114 research outputs found

    Priorities Without Priorities: Representing Preemption in Psi-Calculi

    Full text link
    Psi-calculi is a parametric framework for extensions of the pi-calculus with data terms and arbitrary logics. In this framework there is no direct way to represent action priorities, where an action can execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi parameters can be chosen such that the effect of action priorities can be encoded. To accomplish this we define an extension of psi-calculi with action priorities, and show that for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without priorities, and a translation between them that satisfies strong operational correspondence. This is a significantly stronger result than for most encodings between process calculi in the literature. We also formally prove in Nominal Isabelle that the standard congruence and structural laws about strong bisimulation hold in psi-calculi extended with priorities.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    The Largest Respectful Function

    Full text link
    Respectful functions were introduced by Sangiorgi as a compositional tool to formulate short and clear bisimulation proofs. Usually, the larger the respectful function, the easier the bisimulation proof. In particular the largest respectful function, defined as the pointwise union of all respectful functions, has been shown to be very useful. We here provide an explicit and constructive characterization of it

    Bisimulations up-to: beyond first-order transition systems

    Get PDF
    International audienceThe bisimulation proof method can be enhanced by employing 'bisimulations up-to' techniques. A comprehensive theory of such enhancements has been developed for first-order (i.e., CCS-like) labelled transition systems (LTSs) and bisimilarity, based on the notion of compatible function for fixed-point theory. We transport this theory onto languages whose bisimilarity and LTS go beyond those of first-order models. The approach consists in exhibiting fully abstract translations of the more sophisticated LTSs and bisimilarities onto the first-order ones. This allows us to reuse directly the large corpus of up-to techniques that are available on first-order LTSs. The only ingredient that has to be manually supplied is the compatibility of basic up-to techniques that are specific to the new languages. We investigate the method on the pi-calculus, the lambda-calculus, and a (call-by-value) lambda-calculus with references

    Psi-calculi: a framework for mobile processes with nominal data and logic

    Get PDF
    The framework of psi-calculi extends the pi-calculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard pi-calculus. Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and calculi with polyadic communication channels or pattern matching. Psi-calculi can be even more general, for example by allowing structured channels, higher-order formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psi-calculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psi-calculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original pi-calculus.Comment: 44 page

    Declarative event based models of concurrency and refinement in psi-calculi

    Get PDF
    AbstractPsi-calculi constitute a parametric framework for nominal process calculi, where constraint based process calculi and process calculi for mobility can be defined as instances. We apply here the framework of psi-calculi to provide a foundation for the exploration of declarative event-based process calculi with support for run-time refinement. We first provide a representation of the model of finite prime event structures as an instance of psi-calculi and prove that the representation respects the semantics up to concurrency diamonds and action refinement. We then proceed to give a psi-calculi representation of Dynamic Condition Response Graphs, which conservatively extends prime event structures to allow finite representations of (omega) regular finite (and infinite) behaviours and have been shown to support run-time adaptation and refinement. We end by outlining the final aim of this research, which is to explore nominal calculi for declarative, run-time adaptable mobile processes with shared resources

    A Concurrent Pattern Calculus

    Get PDF
    International audienceConcurrent pattern calculus (CPC) drives interaction between processes by comparing data structures, just as sequential pattern calculus drives computation. By generalising from pattern matching to pattern unification, interaction becomes symmetrical, with information flowing in both directions. CPC provides a natural language to express trade where information exchange is pivotal to interaction. The unification allows some patterns to be more discriminating than others; hence, the behavioural theory must take this aspect into account, so that bisimulation becomes subject to compatibility of patterns. Many popular process calculi can be encoded in CPC; this allows for a gain in expressiveness, formalised through encodings
    • …
    corecore