voxels in DBT are generally anisotropic, with the 

size in z direction greater than the size in x and y directions. With the visualization slice-by-

slice, this does not have much influence on the quality since the data is observed in xy plane. 

However, with rendering, the volume of DBT data can be analyzed from any angle, making the 

z-voxel dimension important as well. In this way, several interpolation methods and their 

properties to make the voxel isotropic are studied. Taking into consideration these two 

parameters, a balance between quality and time is achieved by analyzing several figures of 

merit. This chapter was published as a journal paper in the Journal of Imaging. This journal is 

Q2 in “Computer Graphics and Computer-Aided Design”, “Computer Vision and Pattern 
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Recognition” and “Electrical and Electronic Engineering” domains and Q3 in “Radiology, 

Nuclear Medicine and Imaging” field. 

Chapter 4 addresses the implementation and evaluation of two total variation minimization 

methods in order to decrease noise while preserving edges. In DBT, both the low dose per 

projection and the angular limit raise some complications, such as the high noise level in the 

reconstructed images. The first algorithm described is a 2D total variation minimization filter 

sequentially applied to all slices, one slice at the time, while the second is a 3D TV minimization 

filter applied to the entire volume. Their performance is analyzed through 3D visualization of 

DBT data with VR. This chapter was published as a journal paper in the Computer Methods and 

Programs in Biomedicine. This journal has an impact factor of 5.428 and is ranked in the Q1 in 

the domains: “Computer science – interdisciplinary applications”, “Computer science – theory 

& methods”, “Biomedical Engineering” and “Medical Informatics”. 

Chapter 5 presents a novel approach in DBT through the study of out-of-plane artifacts using 

blind deconvolution and noise regularization based on total variation minimization. DBT pre-

sents out-of-plane artifacts (blur in the z-direction) caused by features of high intensity (calci-

fications, biopsy needles and localization wires). The production of these artifacts could poten-

tially obscure breast lesions and would limit the usability of DBT in interventional procedures. 

In this way, four different approaches to blind deconvolution are presented and the results are 

analyzed using real phantom data under conventional slice-by-slice visualization and 3D VR 

with a compositing technique. This chapter was published as a journal paper in the IEEE Trans-

actions on Medical Imaging. This journal have an impact factor of 10.048 and is ranked in the 

Q1 in the domains: “Computer science – interdisciplinary applications”, “Biomedical Engi-

neering”, “Electrical & Electronic Engineering”, “Imaging science & photographic technol-

ogy” and “Radiology, Nuclear medicine & Medical imaging”. 

Chapter 6 introduces fully automatic methods based on deep CNNs in order to study the clas-

sification of DBT images about the presence or absence of MCs. One of the great difficulties 

in training AI algorithms with DBT data is the lack of labelled DBT databases. Furthermore, 

all published studies refer to private databases. Using a public database with synthetic DBT 

data of virtual patients, the aim of this part of the work is to input a whole DBT image and have 

a direct answer about the absence or presence of MCs, without the need for prior identification 

of lesions in specific regions. Four popular deep CNNs are trained and compared with one new 

architecture proposed in this thesis. Besides the original data, six different pre-processing meth-
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odologies, whose main purpose was to highlight microcalcifications, are implemented to gen-

erate different input datasets. In this chapter, an extensive review of the literature on classifica-

tion/detection of lesions using CNNs in DBT is described. This chapter was accepted under 

revision for publication as a journal paper in the Medical Physics, which have an impact factor 

of 4.071 and is ranked in the Q1 in the domain: “Radiology, Nuclear medicine & Medical 

imaging”. 

Chapter 7 is the link between the automatic detection of MCs in DBT and the visualization of 

these small lesions using the techniques developed for VR. Through the training of a faster 

region-based CNN (faster R-CNN) and, with the knowledge obtained from the work in chapter 

6, the MCs are located through predicted bounding boxes and their respective scores. This 

information is then introduced into the visualization software and, instead of the entire breast 

being rendered, it is possible to obtain a 3D region of interest with magnification of these 

flagged MCs. This 3D zoom can help radiologists in the interpretation of these lesions since (1) 

it indicates specific regions of the breast with a possible lesion that deserve additional attention 

and (2) as the rendering of the MCs is almost like a segmentation of them, a detailed 

complementary analysis of their morphology is possible. This chapter was accepted for oral 

presentation and publication as an extended conference paper in the BioImaging2022 

conference. BioImaging is part of BIOSTEC, the International Joint Conference on Biomedical 

Engineering Systems and Technologies. 

Chapter 8 consists of the final considerations and includes a summary and general discussion 

of each development chapter, the main limitations of this thesis and future work. 

 

References 

1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality 

Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249. 

2. Siegel, R.L., et al., Cancer Statistics, 2021. CA Cancer J Clin, 2021. 71(1): p. 7-33. 

3. Tabár, L., et al., The incidence of fatal breast cancer measures the increased effectiveness of 

therapy in women participating in mammography screening. Cancer, 2019. 125(4): p. 515-523. 

4. Peintinger, F., National Breast Screening Programs across Europe. Breast Care, 2019. 14(6): p. 

354-358. 

5. D'Orsi, C.J., 2013 ACR BI-RADS Atlas: Breast Imaging Reporting and Data System2014: 

American College of Radiology. 

6. Azam, S., et al., Mammographic microcalcifications and risk of breast cancer. British journal of 

cancer, 2021. 125(5): p. 759-765. 

7. Cox, R.F., et al., Microcalcifications in breast cancer: novel insights into the molecular 

mechanism and functional consequence of mammary mineralisation. British journal of cancer, 

2012. 106(3): p. 525-537. 

https://biostec.scitevents.org/


 

16 

 

8. Gaur, S., et al., Architectural Distortion of the Breast. American Journal of Roentgenology, 2013. 

201(5): p. W662-W670. 

9. Berment, H., et al., Masses in mammography: What are the underlying anatomopathological 

lesions? Diagnostic and Interventional Imaging, 2014. 95(2): p. 124-133. 

10. Selvi, R., Breast diseases: imaging and clinical management2014: Springer. 

11. Wilkinson, L., V. Thomas, and N. Sharma, Microcalcification on mammography: approaches to 

interpretation and biopsy. The British Journal of Radiology, 2017. 90(1069): p. 20160594. 

12. Barter, S., Carcinoma, Breast, Imaging Mammography, Primary Signs, in Encyclopedia of 

Diagnostic Imaging, A.L. Baert, Editor 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 

220-224. 

13. Zackrisson, S. and N. Houssami, Chapter 13 - Evolution of Mammography Screening: From Film 

Screen to Digital Breast Tomosynthesis, in Breast Cancer Screening, N. Houssami and D. 

Miglioretti, Editors. 2016, Academic Press: Boston. p. 323-346. 

14. Food and Drug Administration (FDA) U.S. . Premarket Approval GE Healthcare Senographe 

Full Field Digital Mammography system. 2000  [cited 2021 October]; Available from: 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P990066. 

15. Whang, J.S., et al., The Causes of Medical Malpractice Suits against Radiologists in the United 

States. Radiology, 2013. 266(2): p. 548-554. 

16. Tosteson, A.N.A., et al., Consequences of False-Positive Screening Mammograms. JAMA 

Internal Medicine, 2014. 174(6): p. 954-961. 

17. Food and Drug Administration (FDA) U.S. . Accreditation/Certification for Facilities Utilizing a 

DBT System with FFDM Images. 2011  [cited 2020 February ]; Available from: 

http://www.fda.gov/Radiation-

EmittingProducts/MammographyQualityStandardsActandProgram/FacilityCertificationandInsp

ection/ucm114148.htm. 

18. Svahn, T.M., et al., Review of radiation dose estimates in digital breast tomosynthesis relative to 

those in two-view full-field digital mammography. The Breast, 2015. 24(2): p. 93-99. 

19. Tirada, N., et al., Digital Breast Tomosynthesis: Physics, Artifacts, and Quality Control 

Considerations. Radiographics, 2019. 39(2): p. 413-426. 

20. Ciatto, S., et al., Integration of 3D digital mammography with tomosynthesis for population 

breast-cancer screening (STORM): a prospective comparison study. The Lancet Oncology, 2013. 

14(7): p. 583-589. 

21. Skaane, P., et al., Performance of breast cancer screening using digital breast tomosynthesis: 

results from the prospective population-based Oslo Tomosynthesis Screening Trial. Breast Cancer 

Research and Treatment, 2018. 169(3): p. 489-496. 

22. Haas, B.M., et al., Comparison of Tomosynthesis Plus Digital Mammography and Digital 

Mammography Alone for Breast Cancer Screening. Radiology, 2013. 269(3): p. 694-700. 

23. Rose, S.L., et al., Implementation of Breast Tomosynthesis in a Routine Screening Practice: An 

Observational Study. American Journal of Roentgenology, 2013. 200(6): p. 1401-1408. 

24. Greenberg, J.S., et al., Clinical Performance Metrics of 3D Digital Breast Tomosynthesis 

Compared With 2D Digital Mammography for Breast Cancer Screening in Community Practice. 

American Journal of Roentgenology, 2014. 203(3): p. 687-693. 

25. McDonald, E.S., et al., Effectiveness of Digital Breast Tomosynthesis Compared With Digital 

Mammography: Outcomes Analysis From 3 Years of Breast Cancer Screening. JAMA Oncology, 

2016. 2(6): p. 737-743. 

26. Zackrisson, S., et al., One-view breast tomosynthesis versus two-view mammography in the 

Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, 

diagnostic accuracy study. The Lancet Oncology, 2018. 19(11): p. 1493-1503. 

27. Bernardi, D., et al., Breast cancer screening with tomosynthesis (3D mammography) with 

acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a 

population-based prospective study. The Lancet Oncology, 2016. 17(8): p. 1105-1113. 

28. Lång, K., et al., Performance of one-view breast tomosynthesis as a stand-alone breast cancer 

screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-

based study. Eur Radiol, 2016. 26(1): p. 184-190. 

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P990066
http://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityCertificationandInspection/ucm114148.htm
http://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityCertificationandInspection/ucm114148.htm
http://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/FacilityCertificationandInspection/ucm114148.htm


 

17 

 

29. Gilbert, F.J., et al., Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer 

Subgroups in a UK Retrospective Reading Study (TOMMY Trial). Radiology, 2015. 277(3): p. 

697-706. 

30. Hofvind, S., et al., Digital Breast Tomosynthesis and Synthetic 2D Mammography versus Digital 

Mammography: Evaluation in a Population-based Screening Program. Radiology, 2018. 287(3): 

p. 787-794. 

31. Freer, P.E., et al., Clinical implementation of synthesized mammography with digital breast 

tomosynthesis in a routine clinical practice. Breast Cancer Research and Treatment, 2017. 166(2): 

p. 501-509. 

32. Food and Drug Administration (FDA) U.S. . Premarket Approval application supplement for the 

Selenia Dimensions 3D System. 2013  [cited 2021 May]. 

33. Sechopoulos, I., A review of breast tomosynthesis. Part I. The image acquisition process. Med 

Phys, 2013. 40(1): p. 014301. 

34. Suetens, P., Medical image analysis, in Fundamentals of Medical Imaging2009, Cambridge 

University Press: New York. p. 159-189. 

35. Samala, R.K., et al., Digital breast tomosynthesis: Computer-aided detection of clustered 

microcalcifications on planar projection images. Phys Med Biol, 2014. 59(23): p. 7457-7477. 

36. Good, W.F., et al., Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol, 

2008. 190(4): p. 865-9. 

37. Gur, D., et al., Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol, 

2009. 193(2): p. 586-91. 

38. Caumo, F., et al., Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus 

Full-Field Digital Mammography for Population Screening: Outcomes from the Verona 

Screening Program. Radiology, 2018. 287(1): p. 37-46. 

39. Simon, K., et al., Accuracy of Synthetic 2D Mammography Compared With Conventional 2D 

Digital Mammography Obtained With 3D Tomosynthesis. American Journal of Roentgenology, 

2019. 212(6): p. 1406-1411. 

40. van Schie, G., et al., Mass detection in reconstructed digital breast tomosynthesis volumes with a 

computer-aided detection system trained on 2D mammograms. Med Phys, 2013. 40(4): p. 041902. 

41. Iotti, V., et al., Comparing two visualization protocols for tomosynthesis in screening: specificity 

and sensitivity of slabs versus planes plus slabs. Eur Radiol, 2019. 29(7): p. 3802-3811. 

42. Petropoulos, A.E., et al., Quantitative assessment of microcalcification cluster image quality in 

digital breast tomosynthesis, 2-dimensional and synthetic mammography. Medical & Biological 

Engineering & Computing, 2020. 58(1): p. 187-209. 

43. Food and Drug Administration (FDA) U.S. . Approval for software option 3DQuoromTM 

technology - Premarket Approval. 2019  [cited 2020 25 June]; Available from: 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P080003S008. 

44. 3DQuorum™ Imaging Technology - Improving radiologist performance through Artificial 

Intelligence and SmartSlices (White Paper). 2020; Available from: 

https://www.hologic.com/sites/default/files/downloads/WP-

00152_Rev001_3DQuorum_Imaging_Technology_Whitepaper%20%20(1).pdf. 

45. Venson, J.E., et al., A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual 

Reality. Stud Health Technol Inform., 2017. 245: p. 244-248. 

46. O'Connell, A., et al., Cone-Beam CT for Breast Imaging: Radiation Dose, Breast Coverage, and 

Image Quality. American Journal of Roentgenology, 2010. 195(2): p. 496-509. 

47. Song, H., X. Cui, and F. Sun, Breast Tissue 3D Segmentation and Visualization on MRI. 

International Journal of Biomedical Imaging, 2013. 2013: p. 8. 

48. Jung, Y., et al., Occlusion and Slice-Based Volume Rendering Augmentation for PET-CT. IEEE 

Journal of Biomedical and Health Informatics, 2017. 21(4): p. 1005-1014. 

49. Alyassin, A.M. Automatic transfer function generation for volume rendering of high-resolution 

x-ray 3D digital mammography images. in Medical Imaging 2002. 2002. SPIE. 

50. Alyassin, A.M., et al., 3D Visualization of X-ray Tomosynthesis Digital Mammography Data: 

Preference Study, in Digital Mammography: IWDM 2002 — 6th International Workshop on 

Digital Mammography, H.-O. Peitgen, Editor 2003, Springer Berlin Heidelberg: Berlin, 

Heidelberg. p. 507-509. 

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P080003S008
http://www.hologic.com/sites/default/files/downloads/WP-00152_Rev001_3DQuorum_Imaging_Technology_Whitepaper%20%20(1).pdf
http://www.hologic.com/sites/default/files/downloads/WP-00152_Rev001_3DQuorum_Imaging_Technology_Whitepaper%20%20(1).pdf


 

18 

 

51. Dharanija, R. and T. Rajalakshmi. A Conjunct Analysis for Breast Cancer Detection by Volume 

Rendering of Low Dosage Three Dimensional Mammogram. in Progress In Electromagnetics 

Research Symposium Proceedings. 2011. China. 

52. Jerebko, A., et al. 3D rendering methods for visualization of clusters of calcifications in digital 

breast tomosynthesis: a feasibility study. in ECR 2011. 2011. Vienna, Austria. 

53. Neri, E., et al., The second ESGAR consensus statement on CT colonography. Eur Radiol, 2013. 

23(3): p. 720-729. 

54. Calhoun, P.S., et al., Three-dimensional Volume Rendering of Spiral CT Data: Theory and 

Method. Radiographics, 1999. 19(3): p. 745-764. 

55. Schroeder, W., K. Martin, and B. Lorensen, The Visualization Toolkit: An Object-oriented 

Approach to 3D Graphics. 4rd ed2006, USA: Kitware. 

56. Kindlmann, G. and J.W. Durkin. Semi-automatic generation of transfer functions for direct 

volume rendering. in IEEE Symposium on Volume Visualization (Cat. No.989EX300). 1998. 

57. Lundstrom, C., P. Ljung, and A. Ynnerman, Local Histograms for Design of Transfer Functions 

in Direct Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 2006. 

12(6): p. 1570-1579. 

58. Ljung, P., et al., State of the Art in Transfer Functions for Direct Volume Rendering. Computer 

Graphics Forum, 2016. 35(3): p. 669-691. 

59. Kindlmann, G. Transfer functions in direct volume rendering: Design, Interface, Interaction. 

September 2017  November 2019]; Available from: http://www.cs.utah.edu/~gk/papers/sig02-

TF-notes.pdf. 

60. Kniss, J.K., G.; Hansen, C;, Visualization Handbook, 2004, Academic Press. p. 181-202. 

61. Correa, C.D. and K.L. Ma, Visibility Histograms and Visibility-Driven Transfer Functions. IEEE 

Transactions on Visualization and Computer Graphics, 2011. 17(2): p. 192-204. 

62. Ma, B. and A. Entezari, Volumetric Feature-Based Classification and Visibility Analysis for 

Transfer Function Design. IEEE Transactions on Visualization and Computer Graphics, 2017. 

PP(99): p. 1-1. 

63. Marinovich, M.L., et al., Breast Cancer Screening Using Tomosynthesis or Mammography: A 

Meta-analysis of Cancer Detection and Recall. JNCI: Journal of the National Cancer Institute, 

2018. 110(9): p. 942-949. 

64. Food and Drug Administration (FDA) U.S. . M1000 ImageChecker. 1998  [cited 2021 May]; 

Available from: 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=319829. 

65. Keen, J.D., J.M. Keen, and J.E. Keen, Utilization of Computer-Aided Detection for Digital 

Screening Mammography in the United States, 2008 to 2016. Journal of the American College of 

Radiology, 2018. 15(1, Part A): p. 44-48. 

66. Balleyguier, C., et al., Improving digital breast tomosynthesis reading time: A pilot multi-reader, 

multi-case study using concurrent Computer-Aided Detection (CAD). Eur J Radiol, 2017. 97: p. 

83-89. 

67. Benedikt, R.A., et al., Concurrent Computer-Aided Detection Improves Reading Time of Digital 

Breast Tomosynthesis and Maintains Interpretation Performance in a Multireader Multicase 

Study. American Journal of Roentgenology, 2017. 210(3): p. 685-694. 

68. Chae, E.Y., et al., Decrease in interpretation time for both novice and experienced readers using 

a concurrent computer-aided detection system for digital breast tomosynthesis. Eur Radiol, 2019. 

29(5): p. 2518-2525. 

69. Fenton, J.J., et al., Influence of Computer-Aided Detection on Performance of Screening 

Mammography. New England Journal of Medicine, 2007. 356(14): p. 1399-1409. 

70. Lehman, C.D., et al., Diagnostic Accuracy of Digital Screening Mammography With and Without 

Computer-Aided Detection. JAMA Internal Medicine, 2015. 175(11): p. 1828-1837. 

71. Katzen, J. and K. Dodelzon, A review of computer aided detection in mammography. Clinical 

Imaging, 2018. 52: p. 305-309. 

72. Sechopoulos, I., J. Teuwen, and R. Mann, Artificial intelligence for breast cancer detection in 

mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology, 

2020. 

http://www.cs.utah.edu/~gk/papers/sig02-TF-notes.pdf
http://www.cs.utah.edu/~gk/papers/sig02-TF-notes.pdf
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=319829


 

19 

 

73. Zhou, K., H. Greenspan, and D. Shen, Deep Learning for Medical Image Analysis2017: Elsevier 

Science. 

74. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional 

neural networks. Advances in neural information processing systems, 2012. 25: p. 1097-1105. 

75. Yosinski, J., et al., How transferable are features in deep neural networks?, in Proceedings of the 

27th International Conference on Neural Information Processing Systems - Volume 22014, MIT 

Press: Montreal, Canada. p. 3320–3328. 

76. Bai, J., et al., Applying deep learning in digital breast tomosynthesis for automatic breast cancer 

detection: A review. Med Image Anal, 2021. 71: p. 102049. 

77. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning2016: MIT Press. 

78. Rodriguez-Ruiz, A., et al., Stand-Alone Artificial Intelligence for Breast Cancer Detection in 

Mammography: Comparison With 101 Radiologists. Journal of the National Cancer Institute, 

2019. 111(9): p. 916-922. 

79. Kim, H.-E., et al., Changes in cancer detection and false-positive recall in mammography using 

artificial intelligence: a retrospective, multireader study. The Lancet Digital Health, 2020. 2(3): 

p. e138-e148. 

80. van Winkel, S.L., et al., Impact of artificial intelligence support on accuracy and reading time in 

breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol, 2021. 

81. Schaffter, T., et al., Evaluation of Combined Artificial Intelligence and Radiologist Assessment to 

Interpret Screening Mammograms. JAMA Network Open, 2020. 3(3): p. e200265-e200265. 

82. Rodríguez-Ruiz, A., et al., Detection of Breast Cancer with Mammography: Effect of an Artificial 

Intelligence Support System. Radiology, 2019. 290(2): p. 305-314. 

83. Conant, E.F., et al., Improving Accuracy and Efficiency with Concurrent Use of Artificial 

Intelligence for Digital Breast Tomosynthesis. Radiology: Artificial Intelligence, 2019. 1(4): p. 

e180096. 

 

 



 

20 

 



 

21 

 

 

Calculation of transfer functions for 

volume rendering of breast 

tomosynthesis imaging 

 

 

2  
 

 

 

 

Ana M. Mota*a, Matthew J. Clarksonb, Lurdes Orvalhoc, Pedro Almeidaa and Nuno Matelaa, 

"Calculation of transfer functions for volume rendering of breast tomosynthesis imaging," Proc. 

SPIE 11513, 15th International Workshop on Breast Imaging (IWBI2020), 1151327 (22 May 

2020); doi: 10.1117/12.2559932 

 
IWBI is a peer-reviewed conference and is one of the most prestigious international conferences on 

breast imaging. 

 

 
aInstituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal (*ammota@fc.ul.pt);  
bDepartment of Medical Physics and Biomedical Engineering and the Centre for Medical Image Computing, University College 

London, London, UK;  
cHospital da Luz, Lisboa, Portugal



 

22 

 

Abstract 

Slice-by-slice visualization of Digital Breast Tomosynthesis (DBT) data is time consuming and 

can hamper the interpretation of lesions such as clusters of microcalcifications. With a 

visualization of the object through multiple angles, 3D volume rendering (VR) provides an 

intuitive understanding of the underlying data at once. 3D VR may play an important 

complementary role in breast cancer diagnosis. Transfer functions (TFs) are a critical parameter 

in VR and finding good TFs is a major challenge. The purpose of this work is to study a 

methodology to automatically generate TFs that result in appropriate and useful VR 

visualizations of DBT data.  

For intensity-based TFs, intensity histograms were used to study possible relationships between 

statistics and critical intensity values in DBT data. The mean of each histogram has proved to 

be a valid option to automatically calculate those critical values that define these functions. At 

this stage, eight visualizations were obtained by combining several opacity/color intensity-

based functions. Considering the gradient, ten visualizations were obtained. Nine of the ten TFs 

were constructed considering the peaks of gradient magnitude histograms. The tenth function 

was a simple linear ramp. Finally, three intensity-based and three gradient-based functions were 

selected and simultaneously used. This resulted in nine final VR visualizations taking both 

information into account. 

The studied approach allowed an automatic generation of opacity/color TFs based on scalar 

intensity and gradient magnitude histograms. In this way, the preliminary results obtained with 

this methodology are very encouraging about creating an adequate visualization of DBT data 

by VR. 

Keywords: Digital breast tomosynthesis, volume rendering, 3D visualization, transfer function
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2.1. Introduction 

Digital Breast Tomosynthesis (DBT) has been consolidating its position as a technique to re-

place 2D Digital Mammography (DM) in both screening and clinical environment [1-4]. So far, 

DBT data is displayed one slice at a time or sequentially as a continuous cine loop. This proce-

dure can lead to difficult interpretation of microcalcification clusters, which can be spread 

across several slices [5]. In addition, the mean reading time doubles for DBT compared with 

DM examination [6-8]. The time required for each DBT data set evaluation is crucial both in 

clinical and screening environments, directly influencing the number of examinations inter-

preted [8].  

A different type of visualization, such as 3D volume rendering (VR), may play an important 

complementary role in breast cancer diagnosis [9]. 3D VR is the process of creating realistic 

computer-generated images of a 3D scene, yielding a true depth perception [10]. With a visu-

alization of the object through multiple angles, one of the advantages of 3D VR is to provide 

an intuitive understanding of the underlying data at once. Transfer functions (TFs) are a critical 

parameter in VR. They define how much and which data are visible by assigning opacity and 

color to the intensity and/or gradient magnitude values. To provide useful information about 

the volume data, TFs must ensure a balance between what is made transparent and what is 

considered to be of interest and must be opaque. Finding good TFs is one of the major chal-

lenges in volume visualization. It is time consuming and accomplished by a frustrating trial and 

error process [11-13]. Automatic and semi-automatic generation of TFs is the ultimate goal in 

many applications since it enables a more widespread use of VR [11, 14, 15].  

There are some works that mention a few aspects of 3D VR for DBT [16-18] and its importance 

to detect clusters of microcalcifications [19]. However, there are currently no established meth-

ods or conclusions on acceptable TFs to provide adequate 3D VR visualization of DBT data. 

For this reason, opacity and color values were assigned to the intensity and gradient magnitude 

values of the data [20] and an innovative methodology to automatically generate TFs which 

allow an adequate 3D visualization by VR of DBT data is presented. 
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2.2. Methods 

2.2.1. Data visualization 

Twenty DBT data sets of anonymous patients from a clinical facility database were selected 

(Hospital da Luz S.A., Lisbon, Portugal). The heterogeneity of the sample was taken into ac-

count: there are ten cases acquired with mediolateral oblique view and ten with craniocaudal 

view, 50% are from right breasts and 50% from left breasts. All breast density levels, as well 

as all diagnostic classifications (based on the criteria of the American College of Radiology’s 

Breast Imaging Reporting and Data System – BI-RADS) are included in this study. 

The visualization software was developed in C ++ using the Visualization Toolkit library 

(VTK) version 7.1.0. [21]. For a better visualization quality, voxels were made isotropic (with 

dimensions 0.085 x 0.085 x 0.085 mm3) using the Lanczos function available in VTK (used by 

default) [22]. 3D VR was obtained with composite technique. 

2.2.2. Generation of scalar intensity-based TFs 

For each of the twenty cases, two regions were selected and the respective intensity values 

recorded. Region 1 is related to adipose tissue (similar to background) and region 2 refers to 

high intensity materials, such as microcalcifications. As the twenty cases comprehend all dif-

ferent levels of BI-RADS diagnosis, in cases with calcifications, region 2 includes data both on 

benign and malignant calcifications. 

a1 and b1 stand for the intensity value of region 1 and 2, respectively. Voxels with scalar in-

tensity values below a1 are considered totally transparent, above b1 are totally opaque and with 

intermediate values correspond to a linear relationship between intensity and opacity/color (Fig-

ure 2.1). 

   

Figure 2.1. Left: 1D linear ramp transfer function used to map voxel intensity values to opacity and color. Right:  Zoom in on 

the region 1 and region 2 whose intensities correspond to a1 and b1, respectively. 
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Three intensity histogram statistics – mean, maximum and skewness – were calculated for each 

case. The relationships between a1 and b1 and the intensity histogram statistics were studied to 

obtain possible expressions to estimate a1 and b1, having knowledge of the statistics. Addition-

ally, two other intensity values – a2 and b2 – were calculated in order to achieve more distinct 

visualizations (Eq. 2.1 and Eq. 2.2). Taking into account different combinations of this critical 

values, eight visualizations were obtained. 

𝑎2 = 𝑎1 +
𝑏1 − 𝑎1

2
 Eq. 2.1 

𝑏2 = 𝑏1 +
𝑏1 − 𝑎1

2
 Eq. 2.2 

2.2.3. Generation of gradient magnitude-based TFs 

Gradient magnitude is a useful second dimension because it measures how quickly values are 

changing in the image space. Breast tissues are relatively homogeneous, so their gradient mag-

nitudes are low. The peaks in the gradient histograms correspond to sudden intensity changes, 

which means, boundaries between two materials [13].  

Here, to only have one degree of freedom (gradient), the influence of intensity-based TFs was 

kept neutral (opacity and color values were kept at one for all scalar intensity values). For each 

DBT case, three peaks in the gradient magnitude histogram were found. Based on these peaks, 

nine opacity TFs were analyzed. In addition, one function independent from the peaks, with a 

shape of a linear ramp crossing all magnitude gradient values, was also considered. 

2.2.4. TFs based on scalar intensity and gradient magnitude 

By combining some results from section 2.2.2 and section 2.2.3, nine different final visualiza-

tions by VR were obtained taking into account both information (scalar intensity and gradient 

magnitude). 

 

2.3. Results 

For all the twenty cases, it was observed that a1 and b1 measured values were at the same 

position in relation to the respective histogram. Based on this sample, linear regressions were 

modelled to study the relationship between a1 and b1 and some statistics (mean, maximum and 

skewness) of each intensity histogram. Results are presented in Figure 2.2. 
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Figure 2.2. Linear regressions obtained between a1 and b1 and (a) mean, (b) maximum and (c) skewness of histogram intensity 

values, calculated for each clinical case. Coefficients of determination (R2) and equations for the estimation of a1 and b1 based 

on each statistic are also shown. 

The eight combinations of opacity and color TFs based on scalar intensity values (a1, a2, b1 

and b2) and respective 2D displays of VR results at 0º are shown in Figure 2.3. On the other 

hand, the VR results obtained with the ten gradient-based TFs, keeping the intensity-based TFs 

as neutral, are presented in Figure 2.4. 
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Figure 2.3. 2D displays of VR visualizations at 0º obtained with each combination of intensity-based TFs by varying the color 

and opacity within the values of a1, a2, b1 and b2. 
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Figure 2.4. 2D displays of VR visualizations at 0º obtained with the ten gradient-based TFs: linear ramp (a), square shaped 

centered on each peak (b,c,d), ramp-shaped around each peak (e,f,g) and triangular shaped centered on each peak (h,i,j). Opacity 

and color values were kept at 1 for all scalar intensities. 

In order to merge the information provided by the intensity-based functions (Figure 2.3) with 

the gradient-functions (Figure 2.4), some visualizations of both groups have been selected and 

combined. From Figure 2.3, it is possible to group three similar visualizations: (1) Figure 2.3 

(a) and (c); (2) Figure 2.3 (b) and (d); (3) Figure 2.3 (e-h). From the first group, the combination 

of functions in Figure 2.3 (a) was selected because it allowed to keep more information about 

all tissues. From the second one, to have an intermediate visualization, functions of Figure 2.3 

(b) were chosen. Of the third group, functions presented in Figure 2.3 (f) were elected because 
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they emphasize important structures of interest for breast cancer detection, such as calcifica-

tions, in a balanced way. Regarding VR resulting from the assignment of opacity to gradient 

magnitude, there are 7 out of 10 that can be immediately excluded: Figure 2.4 (b-h). TFs cor-

responding to visualizations of Figure 2.4 (b-d) and Figure 2.4 (f-g) remove a significant 

amount of information. On the other hand, functions from Figure 2.4 (e) and (h) make too much 

information opaque (which means that conjugated with intensity-based functions, these gradi-

ent information have a minor impact on the final VR). In this way, by combining TFs from 

Figure 2.3 (a), Figure 2.3 (b) and Figure 2.3 (f) with those of Figure 2.4 (a), Figure 2.4 (i) and 

Figure 2.4 (j), nine visualizations are obtained as in Figure 2.5. 

 

Figure 2.5. 2D displays of VR visualizations at 0º considering intensity and gradient magnitude functions selected. 1st, 2nd 

and 3rd rows were obtained using the gradient-based functions: linear ramp and triangular-shaped centered on peak 2 and 3, 

respectively. 1st, 2nd and 3rd columns were obtained using the scalar intensity-based functions: 1, 2 and 6, respectively. 
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2.4. Discussion and conclusion 

A consistent and reproducible methodology for automatic determination of TFs allowing an 

adequate 3D visualization by VR of DBT data was presented. Opacity/color TFs based on scalar 

intensity and gradient magnitude were tested separately and together and the results were visu-

alized through composite technique. 

Regardless of breast density, all intensity histograms presented the same shape, i.e., neglecting 

the zero intensity peak corresponding to the black background, a single peak was observed. The 

measured values for a1 and b1 were at the same position in relation to the respective histogram. 

From Figure 2.2, the statistic which presented the best option for automatically estimate a1 and 

b1 from the data was the mean, with the highest R2 simultaneously for the regression with a1 

and b1 (0.9818 and 0.9416, respectively). With the eight VR images observed based on differ-

ent values of a1, a2, b1 and b2 (Figure 2.3), we can see that as the TFs move to the right, the 

tissues with lower values of intensity become transparent, emphasizing only those of higher 

intensities, as expected. 

As for the intensity, all gradient magnitude histograms presented the same shape for all the 

twenty cases, independent of breast density. Three main peaks were observed. In a general way, 

TFs based on gradient magnitude are closely related to the gradient histogram peaks (Figure 

2.4).The obtained VR images using only scalar intensity TFs (Figure 2.3 (a), (b) and (f)) can be 

compared with those using scalar intensity plus gradient magnitude TFs (first, second and third 

column of Figure 2.5). The general appearance of the latter was determined essentially by TFs 

based on scalar intensity while the gradient-based TFs improved the definition between regions 

with different intensities. 

Taking into account the preliminary results presented, we conclude that adequate visualization 

of DBT data by VR can be automatically achieve. 

In the future, the impact of VR on detection performance of radiologists and visualization of 

masses and architectural distortions should be considered through a large and controlled clinical 

study with 3D VR using DBT data. 
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Abstract 

3D volume rendering may represent a complementary option in the visualization of Digital 

Breast Tomosynthesis (DBT) examinations by providing an understanding of the underlying 

data at once. Rendering parameters directly influence the quality of rendered images. The pur-

pose of this work is to study the influence of two of these parameters (voxel dimension in z 

direction and sampling distance) on DBT rendered data. Both parameters were studied with a 

real phantom and one clinical DBT data set. The voxel size was changed from 0.085 × 0.085 × 

1.0 mm3 to 0.085 × 0.085 × 0.085 mm3 using ten interpolation functions available in the Visu-

alization Toolkit library (VTK) and several sampling distance values were evaluated. The re-

sults were investigated at 90º using volume rendering visualization with composite technique. 

For phantom quantitative analysis, degree of smoothness, contrast-to-noise ratio, and full width 

at half maximum of a Gaussian curve fitted to the profile of one disk were used. Additionally, 

the time required for each visualization was also recorded. Hamming interpolation function 

presented the best compromise in image quality. The sampling distance values that showed a 

better balance between time and image quality were 0.025 mm and 0.05 mm. With the appro-

priate rendering parameters, a significant improvement in rendered images was achieved. 

Keywords: breast tomosynthesis; visualization; volume rendering
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3.1. Introduction 

Breast cancer remains the most common cancer diagnosed among women and a leading cause 

of death. However, in the last three decades, there has been a decrease of approximately 40% 

in the death rate from this disease [1, 2]. This fact is a direct result of the scientific advances in 

early detection and treatment. Early detection is mostly done through screenings [3, 4]. Until 

recently, these screenings and breast cancer diagnosis in general were mainly performed by 

Digital Mammography (DM). However, DM consists of a two-dimensional (2D) acquisition of 

the three-dimensional (3D) breast causing tissue superposition. This often results in malignant 

lesions hidden between healthy tissues or normal regions considered as pathological, leading to 

unnecessary second examinations or biopsies, with additional costs and anxiety for patients [5, 

6]. 

Digital Breast Tomosynthesis (DBT) has consolidated its position as a technique to replace DM 

in both screening and clinical environments [7-11]. DBT has an acquisition geometry very 

similar to DM but it acquires a set of projection images, allowing a 3D reconstruction of the 

breast, reducing the tissue overlap observed with DM [12]. In this way, DBT improves the 

perception of the location and shape of lesions, without increasing the radiation dose to the 

patient, when compared to DM [13]. 

The 3D visualization of DBT is one of the most important and crucial aspects to correctly 

extract the information provided by this technique. Currently, DBT images are displayed 

through a 2D slice-by-slice visualization [14], with the analysis done one slice at a time or 

sequentially as a continuous cine loop, leading to a time-consuming process. Two other new 

approaches have emerged for the visualization of DBT data: synthetic mammography based on 

DBT data [15, 16] and thicker slabs obtained by combining several slices [17, 18]. Although 

synthetic mammography is very useful for comparison with previous DM examinations, it still 

presents the disadvantages of a 2D visualization (tissue overlapping) [19]. On the other hand, 

the thicker slabs have revealed good results in reducing time and false positives but have a 

lower sensitivity [18]. Additionally, a system very recently approved by the Food and Drug 

Administration, uses artificial intelligence to reduce the number of slices that need to be 

analyzed by the radiologist. It is based on thicker 6 mm slices combined with synthesized 2D 

images information [20, 21]. 
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A different type of visualization may play an important complementary role in breast cancer 

diagnosis [22]. 3D volume rendering is the process of creating realistic computer-generated 

images of volumetric data, yielding a true depth perception [23]. This type of supplementary 

visualization is already used in other tomographic medical imaging modalities such as 

Computed Tomography, Magnetic Resonance Imaging, or Positron Emission Tomography [24-

26]. There are some works mentioning a few aspects of 3D volume rendering for DBT [27-29] 

and its importance to detect clusters of microcalcifications [30]. 

The classic volume rendering algorithm is ray casting, where rays are cast from the eye or other 

viewpoints and traverse a scene containing a volumetric data set. This process encompasses 

several parameters that decide the appearance of the final rendered image. One of these 

parameters is the sampling distance, which corresponds to the distance between neighboring 

samples taken along the ray. The value of the sampling distance should be studied and carefully 

selected accordingly to data set grid resolution [31]. If the distance is too large, our sampling 

might miss important features in the data and generate major aliasing artifacts. Yet, if we select 

a very small distance (the number of samples collected along the ray is increased), the amount 

of time required to render the image will significantly increase [32, 33].  

On the other hand, reconstructed DBT data typically has voxel sizes of 0.085 × 0.085 × 1.0 

mm3. The anisotropic nature of the reconstructed DBT data is also responsible for serious 

quality problems in visualization techniques, namely in the direction orthogonal to the detector 

plane (z-direction). In this way, one solution is to make the grid isotropic through suitable 

interpolation functions before the rendering process [31]. The smaller the voxel size, the higher 

the image definition. However, there are more voxels compounding the data set and therefore 

the processing time of each data set is longer. The time issue is very important in medical image 

analysis because a large amount of data needs to be displayed and analyzed in real time. For 

this study, we consider the total time allocated to the visualization process as the sum of 

interpolation time with rendering time. 

In this paper, two parameters that directly affect the quality of the rendered image—sampling 

distance and reconstructed voxel size—were considered. The main objective was to improve 

the quality of the rendered images in the z direction and to determine which options allow a 

better balance between quality and time. In order to transform data to an isotropic grid, several 

interpolation functions and their corresponding parameters were tested. Additionally, different 

sampling distance values were introduced in the rendering process. Qualitative and quantitative 
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analyzes of the results were done through visualization by volume rendering of real DBT 

images of a phantom. Finally, some values were selected and the rendered images obtained for 

one clinical DBT data set were also analyzed. To the best of our knowledge, this is the first 

study about optimization of rendering parameters in visualization of DBT data. 

 

3.2. Materials and methods 

3.2.1. Data Acquisition and Reconstruction 

A phantom made by us was used (Figure 3.1). This phantom consists of an acrylic background 

to mimic breast tissue, with two embedded columns of aluminum disks to simulate high density 

lesions (with different diameters and 1.0 mm thick). For this study, the first column of the 

phantom (Figure 3.1 (b)) was considered. 

  

Figure 3.1. (a) Acrylic phantom simulating breast tissue and high density lesions (aluminum disks of different diameters and 

1 mm thickness). (b) Scheme of the disks in the first column (top to bottom): 5.0 mm, 3.0 mm, 1.0 mm, 0.5 mm, 2.0 mm, and 

4.0 mm, respectively. 

Additionally, one clinical DBT data set from an anonymous patient was selected from the 

clinical facility (Hospital da Luz, Luz Saúde S.A, Lisbon, Portugal) database. Both phantom 

and clinical data set were acquired with a Siemens MAMMOMAT Inspiration system (Siemens 

AG, Healthcare Sector, Erlangen, Germany) and reconstructed with the manufacturer 

algorithm, which uses Filtered Back Projection [34]. The reconstructions have voxel sizes of 

0.085 × 0.085 × 1.0 mm3. 

3.2.2. Data Visualization 

In volume rendering, changing the azimuth of a camera rotates its position around the focal 

point [32]. In this way, it is possible to have an immediate notion of the entire data volume, 
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according to several angles. The methods under study in this work have a particular effect on 

the z-direction. Therefore, we were particularly interested in the visualization perpendicular to 

the detector plate (with the projection made on the xz planes, along y), i.e., with the camera at 

90º (see Figure 3.2). In addition, the visualization with the camera at 0°, that is, parallel to the 

detector plate (projection is made on the xy planes, along z) was also considered. 

 

Figure 3.2. Illustrative scheme of visualization at 0° and 90°. 

The Visualization Toolkit library (VTK) version 7.1.0. (Kitware, New York, EUA) [32, 35] 

was used to develop 3D specific software in order to visualize DBT data through volume 

rendering. The methodologies in study were analyzed using 3D volume rendering visualization 

with composite technique. An Intel® Core ™ i5-5200U CPU (2.20 GHz) @ 8 GB of memory 

computer was used. 

3.2.3. Image Analysis 

For phantom quantitative analysis, the profile of the 5.0 mm disk (Figure 3.1 (b) in red) was 

obtained and three figures of merit were used: full width at half maximum (FWHM) of a 

Gaussian curve fitted to the 5.0 mm disk’s profile, contrast to noise ratio (CNR), and a measure 

of profile smoothness. FWHM90º was considered as an indicator of the disk's definition at 90°. 

As already mentioned, DBT presents a lower quality in z than in xy and this is exposed in the 

spreading of structures of high intensity in z (such as these disks). Although the disks have a 

thickness of 1.0 mm, the observed values will be higher. In this way, a lower value of FWHM90º 

will mean a greater definition of the feature at 90°. For CNR, a region of interest (ROI) over 

the 5.0 mm disk and other two ROIs over the surrounding background were drawn. CNR was 

calculated using Eq. 3.1: 

𝐶𝑁𝑅 =
𝜇5.0 𝑚𝑚 − 𝜇𝐵𝐺

𝜎𝐵𝐺

 Eq. 3.1 
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𝜇5.0𝑚𝑚 and 𝜇𝐵𝐺 stand for mean pixel values in ROI over the 5.0 mm disk and background, 

respectively; and 𝜎𝐵𝐺 stands for the mean of standard deviations in background ROIs. In order 

to obtain a measure for the profile smoothness (important for the interpolation quality analysis), 

the STEYX Microsoft Excel® (Microsoft Office 2013) function was used [36] and its inverse 

was calculated (Eq. 3.2).The STEYX function gives a measure of the variability of the data in 

a given range. The degree of smoothness was calculated considering intensity levels between 

z-distance (16, 24) mm since it corresponded to an area with high variation in intensity: 

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =
1

𝑆𝑇𝐸𝑌𝑋[16,24]𝑚𝑚

 Eq. 3.2 

The quantitative analysis was performed at 90°, where the methods under study have the 

greatest effect. For qualitative purposes, displays of the phantom and one clinical data set 

obtained with volume rendering visualization at 0° and 90° are presented. 

3.2.4. Study of Interpolation Functions 

Due to the acquisition process, DBT data has a finer resolution within slices (in xy planes) and 

a coarser resolution between slices (in the z-direction). This leads to an anisotropic grid, greatly 

reducing the quality of rendering. To deal with the anisotropic grid spacing problem, one 

hypothesis is to change the size of each voxel, considering the smallest dimension, so it can 

correspond to a perfect cube [37]. Therefore, in this study, the z-resolution has been modified 

to match the resolution within the slice (which has not changed). This results in a homogeneous 

resolution, improving data quality after reconstruction and before rendering. At the same time, 

the number of voxels compounding the data set is also increased and thus more computational 

memory is required. We can refer to a z-interpolation, since the voxel size went from 0.085 × 

0.085 × 1.0 mm3 to 0.085 × 0.085 × 0.085 mm3, that is, the change occurred only in the third 

dimension. 

As this work is based on C++ software developed with the VTK library, the volume data was 

resampled into an isotropic grid using appropriate interpolation functions available in this 

library [38]. In VTK, data interpolation is done internally by several classes. The two main 

classes considered here were vtkImageInterpolator and vtkImageSincInterpolator. The first one 

is the default interpolator and provides linear, cubic, and nearest-neighbor interpolation. The 

second is responsible for an approximation to sinc interpolation by multiplying one of the 

available window functions, in order to limit the kernel size. The window functions studied in 
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this work were: Lanczos, Kaiser (adjusmet parameter off), Cosine, Hann, Hamming, Blackman, 

and Nuttall [38, 39]. In Fourier space, the resolution of spectral window is reduced to the order 

of the half-width of the sinc function [40]. In this way, the quality of sinc interpolation is related 

not only to the window function, but also to the window width. For this reason, the window 

half-width (WHW) was also addressed in this study with values ranging between 1 and 16. 

vtkImageSincInterpolator class has an option to set blur factors in x, y, and z directions in order 

to blur the data while interpolating [38]. The size of the kernel is automatically increased by the 

blur factor (BF), increasing the computation time. As here the interpolation is in the z-direction, 

some values for BF in z were tested. A summary of the functions and parameters analyzed 

during the interpolation process is shown in Table 3.1. 

For the interpolation study, the default value of sampling distance (1.0 mm) was used. 

Table 3.1. Summary of the functions and parameters, available in VTK, analyzed during the interpolation process. 

In Study 

Image Interpolators Linear 

 Cubic 

 Nearest-neighbor 

Image sinc interpolators Window Function (Lanczos, Kaiser, Cosine, Hann, 

Hamming, Blackman, Nuttall)  

 Window Half-Width (WHW) 

 Blur Factor in z-direction (BF(z)) 

3.2.5. Study of Sampling Distance 

In the ray casting volume rendering algorithm, a ray traverses a volume data set. Along the ray, 

contributions (samples) based on the intensity values weighted by transparency or opacity 

(transfer functions) are accumulated at discrete locations of the ray, separated by a certain 

distance – sampling distance. The process of selecting these locations and, therefore, the 

distance between them, is subject to the sampling theorem. In this case, it is translated on the 

condition that the distance between two accumulations must be less than or equal to twice the 

respective smallest voxel spacing [31].  

Taking into account the best results obtained with the interpolation functions and their 

parameters, several sampling distance values were studied. Considering the sampling theorem, 

values smaller than 2 × 0.085 mm (0.170 mm) were tested. As previously mentioned, the lower 

the sampling distance value, the higher the rendering quality should be. As the computation 

time increases exponentially for lower sampling distance values, our aim was to test several 

values smaller than 0.170 mm and try to understand where the best balance between quality and 
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time could be achieved. In addition, five other values outside this range were tested. The default 

value for sampling distance in VTK is 1.0 mm and it was the maximum value included in our 

study. Included in the class corresponding to volume ray casting, VTK has an option which 

automatically computes the sampling distance from the data spacing. Using this option, an 

automatic sampling distance of 0.195 mm was generated. This value was also included in this 

work (from a brief previous study, it was concluded that, for our DBT data, this automatically 

generated value was related to the number of voxels according to an approximation of the 

expression autoSD = 3580.5 × (nr voxels)(−0.621)). On the other hand, in order to contextualize 

the results between 0.195 mm and 1.0 mm, some intermediate values (0.40 mm, 0.60 mm, and 

0.80 mm) were also considered. In summary, the sampling distance values analyzed were: 0.010 

mm, 0.025 mm, 0.050 mm, 0.075 mm, 0.100 mm, 0.145 mm, 0.170 mm (2 × 0.085 mm), 0.195 

mm (automatic sampling distance), 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm (default value in 

VTK). 

 

3.3. Results 

As mentioned, the time involved to render data is very important in order to make visualization 

through volume rendering useful. Here, we have separated total time spent in visualization as 

interpolation time plus render time (from the moment the original data is opened until it reaches 

the screen). The first depends on voxel size and interpolation functions used in the rescaling. 

The second is related with ray casting process, namely the sampling distance value. Render 

time values recorded for rendering the original data, as well as data after interpolation (with 

sampling distance 1.0 mm) are shown in Figure 3.3. 

 

Figure 3.3. Computation time required for rendering the original data (z: 1.0 mm) and data after rescaling with linear, cubic, 

nearest interpolators and Lanczos, Kaiser, Cosine, Hann, Hamming, Blackman, and Nuttal window functions (with sampling 

distance 1.0 mm). 
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As the interpolation was done only in the third dimension, all the results presented in this section 

were measured considering phantom visualization at 90° (i.e., through the z direction).  

3.3.1. Study of Image Interpolators 

3.3.1.1. Linear, Cubic and Nearest-Neighbor Interpolation 

The 5.0 mm disk’s profiles obtained after rescaling with the linear, cubic, and nearest-neighbor 

interpolators are presented in Figure 3.4. Additionally, it is also shown the profile obtained 

before rescaling (with voxel size of 0.085 × 0.085 × 1.0 mm3). FWHM and smoothness values 

measured for each visualization at 90° are presented in Table 3.2. The total time required in the 

process is also shown and it stands for the rendered time (Figure 3.3) plus interpolation time. 

 

Figure 3.4. Profile of the 5.0 mm disk obtained at 90° for the original data (z: 1.0 mm) and after rescaling with the linear, 

cubic, and nearest interpolators. Zoom-in of a range with large intensity variation. 

Table 3.2. FWHM and smoothness values measured in interpolated data at 90º. The total time (interpolation plus rendering 

time) is also presented. 

Interpolator Linear Cubic Nearest 

Total time (secs) 0.45 0.50 0.45 

FWHM90° (mm) 7.55 7.79 8.44 

Smoothness90º 64.5 72.2 37.4 

3.3.1.2. Sinc Interpolation with Different Window Functions 

The sinc function was multiplied by different window functions (Lanczos, Kaiser, Cosine, 

Hann, Hamming, Blackman, and Nuttall). The 5.0 mm disk’s profiles obtained with WHW 

values ranging from 1 to 16 are presented in Figure 3.5. 
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Figure 3.5. Profiles of the 5.0 mm disk obtained at 90º for the original data (z: 1.0 mm) and after rescaling with Lanczos, 

Kaiser, Cosine, Hann, Hamming, Blackman, and Nuttall window functions with WHW values of 1, 3, 5, 8, 13, and 16 ((a) to 

(f), respectively). Zoom-in of a range with large intensity variation. 

Based on profiles of Figure 3.5 and for each window function and WHW, the corresponding 

smoothness and FWHM values were determined and the results are displayed in Figure 3.6. 
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Figure 3.6. Results obtained with Lanczos, Kaiser, Cosine, Hann, Hamming, Blackman, and Nuttall window functions for the 

profile at 90°, by changing WHW values (from 1 to 16). (a) Smoothness values as a function of total time and (b) FWHM of 

the 5.0 mm disk at 90°. 

The profiles calculated with BF (z) values ranging from 1.0 to 4.0 are shown in Figure 3.7 from 

(a) to (f), respectively. As for the WHW, based on profiles of Figure 3.7, the corresponding 

smoothness and FWHM values for each BF (z) and window function were determined and the 

results are presented in Figure 3.8. 
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Figure 3.7. Profiles of the 5-mm disk obtained at 90° for the original data (z: 1.0 mm) and after rescaling with Lanczos, Kaiser, 

Cosine, Hann, Hamming, Blackman, and Nuttall window functions with BF(z) values of 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 ((a)–

(f)). Zoom-in of a range with large intensity variation. 
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Figure 3.8. Results obtained with Lanczos, Kaiser, Cosine, Hann, Hamming, Blackman, and Nuttall window functions for the 

profile at 90°, by changing BF(z) values (from 1.0 to 4.0). (a) Smoothness values as a function of total time and (b) FWHM of 

the 5.0 mm disk at 90°. 

 

3.3.2. Selection of Functions and Parameters for the Sampling Distance Study 

The study of interpolation functions and their parameters is, by itself, quite extensive. Thus, to 

simplify the analysis of the results obtained with different sampling distance values, some 

selections were made to proceed. 

 WHW: In Figure 3.5, for WHW values above 5, the obtained profiles are very similar. 

This is translated into the results of Figure 3.6 (a), where WHW = 5 produces the highest 

smoothness in the shortest time. From this value on, there is no significant increase in 

smoothness, only an increase in the time required for interpolation. On the other hand, 

in Figure 3.6 (b), the FWHM values are very similar for the different WHW values. In 

this way, the choice is based on the smoothest profile in the shortest possible time. This 

corresponds to WHW = 5. 

 BF(z): According to Figure 3.7, for BF (z) ≥ 1.5, there is a significant decrease in the 

variability of the profiles. Through the results in Figure 3.8 (a), it is possible to observe 

that the higher the value of BF (z), the greater the smoothness, reaching a certain 

convergence for BF (z) ≥ 3. From BF (z) = 1.0 to BF (z) = 2.0, there is a visible decrease 

in the value of FWHM (Figure 3.8 (b)), and for BF (z) > 2, these values become very 

similar. Thus, we choose BF (z) = 2 as the value that represents a better compromise 

between smoothness, FWHM, and time. 

 Interpolator: Nearest and linear interpolators were excluded since the corresponding 

profiles showed low smoothness when compared to the others. The cubic interpolator 

was selected to proceed as it presented smoothness and FWHM values comparable to 

the other interpolations with a similar interpolation time. For the sinc interpolator, 
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considering the results with WHW = 5 and BF (z) = 2, window functions were sorted 

according to the profile smoothness (in decreasing order). The Hamming window 

function presented the best correspondent result between the two options (for WHW = 

5: Kaiser > Nuttall > Hamming; for BF (z) = 2: Blackman > Lanczos > Hann > 

Hamming). Since, among them, window functions presented very close results, this 

selection of a single function to proceed was done only to simplify and concentrate the 

next results. 

In summary, the next section results are for cubic interpolation and Hamming window function 

(sinc) with WHW = 5 or/and BF(z) = 2. 

3.3.3. Sampling Distance Study 

For each sampling distance, the time required to render the original data (z: 1.0 mm, black in 

Figure 3.9) was recorded. In addition, the average rendering times of each selected interpolator 

(cubic, Hamming with WHW = 5, Hamming with BF (z) = 2 and Hamming with WHW = 5 

and BF(z) = 2) were also calculated (gray in Figure 3.9). 

 

Figure 3.9. Computation time required for rendering the original data (black) and data after rescaling (gray) taking into account 

the different sampling distance values. For each sampling distance, each gray value was obtained by averaging the rendering 

times recorded for each interpolator considered here (cubic, Hamming with WHW = 5, Hamming with BF (z) = 2 and Hamming 

with WHW = 5 and BF (z) = 2). 

The 5.0 mm disk’s profiles were obtained from the rendered images with each sampling 

distance value and for each interpolator. The measured profiles between 20 mm and 36 mm (z 

distance) are shown in Figure 3.10. 
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Figure 3.10. Profiles of the 5.0 mm disk obtained at 90°, for some values of sampling distance tested (0.010, 0.025, 0.050, 

0.100, 0.170, 0.195, and 1.0 mm), with the original data (a) and after rescaling with cubic (b), Hamming with WHW = 5 (c), 

Hamming with BF (z) = 2 (d), and Hamming with WHW = 5 and BF (z) = 2 (e). 

For a quantitative analysis of the quality of rendered images, smoothness, CNR, and FWHM 

values were calculated for each sampling distance and the results obtained with the original 

data and after interpolation are shown in Figure 3.11. 
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Figure 3.11. Smoothness (a), CNR (b) and FWHM (c) plotted as a function of sampling distance values for original data and 

data after interpolation with cubic, Hamming with WHW = 5, Hamming with BF (z) = 2 and Hamming with WHW = 5 and 

BF (z) = 2. Results obtained for rendered images at 90°. 

For qualitative inspection, sinc interpolation with Hamming window and BF (z) = 2 were 

selected and sampling distance of 0.025 mm were used. Images of the 5.0 mm disk of the 

phantom are presented in Figure 3.12. Images achieved with volume rendering at 0º and 90º are 

shown in the first and second column of Figure 3.12, respectively. The first row represents 

original data with default visualization (without interpolation and with sampling distance 1.0 

mm), the second row presents “processed” data with Hamming BF (z) = 2 interpolation, and 

sampling distance 0.025 mm. The quantitative analysis corresponding to the images in Figure 

3.12 is summarized in Table 3.3. 
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Figure 3.12. Volume rendering images at 0º and 90º for the 5-mm disk obtained for the original data with default visualization 

(top row) and interpolated data with Hamming window with BF (z) = 2 and sampling distance 0.025 mm (bottom row). 

Table 3.3. Summary of the results obtained for phantom at 0° and 90°, with default visualization options (voxels with 0.085 × 

0.085 × 1.0 mm3 and sampling distance 1.0 mm) and the options selected in our study (voxels with 0.085 × 0.085 × 0.085 mm3 

after interpolation with Hamming window function and BF (z) = 2 and sampling distance 0.025 mm). 

 Default From Our Study 

Voxel size (mm3) 0.085 × 0.085 × 1.0  
0.085 × 0.085 × 0.085 

(Hamming with BF (z) = 2) 
Sampling distance (mm) 1.0 0.025 

Total time (s) 0.23 3.05 

CNR0° 7.19 22.12 

FWHM0° (mm) 3.67 3.52 

CNR90° 6.23 39.39 

FWHM90° (mm) 12.38 4.06 

Smoothness90° 63.0 142.8 

3.3.4. Clinical Data 

To evaluate the consistency of the results, sinc interpolator with Hamming window function 

with BF (z) = 2 was used in the rescaling of one clinical case (0.085 × 0.085 × 1.0 mm3 → 

0.085 × 0.085 × 0.085 mm3). Volume rendering of clinical data was obtained with sampling 

distance value of 0.025 mm since it showed good results in terms of smoothness, CNR, and 

FWHM. 2D displays of composite volume rendering of clinical data obtained at 0° and 90° are 

shown in Figure 3.13. 
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Figure 3.13. 2D displays of composite volume rendering visualization obtained at 0º and 90º (a and b, respectively) for original 

data with default sampling distance (1.0 mm) (a1 and b1) and interpolated data with sampling distance 0.025 mm (a2 and b2). 

 

3.4. Discussion 

This type of visualization is an alternative and complementary approach to the standard time 

consuming slice-by-slice visualization. Here, we optimized the volume rendering visualization 

for DBT data and our analysis was focused on two main parameters: interpolation methods used 

before rendering to obtain an isotropic grid (by modifying reconstructed voxel size); and 

sampling distance values. 

For a constant sampling distance in the interpolation study, rendering time proved to be similar 

between the different interpolation methods (the minimum value recorded was 0.29 seconds for 

nearest and the maximum was 0.37 s for Nuttall) (Figure 3.3). On the other hand, when the 

number of voxels increases from approximately 8 million (0.085 × 0.085 × 1.0 mm3) to 95 

million (0.085 × 0.085 × 0.085 mm3), a greater difference was observed. This means that 

changing the number of voxels had a greater impact on rendering time than the interpolation 

method itself. 

Taking into account the profiles in Figure 3.4, with a smaller voxel size, a narrower profile was 

observed, confirming an improvement of image resolution. Among the three interpolators from 

vtkImageInterpolator class, nearest presented a profile with a blocky appearance resulting from 

the discontinuous interpolation between neighboring voxels. This translates into a lower 

smoothness value (greater variability) and a higher FWHM value (Table 3.2). Linear and cubic 

interpolators showed similar results for FWHM, with cubic showing a greater smoothness of 

the profile. 
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Window functions considered here (Lanczos, Kaiser, Cosine, Hann, Hamming, Blackman, and 

Nuttall) are already a selection of functions that produce high quality interpolations. Thus, by 

expecting a similar quality resultant from the different functions, our analysis was focused on 

two influential parameters: WHW and BF (z). By default, these options are set to 3 and 1.0, 

respectively, in VTK. Starting with WHW, there was a visible difference in the variability of 

the profiles in Figure 3.5, in particular until WHW = 5, with no major differences between 

interpolators. This observation was corroborated by the calculation of smoothness and FWHM 

values shown in Figure 3.6. In Figure 3.6 (a), there are six distinct groups, corresponding to the 

six WHW values tested and, for WHW values above 5, there was no noticeable increase in the 

smoothness value, increasing only the interpolation time. On the other hand, the variation of 

this parameter did not cause large fluctuations in the FWHM values for the different 

interpolators, as can be seen in Figure 3.6 (b). About the BF in z, it was found that this parameter 

has a great influence on the intensity fluctuations existent in the images. For example, from BF 

(z) = 1.0 (default) to BF (z) = 1.5 (Figure 3.7 (a) and (b), respectively), there was a significant 

modification in the profile of the disk at 90°. The results observed in the profiles were confirmed 

by the numerical analysis of smoothness (Figure 3.8 (a)) which increases significantly for 

higher BF (z) values. It would be expected that the introduction of a blur parameter would 

increase the smoothness by compromising dispersion in the z-direction (increasing the FWHM 

value). However, as seen in Figure 3.8 (b), the introduction of this factor in the interpolation 

(up to a certain limit) helps delineating the structures during rendering. Until BF (z) = 2.5, there 

is a marked decrease in FWHM values for all window functions. Taking into account the 

temporal information of Figure 3.8 (a) on the x-axis, we can see that these improvements were 

achieved with an increase in the interpolation time. 

In Section 3.3.2, the selection considered for the sampling distance study has already been 

explained (WHW = 5, BF (z) = 2.0 and Hamming window function). While the choice of WHW 

= 5 was quite simple, for BF (z), we could have opted for 2.0 or 2.5. We selected the first instead 

of the second value because the interpolation time was shorter. As for the window function in 

sinc interpolator, it was not an obvious selection, since the different functions presented very 

similar results. In addition, for example, the Kaiser function has a parameter (α) responsible for 

the balance between blurring and ringing [31] and so, the effect of α on the results should be 

considered in a future work. Despite this and in view of the obtained results, Hamming function 

was the one with the best quality considering both WHW = 5 and BF (z) = 2. 
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By analyzing the time results obtained for various sampling distance values, if we compare 

Figure 3.3 and Figure 3.9, we found that sampling distance had much more impact on the 

rendering time than the number of voxels involved. Figure 3.9 shows an exponential curve with 

lower sampling distance values corresponding to much longer times. This was expected because 

sampling distance has a predominant role in the ray casting process. 

In Figure 3.10, it is possible to notice once again the difference in the profiles obtained before 

and after rescaling (as it had already been observed before in Figure 3.5 and Figure 3.7 with 

sampling distance 1.0 mm). As for the interpolated data, in contrast to the profiles obtained with 

Hamming, the cubic interpolator showed some oscillation in intensity between 20 mm and 26 

mm for all sampling distance values (Figure 3.10 (b)). On the other hand, it is evident that the 

smaller the sampling distance, the greater the definition of the plateau, which corresponds to a 

well-defined disk in the rendered image. In Figure 3.11, the highlight goes to sampling distance 

of 0.025 mm, which shows a peak in smoothness and CNR and the lowest value of FWHM. In 

the same figure, taking into account the different sampling distances, the results for the four 

interpolations showed to be similar for CNR and FWHM. For the smoothness level of the 

profiles, Hamming with BF (z) = 2 and Hamming with BF (z) = 2 and WHW = 5 stood out, 

with the first one presenting the best results in general. All four interpolations lead to a 

significant improvement in the quality, when compared to the original data (black in Figure 

3.11). This improvement is visible in the rendered images of Figure 3.12 where, particularly at 

90º, the thickness of the disk can be observed with great definition (FWHM of 4.06 mm -Table 

3.3), while with default values what we see is a blurred disk (FWHM of 12.38 mm -Table 3.3). 

This translates into a decrease of about 67% in FWHM values. Furthermore, there was an 

increase in CNR and smoothness of around 500% and 127%, respectively. At 0º, there is also 

an increase in CNR and a slight decrease in FWHM (about 4%). On the other hand, with 

interpolation and sampling distance of 0.025 mm, the time required for all the visualization 

process increases by approximately a factor of 10. Despite remaining at an acceptable value, 

time continues to be a crucial parameter in rendering and should be optimized. 

Another viable option for the sampling distance could be 0.05 mm as it is 1.4 times faster than 

0.025 mm, despite suffering some losses in image quality. Here is a summary of the numerical 

results obtained for the image quality with sampling distance of 0.05 mm (for comparison with 

the last column of Table 3.3): Total time: 2.19 s; CNR0°: 22.65; FWHM0°: 3.52 mm; CNR90°: 

35.35; FWHM90°: 4.21 mm; and Smoothness90°: 125.7. Taking into account these results, for 
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some applications the balance between image quality and time may compensate with a sampling 

distance of 0.05 mm. 

A sampling distance of 0.025 mm and rescaling with Hamming BF (z) = 2 were applied to the 

visualization of a clinical data set. Rendered images of the clinical data (Figure 3.13) were in 

accordance with the results obtained with the phantom in terms of improving image quality, 

namely at 90°. There was a visual increase in contrast in the final image (Figure 3.13 (b)) and 

the calcification present in this case had showed better defined contours. The preliminary 

clinical results are intended to consolidate the results obtained with the phantom. In the future, 

additional accurate studies with volume rendering of DBT clinical data should be considered to 

perform quantitative analysis of this type of visualization. 

 

3.5. Conclusions 

DBT visualization by volume rendering is a new field of research that may support breast cancer 

diagnosis. With this type of visualization, there is the advantage of observing the entire volume 

data set at once, from different angles. This is a complex process of visualizing volumetric data 

set, which includes several factors crucial for the final rendered image. The optimization of 

these factors is extremely important so that visualization through volume rendering can, along 

with 2D visualization, have true clinical value. In this way, the main objective of this work was 

to study and optimize two of these parameters: the interpolation used in the transformation of 

an anisotropic into an isotropic grid and appropriate sampling distance values, taking into 

account the entire time required. This is a very extensive study, so the analysis of other 

interpolation functions and their parameters should be considered in future work. 
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Abstract 

Background and Objective: Total Variation (TV) minimization algorithms have achieved 

great attention due to the virtue of decreasing noise while preserving edges. The purpose of this 

work is to implement and evaluate two TV minimization methods in 3D. Their performance is 

analyzed through 3D visualization of digital breast tomosynthesis (DBT) data with volume 

rendering. 

Methods: Both filters were studied with real phantom and one clinical DBT data. One 

algorithm was applied sequentially to all slices and the other was applied to the entire volume 

at once. The suitable Lagrange multiplier used in each filter equation was studied to reach the 

minimum 3D TV and the maximum contrast-to-noise ratio (CNR). Imaging blur was measured 

at 0º and 90º using two disks with different diameters (0.5 mm and 5.0 mm) and equal thickness. 

The quality of unfiltered and filtered data was analyzed with volume rendering at 0º and 90º. 

Results: For phantom data, with the sequential filter, a decrease of 25% in 3D TV value and an 

increase of 19% and 30% in CNR at 0º and 90º, respectively, were observed. When the filter is 

applied directly in 3D, TV value was reduced by 35% and an increase of 36% was achieved 

both for CNR at 0º and 90º. For the smaller disk, variations of 0% in width at half maximum 

(FWHM) at 0º and a decrease of about 2.5% for FWHM at 90º were observed for both filters. 

For the larger disk, there was a 2.5% increase in FWHM at 0º for both filters and a decrease of 

6.28% and 1.69% in FWHM at 90º with the sequential filter and the 3D filter, respectively. 

When applied to clinical data, the performance of each filter was consistent with that obtained 

with the phantom.  

Conclusions: Data analysis confirmed the relevance of these methods in improving quality of 

DBT images. Additionally, this type of 3D visualization showed that it may play an important 

complementary role in DBT imaging. It allows to visualize all DBT data at once and to 

analyze properly filters applied to all the three dimensions. 

 

Concise Abstract. Total Variation (TV) minimization algorithms are one compressed sensing 

technique that has achieved great attention due to the virtue of decrease noise while preserve 

edges transitions. The purpose of this work is to solve the same TV minimization problem in 

DBT data, by studying two 3D filters.  The obtained results were analyzed at 0º and 90º with a 
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3D visualization through volume rendering. The filters differ in their application. One considers 

a slice-by-slice optimization, sequentially traversing all slices of the data. The other considers 

the intensity values of adjacent slices to make this optimization on each voxel. The performance 

of each filter was also tested with a clinical case. The results obtained were very encouraging 

with a significantly increased contrast to noise ratio at 0º and 90º and a small reduction in blur 

at 90º (slight reduction of the out-of-plane artifact).  

Keywords: Digital Breast Tomosynthesis; Total Variation minimization; volume rendering.
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4.1. Introduction 

Breast cancer alone accounts for 30% of all new cancer diagnoses in women and remains 

the second cause of death by cancer. Besides improvements in treatment, early detection has 

led to a reduction of approximately 40% in the death rate from this disease over the last three 

decades [1, 2]. This early detection is mostly done through screenings [3, 4]. Approved by the 

Food and Drug Administration less than ten years ago [5], Digital Breast Tomosynthesis (DBT) 

is firmly established and is an increasingly used imaging technique for breast cancer screening 

and diagnosis [6-10]. 

So far, DBT data is displayed one slice at a time or sequentially as a continuous cine 

loop [11]. This procedure hampers the judgment of potential lesions such as clusters of 

microcalcification, which can be spread across several slices and difficult to interpret in a two 

dimensional (2D) image [12]. In addition, because in one DBT exam there are about 30 times 

more images than in 2D Digital Mammography (DM), the mean reading time doubles for DBT 

when compared with 2D DM examination [13-15]. Fatigue caused by the analysis of large data 

sets can hamper the routine functions of a radiologist. Besides, the time required for each DBT 

data set evaluation is crucial both in clinical and screening environments, directly influencing 

the number of examinations interpreted [15]. Computer Aided Detection (CAD) systems 

developed for DBT have presented promising preliminary results regarding the reduction of 

this time [16, 17]. However, these systems are adapted to the 2D slice-by-slice visualization, 

which does not result immediately in a global inspection of the data. For example, in the case 

of clusters of microcalcifications, although decreasing the number of slices to be analyzed, it 

requires the radiologist to review multiple adjacent slices. In addition, these CAD systems, 

widely used in 2D DM, still present some controversy since they result in some false positives, 

sometimes leading to a more time consuming inspection [18]. 

Two other new approaches emerged in the visualization of DBT data: synthetic 

mammography build upon DBT data [19, 20] and thicker slabs obtained by combining several 

slices [21, 22]. The existence of synthetic mammography is very important because it allows a 

fair comparison with previous DM examinations and, in some situations, it could benefit from 

the CAD systems developed for 2D application. However, as DM, synthetic mammography 

still has the disadvantages of a 2D visualization. For example, in the case of a dense parenchyma 

pattern or microcalcification clusters, its clinical value is limited due to tissue overlapping (it is 
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used in combination with DBT slice-by-slice) [23]. On the other hand, the construction of slabs 

has demonstrated good results in terms of reducing time and false positives but originates a 

lower sensitivity [22]. 

A different type of visualization may play an important complementary role in breast 

cancer diagnosis [24]. Three dimensional (3D) volume rendering is the process of creating 

realistic computer-generated images of a 3D scene, yielding an improved depth perception [25]. 

3D volume rendering proved to be useful in tomographic medical imaging modalities such as 

Computed Tomography (CT), Magnetic Resonance Imaging or Positron Emission Tomography 

[26-28].  There are some works mentioning a few aspects of 3D volume rendering for DBT [29-

31] and its importance to detect clusters of microcalcifications [32]. As in CT, the 3D 

visualization integration in a 2D reading can be seen as a problem solver in some situations (for 

example, the necessity to better understand the shape of a cluster of microcalcifications) [33]. 

In DBT, a small number of low-dose projections acquired within a limited angular range 

are reconstructed to produce 3D data of breast tissue. Both the low dose per projection and the 

angular limit raise some complications in the reconstruction of DBT data. The first results in 

high noise level in the reconstructed images, while the second restricts the spatial resolution in 

the direction perpendicular to the detector plane (the z direction), resulting in out-of-plane blur. 

Visible in 2D slice-by-slice visualization, the out-of-plane artifact becomes even more evident 

in 3D volume rendering. Reducing noise without blurring or decreasing details and edge 

definition is a challenge in image processing. Total Variation (TV) minimization algorithms are 

efficient in reducing noise while preserving edges. For this reason, studies applying TV 

minimization to DBT data have grown significantly. Most works focus on the use of these 

algorithms in iterative reconstruction [34-41], with a few focusing on post-processing [42-44]. 

The Lagrange multiplier (λ) is an important parameter in TV minimization [42] since it controls 

image regularization, giving a trade-off between removing noise and preserving edges. For this 

reason, to find the appropriate λ value is extremely important in this type of regularization. 

In this paper, two TV minimization algorithms based on [42, 44] were applied to DBT 

reconstructed data and their impact on the volume rendering visualization was analyzed. The 

first is a 2D TV minimization filter applied to a single slice [42], while the second is a 3D TV 

minimization filter applied to the entire volume and analyzed through a preliminary study in a 

2D way (in-plane analysis) [44]. In this work, the 2D TV minimization filter was applied 

sequentially to all phantom slices and both the results, from 2D and 3D filters, were analyzed 
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based on volumetric rendering of DBT phantom data, considering their performance in z-

direction. Despite the limited resolution in z, volume rendering is useful to visualize all DBT 

data at once (with particular emphasis on high intensity features, such as calcifications). In 

addition, as it results in a truly 3D visualization, it is an appropriate way to analyze filters 

applied to all three dimensions. Since the Lagrange multiplier is a decisive parameter in TV 

minimization, the suitable λ to be used was studied (in a first phase to reach the minimum 3D 

TV of the data and in a second stage to achieve the maximum contrast to noise value in a 

specific region). Quantitative and visual analyses were conducted between unfiltered and 

filtered rendered images and also between the two different TV minimization filters. The 

proposed algorithms were also tested with one clinical DBT data set. 

 

4.2. Methods 

4.2.1. Data acquisition and reconstruction 

To mimic the breast tissue, an acrylic phantom made by us was scanned with a Siemens 

MAMMOMAT Inspiration system (Siemens AG, Healthcare Sector, Erlangen, Germany) 

installed in a clinical facility (Hospital da Luz S.A., Lisbon, Portugal). The phantom was 

acquired with 28 kVp and 47 mAs. To simulate high-density lesions, the phantom contains two 

columns of aluminum disks of different diameters and 1 mm thickness (Figure 4.1). For this 

study the first column was considered. 

 

Figure 4.1. Acrylic phantom simulating breast tissue and lesions of high attenuation (aluminum disks of different diameters 

and 1 mm thickness). Diameter of the first column disks (top to bottom): 5 mm, 3 mm, 1 mm, 0.5 mm, 2 mm and 4 mm, 

respectively. 
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Additionally, one clinical DBT data set with a large calcification of an anonymous patient was 

selected from the clinical facility database. This clinical data set was acquired with 26 kVp and 

34 mAs. 

The acquired data were reconstructed with the manufacturer algorithm which uses Filtered Back 

Projection (FBP) with some post-processing to reduce artifacts and image blurring [45]. The 

reconstructions have voxel sizes of 0.085 x 0.085 x 1.0 mm3. The algorithms under study were 

implemented using MATLAB R2016b and run on a computer containing 4 Intel® Xeon(R) 

CPU E5620 @ 2.40 GHz. 

4.2.2. Data visualization 

In volume rendering, changing the azimuth of a camera rotates its position around the focal 

point [46]. In this case, two different angle position were used to visualize the DBT data: 0º and 

90º. The first corresponds to the visualization parallel to the detector plate (i.e. the projection is 

made on the xy planes along z) and the second is the visualization perpendicular to the detector 

plate (i.e. projection is made on the xz planes along y). 

The visualization software was developed in C ++ using the Visualization Toolkit library 

(VTK) version 7.1.0. [46, 47]. For a better visualization quality, voxels were made isotropic 

(with dimensions 0.085 x 0.085 x 0.085 mm3) using the Lanczos function available in VTK 

(used by default) [46, 48]. 

The methodologies in study were analyzed using 3D volume rendering visualization with a ray 

casting algorithm and compositing technique. Different rendering parameters yield different 

images. For this reason, the parameters were fixed for all situations so that a correct comparison 

could be made. 

4.2.3. Image analysis 

For image analysis, quantitative and qualitative comparisons were performed between 

unfiltered and filtered rendered images at 0º and 90º. For phantom quantitative analysis, two 

figures of merit were used: Contrast to noise ratio (CNR) and full width at half maximum 

(FWHM) of a Gaussian curve fitted to the profile of two disks – 0.5 mm and 5.0 mm. For CNR, 

a region of interest (ROI) over the 5 mm disk and four other ROIs over the surrounding 

background were drawn. The CNR was calculated with Eq. 4.1, where 𝜇𝐹 and 𝜇𝐵 stand for the 
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mean pixel values in the ROI over the selected feature (5.0 mm disk) and the background, 

respectively; and 𝜎𝐵 stands for the mean of standard deviations in the background ROIs. 

𝐶𝑁𝑅 =
𝜇𝐹 − 𝜇𝐵

𝜎𝐵

 Eq. 4.1 

At 0º, the FWHM of the 0.5 mm disk was considered as an indicator of spatial resolution. At 

90º, the FWHM of the 0.5 mm and 5 mm disks were considered as indicators of the blur in the 

z direction. 

4.2.4. Formulation of TV minimization problem 

The 3D TV values were calculated according to Eq. 4.2 where 𝑢𝑖,𝑗,𝑘is the intensity value of voxel 

(𝑖, 𝑗, 𝑘), with 𝑖 = {1,… ,𝑚}, 𝑗 = {1,… , 𝑛}, 𝑘 = {1,… , 𝑝} and 𝑚 × 𝑛 × 𝑝 the data dimensions. ∆𝑥, ∆𝑦 and ∆𝑧 are 

discretizations of the horizontal (𝑥), vertical (𝑦) and perpendicular (𝑧) derivatives, respectively. 

𝑇𝑉3𝐷(𝑢) = ∑∑ ∑ √(∆𝑥𝑢𝑖,𝑗,𝑘)
2 + (∆𝑦𝑢𝑖,𝑗,𝑘)

2 + (∆𝑧𝑢𝑖,𝑗,𝑘)
2

𝑝

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 Eq. 4.2 

The unconstrained TV minimization problem here addressed is based on ROF model [49] for 

Poisson noise [50, 51] and can be formulated as in Eq. 4.3. 𝑓 and 𝑢 are the original and denoised 

data, respectively, 𝑇𝑉(𝑢) is the TV of denoised data and λ is the Lagrange multiplier, also called 

the regularization parameter. 

𝑚𝑖𝑛𝑢{𝑇𝑉(𝑢) + 𝜆(𝑢 − 𝑓 ln 𝑢} Eq. 4.3 

In Eq. 4.3, the first term corresponds to the regularization term (TV function) and the second 

one relates with the assumed noise model (fidelity term). In this way, λ controls data 

regularization, between removing noise and preserving information. 

 The problem represented in Eq. 4.3 can be solved through its Euler-Lagrange equation 

in finite data domain Ω (𝜕𝑢 𝜕𝑛⁄ = 0 𝑜𝑛 𝜕Ω, with 𝑛 relative to noise). Eq. 4.4 stands for the 2D TV 

minimization filter and was obtained based on discretization of the corresponding Euler-

Lagrange equation as in [42]. 

0 =
𝜆

𝑢
(𝑢 − 𝑓) −

[
 
 
 

∆𝑥
−

∆𝑥
+𝑢𝑖,𝑗

√𝜀2 + (∆𝑥
+𝑢𝑖,𝑗)

2
+ (∆𝑦

0𝑢𝑖,𝑗)
2
+ ∆𝑦

−
∆𝑦

+𝑢𝑖,𝑗

√𝜀2 + (∆𝑥
0𝑢𝑖,𝑗)

2
+ (∆𝑦

+𝑢𝑖,𝑗)
2

]
 
 
 

 Eq. 4.4 
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𝑢𝑖,𝑗 is the intensity value of voxel (𝑖, 𝑗) at slice k. Each voxel to be denoised only depends on the 

intensity values of the surrounding voxels in the same slice (Figure 4.2 (a)). As this is a 3D 

study, Eq. 4.4 was applied sequentially to all slices (𝑘 = {1,… , 𝑝}). 

  

Figure 4.2. Illustrative scheme of the application of each filter in slice number two. (a) 2D TV minimization filter applied to 

all slices, one slice at a time. (b) 3D TV minimization filter. 

In each slice, each voxel to be denoised with the 3D TV minimization filter is influenced by the 

intensity values of the surrounding voxels, including voxels in the neighboring slices (Figure 

4.2 (b)). In this work, the discrete equation (Eq. 4.5) which corresponds to the Euler-Lagrange 

solution of the 3D TV minimization problem, presents some differences in relation to [44], 

specifically in the discretization of derivatives. These minor changes were achieved after some 

empirical studies where it was found that these combinations allow for a better balance between 

differences. 
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Eq. 4.5 

In Eq. 4.4 and Eq. 4.5, ∆𝑥
+, ∆𝑥

−, ∆𝑦
+, ∆𝑦

−,∆𝑧
+ and ∆𝑧

−, denote forward (+) and backward (-) one-sided 

differences in x, y and z directions, respectively;∆𝑥
0, ∆𝑦

0 and ∆𝑧
0 indicate central difference in x, y 

and z directions, respectively; and ε > 0 is a small parameter introduced to remove the derivative 

singularity when u is locally constant. 

These formulations are valid only for interior points, i.e., voxel (𝑖, 𝑗, 𝑘) with 𝑖 = {2,… ,𝑚 − 1}, 𝑗 =

{2,… , 𝑛 − 1} and 𝑘 = {2,… , 𝑝 − 1}, excluding borders. For the 2D problem (Eq. 4.4), boundary 
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conditions were defined as in [49]. For the 3D algorithm (Eq. 4.5), boundary conditions were 

defined as: 

𝑢1,𝑗,𝑘 = 𝑢2,𝑗,𝑘  𝑎𝑛𝑑 𝑢𝑚,𝑗,𝑘 = 𝑢𝑚−1,𝑗,𝑘  𝑓𝑜𝑟 𝑗 = {2, … , 𝑛 − 1} 𝑎𝑛𝑑 𝑘 = {2,… , 𝑝 − 1} 

𝑢𝑖,1,𝑘 = 𝑢𝑖,2,𝑘  𝑎𝑛𝑑 𝑢𝑖,𝑛,𝑘 = 𝑢𝑖,𝑛−1,𝑘  𝑓𝑜𝑟 𝑖 = {2, … ,𝑚 − 1} 𝑎𝑛𝑑 𝑘 = {2,… , 𝑝 − 1} 

𝑢𝑖,𝑗,1 = 𝑢𝑖,𝑗,2 𝑎𝑛𝑑 𝑢𝑖,𝑗,𝑝 = 𝑢𝑖,𝑗,𝑝−1 𝑓𝑜𝑟 𝑖 = {2, … ,𝑚 − 1} 𝑎𝑛𝑑 𝑗 = {2, … , 𝑛 − 1} 

𝑢1,1,1 = 𝑢2,2,1, 𝑢1,𝑛,1 = 𝑢2,𝑛−1,1, 𝑢𝑚,1,1 = 𝑢𝑚−1,2,1, 𝑢𝑚,𝑛,1 = 𝑢𝑚−1,𝑛−1,1, 

𝑢1,1,𝑝 = 𝑢2,2,𝑝, 𝑢1,𝑛,𝑝 = 𝑢2,𝑛−1,𝑝, 𝑢𝑚,1,𝑝 = 𝑢𝑚−1,2,𝑝, 𝑢𝑚,𝑛,𝑝 = 𝑢𝑚−1,𝑛−1,𝑝 

The main differences between the previously studied algorithms [42, 44] and those applied in 

this study are summarized in the Table 4.1. 

Table 4.1. Summary of the differences between the previous studies using the mentioned TV minimization algorithms [42, 44] 

and the studies developed in this work. 

 

Ref. [42] 

TV min in all 

slices 

(Figure 4.2 (a)) 

Ref. [44] 

TV min  

in the volume 

(Figure 4.2 (b)) 

Phantom 

Mammographic 

Accreditation 

Phantom Model 

156 

Acrylic phantom 

simulating breast 

tissue and 

lesions of high 

attenuation 

Mammographic 

Accreditation 

Phantom Model 

156 

Acrylic phantom 

simulating breast 

tissue and lesions of 

high attenuation 

Reconstructed 

voxel (mm3) 

0.34 x 0.34 x 

1.0 

0.085 x 0.085 x 

1.0 
0.34 x 0.34 x 1.0 0.085 x 0.085 x 1.0 

Reconstruction 

algorithm 

Algebraic 

Reconstruction 

Technique 

Filtered 

Backprojection 

Algebraic 

Reconstruction 

Technique 

Filtered 

Backprojection 

Implementation 

Ref. [42] was applied to a single 

slice of interest while, in this study, 

the algorithm of Figure 4.2 (a) was 

applied to all slices sequentially (is a 

3D filter). 

A different combination of discrete 

derivatives was used in Eq. 4.5. In the 

square root, the combination in this study 

was: (+,0,0), (0,+,0) and (0,0,+) instead of 

(+,0,-), (-,+,0) and (0,-,+) used in the 

previous study [44]. With this 

combination there was an improvement of 

about 0.3% in 3D TV minimization. 

4.2.5. Optimization of TV minimization filter 

Filters’ performance directly depend on the regularization parameter (λ) used in Eq. 4.4 and Eq. 

4.5. λ allows to control the weight between the two terms in Eq. 4.3: Regularization Vs. Fidelity. 

4.2.5.1. Comprehensive study of λ 

There is one λ value for which the minimum 3D TV is obtained, while maintaining the fidelity 

of data. Although both the algorithms take into account the entire data (not only one slice), their 
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application is different (Figure 4.2). For this reason, minimum 3D TV values of filtered data 

will be different, and so the respective λ. λ values ranging between [10, 250] were applied and 

the results obtained for both filters were analyzed. 

The validity of 2D filter when applied to one single slice has already been carefully studied in 

[42] while preliminary results achieved with the 3D filter were presented in [44]. The aim of 

this comprehensive study was to validate both the algorithms under the modified conditions: 

the 2D algorithm considering all slices and the 3D filter after the introduced alterations. 

Additionally, it was also useful to find λ reference values for the next section. 

4.2.5.2. λ vs. CNRmax(90º) 

The λ value which allows the greatest minimization of 3D TV of the entire data may differ from 

the value which generates reduction of local blur or improvement of local CNR. In addition, as 

there is a minimization of TV and therefore noise and variability reduction, the impact of these 

filters in z-direction should be studied through image quality at 90º. For this reason, based on λ 

values responsible for the greatest minimization of 3D TV, a detailed study about CNR at 90º 

as a function of λ was conducted. Images generated by λ values allowing the highest CNR at 

90º have been analyzed. 

4.2.6. DBT clinical data 

For the clinical quantitative analysis, CNR and FWHM were also obtained at 0º and 90º. CNR 

was calculated as in Eq. 4.1, with the feature of interest being the biggest calcification. The 

FWHM was obtained with a Gaussian curve fitted to the profile of the same calcification. It is 

known that the calcification diameter is approximately 3.6-3.8 mm at 0º (xy planes) and 8-11 

mm in 90º (yz planes), respectively. As in phantom measures, FWHM value at 90º was 

considered as an indicator of the blur in z direction. 

 

4.3. Results 

Both filters were applied to the phantom with original dimensions of 4214601330   and 

voxel size 0.1085.0085.0   mm3. 2D TV minimization algorithm took approximately 17 

seconds to cover all slices and 3D TV minimization was done in approximately 28 seconds. 

The results obtained are shown in Sections 4.3.1-4.3.4. 
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4.3.1. Comprehensive study of λ vs. 3D TV values 

The results for 3D TV values (calculated using Eq. 4.2) obtained with λ ranging between 10 

and 250 (with a fixed step-size of 10) are presented in Figure 4.3 and Figure 4.4 for the 2D TV 

minimization in all slices and 3D TV minimization, respectively. For more detailed 

information, the λ value was varied with a step-size of 1 and the first filter was then applied 

with λ between 188 and 208 (Figure 4.3-right) and the second one with λ ranging from 215 and 

235 (Figure 4.4-right).  

 

Figure 4.3. 3D TV values for unfiltered and filtered phantom data, with minimization of 2D TV in all slices, plotted as a 

function of λ. Right: zoom in on λ range where 3D TV is minimum. 

 

Figure 4.4. 3D TV values for unfiltered and filtered phantom data, with minimization of 3D TV, plotted as a function of λ. 

Right: zoom in on λ range where 3D TV is minimum. 

The 3D TV value calculated for the unfiltered data and minimum 3D TV values obtained with 

each filter (and respective λ) are presented in Table 4.2. 

 

Table 4.2. Summary of the results obtained for the 3D TV values of unfiltered and filtered phantom data with the two 

applications (minimization of 2D TV in all slices and minimization of 3D TV). It is also presented the variation in percentage 

between the unfiltered and filtered values. 

 TV3D λ ∆ (%) 

Unfiltered 3.885E+09   

Filtered min2DTV all slices 2.892E+09 197 -25.57 

Filtered min3DTV 2.519E+09 225 -35.17 
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4.3.2. λ vs. CNRmax(90º) 

From Table 4.2, λ(min2DTV-allslices)=197 and λ(min3DTV)=225 allow the lowest 3D TV 

value for each filter. For this reason, CNR calculated values in the 5 mm disk at 90º in the 

phantom filtered data as a function of λ values ranging between [155, 245] are presented in 

Figure 4.5.  

 

Figure 4.5. Values of CNR at 90º obtained with 2D TV minimization algorithm applied to all slices (a) and 3D TV minimization 

algorithm (b) as a function of λ. 

4.3.3. Phantom analysis 

From Figure 4.5 (a), for the 2D TV minimization algorithm, λ=197 was the value which allows 

the maximum CNR at 90º. On the other hand, λ=195 was the best choice for the 3D TV 

minimization algorithm (Figure 4.5 (b)). Table 4.3 summarizes the quantitative results obtained 

for the filtered data at 90º using these λ values.  

Table 4.3. Results obtained for CNR, FWHM0.5mm and FWHM5.0mm values of unfiltered and filtered phantom data at 90º. 

Each filtered data was obtained using λ corresponding to the maximum CNR at 90º (λ=197 for the 2D TV minimization in all 

slices and λ=195 for the 3D TV minimization). It is also presented the variation in percentage between the unfiltered and filtered 

values. 

90º 

 CNRmax  FWHM0.5mm (mm) FWHM5.0mm (mm) 

Unfiltered 22.106 ∆ (%) 2.594 ∆ (%) 3.100 ∆ (%) 

Filtered min2DTV 

all slices 
28.924 30.84 2.517 -2.97 2.906 -6.28 

Filtered min3DTV 30.167 36.47 2.533 -2.36 3.048 -1.69 

 

As DBT data and algorithms are 3D, besides analysis in z-direction, it is important to also 

ensure quality at 0º. In this way, the quantitative values obtained in the xy reconstruction plane 

are presented in Table 4.4. 

Table 4.4. Results obtained for CNR, FWHM0.5mm and FWHM5.0mm values of unfiltered and filtered phantom data at 0º. 

Each filtered data was obtained using λ corresponding to the maximum CNR at 90º (λ=197 for the 2D TV minimization in all 
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slices and λ=195 for the 3D TV minimization). It is also presented the variation in percentage between the unfiltered and filtered 

values. 

0º 

 CNRmax  FWHM0.5mm (mm) FWHM5.0mm (mm) 

Unfiltered 17.427 ∆ (%) 0.4957 ∆ (%) 4.479 ∆ (%) 

Filtered min2DTV 

all slices 
20.822 19.48 0.4956 -0.02 4.595 2.58 

Filtered min3DTV 23.761 36.35 0.4962 0.09 4.598 2.65 

 

Images of results achieved with volume rendering at 0º of the 0.5 mm and 5 mm disks are 

presented in Figure 4.6 and images at 90º are shown in Figure 4.7. In both Figure 4.6 and Figure 

4.7, the first column (a1 and a2) represent unfiltered disks, the second column (b1 and b2) 

presents filtered disks with 2D TV minimization in all slices, and the last column (c1 and c2) 

shows the results obtained with 3D TV filter. 

 

Figure 4.6. Volume rendering images at 0º for 5 mm disk (top row) and 0.5 mm disk (bottom row) obtained for the unfiltered 

(a1 and a2) and filtered data with 2D TV minimization filter applied to all slices – λ=197 (b1 and b2) and 3D TV minimization 

filter – λ=195 (c1 and c2). 
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Figure 4.7. Volume rendering images at 90º for 5 mm disk (top row) and 0.5 mm disk (bottom row) obtained for the unfiltered 

(a1 and a2) and filtered data with 2D TV minimization filter applied to all slices – λ=197 (b1 and b2) and 3D TV minimization 

filter – λ=195 (c1 and c2). 

4.3.4. Clinical data analysis 

The results for 3D TV values obtained for clinical data with λ ranging between 10 and 200 are 

presented in Figure 4.8 and Figure 4.9 for the 2D TV minimization in all slices and 3D TV 

minimization, respectively. For further analysis, 3D TV values of filtered clinical data were 

obtained with λ ranging from 124 and 144 for the first filter (Figure 4.8-right) and λ between 

135 and 155 for the second (Figure 4.9-right). 

 

Figure 4.8. 3D TV values for unfiltered and filtered clinical data, with minimization of 2D TV in all slices, plotted as a function 

of λ. Right: zoom in on λ range where 3D TV is minimum. 
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Figure 4.9. 3D TV values for unfiltered and filtered clinical data, with minimization of 3D TV, plotted as a function of λ. 

Right: zoom in on λ range where 3D TV is minimum. 

The 3D TV value calculated for the unfiltered clinical data and the minimum 3D TV values 

obtained after the application of each filter (and respective λ) are summarized in Table 4.5. 

Table 4.5. Summary of the results obtained for the 3D TV values of unfiltered and filtered clinical data with the two applications 

(minimization of 2D TV in all slices and minimization of 3D TV). It is also presented the variation in percentage between the 

unfiltered and filtered values. 

 TV3D λ ∆ (%) 

Unfiltered 1.995E+09   

Filtered min2DTV all slices 1.556E+09 135 -22.02 

Filtered min3DTV 1.371E+09 145 -31.29 
 

In Table 4.6 are presented the CNR and FWHM values measured, at 0º and 90º, before and after 

the application of each filter using the respective λ value that allowed to obtain the minimum 

3D TV value. In Figure 4.10, volume rendering of the results obtained with clinical data at 0º 

and 90º are illustrated. 

Table 4.6. Results obtained for CNR and FWHMCalc values of unfiltered and filtered clinical data at 0º and 90º. Each filtered 

data was obtained using λ corresponding to the minimum 3D TV (λ=135 for the 2D TV minimization in all slices and λ=145 

for the 3D TV minimization). It is also presented the variation in percentage between the unfiltered and filtered values. 

0º 

 CNR  FWHMCalc (mm)  

Unfiltered 20.483 ∆ (%) 3.660 ∆ (%) 

Filtered min2DTV all slices 28.490 39.09 3.657 -0.06 

Filtered min3DTV 30.607 49.43 3.667 0.20 

90º 

 CNR  FWHMCalc (mm)  

Unfiltered 18.900 ∆ (%) 9.865 ∆ (%) 

Filtered min2DTV all slices 22.756 20.40 9.318 -5.55 

Filtered min3DTV 23.701 25.40 9.501 -3.69 
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Figure 4.10. Volume rendering at 0º (a, b and c) and 90º (d, e and f) of clinical data. (a1, b1, c1, d1, e1 and f1) represent the 

zoom in of the biggest calcification. Unfiltered data: a (a1) and d (d1); filtered data with 2D TV minimization: b (b1) and e 

(e1); and data obtained with 3D TV minimization filter: c (c1) and f (f1). 

 

4.4. Discussion 

The application of this type of filters after reconstruction is a straightforward approach and it is 

not time-consuming, unlike iterative methods. In addition, these filters are applied to all 

dimensions of DBT data and the visualization of obtained results through 3D volume rendering 

allows a better analysis of the effects in all directions. Here, two TV minimization filters were 

optimized considering the three dimensions and our study focused on: the λ value that solves 

the 3D TV minimization problem, validating the algorithms and the λ value which gives the 

maximum CNR in a high intensity region at 90º (without compromising or even improving the 

z-blur).  
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Considering the results obtained with the phantom, we observe that both filters had more 

influence in CNR values than on FWHM, at 0º and 90º. Regardless of the filter, the main 

objectives of minimizing 3D TV and increasing the CNR, without affecting the blur in the z-

direction, were achieved. Taking into account Figure 4.3 and Figure 4.4, filtered 3D TV values 

are smaller than the 3D TV value of unfiltered data for λ values greater than 100. λ works as a 

weighting factor in Eq. 4.3, which means, it should ensure that the fidelity term has enough 

weight to keep fundamental information in the filtered data. For 3D TV values achieved with λ 

inferior to 100, the fidelity term has not sufficient influence on the results as there is too much 

regularization and unwanted artifacts are introduced. Therefore, in both cases, only results 

obtained with λ values greater than 100 were considered as valid. It is observed that both the 

algorithms presented the expected behavior for this problem, achieving a minimum value of 3D 

TV, with a significant reduction when compared with unfiltered data. The 2D minimization 

filter applied to all slices allowed a 25.57% decrease with λ=197, while the 3D filter achieved 

a 35.17% reduction in the 3D TV value with λ=225 (Table 4.2). As 3D TV considers alterations 

in x, y and z, the algorithm which is truly applied in   (taking into account adjacent slices - 

Figure 4.2 (b)), results in the greatest reduction. 

The λ value which allowed the maximization of CNR at 90º was the same for the sequentially 

applied 2D minimization filter (197), while for the 3D minimization it was changed to 195 

(Figure 4.5). With these λ values, a significant improvement in CNR at 90º was achieved: 

30.84% and 36.47% for the 2D and 3D filters, respectively (Table 4.3). These quantitative 

values resulted in smoother rendered images in Figure 4.7 (b1) and (c1) when compared with 

Figure 4.7 (a1). Blur in z-direction, measured through FWHM of 0.5 mm and 5 mm disks at 

90º, has not increased in any case, achieving a reduction of 6.28% for 5 mm disk when filtered 

with the 2D algorithm slice-by-slice (Table 4.3). This effect is visible through a slight decrease 

in disk thickness in Figure 4.7 (b1). For the 0.5 mm disk (Figure 4.7 (a2) to (c2)), the differences 

are not visually evident (with variations of about 2% to 3% in FWHM). 3D TV minimization 

filter presented better results for the increase in CNR (and resulting noise reduction) but 2D 

minimization filter resulted in a greater reduction in z-blur. This is due to its slice-by-slice 

application, where it does not spread information between adjacent slices to make data 

smoother. Although the actual thickness of the disks is 1 mm, both presented higher values 

(Table 4.3) and the larger the disk, the greater the contamination in z. Despite reducing this 

contamination, this type of filter does not solve this problem. Deconvolution methods may be 
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a good option but are quite sensitive to noise. As these TV minimization filters showed a 

significant increase in CNR (reducing noise), a combination of both approaches can yield 

interesting results that should be studied in the future. 

As pointed out in this paper, all data dimensions are important. In this way, it is essential to also 

ascertain image quality at 0º, i.e., in xy (usual 2D visualization plane). From Table 4.4, we 

observe the results obtained at 0º are consistent with those at 90º. Both filters avoid FWHM 

deterioration with a variation of about 0% for the smallest disk and 2.5% for the largest disk. 

The 2D minimization filter allowed a 19.48% increase in CNR, while 3D filter again showed a 

better result with an increase of 36.25% (similar to 90º). This improvement in CNR is quite 

visible in Figure 4.6 (a1) to (c1) through smoother images with a crescent degree from left 

(Figure 4.6 (a1)) to right (Figure 4.6 (c1)). The small variations in FWHM resulted in 

preservation of the edges and alterations not visible to naked eye in the results of Figure 4.6, 

both for the larger disk (Figure 4.6 (a1) to (c1)) and for the smallest (Figure 4.6 (a2) to (c2)). 

Considering clinical data, results obtained with λ values above 70 were considered valid for 

both algorithms (Figure 4.8 and Figure 4.9). This lower threshold (when compared to phantom) 

varies according to σB of the unfiltered data. As this value is higher for clinical data (which 

contain much more anatomical information), the minimum value of λ must be lower [42]. With 

λ = 135, 2D filter achieved a 22.02% minimization on 3D TV. The 3D filter reached a 3D TV 

minimum (decrease of 31.29%) with λ=145 (Table 4.5). Besides, according to Table 4.6, the 

results of the metrics studied at 0º and 90º are in agreement with those obtained for the phantom. 

At 0º, the CNR has here a more significant increase: 39.09% and 49.43% for the 2D and 3D 

filters, respectively. At 90º, the variations are of a similar order of magnitude: 20.40% and 

25.40% for each case, respectively. CNR measures in clinical data should be interpreted with 

caution because clinical background often considers anatomical noise, which may influence the 

results. On the other hand, taking into account the calcification in this case, also the variations 

obtained for FWHM are similar to those of the phantom. At 0º, these variations are numerically 

small (~ 0%) for both filters. At 90º, the 2D filter achieves once again a greater blur reduction 

(5.55%) than 3D filter (3.69%). Images from Figure 4.10 are in accordance with these 

quantitative results. Areas of higher noise (clearly visible in the zoom of Figure 4.10 (a1) and 

(d1)) become much softer with the application of any of the filters (Figure 4.10 (b1, c1, e1, f1). 

Calcification edges were preserved at 0 ° and its spread was reduced at 90° (Figure 4.10 (e1)). 
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As mentioned before, different rendering parameters such as voxel size in z, sample distance or 

transfer functions can influence the obtained results. Therefore, the presented results are 

compared only with each other or with results obtained under the same conditions. In addition 

to visualization parameters, also acquisition parameters such as mAs (which produces data with 

different noise levels) and kVp (which produces data with different contrast levels) can affect 

the results. Despite these limitations, the presented and validated methodologies are 

reproducible in other scenarios. 

We think it is important to compare these results obtained after reconstruction with FBP with 

DBT data reconstructed with iterative algorithms, which have shown interesting results in terms 

of reducing the out-of-plane artifact. 

 

4.5. Conclusions 

To solve the same TV minimization problem in DBT data, two 3D filters were studied. The 

obtained results were analyzed at two angles (0º and 90º) with a 3D visualization through 

volume rendering. The filters differ in their application. One considers a slice-by-slice 

optimization, sequentially traversing all slices of the data. The other considers the intensity 

values of adjacent slices to make this optimization on each voxel. 

For the rendered phantom images, the suitable Lagrange multiplier (λ) to be used in the discrete 

equation of each filter has been studied with two objectives: first, 3D TV minimization 

(validating the algorithms) and second, CNR maximization at 90º, without increasing the blur 

in z. Analysis at other visualization angles (such as at 45°) should be considered in future work. 

The performance of each filter was also tested with a clinical case containing a calcification. 

The results obtained for the phantom and the clinical data are very encouraging with a 

significantly increased CNR at 0 ° and 90 ° and a small reduction in blur at 90 ° (slight reduction 

of the out-of-plane artifact). In addition, both approaches were applied in a considerably short 

time, taking into account the number of voxels in question. 

This study presents the particularity of two 3D filters and analyzes the performance via 3D 

visualization. In this way, it is possible to get a sense of the impact of these algorithms on the 

data in a direct way, by visualizing the DBT data at once from several angles. 
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Abstract 

Digital Breast Tomosynthesis (DBT) presents out-of-plane artifacts caused by features of high 

intensity. Given observed data and knowledge about the point spread function (PSF), 

deconvolution techniques recover data from a blurred version. However, a correct PSF is 

difficult to achieve and these methods amplify noise. When no information is available about 

the PSF, blind deconvolution can be used. Additionally, Total Variation (TV) minimization 

algorithms have achieved great success due to its virtue of preserving edges while reducing 

image noise. This work presents a novel approach in DBT through the study of out-of-plane 

artifacts using blind deconvolution and noise regularization based on TV minimization. 

Gradient information was also included. The methodology was tested using real phantom data 

and one clinical data set. The results were investigated using conventional 2D slice-by-slice 

visualization and 3D volume rendering. For the 2D analysis, the artifact spread function (ASF) 

and Full Width at Half Maximum (FWHMMASF) of the ASF were considered. The 3D 

quantitative analysis was based on the FWHM of disks profiles at 90º, noise and signal to noise 

ratio (SNR) at 0º and 90º. A marked visual decrease of the artifact with reductions of FWHMASF 

(2D) and FWHM90º (volume rendering) of 23.8% and 23.6%, respectively, was observed. 

Although there was an expected increase in noise level, SNR values were preserved after 

deconvolution. Regardless of the methodology and visualization approach, the objective of 

reducing the out-of-plane artifact was accomplished. Both for the phantom and clinical case, 

the artifact reduction in the z was markedly visible. 

Index Terms: Blind deconvolution, breast tomosynthesis, data visualization, inverse problems, 

total variation minimization.  
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5.1. Introduction 

Digital Breast Tomosynthesis (DBT) has consolidated its position as an imaging technique used 

for breast cancer screening and diagnosis [1-5]. In DBT, a small number of low-dose projec-

tions acquired within a limited angular range are reconstructed to produce a three dimensional 

(3D) image of breast tissue. In the reconstruction, this angular limit restricts the spatial resolu-

tion in the direction perpendicular to the detector plane (z-direction), resulting in out-of-plane 

artifacts (blur in the z-direction). These artifacts are mostly produced by structures of high den-

sity that result in features of high attenuation and intensity (brighter) in DBT images. Examples 

are calcifications, biopsy needles and localization wires. The production of these artifacts could 

potentially obscure breast lesions and would limit the usability of DBT in interventional proce-

dures. This is particularly important since DBT has a crucial role in guided biopsies for lesions 

such as architectural distortions (which can be occult in mammography and ultrasound images) 

[6, 7].  

Currently, DBT images are analyzed with a two dimensional (2D) slice-by-slice visualization 

[8]. DBT presents, on average, sixty 2D slices per exam, which results in time-consuming anal-

ysis both in screening and daily clinical use [9-11]. Some studies have shown promising results 

in an attempt to reduce this time of analysis by highlighting some slices considered of interest 

and thus decreasing the number of slices to be analyzed [12, 13]. However, these approaches 

result in an increase in false positives, requiring the radiologist to review multiple adjacent 

slices, sometimes leading to a more time consuming inspection [14]. Volume rendering is a 3D 

visualization approach which can display data from any angle, resulting in an immediate global 

inspection [15]. Therefore, DBT visualization by volume rendering may represent a comple-

mentary option in the analysis of DBT examinations [16] because it provides an understanding 

of the underlying data at once. In 2D visualization through xy planes along the z-direction, the 

out-of-plane artifact makes the bright structures visible in the in-focus plane and replicated with 

lesser intensity to the underlying planes. In volume rendering this type of artifact remains quite 

evident with a noticeable blur at 90º (visualization perpendicular to detector plate). 

As the out-of-plane artifact is a current drawback in DBT imaging, there are several works 

addressing this topic. Most of them are focused on addressing this problem by filtering the 

projections [17-20], i.e. during reconstruction, with a few focusing on post-processing [21-23]. 

However, even with some of these techniques already implemented by the manufacturers [24], 
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the artifact remains quite visible, with the characterization of calcifications and their morphol-

ogy greatly affected by it [25]. 

The general imaging process can be denoted by the expression: 

𝑓 = ℎ⨂𝑢 + 𝑛 Eq. 5.1 

where f and u are the output (blurred) and the ideal data, respectively, h represents the degrada-

tion function and n is the noise model. In the spatial domain, h is referred to as the point spread 

function (PSF), which is responsible for blurring u. Deconvolution is an inverse filtering pro-

cess in which the effects of convolution by a PSF (blurring) should be inverted [26]. Given f 

and some knowledge about h (PSF) and n, the goal of deconvolution methods is to obtain an 

estimate of the original data, u [27] using fast-Fourier transform algorithms [28].  

One of the most difficult problems in image restoration is obtaining an adequate estimate of the 

PSF to use in deconvolution algorithms. The availability of suitable imaging equipment and 

phantoms which allow the correct determination of the PSF is limited [27]. When no infor-

mation is available about the PSF, blind deconvolution can be used. The goal of blind decon-

volution is to recover u and the PSF from f [28]. On the other hand, recovering the original data 

by inverse filtering involves noise amplification and DBT data are already noisy by nature due 

to the acquisition of low dose projections. Reducing noise without blurring or decreasing details 

and edge definition is a challenge in image processing. Total variation (TV) based minimization 

algorithms have achieved great success due to their ability to preserving edges while reducing 

image noise. TV is a quantity that characterizes how smoothly the intensity of an image is 

changing and it increases significantly in the presence of noise. Studies applying TV minimi-

zation to DBT data have grown significantly [29-35]. 

In this paper, a methodology to study the application of blind deconvolution to DBT data is 

proposed. Four different approaches to blind deconvolution are presented. Using the method 

described in Refs. [36] and [37] and noise regularization based on minimization of TV [33], a 

first estimate for the PSF is obtained. In addition, since the out-of-plane artifact is caused by 

features of high attenuation, representing sudden intensity variations, information about gradi-

ent magnitude is also taken into account during the deconvolution. The results are analyzed 

using real phantom data under 2D slice-by-slice visualization and 3D volume rendering with a 

compositing technique. The proposed methodology is also tested with one clinical DBT data 

set with a large calcification. To the best of our knowledge, this is the first study of out-of-plane 
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artifact reduction through this type of deconvolution and noise regularization in DBT data. 

 

5.2. Materials and methods 

5.2.1. Acquisition, reconstruction and visualization 

To simulate high-density regions, a phantom built in our institution was used. A scheme and an 

image of the phantom are shown in Figure 5.1. The phantom contains two columns of aluminum 

disks embedded in an acrylic background (Figure 5.1 (b)). Considering the vertical direction, 

the aluminum disks were inserted in the central plaque of the phantom (dark gray in Figure 5.1 

(a)). The disks have different diameters and 1 mm thickness. For this study, the first column 

schematically represented in Figure 5.1 (b) was considered (disks with diameters of 5.0 mm, 

3.0 mm, 1.0 mm, 0.5 mm, 2.0 mm and 4.0 mm, from top to bottom). 

 

Figure 5.1. (a) Scheme of the acrylic phantom used. (b) Image of the phantom simulating breast tissue and lesions of high 

attenuation (aluminum disks of different diameters and 1 mm thickness). (b) Scheme of the disks in the first column (top to 

bottom): 5.0 mm, 3.0 mm, 1.0 mm, 0.5 mm, 2.0 mm and 4.0 mm, respectively. 

Additionally, one clinical DBT data set with a large calcification of an anonymous patient was 

selected from a clinical facility database (Hospital da Luz S.A., Lisbon, Portugal). Both phan-

tom and clinical data set were acquired with a Siemens MAMMOMAT Inspiration system (Sie-

mens AG, Healthcare Sector, Erlangen, Germany). The reconstructions have voxel sizes of 

0.085 x 0.085 x 1 mm3 and were obtained with the manufacturer algorithm which uses Filtered 

Back Projection with some post-processing to reduce artifacts and image blurring [38].  

The 3D visualization software was developed in C ++ using the Visualization Toolkit library 

(VTK) version 7.1.0 [39, 40]. The methodologies in study were analyzed with 3D volume ren-

dering visualization using ray casting and compositing. Different rendering parameters yield 
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different images. In this way, the parameters were fixed for all situations so that a correct com-

parison could be made. 

5.2.2. PSF estimation in z-direction 

The phantom was reconstructed in the xy plane and z-depth. As the out-of-plane artifact is 

present in the z-direction, its study was performed considering a PSF in the xz plane. By com-

bining the methods described in Refs. [36] and [37], one xz plane containing the entire 0.5 mm 

disk distribution was chosen. In that plane, a region of interest (ROI) containing the 0.5 mm 

disk and some background (BG) was extracted. To reduce the noise variation, a TV minimiza-

tion filter was applied to this region [33]. In order to achieve the minimum value of TV, several 

values of Lagrange parameter were applied to the longitudinal direction. From this fine analysis, 

Lagrange parameter = 156 has shown to be the one that allows the maximum reduction of TV 

and, for this reason, it was the chosen value for the application of the filter in this direction. In 

addition, the mean intensity of two BG ROIs was calculated and subtracted from that region. 

This region was thus considered as the first estimation of the PSF in z-direction. 

5.2.3. Blind deconvolution 

With blind deconvolution, an approximation of the true data u (deblurred) and the PSF can be 

recovered using observed data f (blurred) and an initial estimation of the PSF. As described in 

Figure 5.2, four approaches using blind deconvolution were studied in this work. 
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Figure 5.2. Pseudocode of the four methods implemented in order to study the application of blind deconvolution in the 

reduction of out-of-plane artifacts in DBT data. 

Method 1 is the simplest one. An initial estimation of the PSF, obtained as described in section 

5.2.2, and rotated data (so that the deconvolution occurs in xz planes) were given as input to 

blind deconvolution. After a certain number of iterations, the deblurred data were obtained.  

The second method is similar to the first one, except that prior to data deblurring, the deconvo-

lution algorithm ran for 20 iterations and the resulting PSF at the end of these iterations was 

given as input, together with the blurred data, for the deconvolution of the data itself. The choice 

of using a PSF after 20 iterations has relied on empirical studies made during the experiment. 

Methods 3 and 4 are identical to methods 1 and 2, respectively, with the exception that as input, 

in addition to the PSF estimation and blurred data, a mask corresponding to the gradient mag-

nitude of the same data was also considered. The gradient magnitude allows to detect sudden 

transitions of intensity corresponding to the high attenuation features which originate the arti-

facts. The use of this mask determines how much the voxel at the corresponding position in the 

input data is considered. In this way, these sudden changes were intended to have zero weight 

so that their influence on the deconvolution was minimal and to reduce the contrast-related 

image artifacts. After the gradient calculation, its complement was obtained and a binarization 

was carried out, where values of zero correspond to that transitions. 

Using observed data as the reference, structural similarity index (SSIM) values calculated for 
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deblurred data at the end of each iteration were considered for stopping the iterative process. In 

order to preserve the fidelity of the results down to the smallest structure, SSIM was calculated 

over an area including the smallest disk (0.5 mm), considering all slices. The deconvolution 

algorithms were stopped when the SSIM dropped below 0.7. 

The algorithms were implemented based on the MATLAB R2016b function deconvblind [41] 

and an Intel® Core ™ i5-5200U CPU (2.20 GHz) @ 8 GB of memory computer was used. 

5.2.4. Data analysis 

The artifact in the z-direction was quantitatively analyzed through standard 2D slice-by-slice 

visualization and also through 3D volume rendering. For the 2D analysis, the artifact spread 

function (ASF) in the z-direction was calculated for each disk as in Eq. 5.2 in order to verify 

the consistency of the results at contrast and noise level. 

𝐴𝑆𝐹(𝑧) =
𝜇𝐷(𝑧) − 𝜇𝐵𝐺(𝑧)

𝜎𝐵𝐺(𝑧)
/
𝜇𝐷(𝑧0) − 𝜇𝐵𝐺(𝑧0)

𝜎𝐵𝐺(𝑧0)
 Eq. 5.2 

In Eq. 5.2, 𝑧0 is the slice location of the in-focus plane of the disk and z an off-focus plane. 𝜇𝐷 

and 𝜇𝐵𝐺 stand for mean pixel values in the ROI over the disk and BG, respectively, 𝜎𝐵𝐺 stands 

for standard deviation in BG ROI. The values of 𝜇𝐵𝐺 and 𝜎𝐵𝐺 were obtained using two circular 

ROIs arranged on either side of the disk. The ASF curve is related with the extent of the artifact, 

namely its width. In this way, the full width at half maximum (FWHMASF) of a Gaussian curve 

fitted to the ASF of each disk, for each method, was calculated. To evaluate the accuracy be-

tween ASF points and the Gaussian curve, the coefficient of determination (R2) was obtained 

for each fitting. 

In volume rendering, when changing a camera's azimuth, its position rotates around the focal 

point. The result is a horizontal rotation (to the left or right) of the camera keeping the distance 

to the focal point constant [40]. In this case, two different angles were used to visualize the 

DBT data: 0º, which corresponds to the visualization parallel to the detector (i.e. projection is 

made on the xy planes along z); and 90º, which is the visualization perpendicular to the detector 

plate (i.e. projection is made on the xz planes along y). For the 3D quantitative evaluation using 

volume rendering, three figures of merit were obtained for each disk: FWHM (at 90º), noise (at 

0º and 90º) and signal to noise ratio (SNR) (at 0º and 90º). The profile of each disk at 90º was 

obtained and the FWHM90º of a Gaussian curve fitted to each profile was considered as an 

indicator of the spreading size of the artifact. In this case, the R2 values was also obtained for 
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each fitting. Noise was calculated as in Eq. 5.3 and, in order to study the relation between signal 

strength and BG noise, SNR was calculated using Eq. 5.4. 

𝑁𝑜𝑖𝑠𝑒 =
𝜇𝐵𝐺

𝜎𝐵𝐺

 Eq. 5.3 

𝑆𝑁𝑅 =
𝜇𝐷

𝜎𝐵𝐺

 Eq. 5.4 

For qualitative analysis, displays of the phantom and one clinical case obtained with volume 

rendering visualization at 0º and 90º are presented. 

5.3. Results 

The SSIM for deblurred data using observed data as reference remained above 0.7 until iteration 

number four (Figure 5.3). The SSIM values obtained for this iteration were 0.75, 0.71, 0.81 and 

0.79 for method 1, 2, 3 and 4, respectively. In this way, the stop iteration was the fourth, 

achieved approximately after 3.7 minutes for the four methods. 

 

Figure 5.3. SSIM values obtained for deblurred data with each iterative blind deconvolution method, as a function of iteration 

number. 

5.3.1. 2D analysis 

The obtained ASF for deblurred data with each method and original data are presented from 

Figure 5.4 (a) to Figure 5.4 (f), for the six disks. 
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Figure 5.4. ASF curves obtained for each deconvolution method for the 0.5 mm (a), 1.0 mm (b), 2.0 mm (c), 3.0 mm (d), 4.0 

mm (e) and 5.0 mm (f) disk. 

The FWHMASF values estimated for each disk are given in Figure 5.5 and the R2 values ranged 

between 0.96 and 1.0, revealing good adjustments. The variation, in percentage, between 

FWHMASF values of blurred and deblurred data with each method, are given in Table 5.1. The 

last row of Table 5.1 represents the average variation (in this case, reduction) of FWHMASF 

achieved with each method, considering the results in each disk. 
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Figure 5.5. FWHMASF values of a Gaussian curve fitted to the ASF of each disk (0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm 

and 5.0 mm), for each method and original data. 

Table 5.1. Variation, in percentage, between the FWHMASF values achieved for the original data and after deconvolution with 

each method. Taking into account the different disks, the average of the obtained variations (reductions) with each method is 

presented in the last row. 

 ∆FWHM ASF (%) 

Disk (mm) Method 1 Method 2 Method 3 Method 4 

0.5 -5.0 -12.5 -12.1 -16.0 

1.0 -11.0 -19.0 -19.9 -23.1 

2.0 -13.9 -21.8 -24.2 -25.2 

3.0 -15.4 -23.2 -17.4 -25.2 

4.0 -19.4 -25.7 -16.7 -26.8 

5.0 -19.1 -25.5 -15.6 -26.4 

mean -14.0 -21.3 -17.7 -23.8 

5.3.2. 3D analysis 

The FWHM90º values obtained for the profile of each disk at 90º are presented in Figure 5.6. 

Gaussian curve fittings for each profile showed R2 values above 0.91. 

 

Figure 5.6. FWHM90º values of a Gaussian curve fitted to the profile of each disk at 90º (0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 

4.0 mm and 5.0 mm), for each method and original data. 

As for the FWHMASF values, the percentage of variation between FWHM90º values of blurred 

and deblurred data with each method, are shown in Table 5.2.  

Table 5.2. Variation, in percentage, between the FWHM90º values achieved for the original data and after deconvolution with 

each method. Taking into account the different disks, the average of the obtained variations with each method is presented in 

the last row. 

 ∆FWHM 90º (%) 
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Disk (mm) Method 1 Method 2 Method 3 Method 4 

0.5 7.4 0.8 -7.4 -8.0 

1.0 -13.5 -23.5 -22.1 -22.4 

2.0 -12.9 -21.8 -12.5 -19.4 

3.0 -21.5 -27.1 -16.1 -31.1 

4.0 -19.7 -25.1 -8.4 -27.6 

5.0 -30.9 -35.1 -15.6 -33.0 

mean -15.2 -21.9 -13.7 -23.6 

 

Results of noise and SNR at 0º and 90º obtained in the phantom original and deblurred images 

for each disk are presented in Figure 5.7 and Figure 5.8, respectively. For a qualitative inspec-

tion, volume rendering images of the phantom at 0º and 90º are presented in Figure 5.9 and 

Figure 5.10, respectively. 

 

Figure 5.7. Noise at 0º (a) and 90º (b) obtained for phantom original and deblurred data with each method plotted as a function 

of disk diameter. 

 

Figure 5.8. SNR at 0º (a) and 90º (b) obtained for phantom original and deblurred data with each method plotted as a function 

of disk diameter. 
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Figure 5.9. 2D displays of composite volume rendering visualization obtained at 0º for blurred (a) and deblurred data with 

method 1 (b), method 2 (c), method 3 (d) and method 4 (e). 

 

Figure 5.10. 2D displays of composite volume rendering visualization obtained at 90º for blurred (a) and deblurred data with 

method 1 (b), method 2 (c), method 3 (d) and method 4 (e). 

To evaluate the consistency of the proposed methodology, method 4 was applied to one clinical 

data set and it was stopped at iteration number four. For clinical data, the method 4 took ap-

proximately 2 minutes to complete the four iterations. 2D displays of composite volume ren-

dering obtained at 0º and 90º are shown in Figure 5.11. 
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Figure 5.11. 2D displays of composite volume rendering visualization obtained at 0 and 90 degrees (a and b, respectively) for 

blurred (a1 and b1) and deblurred data with method 4 (a2 and b2). 

5.4. Discussion 

Four methods using TV minimization and blind deconvolution to reduce out-of-plane artifacts 

in DBT imaging have been presented. The artifact in the z-direction was quantitatively analyzed 

through standard 2D slice-by-slice visualization and with 3D volume rendering. The 2D 

evaluation was focused on the ASF curves of each disk and respective FWHMASF. The 3D 

analysis was done using the FWHM of disks profiles at 90º (FWHM90º), noise and SNR at 0º 

and 90º. 2D displays of volume rendering at 0º and 90º were considered for visual inspection. 

In phantom data we observed that, regardless of the methodology and visualization approach, 

the objective of reducing the out-of-plane artifact was accomplished for all disk sizes (Table 

5.1 and Table 5.2). In 2D, ASF was narrowed by all methods, for all disks, near the in-focus 

slice (slice number 30). Although all disks have a thickness of 1 mm (in z), it was clear that 

their diameter (in xy) affects the size of the artifact. For example, if we compare ASF of 1.0 

mm disk (Figure 5.4 (b)) with ASF of 5.0 mm disk (Figure 5.4 (f)), it is clearly evident that for 

the larger diameter in xy, the artifact in the z-direction is larger. 

These results were confirmed by FWHMASF values in Figure 5.5. The 5.0 mm disk presented 

the highest values of FWHMASF for all cases (original data and deblurred data) and the 0.5 

mm disk the lowest FWHMASF values. Method 4 yielded the lowest FWHMASF values for 

all disks, resulting in the method that, on average, achieves a larger reduction on the ASF width: 

23.8% (Table 5.1). With method 1 and 3, average reductions in FWHMASF of 14.0% and 

17.7% were obtained, respectively, whereas method 2 achieved 21.3%. The R2 values obtained 
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after fitting a Gaussian curve to the ASF points were higher than 0.95, supporting the validity 

of the approximations. In this way, the FWHMASF values were considered as an estimate of 

the ASF curve width. 

With volume rendering visualization, realistic computer-generated images of a 3D scene are 

obtained, yielding a true depth perception available through angular rotation. In this particular 

study, since the out-of-plane artifact propagates through multiple slices, we were interested in 

what happens in the z-direction. For that reason, a rotation of 90º was done and some 

quantitative analysis was performed on these rendered images. Through Figure 5.5 and Figure 

5.6 we can see that the results from both visualizations followed the same pattern. Disks with 

largest dimensions at 0º (xy planes) have a higher FWHM value at 90º and also a higher 

deblurring after deconvolution methods. In Table 5.2, the 5.0 mm disk presented reductions in 

the spreading size of the artifact in the order of 30%, whereas 1.0 mm disk was at 20%. The 

mean values of the variations in Table 5.1 (last row) are comparable to those in Table 5.2. 

Taking all disks into account, the mean reductions of FWHM90º values in volume rendering 

were 15.2%, 21.9%, 13.7% and 23.6% for method 1, 2, 3 and 4, respectively. The R2 values 

obtained after fitting a Gaussian curve to the volume rendering profiles at 90º were higher than 

0.90, showing once again a good adjustment. Additionally, at 90º (Figure 5.10), there was a 

noticeable disk blur reduction in all deblurred images. This is in line with the numerical 

reduction of FWHMASF and FWHM90º values. It is important to notice that, neither in the 

ASF nor in rendered images, were observed ringing artifacts often resultant from this type of 

deconvolution due to the limited bandwidth of the system. However, for the smaller disk, some 

overshoot values were observed in the ASF of methods 3 and 4 (although there are no negative 

effects in the quality of the images resulting from these methods). This can be explained by the 

location of the ROIs and by the fact that the ROI covering the 0.5 mm disk is the smallest one 

(being more sensitive to small variations). Additionally, PSF-based methods are known to cause 

edge artifacts which appear as an overshoot at the sharp transitions of the intensity of the 

phantom. To address this issue, an improvement in the PSF estimation should be considered. 

Deconvolution methods introduced noise at 0º and 90º (Figure 5.7). The noise for each disk was 

measured considering a BG region surrounding the disk. In this way, the differences observed 

are essentially due to the spatial dependence of noise on DBT and not to the disk in question. 

Despite increasing it, deconvolution methods homogenized data noise level, with smaller 

differences obtained in the different spatial regions. These results are perceptible in Figure 5.9 
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and Figure 5.10. In original rendered images (Figure 5.9 (a) and Figure 5.10 (a)), it is visible 

that top and bottom phantom regions, which coincide with larger disks (5.0 mm and 4.0 mm, 

respectively), present a greater noise level than the center region (near the 0.5 mm disk). In 

phantom rendered images resultant from deconvolution methods (Figure 5.9 (b)-(e) and Figure 

5.10 (b)-(e)), this difference between top/bottom regions and the center is not noticeable. On 

the other hand, SNR values of each disk at 0º were very close in the original and deblurred 

images (Figure 5.8 (a)). This means that although there has been an increase in noise level, the 

increase in signal strength on each disk has allowed a balance. SNR was preserved and the 

visualization of each disk was not affected. At 90º (Figure 5.8 (b)), a decrease in SNR values 

for the smaller disks (0.5 mm and 1.0 mm) was observed for all methods whereas, for the 

remaining disks, SNR values increased after deconvolution. By comparing the original (Figure 

5.10 (a)) and deblurred phantom images (Figure 5.10 (b)-(e)), this decrease in SNR is expressed 

with a loss of contrast in smaller disks, in particular with methods 3 and 4. However, the 

diameter of the disks and their shapes after deconvolution remain intact, preserving the 

structural information correctly. In any case, this fact should be carefully analyzed in the future. 

From numerical results of Table 5.1 and Table 5.2, we observed that giving as input a PSF 

which was already estimated after 20 iterations improves the results (method 2 and 4). This 

happens because the initial estimate of PSF (after 20 iterations) is closer to the true PSF, 

improving the deconvolution algorithm results for the same number of iterations. The difference 

between method 2 and 4 was the introduction of the gradient magnitude mask. Due to the high 

intensity of the disks, the deconvolution process can result in noise and blurring, essentially on 

smaller disks (such as 0.5 mm disk), because those are more susceptible to minor fluctuations. 

Results obtained with method 2 were an example of that. Considering Table 5.2, method 2 

presented an equal or superior performance than method 4 on the largest disks (for example, 

5.0 mm and 2.0 mm), whereas on a smaller disk (0.5 mm) the FWHM90º even increased 

compared to the original data. The methods which used the information of the gradient 

magnitude mask, excluding the voxels around the disks during the restoration (assigning zero 

weight to them) were able to preserve this information, without blurring it. This resulted in 

improvements of 7.4% (method 3) and 8.0% (method 4) in the deblurring of the smaller disk. 

The method which achieved the maximum mean reduction of FWHMASF and FWHM90º 

(method 4) was applied to the clinical data. The stop iteration according to the criterion of SSIM 

≥ 0.7 was the fifth. However, to keep the comparison with phantom data reliable, the clinical 
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images presented were obtained in iteration number four (SSIM = 0.87). The results obtained 

with the clinical data (Figure 5.11) were in accordance with the phantom results. There was a 

visible reduction of the big calcification blur at 90º, with an increase of noise level at 0º. The 

preliminary clinical data results here presented are intended to consolidate the results obtained 

with the phantom. Additional studies with volume rendering should be considered in the future. 

For example, the size of the calcification should be known in order to perform a quantitative 

study and thus to draw conclusions in this regard. 

Although beam hardening artifact is extremely rare in DBT [42], it was observed in the images 

of the phantom at 0º (Figure 5.9), namely in the larger disks. This effect is present in the original 

image and remains evident in the images after deconvolution. In this way, it was not introduced 

by blind deconvolution itself. The phantom disks under study have a much higher density than 

the acrylic background, producing a very abrupt transition, thus resulting in this effect on the 

images. However, the images that radiologists analyze on daily basis are clinical images, similar 

to those in Figure 5.11, where this artifact was not observed, neither in the original data nor 

after the application of the blind deconvolution method. 

For future work, we plan to improve the PSF estimation and test other deconvolution 

approaches, such as Wiener and Lucy-Richardson. Deconvolution should also be optimized for 

the noise level in data (not only at the moment of PSF estimation). In addition, as the presented 

methods may produce different gains and results with other scanners (with different angular 

range and number of projections), the study should be extended to different acquisition 

scenarios. 

5.5. Conclusion 

In DBT data acquisition there are two major aspects that greatly influence the reconstructed 

images: the low dose projections and the angular limit. These factors produce noisy images and 

out-of-plane artifacts where high intensity structures lay in the in-focus plane but also spread 

along other planes (which may lead to a significant decrease in DBT image quality in the areas 

surrounding a lesion of interest). As the out-of-plane artifact is a current drawback in DBT 

imaging, four methods based on TV regularization and blind deconvolution have been studied. 

The obtained results were analyzed through standard 2D slice-by-slice visualization and 

through 3D volume rendering. 

The methodologies were tested with phantom and clinical DBT data. Both quantitative and 
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qualitative analysis performed showed the relevance of this approach in improving the image 

quality in DBT by reducing the out-of-plane artifact without introducing other artifacts, typical 

of the deconvolution in noisy data. This methodology can be very useful for future tools in 

DBT, such as computer assisted diagnosis and DBT- guided needle biopsies.  

This study presents the particularity of visual analysis being performed through a truly 3D vis-

ualization (volume rendering). In this way, it is possible to get a sense of the impact of these 

algorithms on the data in a direct way, by visualizing the DBT data at once from several angles 

(in this case, from 0º and 90º). 
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Abstract 

Purpose: Microcalcification clusters (MCs) are one of the most important biomarkers for breast 

cancer, especially in cases of nonpalpable lesions. The vast majority of deep learning studies 

on Digital Breast Tomosynthesis (DBT) are focused on detecting and classifying lesions, 

especially soft tissue lesions, in small regions of interest previously selected by some other 

specific method. Only about 25% of the studies are specific for MCs and all of them are based 

on the classification of small pre-selected regions. A completely automatic and direct 

classification, which receives the entire image, without prior identification of any regions, is 

important and crucial for the usefulness of these techniques in a real clinical and screening 

environment. The main purpose of this work is to implement and evaluate the performance of 

Convolutional Neural Networks (CNNs) regarding to the classification of a complete DBT 

image for the presence or absence of MCs (without any prior identification of regions). 

Methods: In this work, four popular deep CNNs are trained and compared with a new archi-

tecture proposed by us. The main task of these trainings was the classification of DBT cases by 

absence or presence of MCs. A public database of realistic simulated data was used and the 

whole DBT image was taken into account as input. DBT data were considered without and with 

pre-processing (to study the impact of noise reduction and contrast enhancement methods on 

the evaluation of MCs with CNNs). The area under the receiver operating characteristic curve 

(AUC) was used to evaluate the performance.   

Results: Very promising results were achieved with a maximum AUC of 94.19% for the 

Googlenet. The second best AUC value was obtained with the new network implemented, 

CNN-a, with 91.17%. This CNN had the particularity of also being the fastest in terms of 

training and testing time, thus becoming a very interesting model to be considered in the future.  

Conclusions: An automatic classification of DBT images based on deep CNNs for the presence 

or absence of MCs has been presented. Classifying the whole image according to the presence 

or absence of MCs is a difficult task due to the size of MCs and all the information present in 

an entire image. With this work encouraging outcomes were achieved in this regard, obtaining 

similar results to other studies for the detection of larger lesions such as masses. Moreover, 

given the difficulty of visualize the MCs, that are often spread over several slices, this work 

may have an important impact on the clinical analysis of DBT images. 
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6.1. Introduction 

Breast cancer is the most commonly diagnosed type of cancer worldwide [1]. Over the last three 

decades, mortality rates for breast cancer have dropped from its peak by 41%, likely reflecting 

advancements in treatment and earlier detection through increased screening programs [2]. 

However, in women, this disease is still the leading cause of cancer death [1]. 

Breast screening is crucial in identifying breast cancer at an early stage, when it can be better 

located and treated, thus reducing the breast cancer mortality. It is estimated that women who 

chose to participate in an organized breast cancer screening programme have 60% lower risk 

of dying from breast cancer within 10 years after diagnosis [3]. Until recently, these screenings 

and breast cancer detection in general were mainly performed using Digital Mammography 

(DM). However, as a result of its 2D nature, DM presents two major limitations: low sensitivity 

in dense breasts with pathology and low specificity due to normal tissue superposition [4].  

The use of Digital Breast Tomosynthesis (DBT) has been confirming the potential of DBT to 

address these limitations. Initially, DBT was studied and approved in conjunction with DM, 

demonstrating an increase in breast cancer detection rates and a significant reduction in recall 

rates [4-9], particularly with dense breasts [6]. Currently, by including Synthetic 

Mammography (SM) generated from DBT data, DBT alone is approved as a stand-alone 

modality to replace DM [10-16]. 

One major drawback with DBT is its increase in interpretation time when compared to DM [17, 

18]. Computer-Aided Detection (CAD) systems with DBT were implemented and evaluated in 

an attempt to shorten the reading time while maintaining the radiologist performance. In fact, 

some results are very encouraging with reading time reductions between 14% and 29.2% 

without loss of diagnostic performance [19-21]. 

On the other side, there are mixed observations about DBT technology for the detection of 

microcalcification clusters (MCs).  Some studies have revealed inferior image quality for 

visibility of MCs with DBT [22-24] while others have not [25-27]. As MCs are one of the most 

important biomarkers for breast cancer [28, 29], especially in cases of nonpalpable lesions,   

another CAD approach that has been extensively studied with DBT is the use of these 

conventional CAD systems to assist in the correct detection of MCs [30-38]. However, despite 

the efforts and improvements already achieved (such as decreasing the false negative rate), due 

to the high false positive rates and low specificity, these CAD systems have not reached a level 
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of performance that can be translated into a true improvement in the real screening of breast 

cancer [39-42]. 

In recent years, the increase in computational power has allowed the development of deep 

learning artificial intelligence (AI) algorithms composed of multi-layered convolutional neural 

networks (CNNs). These AI systems have emerged as a potential solution in the field of 

automated breast cancer detection in DM and DBT [42]. In fact, recently, there have been 

several published large-scale studies where the aim was to analyze the performance of AI 

systems alone and also the performance of breast radiologists with and without AI [21, 43-50]. 

The AI systems under evaluation achieved a comparable or even improved cancer detection 

accuracy when compared with the human experts. With these promising results and the need 

for an automatic detection system for lesions in DBT and in screening, much research has been 

carried out in this regard. A brief summary of these studies is presented in Table 6.1. 

Table 6.1. Summary of deep learning DBT studies (ROI: Region of interest, AUC: Area under the curve, pAUC: partial AUC). 

Reference Classification task 

ROI / 

Patch / 

Image 

model Best metric 

[51] 
True MCs Vs. False 

positives 

ROI 

(16x16) 
Own AUC: 0.93 

[52] 

Presence/absence of 

masses and 

architectural 

distortions 

Patch 

(256x256) 

Based on 

Alexnet 
Accuracy: 0.8640 

[53] 
Presence/absence of 

masses 

ROI 

(32x32x25) 
Own AUC: 0.847 

[54] 
True masses Vs. 

False positives 

ROI 

(128x128) 
Own AUC: 0.90 

[55] 
True masses Vs. 

False positives 

ROI 

(64x64) 

Based on 

VGG16 
AUC: 0.919 

[56] 

Positive (malignant, 

benign masses) Vs. 

Negative images 

Image 

(224x224) 

Based on 

Alexnet 
AUC: 0.6632 

[57] 
Malignant Vs. 

benign masses 

ROI 

(128x128) 

Based on 

Alexnet 
AUC: 0.90 

[58] 
Malignant Vs. 

benign masses 

Image 

(256x256) 
Own AUC: 0.87 
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[59] 
Presence/absence of 

MCs 

Patch 

(29x29x9) 
Based on [60] pAUC: 0.880 

[61] 
Positive Vs. 

Negative volumes 

Image 

(1024x1024

) 

Based on 

Alexnet, 

Resnet50, 

Xception 

AUC: 0.854 

(Alexnet) 

[62] 
Positive Vs. 

Negative volumes 

Image 

(832x832) 

Based on 

Alexnet, Resnet, 

Densenet and 

Squeezenet 

AUC: 0.91 

(Densenet) 

[63] 
Benign Vs. 

Malignant lesions 

ROI 

(224x224) 

Based on 

VGG19 

AUC (MCs): 

0.97 

[64] 
Positive Vs. 

Negative patches 

Patch 

(512x512) 
Based on Resnet AUC: 0.847 

[65] 

Malignant Vs. 

benign masses Vs. 

normal 

ROI 

(256x256) 

Based on 

VGG16 

AUC: 0.917, 

0.951, 0.993 

(malignant, 

benign, normal) 

[66] 
Malignant Vs. 

benign masses 

ROI 

(224x224) 

Based on 

Densenet121 
AUC: 0.8703 

[67] 

BIRADS 0 Vs. 

BIRADS 1 Vs. 

BIRADS 2 

Image 

(2200x1600

) 

Based on 

Resnet50 

AUC: 0.912 

(BIRADS 0 Vs. 

non-0) 

[68] Predict breast density Image 
Based on 

Resnet34 
AUC: 0.952 

[69] 
True MCs Vs. False 

positives 

ROI 

(128x128) 

Based on 

Resnet18 
AUC: 0.9765 

[70] 

Malignant Vs. 

benign Vs. normal 

images 

Image 

(150x150) 
Own AUC: 0.89 

 

The vast majority of these studies focus on detecting and classifying soft tissue lesions, such as 

masses [52-58, 65, 66]. Besides the fact that these are important lesions for the characterization 

of breast cancer, another reason for this is that, in this type of lesion, it is possible to greatly 

reduce the data input size through interpolation, without losing the spatial resolution required 

to observe the lesion (the same does not occur with MCs). In this way, faster transfer learning 

solutions, useful when there is a lack of available training data (as in the case of DBT), can be 

used with very positive results [54-57, 65, 66]. Even in cases where only regions of interest 

(ROIs) and not full images are selected, such resizing is usually carried out. Furthermore, the 
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vast majority of the works use ROIs or patches where objectively there is or is not a lesion [56, 

58, 61, 62, 67, 68, 70], instead of using the whole image or volume. The use of the whole image 

or volume is important to contextualize the lesions but also to make the classification a useful 

and quick tool in screening, where an image/volume should ideally give some type of objective 

and direct outcome. 

One of the biggest challenges involving DBT in AI is the lack of a large, properly labelled 

public database. All studies mentioned in the Table 6.1 use private databases, making 

generalization and a fair comparison between different studies impractical [71]. Recently, two 

publicly-accessible annotated DBT datasets that will facilitate the evaluation and validation of 

AI algorithms were released. Buda et al. made publicly available a large-scale dataset of DBT 

data. It contains 5610 studies from 5060 patients: 5129 are normal cases (no abnormal findings), 

280 are cases where additional imaging was needed but no biopsy was performed, 112 are 

benign biopsied cases and 89 are cases with proven cancer. This dataset includes masses and 

architectural distortions and was used to train and test a single-phase deep learning detection 

model that reached a baseline sensitivity of 65% at 2 false positives per DBT volume [72]. The 

other dataset resulted from the advancement of in-silico tools. The Virtual Imaging Clinical 

Trial for Regulatory Evaluation (VICTRE) project was created for the evaluation of the imaging 

performance of DBT as a replacement to DM for breast cancer screening. In VICTRE, the 

whole imaging chain was simulated with state-of-the-art tools and a total of 2986 virtual 

realistic patients were generated and imaged with both modalities. The positive cohort (that 

comprises malignant spiculated masses and MCs) included 1944 and 1042 virtual patients with 

and without lesions, respectively [73].   

In this paper, fully automatic methods based on deep learning were studied for classifying DBT 

data. The aim is to input a whole DBT image and have a direct answer about the absence or 

presence of MCs, without the need for prior identification of lesions in specific regions and thus 

completely automate the process of DBT classification. Four existing popular networks were 

considered and compared with a new network proposed by us for this purpose. In order to study 

the impact of some pre-processing methods in increasing the visibility of MCs, the input data 

was considered with and without pre-processing. The VICTRE's public database was used. To 

the best of our knowledge, this is the first study of automatic classification specifically 

dedicated to the presence or absence of MCs in whole DBT images. 
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6.2. Materials and methods 

6.2.1. Database 

This study was centered on the database created for the VICTRE trial [73]. Synthetic images of 

virtual patients were obtained using an in-silico version of the Siemens Mammomat Inspiration 

DBT system using Monte Carlo x-ray simulations. These data are available to the public in the 

Cancer Imaging Archives [74]. Physical compression of left breasts was considered in the 

craniocaudal (CC) orientation. In this database, the cases are divided into absence and presence 

of lesions and also according to the density of the breast (fatty, scattered, heterogeneous and 

dense). The absent cases have no findings and each case with lesions present contains: four 

spiked masses with a 5-mm nominal diameter and mass density 2% higher than normal 

glandular tissue and four MCs consisting of 5 calcified lesions modelled as 195, 179, and 171 

μm of solid calcium oxalate. In this study we included cases without (“absent”) and with MCs 

("presentMCs"). 

Table 6.2 presents a detailed summary of the dataset selected for this work. The reconstructed 

cases have different dimension in x, y and z, depending on breast density: 1624 × 1324 × 62, 

1421 × 1024 × 57, 1148 × 753 × 47 and 1130 × 477 × 38 for fatty, scattered, 

heterogeneous and dense breasts, respectively, with a voxel size of 0.085 × 0.085 × 1 𝑚𝑚3. 

For the absent category, five slices proportionally spaced between the first and the last slice 

were selected for each case (for example, as fatty cases have 62 slices: slices 1, 17, 33 49 and 

62 were selected; as dense cases have 38 slices: slices 1, 11, 21, 31 and 38 were chosen). On 

the other hand, for the presentMCs class, slices containing the center of the cluster were selected 

for each case (in some cases, two clusters had their center on the same slice). Numerically, we 

adopted the usual distribution of breast density in the population: 10% fatty, 40% scattered, 

40% heterogeneous and 10% dense [75] and an approximate balance between cases without 

and with lesions. 

Table 6.2. Detailed summary of the VICTRE data selected for this study. 

 Absent  PresentMCs 

Density Nr. of cases Nr. of slices  Nr. of cases Nr. of slices 

Fatty 20 100  25 99 

Scattered 80 400  100 386 

Heterogeneous 80 400  100 371 

Dense 20 100  25 93 

TOTAL  1000   949 
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6.2.2. Data pre-processing 

In VICTRE’s database, the reconstructed data have signal contamination outside the breast 

region, i.e., in the background (BG). This information is worthless for training the networks 

and, when present, slows down the process as pixels without any useful information end up 

contributing to the mathematical operations involved. In this way, through binarization and 

region growing operations, binary masks that keep information belonging to the breast and 

make everything else zeros were created (“BG suppression”). This step was applied to the 

original data and after all the other types of processing. 

The very low dose projections acquired within a limited angular range in a DBT examination 

results in low statistics (high noise level) in the reconstructed images and data insufficiency. 

For this reason, image denoising methods are very important in order to improve the image 

quality of DBT data. Total variation (TV) minimization algorithms have attracted considerable 

attention in the field because of its ability for smoothing images while preserving the edges. 

Studies applying TV minimization to DBT data have shown excellent results so far [75-79]. 

This methodology was applied during pre-processing step. Minimization of TV greatly 

improves the contrast-to-noise ratio by reducing the noise. In this way, in order to also increase 

the contrast, two other techniques were studied. The contrast-limited adaptive histogram 

equalization (CLAHE) technique was implemented to increase the contrast of all breast 

structures in general and a simpler operation was applied to increase the contrast of structures 

with greater intensity, such as MCs, in particular.  Since we wanted to study whether image 

noise reduction and/or contrast have any impact on CNNs training, some combinations of these 

methods were made, resulting in six different pre-processing approaches (Figure 6.1) and the 

next paragraphs explain how these operations were carried out. 

 

Figure 6.1. The six pre-processing methodologies implemented in order to reduce noise and amplify the visibility of the MCs 

(BG: background, normData: Data normalized between 0 and 1). 

Pre-processing 1: As DBT data is composed by a high level of noise resulting from the 

acquisition of low dose projections, the application of a noise reduction filter was analyzed. 
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This filter consists in minimizing the TV of the data, allowing to significantly reduce the noise 

while preserving the edges and lesion resolution (which is a very important factor when the 

structures under analysis are small MCs). TV is a measure of pixel intensity variation in an 

image and increases significantly in the presence of noise. In each pre-processing that included 

this filter, several Lagrange multipliers were tested to study which allowed the minimum TV 

value [77] and 14 was the chosen value for the application of the filter in all cases. 

Pre-processing 2: The CLAHE technique [80] was implemented based on the MATLAB 

R2020a function adapthisteq [81] to enhance the contrast of the images and the MCs. With this 

technique, the contrast in homogeneous areas is limited to avoid the amplification of noise. The 

contrast transformation function is calculated in small regions of the image individually, rather 

than in the whole image and neighboring regions are then combined through bilinear 

interpolation to eliminate artificially induced boundaries. 

Pre-processing 3 and 4: The techniques described for pre-processing 1 and 2 were combined 

and used together by varying the order by which each one is applied. These steps (3 and 4) were 

also included since techniques 1 and 2 could complement each other and, through preliminary 

studies, it was possible to conclude that their order of implementation show differences in the 

appearance of the final image. In pre-processing 3, the TV minimization filter for noise 

reduction was first applied, followed by the contrast enhancement technique. For pre-

processing 4, the application was in the opposite order, first contrast enhancement technique 

and then noise reduction. 

Pre-processing 5: The data intensity was first normalized between 0 and 1 and then squared to 

attenuate the lower values, highlighting the higher ones belonging to the MCs. With this filter 

our aim was to specifically increase the contrast of regions of higher intensities. 

Pre-processing 6: The method applied in pre-processing 5 was followed by the TV 

minimization filter, as described in pre-processing 1. 

In order to homogenize the data, as well as to find a balance between training time/memory and 

the necessary spatial resolution for the visibility and conspicuity of MCs, all data were resized 

in x and y to 512 × 512. No adjustments have been made in the z direction since training is 

performed slice-by-slice. The images were converted into TIFF slices of 8-bit and input data 

were normalized using the zerocenter method. 
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6.2.3. CNNs 

Since it was crucial to maintain image spatial resolution under certain limits to allow the 

detection of the small MCs, it was not possible to reduce the image dimension to values such 

as 224 × 224 or 227 × 227, which are the most used in pretrained networks for transfer 

learning. Our approach was then to train from scratch four architectures that already exist: 

Alexnet [82], Googlenet [83], Resnet18 [84] and Squeezenet [85]. The choice of these popular 

pre-trained networks was based on the comparison of each model speed and accuracy [86].  

In addition, to alleviate some computational efforts, one faster and lighter new architecture, 

based on Alexnet, is proposed by us: CNN-a (Figure 6.2). 

 

Figure 6.2. Illustration of CNN-a that resulted from the modifications made (bold) to the Alexnet architecture. Conv and 

GroupConv: convolutional and grouped convolutional layers, respectively; pool: max pooling layers; fc: fully connected layer; 

relu: rectified linear unit layer; norm: batch normalization layer; drop: dropout layer. 

In CNN-a, the channel-wise local response normalization layers were replaced by batch 

normalization layers (“norm”) and a new max pooling layer with stride 2, padding 0 and size 

3x3 was added between the two grouped convolutional layers. These modifications are the 

result of several empirical trial and error studies conducted by us during the experiment. 

6.2.4. Methodology pipeline 

Figure 6.3 shows the pipeline followed in this work. Absent and presentMCs data samples were 

selected and the described pre-processings were applied. The training dataset was used to train 
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the CNNs from scratch and the testing dataset was used after training, to evaluate the 

performance of the trained CNNs. 

 

Figure 6.3. Summary of the methodological pipeline followed in this work. 

6.2.5. Training options 

The k-fold technique was used as the cross-validation method to estimate the generalization 

error of the learning process. The data set used was divided into k=3 subsets, i.e., each network 

was trained and tested three times with different data sets, always according to the proportion 

of 2/3 of the cases for training and 1/3 for testing. Since the split was performed at the patient 

level, all the images of the same patient were in either the training set or the test set. Training 

data augmentation was used through random reflection in the left-right direction (to simulate 

the inclusion of examples of right breasts) and data rotation between ±20 degrees.  

The CNNs were trained using the stochastic gradient descent optimizer with momentum 0.9 to 

minimize the cross-entropy loss for classification. The maximum number of epochs was 200 

with a mini-batch size of 32 and a learning rate of 1 × 10−3. Besides the 3-fold cross validation, 

an L2 regularization term of 5 × 10−3 was introduced in the loss function to prevent overfitting. 

6.2.6. Evaluation metrics 

Classification problems usually involve distinguishing between two classes. In the case of 

medical imaging, this distinction is usually made between the absence or presence of 

abnormalities or between benign/malignant lesions. In our work, the objective was to 
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distinguish between the absence or presence of MCs. Sensitivity, specificity, accuracy and area 

under the receiver operating characteristic (ROC) curve (AUC) were considered to evaluate the 

performance. The analysis of only the first three metrics can be limitative because they depend 

on the defined threshold to accept a case as presentMCs or absent. In this way, we used the 

AUC (positive class: presentMCs) as a summary tool that contains the space of all these 

possible thresholds. 

Differences in performance of each classifier were tested using a statistical t-test. A two-tailed 

p-value<0.05 was considered to indicate a significant difference. 

6.3. Results 

6.3.1. Data pre-processing 

All the steps involved in the BG suppression are presented through an example case in. The 

original data was first binarized (Figure 6.4 (b)), the holes in the image were filled (Figure 6.4 

(c)), the largest resultant object was selected (Figure 6.4 (d)) and the complete binary mask was 

achieved by performing region growing in (Figure 6.4 (e)). The profile traced for the white ROI 

(lower right corner of (a) and (f)) shows the cleaning effect of it.   

This methodology was included in all pre-processing approaches, as mentioned in section 6.2.2. 

Zooming in on one MC (Figure 6.5), we can see the different results achieved in this type of 

lesions with each pre-processing method. 

 

Figure 6.4. a) Data with contamined BG; b) First binary image; c) Filled binary image; d) Largest object extracted from binary 

image; e) Result from region growing; f) Final image with BG corrected after binary mask from e) applied to a). 
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Figure 6.5. a) Original data without pre-processing; b) Pre-processing 1 (minimization of TV); c) Pre-processing 2 (CLAHE); 

d) Pre-processing 3 (minTV + CLAHE); e) Pre-processing 4 (CLAHE + minTV); f) Pre-processing 5 (dataNorm2); g) Pre-

processing 6 (dataNorm2 + minTV). 

6.3.2. Performance analysis 

Our research was guided by the AUC results obtained for the different architectures and pre-

processing methods. As mentioned above, the training and testing were repeated three times (3-

fold cross validation) using three distinct datasets. The averaged performances and standard 

deviation values found over the three folds are shown in Table 6.3. 

Table 6.3. Performance results of CNNs trained with original data and with data resulting from the pre-processing 

methodologies, in terms of mean AUC. 

 AUC (%): mean ± stdDev 

 Alexnet Googlenet Resnet18 Squeezenet CNN-a 

Original data 87.92 ± 2.01 90.14 ± 0.38 86.84 ± 2.62 87.43 ± 0.78 89.79 ± 1.23 

Pre-processing 1 87.35 ± 1.63 88.38 ± 1.12 87.96 ± 0.96 88.78 ± 0.99 90.66 ± 0.15 

Pre-processing 2 87.29 ± 0.78 93.02 ± 3.59 86.42 ± 3.26 86.84 ± 3.82 86.95 ± 0.97 

Pre-processing 3 88.61 ± 0.43 94.19 ± 1.12 86.33 ± 1.46 82.15 ± 1.51 85.80 ± 1.73 

Pre-processing 4 90.82 ± 1.29 94.15 ± 1.54 90.13 ± 0.32 86.33 ± 6.31 89.07 ± 1.62 

Pre-processing 5 87.62 ± 0.35 88.65 ± 4.27 90.44 ± 0.41 85.18 ± 2.78 89.54 ± 2.63 

Pre-processing 6 87.47 ± 1.13 89.76 ± 1.76 89.00 ± 1.33 84.09 ± 3.13 91.17 ± 0.07 

 

In Table 6.4 are the p-values calculated to study the measurable statistical differences between 

the best mean AUCs obtained in Table 6.3. 
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Table 6.4. Levels of significance (p-values) obtained from the statistical analysis of the difference between the best mean 

AUCs found. 

p-value 

Googlenet 

preProc3 

Resnet18 

preProc5 

Squeezenet 

preProc1 

CNN-a 

preProc6 

(94.19 ± 1.12) (90.44 ± 0.41) (88.78 ± 0.99) (91.17 ± 0.07) 

Alexnet preProc4 0.027 
0.654 0.095 0.662 

(90.82 ± 1.29) (Alexnet < Googlenet) 

Googlenet preProc3 
 

0.006 0.003 0.010 

(94.19 ± 1.12) (Googlenet > Resnet18) 
(Googlenet > 

Squeezenet) 
(Googlenet > CNN-a) 

Resnet18 preProc5 
  0.055 

0.038 

(90.44 ± 0.41) (Resnet18 < CNN-a) 

Squeezenet preProc1 
   

0.014 

(88.78 ± 0.99) (Squeezenet < CNN-a) 

For p-values < 0.05 (in bold) there is a significant difference 

 

Considering only the best results obtained for averaged AUC, Figure 6.6 shows the ROC curves 

of CNN network trained with the respective data. These curves were obtained by averaging 

between the ROC curves of each fold. Additionally, Figure 6.7 analyzes the values of the 

respective sensitivities, specificities and accuracy in detecting the cases with MCs. 

 

Figure 6.6. Comparisons of ROC curves for the CNNs and training data with the best AUC values. 
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Figure 6.7. Values of sensitivity, specificity and accuracy obtained with the architectures trained with pre-processed data that 

achieved the best mean AUC. 

6.3.3. Density influence 

Breast density interferes with the detection of lesions [87]. In this way, it was important to 

explore the influence of density on the specific detection of MCs with these CNNs trained by 

these datasets. For this purpose, the training dataset were not changed, i.e., the CNNs were 

trained including all breast densities, but they were tested separately with specific datasets for 

each breast density. The results, in form of AUC, are shown in Figure 6.8. 

 

Figure 6.8. AUC values obtained with test datasets composed by the four different breast densities separately (*𝑝 < 0.05: 

there is a significant difference between groups). 

The training that provided the best performance (Googlenet @ pre-processing 3) required a 

training time of approximately 9 h for all 3-folds (using a NVIDIA Quadro P4000 GPU). On 

the other hand, the fastest training and second best performance was obtained, simultaneously, 

for our CNN-a with data from pre-processing 6. Table 6.5 shows the training and inference 

times for all CNNs.  
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Table 6.5. Training times, in hours, needed for each CNN after 3-fold cross validation and mean inference time (in seconds) 

needed to classify each image. 

 Training time (hours) Inference time / slice (secs) 

CNN-a 2.4 0.0057 

Alexnet 4.1 0.0062 

Squeezenet 4.4 0.0083 

Resnet18 7.8 0.0143 

Googlenet 8.9 0.0158 

 

6.4. Discussion 

In this work, the training from scratch of four popular CNNs and a new architecture proposed 

by us was investigated. Given as input the whole DBT image (and not only some specific ROIs), 

the classification of cases by absence or presence of MCs was the main task of these trainings. 

Original data and data resulting from pre-processing methods (to increase MCs visibility) were 

considered. The DBT dataset used for training and testing are from the publicly database 

available at The Cancer Imaging Archive website [74]. 

 

In order to avoid useless complex mathematical operations, all the information outside the 

breast region was eliminated. In four steps, an automatic methodology that creates a binary 

image where only the information inside the breast is considered was implemented. The 

comparison between the contamined data and the data with complete suppression of BG signal 

can be observed through the profiles of the yellow regions in Figure 6.4 (a) and Figure 6.4 (f), 

respectively. This operation represented a difference of about 5% in training times, without 

performance losses, and it is usually done in this type of CNNs training.  

Data pre-processing can be very useful when training CNNs from scratch to facilitate the 

detection and classification processes. In this work, both original data and data resulting from 

different pre-processing methods were considered as input. A comprehensive study of different 

methods to make the MCs more visible to the algorithms was carried out.  

In original data, the MCs showed reasonable contrast to the naked eye (Figure 6.5 (a)). This 

highlight can be compromised due to their size and the presence of noise and other structures 

that can make them less visible. Both pre-processing 1 and pre-processing 2, had a great 

influence on MCs data. Pre-processing 1 smoothed the region around the MCs, preserving its 

edges (Figure 6.5 (b)), while pre-processing 2 contributed to an increase in contrast between all 
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structures, whether they were MCs or not (Figure 6.5 (c)). We thought it might be interesting 

to combine a technique that is essentially for noise reduction (TV minimization) with a CLAHE 

technique and, in this way, pre-processing 3 and 4 corresponding to Figure 6.5 (d) and Figure 

6.5 (e), respectively, were implemented. While, visually, the MCs stand out from the 

surrounding noise in Figure 6.5 (d), in Figure 6.5 (e) where the contrast enhancement was 

applied first and the noise reduction latter, the MCs appear to fade. Additionally, for its 

simplicity, another method based on squared normalized data was also studied (pre-processing 

5). This operation worked quite well when it comes to highlighting high intensity structures 

(Figure 6.5 (f)). The application of the TV minimization filter to these data (pre-processing 6) 

also resulted in a reduction of anatomical noise that allows for greater differentiation of the 

MCs, as can be seen in Figure 6.5 (g). 

This descriptive analysis is in line with the numerical results obtained for the trained CNNs. 

From Table 6.3, it can be seen that not only the type of input data have affected the results, but 

also the CNN architecture itself. In fact, the best AUC value of each CNN was achieved with 

different input data. Googlenet showed the best AUC with data processed with method 3 

(94.19%), CNN-a with method 6 (91.17%), Alexnet with method 4 (90.82%), Resnet18 with 

method 5 (90.44%) and Squeezenet with method 1 (88.78%). CNNs trained with original data 

didn’t generate a maximum of AUC. However, all the AUC values were higher than 86%, 

showing that, even without any pre-processing, this could be an option. As shown in Figure 6.9 

(a), for cases where the MCs are in a region with less noise and are more evident, all the CNNs 

get a correct classification in the original data. On the other hand, despite the efforts to reduce 

noise and increase contrast, some cases like the one in Figure 6.9 (b) were incorrectly classified 

as negative by all CNNs, even varying the pre-processing. Although pre-processing 2 didn't 

contribute to a maximum either, it resulted in the third best AUC for Googlenet. From Table 

6.3, it is also possible to conclude that Googlenet was the most sensitive CNN to data contrast 

since its best results of AUC were obtained with methods where the contrast enhancement 

operation was performed. In the example of a case where MCs is in a region with other 

structures also of greater contrast (Figure 6.9 (c) and (d)), Googlenet took advantage of pre-

processing 3 and was the only CNN to correctly classify this case. As a matter of fact, the 

Googlenet trained with data processed by method 3 presented significantly higher values in the 

detection of cases with MCs (p-value < 0.05, Table 6.4). This superiority is quite visible in the 

isolated ROC curve in the Figure 6.5. The second-best performance corresponded to the CNN-
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a trained with data from pre-processing 6, being this superiority significant in relation to 

Resnet18 and Squeezenet Table 6.4. In Figure 6.9 (e) there is a case of a MCs that is masked 

and that was only detected by CNN-a after pre-processing 6 (Figure 6.9 (f)). Thus, and in 

agreement with the results in Table 6.3, we can assume that it is the combination of both factors 

(data type and CNN) that determines the result of a correct classification. 

 

Figure 6.9. Some examples of MCs in the DBT data used. (a) True positive (case classified correctly as positive by all CNNs, 

even in the original image); (b) False negative (case incorrectly classified as negative by all CNNs, even varying the pre-

processing); (c) original case classified as negative and that was only detected by Googlenet when pre-processed with method 

3 (d); (e) original case classified as negative and that was only detected by CNN-a when pre-processed with method 6 (f). 

The variations and differences in AUC values obtained for each situation were, in general, in 

agreement with the specificity, sensitivity and accuracy values obtained in Figure 6.7. Although 

specificity values are higher than sensitivity in most cases, these differences are not significant 

(p-value > 0.05 in all cases). As for accuracy, Googlenet and CNN-a presented the best values 

of 85.68% and 82.45%, respectively.  

In the VICTRE database, it is possible to separate the cases by breast density and a study was 

published where a model observer was trained separately for detecting lesions in each of the 

four breast density types and then tested it on the same density type to obtain the individual 

AUC for each density [88]. As a conclusion of this study, Zeng et al. believe it would be 

appropriate to train the model observer with mixed breast density images. This was exactly 

what we did with the deep learning architectures proposed in this work. However, in order to 

understand whether the presented methodologies were influenced or not by breast density, the 

same CNNs were tested separately for classifying the DBT data about the presence of MCs in 

each of the four breast density types (fatty, scattered, heterogeneous and dense) and the results 

analyzed in terms of AUC. As seen in Figure 6.7, only Squeezenet was especially sensitive to 

density, showing significant differences in detection between three density types. The correct 

classification of cases with MCs in dense breasts with the Squeezenet was significantly lower 

compared to the other densities. In general, due to the lower anatomical background, fatty 
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breasts allowed good classifications of cases with MCs. The Googlenet was the exception, with 

fatty breasts corresponding to the lowest AUC value (p>0.05).   

Training and inference times of Table 6.5  are purely indicative as they vary depending on the 

computation power available. But, in relative terms, the already existent networks (Googlenet, 

Resnet18, Squeezenet and Alexnet) lead with the four longest times. On the other hand, 

although the CNN with the best AUC (Googlenet) showed the longest time, the second best 

(CNN-a) was the faster network. As inference time is the key when the models are used in 

clinic, it should be noted that with CNN-a it was possible to classify an image never seen by 

the model before about three times faster than with Googlenet. From our point of view, this fact 

makes this architecture adapted from Alexnet very interesting for future studies that involve 

more complex and longer trainings, such as object detection with state-of-the-art faster region-

based CNNs. One of the most determining factors in the training/testing time of these CNNs is 

the feature extraction network that is used as the basis. Thus, a faster model such as CNN-a, 

which presents good results regarding the classification of cases with MCs, should be an option 

to be studied in the future. 

In two published studies (2D and 3D), where a prescreening stage generates possible MCs and 

the proposed CNNs differentiate between true MCs and false positives, AUCs values of 93% 

[51] and 97.65% [69] were reported. Both studies used ROIs instead of the whole 

image/volume. Some regions don’t have any lesion or relevant information, while others 

contain only the lesions. On the other hand, in a study where the main objective was to compare 

the detection of MCs in images reconstructed with two different reconstruction algorithms 

(EMPIRE and filtered back projection), small 3D patches were used as input and the best result 

obtained in terms of partial AUC was 88.0% [59]. 

In another study, a ROI was selected for each lesion on a DBT key slice, features were extracted 

using a pre-trained CNN and served as input to a support vector machine classifier trained in 

the task of predicting likelihood of malignancy [63]. The AUC results obtained in CC view for 

MCs detection was 82%. Other views were included and, considering MLO (mediolateral 

oblique) in addition to CC view, AUC improved to 97%, showing the importance of having 

both views available. 

The only work that took the whole image information into account, used 2D synthetic 

mammographic images obtained from DBT exams to train a multi-view deep CNN to classify 

screening images into BI RADS classes (0: further evaluation is required due to a suspicious 
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abnormality; 1: the mammogram is negative; and 2: the mammogram is benign). The AUC 

values obtained were as follow: BI-RADS 0 vs. others: 91.2%; BI-RADS 1 vs. others: 90.5%; 

BIRADS 2 vs. others: 90.0% [67]. 

A direct comparison between literature values and those obtained in this work is not fair due to 

several reasons. The first is that different databases were used (those of the studies mentioned 

are all private databases). The second is that the training data have quite different characteristics 

due to different detection tasks. Some used only small parts of the data, and those which used 

the entire image did not refer to DBT slices but rather to synthetic mammograms obtained with 

DBT. Nevertheless, it is possible to confirm that the results obtained by our study (maximum 

value of AUC achieved: 94.19%) are quite competitive when compared to those available in 

the literature. 

There are some limitations in this study. The first is that the available dataset is limited to the 

CC view and one manufacturer. The second is that only one type of lesion (MCs) was 

considered and, within the available data, there may be some similarities between lesions. We 

tried to overcome this fact through data augmentation with reflection and rotation. The third is 

that, despite being very realistic, the data are simulated and therefore don’t correspond to real 

patients. Finally, since DBT is a 3D technique, the fact that we consider information in 2D 

slices can limit the advantage provided by the depth information. Furthermore, the true clinical 

value lies on the classification of a volume, because this is what radiologists do every day in 

clinical practice. We believe that this work is a starting point and can serve as a basis for the 

implementation of a 3D training with all volume and 3D architectures, considering real data 

volumes and not just some slices. In addition, it will also be important to diversify the lesions, 

including data obtained from other views (MLO), manufacturers and reconstruction algorithms. 

As for the training of the CNNs themselves, other optimizers that have been producing good 

results (such as Adam optimizer), different mini-batch sizes and learning rates should be tested 

and evaluated. 

6.5. Conclusions 

Deep learning AI algorithms composed of multi-layered CNNs have been growing over the 

past five years and have shown very promising results in supporting the detection of breast 

cancer. One of the great difficulties in training these algorithms is the lack of labelled DBT 
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databases. Furthermore, all published studies refer to private databases, thus limiting the 

comparison and improvement of the works carried out. 

In this study, a public DBT dataset was used to train from scratch four popular CNNs and a 

new CNN model proposed by us. The main task of our algorithms was to classify a DBT case 

for the presence or absence of MCs, given the whole DBT image as input. Beside the original 

data, six different pre-processing methodologies, which the main purpose was to highlight MCs, 

were implemented to generate different input datasets.  

Classifying the whole image according to the presence or absence of MCs is a difficult task due 

to the size of MCs and all the information present in an entire image.  With this work, we were 

able to achieve encouraging outcomes in this regard, obtaining similar results to other studies 

for the detection of larger lesions such as masses. The classification of cases with/without MCs 

was greatly influenced by the type of input data and our new model achieved the second best 

performance in the shortest time, thus becoming a very interesting model to be considered in 

future studies. 
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Abstract 

Microcalcification clusters (MCs) are one of the most important biomarkers for breast cancer 

and Digital Breast Tomosynthesis (DBT) has consolidated its role in breast cancer imaging. As 

there are mixed observations about MCs detection using DBT, it is important to develop tools 

that improve this task. Furthermore, the visualization mode of MCs is also crucial, as their 

diagnosis is associated with their 3D morphology. In this work, DBT data from a public 

database were used to train a faster region-based convolutional neural network (R-CNN) to 

locate MCs in entire DBT. Additionally, the detected MCs were further analyzed through 

standard 2D visualization and 3D volume rendering (VR) specifically developed for DBT data. 

For MCs detection, the sensitivity of our Faster R-CNN was 60% with 4 false positives. These 

preliminary results are very promising and can be further improved. On the other hand, the 3D 

VR visualization provided important information, with higher quality and discernment of the 

detected MCs. The developed pipeline may help radiologists since (1) it indicates specific breast 

regions with possible lesions that deserve additional attention and (2) as the rendering of the 

MCs is similar to a segmentation, a detailed complementary analysis of their 3D morphology 

is possible. 
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6.1. Introduction 

Breast cancer is the type of cancer with higher incidence, among all cancers and both sexes, 

and it still represents the biggest cause of cancer mortality among women [1]. The mortality 

rate from this disease has been decreasing is the last decades due to the new therapies and the 

implementation of screening programs for early detection [2]. 

The use of Digital Breast Tomosynthesis (DBT) has been confirming its potential to address 

the tissue overlapping limitations of Digital Mammography (DM), the gold standard for breast 

screening until recently. In fact, by including synthetic mammographies generated from DBT 

data, DBT alone is now used as a stand-alone modality to replace DM [3-9]. DBT volume data 

can be analyzed in depth through several 2D slices (standard visualization slice-by-slice). This 

multi-slice inspection leads to a longer analysis time (because instead of two images, 

radiologists have to inspect an average of sixty images per patient), which represent a problem 

in daily practice and screening environment [10-12]. 

Computer-Aided Detection (CAD) systems based on DBT have been implemented and 

evaluated in an attempt to shorten the reading time while maintaining the radiologist 

performance. However, despite the efforts and improvements already achieved, due to the high 

false positive (FP) rates and low specificity, these CAD systems have not reached a level of 

performance that can be translated into a true improvement in the real screening of breast cancer 

[13-16]. 

On the other hand, a different type of visualization, such as 3D volume rendering (VR), may 

play an important complementary role in breast cancer diagnosis [17]. With a visualization of 

the object through multiple angles, one of the advantages of VR is to provide an intuitive 

understanding of the underlying data at once. In addition, as VR yields a true depth perception 

[18], it can help in the analysis of lesions such as microcalcification clusters (MCs), sometimes 

referred as harder to detect in DBT. These MCs are often spread across several slices in the 

slice-by-slice visualization, making the interpretation difficult. In this way, a better 

understanding of its true 3D morphology is important to differentiate between benign and 

malignant microcalcifications. 

In recent years, the increase in computational power and bigger datasets have allowed the 

development of algorithms for automatic object detection with deep learning. The region-based 

convolutional neural networks (R-CNNs) are one of the main current focuses of research and 
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development of these methods [19]. As R-CNN and its descendent “fast R-CNN” [20] are 

computationally expensive and extremely slow, another method has emerged: “Faster R-CNN” 

[21]. With this object detection network, both the CNN-based regional proposals and the 

regional classification module are trained together with significant weight sharing, led to 

increased sensitivity for object detection and faster speed.  

The published studies that use deep CNNs to detect and localize lesions in DBT are still very 

limited. In fact, the few works that exist are related with the detection of soft tissue lesions [22-

25]. Regarding the use of Faster R-CNN in particular, [26] developed a CAD system for masses 

detection in DBT using a Faster R-CNN, which is later compared to a framework of a 3D-Mask 

R-CNN for mass detection and segmentation [27]. [28] propose a Faster R-CNN that uses 

mammary gland distribution as a prior information to detect architectural distortions in DBT. 

In this paper, a Faster R-CNN was trained for detecting MCs in DBT. The aim is to input a 

whole DBT image into the network and have a direct answer about the localization or absence 

of MCs. This information about the location is then introduced into a 3D VR visualization 

software so that a 3D volume of interest containing the predicted MCs can be obtained. A public 

simulated database was used and the preliminary results obtained are presented. To the best of 

our knowledge, this is the first study of automatic localization of MCs in whole DBT images 

and the first time the DBT output of a deep CNN is rendered and presented as a 3D volume of 

interest. 

7.2. Materials and methods 

This work was implemented on the MATLAB R2020a and a NVIDIA Quadro P4000 GPU 

computer was used. 

7.2.1. Database and pre-processing 

The public database of Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) 

project which contains a total of 2986 virtual realistic patients imaged with DBT was used [29, 

30]. This database contains cases without lesions (absent) and with malignant masses and MCs. 

For training, only cases with MCs were considered (915 in total: 665 complete breast images 

and 250 images containing only MCs) and for the testing, absent and MC cases were included 

(280 and 284 complete breast images, respectively). Each case with lesion contains four MCs 

consisting of 5 calcified lesions modelled as 195, 179, and 171 μm of solid calcium oxalate. 
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In addition to the information about the presence or absence of MCs, in cases where MCs were 

present, information about the corresponding bounding boxes (BBs) was also given to the 

network. This information, in the form of x, y and z coordinates as well as width and height, is 

s in the VICTRE database. 

We adopted the usual distribution of breast density in the general population: 10% fatty, 40% 

scattered, 40% heterogeneous and 10% dense. The reconstructed cases have different 

dimension in x, y and z, depending on breast density: 1624 × 1324 × 62, 1421 × 1024 × 57, 

1148 × 753 × 47 and 1130 × 477 × 38 for fatty, scattered, heterogeneous and dense breasts, 

respectively, with a voxel size of 0.085 × 0.085 × 1 𝑚𝑚3. 

The data intensity was first normalized between 0 and 1 and then squared to highlight the higher 

intensity values belonging to the MCs, while attenuate the lower ones. With this pre-processing 

step our aim was to specifically increase the contrast of regions of higher intensities. In addition, 

through binarization and region growing operations, binary masks that keep information 

belonging to the breast and make everything else zero were created (background suppression). 

7.2.2. Faster R-CNN object detector 

Faster R-CNN is based on a CNN and a region proposal network (RPN) for detecting, localizing 

and classifying objects in an image. The CNN module (typically a pre-trained CNN), outputs a 

set of feature maps and, for that reason, it is also called feature extraction network. In our work, 

we used the ResNet-18 model, trained on more than a million images from the ImageNet 

database [31]. The RPN is on top of the last convolutional layer of the CNN and it uses default 

bounding boxes (anchors) with different sizes and aspect ratios over the feature maps generated 

from pre-trained CNN in order to find objects with varying sizes and shapes. It is trained to 

output a set of object proposals on the image, each with an “objectness” score, regardless of the 

class of the object (it only looks if it is an object or background). The boxes with the highest 

score are called region proposals and are introduced in another branch of the network were they 

are resampled to a fixed size (ROI Pooling) and, typically using few fully connected layers, the 

class of the object present in the boundary boxes is determined. Further details about Faster R-

CNN can be found in the original paper [21]. The main parameters used to define our Faster R-

CNN are presented in Table 7.1. 
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Table 7.1. Parameters used to design the Faster R-CNN. 

Input size 224x224x3 

Anchor Boxes 42x27; 63x45; 45x41 

Pre-trained CNN ResNet-18 

7.2.3. Faster R-CNN training 

The Faster R-CNN was trained using the end-to-end method, where the RPN and the region 

classification networks were trained simultaneously along 660k iterations. Table 7.2 presents 

the main training options defined for this work.  

During training, several regions of the image are processed from the training database. The 

positive and negative overlap range properties control which image regions are used for 

training. This overlap ratio is defined as the Intersection over Union (IoU) metric that describes 

the extent of overlap between two boxes (ground truth and predicted BB). The greater the region 

of overlap, the greater the IOU. The model was trained to minimize the mean square error loss 

between the predicted BBs and the ground truth using the Stochastic Gradient Descent 

optimizer [32].   

Table 7.2. Options used to train the Faster R-CNN. 

Solver Stochastic Gradient Descent with momentum 

Momentum 0.9 

Size of mini-batch 1 

Learning rate 1e-3 

Factor for L2 regularization 5e-4 

Training method End-to-end 

Positive Overlap Range [0.3 1] 

Negative Overlap Range [0 0.1] 

To prevent overfitting, each image in the training set was augmented by random reflection in 

the left-right direction and rotation between -20º and 20º. In addition, a L2 regularization term 

for the weight decay was introduced in the loss function. 

7.2.4. Evaluation metrics 

The network's ability to accurately detect and locate the MCs was evaluated through the Free-

response Receiver Operating Characteristic (FROC) curve [33]. To obtain a point on the FROC 

curve, a threshold value is fixed and only the findings that have scores above that threshold are 

selected. Then the sensitivity (true positive fraction) and mean number of FPs per image are 

determined. 
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7.2.5. Data visualization 

Figure 7.1 shows the scheme followed during and after Faster R-CNN training. A testing set is 

evaluated for the detection of MCs using the trained Faster R-CNN and the output results 

(predicted BBs) are visualized. In addition to the standard 2D visualization, the output detection 

was also analyzed through 3D visualization with VR. The 2D visualization was performed by 

calculating the 2D maximum intensity projection (MIP) considering the slice where the cluster 

was detected and the four adjacent slices (two down and two up). The 3D visualization was 

performed through VR with 3D MIP considering the same slices. 

The Visualization Toolkit library (VTK) version 7.1.0. (Kitware, New York, EUA) [34, 35] 

was used to develop 3D specific software in order to visualize DBT data through VR. The 

opacity/color transfer functions for an adequate rendering of these data were calculated 

accordingly to previous work [36]. 

 

Figure 7.1. Pipeline followed for connection between the output of the trained faster R-CNN and the volume rendering 

visualization of the detected object. 

In VR, changing the azimuth of a camera rotates its position around the focal point [35] allowing 

an immediate notion of the entire volume in 3D. In this way, the volume of interest containing 

the detected MCs is presented from several angles (from 0º to 90º). 
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7.3. Results 

The training of 660k iterations was performed during 12 days. The analysis of one test image 

was done in 0.6 seconds (mean time) and for an entire DBT volume our faster R-CNN needed, 

on average, 29 seconds (depending on the size). 

7.3.1. Faster R-CNN detection 

Figure 7.2 presents the FROC curve for the performance of the training model to accurately 

detect and locate the MCs for several thresholds. In addition, the discriminative sensitivity 

values obtained for less than 8 FP /image are detailed in the Table 7.3. 

 

Figure 7.2. The FROC curve for the test dataset. 

Table 7.3. The sensitivity values for less than 8 FP/image. 

Sensitivity (%) FP/image # MCs detected # MCs undetected 

40 0.1 125 159 

47 0.2 146 138 

51 0.8 158 126 

54 1.8 170 114 

57 2.7 178 106 

59 3.2 184 100 

61 4.8 186 98 

62 5.7 194 90 

66 7.8 206 78 

 

7.3.2. Data visualization 

Four examples of detection output, including the FPs (yellow) and true positives (green) BBs, 

obtained with a threshold of 0.9 are presented in Figure 7.3. The corresponding score is also 

shown. As described, each detected MC is presented through two visualization modes: 2D slice-

by-slice and 3D VR. As 3D VR is inspected through several angles (0, 22.5º, 45º, 67.5º and 
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90º), 2D MIP slice-by-slice is presented using xy and xz representations for comparison with 

VR 0º and 90º, respectively. 
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Figure 7.3. Example of four detection outputs obtained with a threshold of 0.9. Green: Ground truth BB; Yellow: predicted 

BB (without score: FPs, with score: true positives). The predicted results are visualized with 2D slice-by-slice represented 

through xy and xz planes and 3D VR with five different angles (0º, 22.5º, 45º, 67.5º and 90º). 
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In Figure 7.4 (a) are presented four examples of missed detections (false negatives) and on 

Figure 7.4 (b) four incorrect detections (FPs). The detection results are then visualized through 

2D slice-by-slice and 3D VR at xy and 0º, respectively. 

 

Figure 7.4. Example of four missed detections (false negatives) and four incorrect detections (FPs). The BB are visualized 

thourgh 2D slice-by-slice in xy and 3D VR ar 0º. 

 

Visualization with 3D VR is very flexible and includes parameters that can significantly change 

its appearance, as is the case of transfer functions. The Figure 7.5 shows the displays of four 

detected MC obtained with 2D visualization and 3D VR using two different transfer functions. 
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Figure 7.5. Example of four detection outputs. Green: Ground truth BB; yellow: predicted BB. The predicted results are 

visualized with 2D MIP slice-by-slice represented through xy and xz planes and 3D VR with two different angles (0º and 90º). 

Each 3D VR was obtained using two different transfer functions, allowing different levels of MC segmentations. 
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7.4. Discussion and conclusions 

In this work, a Faster R-CNN detector was trained to detect MCs in DBT data and the 

preliminary results obtained were analyzed through two different forms of visualization: 

standard 2D slice-by-slice and 3D VR specifically developed for DBT. VR is presented as a 

supplementary visualization of the detected MCs, providing a more detailed and high quality 

complementary information. 

A DBT dataset from the publicly available database at The Cancer Imaging Archive website 

[30] was used. The train dataset consisted in entire DBT images and also some regions of 

interest containing only the MCs. These smaller regions were included because the DBT images 

are much bigger than the ground truth boxes of MCs, reaching ratios of 30:1. As the size of the 

images was not changed in order keep the necessary spatial resolution to see the small 

microcalcifications, it was important to have training inputs with an emphasis on the object to 

be detected. Nevertheless, the test dataset only contains entire images, as happens in clinical or 

screening practice. 

In this type of lesion detection task, the time required for the detector to give an answer about 

the input data is very important because it should be useful in real time clinical practice. 29 

seconds to analyze a volume of DBT data (which can comprise ~130 million voxels) is 

reasonable but this value can be improved using computers with greater power. Also, this time 

is highly influenced by the feature extraction network. For this reason, in this preliminary work, 

we chose a network with a reasonable balance between time and accuracy (ResNet-18). 

However, other pre-trained networks that may show better results and different detection times 

should be studied. 

The most used metric to analyze the performance of this type of detector is the FROC curve. 

The results obtained with this curve in Figure 7.2 and Table 7.3 reveal that it was possible to 

achieve a sensitivity of around 60% with 4 FP/image. These preliminary results are promising 

but need further improvement by adding more training data, optimizing some network 

parameters, training over a greater number of iterations and, as already mentioned, using 

different pre-trained CNNs. 

The output results of Figure 7.3 were obtained by using a threshold of 0.9 (i.e., only scores 

above 0.9 were considered), which corresponds to a sensitivity of about 50% for 0.8 FP/image. 

Four examples of output from the Faster R-CNN were presented. The number of FP found for 
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this threshold (yellow BBs without a score) varies from three (in the first case) to zero (in the 

third and fourth case). The correctly detected MCs by the yellow BBs with scores that overlap 

the true BBs (green) were observed using the two mentioned visualization methods. In general, 

the MCs have a reasonable visibility in the xy plane with the 2D MIP slice-by-slice over five 

adjacent slices but are distorted in xz, losing some definition due to the larger voxel size in z. 

The 3D VR at 0º and 90º can be directly compared with the 2D visualization in the xy and xz 

planes, respectively. For all cases, there is better contrast and less noise in the VR at 0º, with 

better discernment of the MCs. This superior definition is noticeable when comparing the VR 

at 90º with the xz plane of the 2D visualization. In the VR at 90º there is a clear discrimination 

of the MCs, and it is possible to observe quite clearly the calcifications individually and with 

some degree of reality. 

It is also important to analyze some situations where the detection was not correct (Figure 7.4). 

In the case of false negatives, there were prominent lesions that the algorithm did not detect 

(Figure 7.4 (a) last column) and others where the MCs were somehow masked, making their 

detection difficult (Figure 7.4 (a) third column). In the case of FPs, in fact, there were some 

situations where, even to the human eye, doubt could be raised (Figure 7.4 (b) second and third 

column). But, in the remaining situations, there is essentially a spiculated noise that was 

interpreted as MC. It is therefore important to further improve the quality of detection. 

On the other hand, the flexibility of visualization using VR is demonstrated with the images in 

Figure 7.5. In addition to have the spatial distribution in the three directions (x, y and z), with 

different transfer functions we can filter the data to a greater or lesser extent and, thus, segment 

better some lesions, such as MCs. The transfer functions used in this work have the 

opacity/color on the y-axis and the intensity values on the x-axis. For intensities below a "A" 

value the object data is transparent, while intensity values above "B" (A<B) correspond to 

completely opaque voxels. Between A and B the opacity values follow a linear distribution. 

From transfer function 1 to transfer function 2 (Figure 7.5) the value of B has been increased 

to reduce the contribution to the visualization of objects with lower intensities, making those 

with higher intensities stand out, such as MCs. In his way, it was possible to obtain a "cleaner" 

visualization, as seen in Figure 7.5 in column of the transfer function 2. This rendering 

parameter is a great advantage in noisy data as can be seen in the last case of Figure 7.5. 

During training, no distinction was made between the different types of breast density. 

However, different densities correspond to data with slightly different histograms. In the 
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detection/analysis step, it is important to understand if the detector behaves in the same way for 

different densities (for example, it is known that some lesions are more difficult to detect in 

dense breasts than in fat breasts). From the comparison made between the detection and 

visualization of the four density groups, we can infer that there were no differences between 

them. 

As already mentioned, as far as we know, this is the first work about MCs detection and 

localization in a whole DBT image using deep learning CNNs such as Faster R-CNN. Of the 

few published works found in this area, all refer to soft tissue as masses. [26] developed a CAD 

system for the prescreening of ROIs and discrimination of true masses and FPs in DBT using a 

Faster R-CNN. For lesion-based mass detection, the sensitivity of their R-CNN based CAD was 

90% at 1.54 FP/volume. Later, the same group, compared this work to a framework of a 3D-

Mask R-CNN for mass detection and segmentation [27]. For lesion-based mass detection, the 

sensitivity of the 3D-Mask R-CNN based CAD (segmentation) was 90% with 0.8 FPs/lesion, 

whereas the sensitivity of the Faster R-CNN based CAD was 90% at 2.37 FPs/lesion. [23] 

developed a single-phase deep learning detection model for masses and architectural distortions 

and achieved a sensitivity of 65% at 2 FPs/breast. [28] propose a very interesting work on Faster 

R-CNN that uses mammary gland distribution as a prior information to detect architectural 

distortions in DBT and achieved a sensitivity of 80% at 1.85 FPs/volume for all architectural 

distortions types. 

A fair and direct comparison between our results and these published data is not possible 

because they analyze completely different lesions, those are already optimized studies and of 

different characteristics (for example, some use ROIs and not the whole image to locate the 

lesions). Furthermore, although architectural distortions are quite difficult to locate, masses are 

more reasonable. Although masses have densities similar to the rest of the breast tissue and are 

often camouflaged, they are larger than microcalcifications, facilitating training and learning. 

It is possible to use images with less resolution and train more complex networks faster. Thus, 

we cannot make a comparison between our results and those already published, but we can 

conclude that, despite our high FP values in this preliminary study, there is potential to improve 

and achieve results similar to those of the masses. 

In conclusion, taking into account the preliminary results presented, we conclude that detection 

and location of MCs in DBT can be automatically achieved using Faster R-CNN and 

visualization of these results can benefit from another approach such as 3D VR. 
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Breast cancer is one example where progresses in technology and therapy have made the 

difference in the decline of mortality. Despite being a relatively new technique, DBT has 

already consolidated its role in breast cancer imaging. With DBT, it is possible to analyze the 

acquired breast tissue over several slices and, thus, better separate the depth information. The 

work presented in this thesis focused on the development of computational methodology to 

increase the diagnostic value of DBT, namely in terms of visualization and automatic detection 

of lesions. The main objective of this thesis, which was to directly respond to the current 

challenges in the DBT data visualization and detection of lesions in DBT, was successfully 

achieved. With proper developed software and new processing techniques, it was possible to 

render the DBT volume data with quality, allowing a complementary visualization of DBT 

exams. Furthermore, this work achieved very positive results with regard to the classification 

of DBT images for the presence or absence of MCs. And, going a little further, through a 

preliminary but very interesting development, the exact position of these MCs can be 

determined and the detected MCs rendered. 

Currently, DBT data visualization is done with a slice-by-slice mode or in a continuous loop 

where radiologists explore and evaluate each exam. Such a procedure leads to longer inspection 

(being a disadvantage in a screening environment) and requires a mental 3D reconstruction of 

the tissues looking at adjacent slices (complicating the interpretation of the morphology of 

lesions spread over several slices). In this way, a complementary mode of visualizing DBT data 

through 3D VR was studied and developed.  

Chapters 2, 3, 4 and 5 of this thesis were specifically dedicated to visualization. In chapters 2 

and 3 some critical rendering parameters were explored and optimized. In chapters 4 and 5 

methodologies to improve the quality of rendered images were developed. 

In chapter 2, the work was developed to answer to one of the biggest challenges of VR: finding 

transfer functions that result in adequate DBT data visualizations. As both the intensity and the 

gradient magnitude histograms showed similar shapes among the diverse clinical cases 

observed, it was possible to find a linear relation between these values and the opacity/color. In 

this way, a consistent and reproducible methodology for the automatic determination of transfer 

functions was presented, allowing different 3D VR visualizations for DBT data. This work 

provides the tools for the automatic generation of transfer functions directly from the data 

(avoiding the trial and error procedure that often leads to exhaustion or incorrect visualization) 
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but a wide validation in clinical environment for radiologists to evaluate and select the transfer 

functions that result in a real clinical utility of VR visualization is missing. 

Additionally, two parameters that also affect image quality were studied in chapter 3: voxel size 

in z direction and sampling distance. As the reconstructed DBT data has anisotropic voxels, 

although the VR at 0º shows a good quality, when a rotation around the object is carried out, 

there is a distortion and loss of quality. In this way, the DBT reconstructed voxels were made 

isotropic using different interpolation functions from the VTK library, changing their size from 

0.085 × 0.085 × 1.0 mm3 to 0.085 × 0.085 × 0.085 mm3. In addition, two other interpolation 

parameters that influence the results (window half width and blur factor in z direction) were 

evaluated. About the study of sampling distance (distance between discrete points of 

accumulation of intensity values weighted by transparency or opacity along the ray), it was 

observed that the quality of the VR and the time required for the rendering were significantly 

affected by it. In this case, an effort was made to find appropriate sampling distance values that 

allowed a balance between good image quality at all angles and the time required for rendering. 

With the exhaustive study of the interpolation functions and their parameters, in conjunction 

with the appropriate sampling distance value, a significant improvement in the quality of the 

VR of DBT data was achieved with this work. Furthermore, the results obtained with the 

phantom were consolidated through the analysis of the VR of a real clinical case. 

In addition to the aforementioned parameters, new image processing techniques that improve 

the rendering in two points were developed: (1) noise regularization and (2) reduction of the 

“out-of-plane” artifact. For the first point, two 3D algorithms to minimize the total variation 

(TV) of the data were implemented. The algorithms differ in how they are applied to the 

volume. One considers a slice-by-slice optimization and the other considers the intensity values 

of adjacent slices to make this optimization on each voxel. The application of this type of filters 

has shown excellent results in decreasing noise while preserving the edges of objects and it is 

a straightforward not time-consuming approach. In addition, the analysis of the results was done 

using the visualization obtained through 3D VR, allowing a better evaluation of the effects in 

all directions. The results were very encouraging with a significantly increased CNR at 0° and 

90°. On the other hand, as the out-of-plane artifact is a current drawback in DBT imaging, for 

the second point, a methodology to study the application of blind deconvolution to DBT data 

was proposed. A visual decrease of the artifact, demonstrated by a numerical reduction of about 

23% was observed. In this way, both quantitative and qualitative results showed the relevance 
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of this approach in improving the image quality in DBT by reducing the out-of-plane artifact 

without introducing noise or other artifacts after deconvolution. 

In recent years, the increase in computational power and the growth of available large databases 

have allowed the development of deep learning AI algorithms composed of multilayer CNNs. 

These algorithms have emerged as a potential solution for the automated detection of breast 

cancer. Chapters 6 and 7 were specifically dedicated to the automatic classification of DBT 

images and detection of MCs. Chapter 6 described the work developed for the automatic 

classification of DBT for the presence or absence or MCs. On the other hand, Chapter 7 referred 

to the detection and localization of this MCs and posterior visualization of them using the VR 

techniques described above. 

In chapter 6, four popular deep CNNs were trained using data from a public DBT database and 

compared with one new architecture proposed in this thesis. The main task of these trainings 

was to receive the entire DBT image and output its classification by absence or presence of 

MCs, without prior identification of any regions. With this comprehensive study, very 

promising results in detecting MCs were achieved with a maximum AUC value of 94.19% for 

the Googlenet and 91.17% for the new implemented network. Our CNN also had the 

particularity of being the fastest, thus becoming a very interesting model to be considered in 

the future. The detection of MCs with each CNN was also greatly influenced by the type of 

input data, differing between the different pre-processing methodologies implemented and 

emphasizing the fact that attention should be paid to the quality of the data when CNNs are 

trained from scratch. 

The work in chapter 7 results from the connection between the knowledge developed for AI 

algorithms and VR methodologies. The main objective of this chapter was to create a 

conductive pipeline that contemplated the automatic location of MCs and their subsequent 

visualization through 3D VR. The work developed here was not optimized for detection and 

could be greatly improved in the future. A faster R-CNN detector was trained to detect and 

locate MCs in DBT data and the obtained results were analyzed through the FROC curve. It 

was possible to achieve a sensitivity of around 60% with 4 FP/image. As mentioned, these are 

preliminary results that are very promising but should be further improved by adding more 

training data, optimizing some network parameters, training over a greater number of iterations 

and using different pre-trained feature extraction networks (the ResNet-18 was used). After the 

detection, the MCs were analyzed through standard 2D visualization and the 3D VR specifically 



 

151 

 

developed for DBT data. The advantage of a 3D visualization with VR for the MCs is quite 

clear in this work due to the possibility of rotating around the MCs and having an immediate 

notion of its morphology in space. In addition, in situations with more noise involving the MCs, 

the use of different transfer functions with different characteristics, allowed a much clearer 

discernment of the MCs detected by the network. By slightly changing the transfer functions, 

the data were filtered to a greater or lesser extent and thus different rendered images of the MCs 

were obtained. 

This part of the work (chapter 6 and 7) focused on these types of lesions since MCs are one of 

the most important biomarkers for breast cancer, especially in cases of non-palpable lesions. 

Furthermore, due to its small size (which requires high spatial resolution, and thus the need for 

high computing power), until recently most of the work developed with AI in DBT referred to 

soft tissue lesions, such as masses or architectural distortions. 

The biggest limitation of the work developed in this thesis in terms of visualization is the lack 

of clinical evidence through a comprehensive clinical study to evaluate the complementarity of 

visualization of DBT data with VR. The procedure for this study is already written but it is in 

the process of approval. 

On the other hand, considering the training of the deep learning CNNs to detect and classify 

lesions, the major limitation was the database and the high computational power needed. The 

VICTRE database was chosen because it is public (and thus allows a fair comparison of new 

methods) but it consists of simulated realistic DBT data. In this way, to generalize the accuracy 

of the developed methods in a correct way, it is important to use a real database and data from 

different manufacturers, with different image characteristics.  

As future work, what was mentioned as limitation should be considered in order to, by 

surpassing them, support and consolidate all the developed work. In addition, there are some 

specific tasks that can be considered in the future to improve the work presented: 

- Study the impact of transfer functions on the specific visualization of soft tissues (such as 

masses or architectural distortions); 

- Analyze the impact of the image processing methodologies on VR at different angles others 

than 0º and 90º; 

- Improve the PSF estimation in the blind deconvolution and test other deconvolution 

approaches; 
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- In the training of deep CNNs, include more data, consider 3D architectures, diversify the 

lesions and include data obtained from other views (not only craniocaudal) and reconstruction 

algorithms.  

With the work carried out, this thesis has contributed to increasing the clinical value of this new 

breast imaging technique, DBT, in the detection and improved diagnosis of breast cancer. 

Although there is still work to be done, namely in the clinical validation by specialists and in 

the optimization of the developed tools, this thesis achieved innovative and consistent results 

in the visualization and detection of lesions in DBT.  
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