142 research outputs found

    Event-Triggered Distributed Data-Driven Iterative Learning Bipartite Formation Control for Unknown Nonlinear Multiagent Systems

    Get PDF
    In this study, we investigate the event-triggering time-varying trajectory bipartite formation tracking problem for a class of unknown nonaffine nonlinear discrete-time multiagent systems (MASs). We first obtain an equivalent linear data model with a dynamic parameter of each agent by employing the pseudo-partial-derivative technique. Then, we propose an event-triggered distributed model-free adaptive iterative learning bipartite formation control scheme by using the input/output data of MASs without employing either the plant structure or any knowledge of the dynamics. To improve the flexibility and network communication resource utilization, we construct an observer-based event-triggering mechanism with a dead-zone operator. Furthermore, we rigorously prove the convergence of the proposed algorithm, where each agent’s time-varying trajectory bipartite formation tracking error is reduced to a small range around zero. Finally, four simulation studies further validate the designed control approach’s effectiveness, demonstrating that the proposed scheme is also suitable for the homogeneous MASs to achieve time-varying trajectory bipartite formation tracking

    Impulsive Control of Dynamical Networks

    Get PDF
    Dynamical networks (DNs) consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made networks such as social networks, food networks, neural networks, WorldWideWeb, electrical power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs, we firstly construct stability results for general nonlinear time-delay systems with delayed impulses by using the method of Lyapunov functionals and Razumikhin technique. Secondly, we study the consensus problem of multi-agent systems with both fixed and switching topologies. A hybrid consensus protocol is proposed to take into consideration of continuous-time communications among agents and delayed instant information exchanges on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically changing interaction topologies is designed to take the time-delay into account in both the continuous-time communication among agents and the instant information exchange at discrete moments. We also study the consensus problem of networked multi-agent systems. Distributed delays are considered in both the agent dynamics and the proposed impulsive consensus protocols. Lastly, stabilization and synchronization problems of DNs under pinning impulsive control are studied. A pinning algorithm is incorporated with the impulsive control method. We propose a delay-dependent pinning impulsive controller to investigate the synchronization of linear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent pinning impulsive controller can successfully stabilize and synchronize DNs with/without time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on the network states at history moments (not on the states at each impulsive instant). Sufficient conditions on stabilization of time-delay networks are obtained, and results show that the proposed pinning impulsive controller can effectively stabilize the network even though only time-delay states are available to the pinning controller at each impulsive instant. We further consider the pinning impulsive controllers with both discrete and distributed time-delay effects to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. As an extension study of pinning impulsive control approach, we investigate the synchronization problem of systems and networks governed by PDEs

    Contraction analysis of switched systems with application to control and observer design

    Get PDF
    In many control problems, such as tracking and regulation, observer design, coordination and synchronization, it is more natural to describe the stability problem in terms of the asymptotic convergence of trajectories with respect to one another, a property known as incremental stability. Contraction analysis exploits the stability properties of the linearized dynamics to infer incremental stability properties of nonlinear systems. However, results available in the literature do not fully encompass the case of switched dynamical systems. To overcome these limitations, in this thesis we present a novel extension of contraction analysis to such systems based on matrix measures and differential Lyapunov functions. The analysis is conducted first regularizing the system, i.e. approximating it with a smooth dynamical system, and then applying standard contraction results. Based on our new conditions, we present design procedures to synthesize switching control inputs to incrementally stabilize a class of smooth nonlinear systems, and to design state observers for a large class of nonlinear switched systems including those exhibiting sliding motion. In addition, as further work, we present new conditions for the onset of synchronization and consensus patterns in complex networks. Specifically, we show that if network nodes exhibit some symmetry and if the network topology is properly balanced by an appropriate designed communication protocol, then symmetry of the nodes can be exploited to achieve a synchronization/consensus pattern

    Reservoir Computing with Neuro-memristive Nanowire Networks

    Get PDF
    We present simulation results based on a model of self–assembled nanowire networks with memristive junctions and neural network–like topology. We analyse the dynamical voltage distribution in response to an applied bias and explain the network conductance fluctuations observed in previous experimental studies. We show I − V curves under AC stimulation and compare these to other bulk memristors. We then study the capacity of these nanowire networks for neuro-inspired reservoir computing by demonstrating higher harmonic generation and short/long–term memory. Benchmark tasks in a reservoir computing framework are implemented. The tasks include nonlinear wave transformation, wave auto-generation, and hand-written digit classification

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore