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Abstract

Dynamical networks (DNs) consist of a large set of interconnected nodes with each node
being a fundamental unit with detailed contents. A great number of natural and man-made
networks such as social networks, food networks, neural networks, World Wide Web, electrical
power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on
delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs,
we firstly construct stability results for general nonlinear time-delay systems with delayed im-
pulses by using the method of Lyapunov functionals and Razumikhin technique.

Secondly, we study the consensus problem of multi-agent systems with both fixed and
switching topologies. A hybrid consensus protocol is proposed to take into consideration of
continuous-time communications among agents and delayed instant information exchanges
on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically
changing interaction topologies is designed to take the time-delay into account in both the
continuous-time communication among agents and the instant information exchange at dis-
crete moments. We also study the consensus problem of networked multi-agent systems. Dis-
tributed delays are considered in both the agent dynamics and the proposed impulsive consen-
sus protocols.

Lastly, stabilization and synchronization problems of DNs under pinning impulsive control
are studied. A pinning algorithm is incorporated with the impulsive control method. We pro-
pose a delay-dependent pinning impulsive controller to investigate the synchronization of lin-
ear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed
for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent
pinning impulsive controller can successfully stabilize and synchronize DNs with/without
time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on
the network states at history moments (not on the states at each impulsive instant). Suffi-
cient conditions on stabilization of time-delay networks are obtained, and results show that
the proposed pinning impulsive controller can effectively stabilize the network even though
only time-delay states are available to the pinning controller at each impulsive instant. We fur-
ther consider the pinning impulsive controllers with both discrete and distributed time-delay
effects to synchronize the drive and response systems modeled by globally Lipschitz time-
delay systems. As an extension study of pinning impulsive control approach, we investigate
the synchronization problem of systems and networks governed by PDEs.
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Chapter 1

Introduction

1.1 Motivations

Dynamical networks (DNs) consist of a large set of interconnected nodes with each node be-
ing a fundamental unit with detailed contents (see, e.g., [105, 114, 13, 96]). A great number
of natural and man-made complex networks such as social networks, food networks, neural
networks, World Wide Web, computer networks, electrical power grid, etc., can be effectively
modeled by DNs. See the following two examples for illustrations.

Example 1.1.1 (Internet[114]) Internet is a dynamical network of routers or domains which are called
nodes of the network connected by physical links such as optical fibers. See Figure 1.1.

Example 1.1.2 (Birds flocking) Flocking is a collective animal behavior exhibited by many living be-
ings such as birds, fish and bacteria [94]. Figure 1.2 shows the flocking habit of migratory birds. Each
bird in Figure 1.2 behaves autonomously, and the flocking behavior of a group of birds can be modeled
by a dynamical network.

As illustrated in the above examples, DNs consist of three main attributes [26]:

Router

Domain 1Domain 2

Domain 3

Computer

Figure 1.1: Network structures of Internet

1



Figure 1.2: Flocking habit of migratory birds

shortcuts). Figure 5 shows that it also gives the correct qualitative
behaviour for nkf ≈ 1. Barbour and Reinert76 improved this result by
proving a rigorous distributional approximation for ø, along with a
bound on the error.

Scale-free networks
In any real network, some nodes are more highly connected than 
others are. To quantify this effect, let pk denote the fraction of nodes that
have k links. Here k is called the degree and pk is the degree distribution.

The simplest random graph models52,53 predict a bell-shaped
Poisson distribution for pk. But for many real networks, pk is highly
skewed and decays much more slowly than a Poisson. For instance,
the distribution decays as a power law pk ~ k1g for the Internet 
backbone11, metabolic reaction networks9, the telephone call graph13

and the World-Wide Web10 (Fig. 6a). Remarkably, the exponent g ≈
2.1–2.4 for all of these cases. Taken literally, this form of heavy-tailed
distribution would imply an infinite variance. In reality, there are a
few nodes with many links (Fig. 3d). For the World-Wide Web, think
Yahoo; for metabolic networks, think ATP. Barabási, Albert and
Jeong77,78 have dubbed these networks ‘scale-free’, by analogy with
fractals, phase transitions and other situations where power laws
arise and no single characteristic scale can be defined.

The scale-free property is common but not universal62. For 
coauthorship networks of scientists, pk is fit better by a power law with
an exponential cutoff14 (Fig. 6b); for the power grid of the western
United States, pk is an exponential distribution62 (Fig. 6c); and for a
social network of Mormons in Utah79, pk is gaussian62 (Fig. 6d).

Nevertheless, the scale-free case has stimulated a great deal of 
theorizing. The earliest work is due to Simon80,81 in 1955, now 
independently rediscovered by Barabási, Albert and Jeong77,78. They
showed that a heavy-tailed degree distribution emerges automatical-
ly from a stochastic growth model in which new nodes are added 
continuously and attach themselves preferentially to existing nodes,
with probability proportional to the degree of the target node. Richly
connected nodes get richer, and the result is pk ~ k13. More 
sophisticated models82–84 include the effects of adding or rewiring
links, allowing nodes to age so that they can no longer accept new
links, or varying the form of preferential attachment. These general-
ized models predict exponential and truncated power-law pk in some
parameter regimes, as well as scale-free distributions.

Could there be a functional advantage to scale-free architecture?
Albert, Jeong and Barabási85 suggested that scale-free networks are
resistant to random failures because a few hubs dominate their 
topology (Fig. 3d). Any node that fails probably has small degree (like
most nodes) and so is expendable. The flip side is that such networks
are vulnerable to deliberate attacks on the hubs. These intuitive ideas
have been confirmed numerically10,85 and analytically86,87 by 
examining how the average path length and size of the giant 
component depend on the number and degree of the nodes removed.
Some possible implications for the resilience of the Internet79–81, the
design of therapeutic drugs9, and the evolution of metabolic 
networks9,59 have been discussed.

Generalized random graphs
As mentioned above, the simplest random graph predicts a Poisson
degree distribution, and so cannot accommodate the other types of
distribution found in real networks. Molloy and Reed88,89 introduced
a more flexible class of random graphs in which any degree distribu-
tion is permitted. Given a sequence of non-negative integers {dk},
where dk denotes the number of nodes with degree k, consider the
ensemble of all graphs with that prescribed degree sequence, and
weight them all equally when computing statistical averages of 
interest. For this class of graphs, Molloy and Reed derived a simple
condition for the birth of the giant component88, and they also found
an implicit formula for its size as a fraction of n, the total number of
nodes89. Specifically, let n @ 1 and define

Q4^
÷

k41

pkk(k12)

where pk4dk/n. If Q < 0, the graph consists of many small compo-
nents. The average component size diverges as Q→0 from below, and
a giant component exists for Q > 0. (In technical terms, these results
hold ‘almost surely’; that is, with probability tending to 1 as n→÷.)

Aiello, Chung and Lu90 applied these results to a random graph
model for scale-free networks. For pk of power-law form, the 
condition on Q implies that a giant component exists if and only 
if g < 3.47, which holds for most scale-free networks measured so far.
If g < 1, there are so many high-degree hubs that the network 
forms one huge, connected piece. They also proved theorems 
about the number and size of small components outside the giant
component, and compared these to a real graph of about 47 million
telephone numbers and the calls between them in one day. 
They found that the data are best fit by an exponent g ≈ 2.1, which
predicts correctly that the call graph is not connected but has a 
giant component.

The papers by Molloy and Reed88,89 and Aiello et al.90 are 
mathematically rigorous. Newman, Strogatz and Watts91 recently
developed a more heuristic approach based on generating functions.
By handling the limit n→÷ in an intuitive way, their approach yields
elementary derivations of the earlier results, along with new exact
results for graphs with additional structure, such as directed or 
bipartite graphs.
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Figure 7 Bipartite versus unipartite representations of the corporate director network.
a, In the bipartite approach, directors and boards are treated as distinct kinds of
nodes. The schematic example shows 11 directors and 4 boards. Links indicate which
people sit on which boards. By definition there are no links between pairs of people, or
between pairs of boards. b, The more familiar unipartite representation depicts the
people as nodes, with links between those on the same board, forming cliques. This
approach discards important information and can conflate different structures. For
example, the triangle FHI corresponds to board number 3, as seen in a, whereas the
similar-looking triangle FGI does not correspond to any single board. Another
confusing effect is the large number of cliques that occur automatically in this
projection of the full bipartite graph. Such cliques account for much of the high
clustering observed in real affiliation networks58. The random graph model teases out
this generic source of clustering from that indicative of more interesting social
interactions. (Adapted from ref. 91.)
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Figure 1.3: Structure of a DN

• a mathematical description of the dynamical behavior of each of the agents in the net-
work;

• an interaction (or coupling) protocol used by agents to communicate with each other;

• a graph describing the network of interconnections between neighboring agents.

As an example, the structure of a DN is shown in Figure 1.3. Then, possible complications
arise according to these three aspects, as described by Strogatz [105]:

• Node

- Dynamical complexity: the nodes could be nonlinear dynamical systems. In a gene
network or a Josephson junction array, the state of each node can vary in time in
complicated ways.

- Node diversity: there could be many different kinds of nodes. The biochemical net-
work that controls cell division in mammals consists of a bewildering variety of sub-
strates and enzymes.
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• Interaction

- Structural complexity: the wiring diagram could be an intricate tangle.

- Network evolution: the wiring diagram could change over time. On WWW, pages
and links are created and lost every minute.

• Graph

- Connection diversity: the links between nodes could have different weights, direc-
tions and signs. Synapses in the nervous system can be strong or weak, inhibitory or
excitatory.

Moreover, various complications can influence each other, which is called Meta-complication.
All these complications bring difficulties to the study of control problems of DNs.

Due to the common existence in many evolution processes, control schemes, and physical
systems, time-delay has been widely considered for dynamical systems. It was shown that the
existence of time delay may cause divergence, oscillation, instability, and poor performance
in various dynamical systems. Therefore, it is reasonable to study dynamical systems subject
to time-delay. During the past decades, there has been extensive investigation on stability
issues and control problems of delayed dynamical systems. In terms of DNs, time-delay might
present in the intrinsic dynamic of the single node which means the dynamic of the isolated
node is past dependent. The time lag could also exist at the communications or interactions
among nodes. These time delays in DNs also increase the difficulties to investigate the dynamic
properties of DNs.

Various control problems about DNs have arisen recently which will be introduced in Chap-
ter 2, and a wide variety of conventional and novel control schemes have been proposed to
achieve the desired control objectives, such as, the adaptive control (e.g., [131, 30]), pinning
control (e.g., [79, 27]), impulsive control (e.g., [73, 100]), and hybrid control (e.g., [49, 62]), etc.
Among these approaches, the impulsive control method appears to be an effective method
to achieve the control goal of DNs. The main idea of this method is to control the states of
the system by using only small impulses which are samples of the state variables at discrete
moments. And then the impulsive control approach has its advantages in the following two
aspects described in [123]:

• Based on the control mechanism, impulsive control can give an efficient way to deal with
plants.

• In some applications, it is impossible to provide continuous control inputs. For example,
a government can not change savings rates of its central bank everyday. A deep-space
spacecraft can not leave its engine on continuously if it has only limited fuel supply.

On the other hand, time-delay is unavoidable in sampling and transmission of the impul-
sive information in dynamical systems. As one type of typical time-delay, distributed delays
have been widely employed in biological and industrial systems to describe delays in the
spread of disease, network connections, transportation, etc. However, it is practically needed
to consider distributed delays when applying the impulsive controller to dynamical systems.
For example, a deep-spaced spacecraft cannot leave its engine on continuously if it has only
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limited fuel supply, and then impulsive control is an ideal way to manipulate the spacecraft.
Fuel economy is the fuel efficiency relationship between the distance traveled and the amount
of fuel consumed by the vehicle, which is normally expressed in terms of volume of fuel to
travel a unit distance, or the distance traveled to consume a unit volume of fuel. It is an impor-
tant aspect which needs to be considered in the design of impulsive controller. Compared with
the fuel economy at a specific time t or a history moment t− d (instantaneous fuel economy),
the fuel economy over the time period [t− d, t] is a more accurate, accessible, and reliable data,
which is directly related to the fuel economy of spacecraft’s engine, and can be easily derived
from central control system of the spacecraft. Therefore, when considering the fuel economy
in the impulsive controller for the deep-spaced spacecraft, distributed delays are employed to
describe the fuel consumptions over a particular time period.

Due to the wide applications of DNs, effectiveness of the impulsive control method, and
ubiquitousness of delay effects, it is necessary and significant to study impulsive control prob-
lems of DNs with time-delay. The objective of this thesis is to construct sufficient conditions
to design impulsive controllers to stabilize DNs with delays and furthermore to achieve the
desired dynamical performance.

1.2 Thesis Organization

This thesis is organized into 7 chapters, which are listed and summarized as follows.

Chapter 1. Introduction

A background introduction of this thesis.

Chapter 2. Control Problems of Dynamical Networks

Chapter 2 will introduce the method of impulsive control to DNs, and control problems
related to DNs, such as stabilization, synchronization, and consensus.

Chapter 3. Stability of Impulsive Systems with Time-Delay

In Chapter 3, we will introduce the mathematical background of impulsive systems with
time-delay. We will introduce several global exponential stability results for time-delay sys-
tems with delayed impulses, by using the method of Lyapunov functionals and Razumikhin
technique. We will also introduce an exponential stability result for locally Lipschitz time-delay
systems with distributed-delay dependent impulses. Results in Section 3.2 were published in
[84], and results in Section 3.3 will be submitted for publication.

Chapter 4. Consensus of Multi-Agent Systems

In Chapter 4, we will introduce consensus results of multi-agent systems via hybrid pro-
tocols with impulse delays, in addition to briefly introducing notions and results from matrix
theory and graph theory. We will introduce consensus results of multi-agent systems via hy-
brid impulsive protocols with dynamically changing topologies and time-delay. We will also
introduce results for consensus of networked multi-agent systems with distributed delays in
both the agent dynamics and the impulsive protocols. Results in Section 4.2 were published in
[86], results in Section 4.3 will be submitted, and results in Section 4.4 have been submitted for
publication (see, [88]).
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Chapter 5. Stabilization and Synchronization of Dynamical Networks

Chapter 5 will study synchronization of delay-free DNs and stabilization of neural net-
works with time-delay, and discrete delays will be considered in the pinning impulsive con-
trol approach, in addition to introducing the theory of time scales. We will also investigate
synchronization problem of globally Lipschitz time-delay systems, and the distributed-delay
effects will be considered in the impulsive controller. Results in Section 5.1, Subsection 5.2.1,
and Subsection 5.2.2 were published in [82], [85], and [84], respectively. Results in Section 5.3
will be submitted for publication.

Chapter 6. Applications to Systems and Networks Governed by PDEs

In Chapter 6, we will apply the pinning impulsive control approach, introduced in Chapter
5, to control problems of systems and networks governed by partial differential equations. We
will introduce pinning impulsive stabilization and synchronization of Gray-Scott model, which
is a delay-free PDE system. We will also introduce pinning impulsive synchronization of neural
networks with reaction-diffusion terms, which is a time-delay PDE model. Results in Section
6.1 were published in [83], and results in Section 6.2 were published in [87].

Chapter 7. Conclusions and Future Research

In this chapter, we will summarize the results present in the thesis, and highlight the con-
tributions of this thesis. We will also discuss some future research directions along the line of
this thesis.

1.3 Notation

The notation in this thesis is more or less standard, with a few exceptions. In this section, we
describe the mostly commonly used notation in the thesis.

Let N denote the set of positive integers, R the set of real numbers, R+ the set of nonneg-
ative real numbers, and Rn the n-dimensional real space equipped with the Euclidean norm
‖ · ‖. Cm(W) represents the set of continuous m-time differentiable real-valued functions on
the domain W. #G denotes the cardinality of set G (that is, the number of elements in set G if
it is finite). For any matrix A ∈ Rn×n, let AT denote the transpose of A, λmax(A) the largest
eigenvalue of A, and ‖A‖ =

√
λmax(AT A), i.e., the norm of A induced by the Euclidean norm.

Denote I ∈ Rn×n the n× n identity matrix.

For a, b ∈ R with a < b and S ⊆ Rn, we define

PC([a, b], S) =
{

ψ : [a, b]→ S
∣∣∣ψ(t) = ψ(t+), for any t ∈ [a, b); ψ(t−)

exists in S, for any t ∈ (a, b]; ψ(t−) = ψ(t) for all but

at most a finite number of points t ∈ (a, b]
}

,

PC([a, ∞), S) =
{

ψ : [a, ∞)→ S
∣∣∣ for any c > a, ψ|[a,c] ∈ PC([a, c], S)

}
,

where ψ(t+) and ψ(t−) denote the right and left limit of function ψ at t, respectively. For a
given constant τ > 0, the linear space PC([−τ, 0], Rn) is equipped with the norm defined by
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||ψ||τ = sups∈[−τ,0] ||ψ(s)||, for ψ ∈ PC([−τ, 0], Rn). For constant ρ > 0, define B(ρ) = {x ∈
Rn | ‖x‖ ≤ ρ}.

Let δ(·) denote the Dirac delta function which is defined as a generalized function on the
real line which is zero everywhere except at the origin, where it is infinite,

δ(x) =
{

+∞, x = 0
0, x 6= 0

and which is also constrained to satisfy the identity∫ ∞

−∞
δ(x)dx = 1.

The floor function bχc gives the largest integer less than χ.

Other symbols will be introduced in the thesis when needed. For example, the notations
related to graph theory will be introduced in Section 4.1, and symbols related to the theory of
time scales will be introduced in Subsection 5.1.1.
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Chapter 2

Control Problems of Dynamical Networks

2.1 Network Model

Based on the introduction of DNs in Chapter 1, we will introduce the system model that will
be investigated. The evolution of the nodes’ states for the time-delay DN with N nodes can be
described as follows:

ẋi = gi(t, xit) + ψi(t, xt), i = 1, 2, ..., N, (2.1)

where xi ∈ Rm denotes the states of the ith node, while xit is defined as xit(s) = xi(t + s), for
s ∈ [−τ, 0] where τ > 0 represents the time-delay in the DN and xt = (xT

1t, xT
2t, ..., xT

Nt)
T. The

function gi : R+ ×PC([−τ, 0], Rm) → Rm denotes the intrinsic dynamics of the ith node, and
ψi : R+ ×PC([−τ, 0], RmN)→ Rm describes the interactions of the ith node with other nodes.

Remark 2.1.1 Various DNs can be written in the form of (2.1), e.g., BAM neural network [60], genetic
regulatory network [17], Cohen-Grossberg neural network [127], Hopfield neural network [112], cellular
neural network [24]. Therefore, results obtained from our research could be applied to control problems
of these networks.

If let x = (xT
1 , xT

2 , ..., xT
N)

T ∈ RmN and define a function f : R+ ×PC([−τ, 0], RmN)→ RmN

by f = (gT
1 + ψT

1 , gT
2 + ψT

2 , ..., gT
N + ψT

N)
T. Then, the system (2.1) can be rewritten as the general

form of functional differential equations:

ẋ = f (t, xt), (2.2)

where xt is defined by xt(s) = x(t + s) for s ∈ [−τ, 0].

2.2 Impulsive Control Method

Consider the nonlinear system with time-delay
ẋ = f (t, xt),
y(t) = ψ(x(t)),
xt0 = φ,

(2.3)

7



where f : R+ × PC([−τ, 0], RN) → RN and ψ : RN → RN, x ∈ RN is the state vector, xt is a
function defined by xt(s) = x(t + s) for s ∈ [−τ, 0], and τ represents the time delay in system
(2.3). y ∈ Rl is the measured output vector, φ ∈ PC([−τ, 0], RN) is the initial function.

An impulsive control law of system (2.3) is given by a sequence {tk, Uk(tk, y(tk))}, where

0 ≤ t0 < t1 < ... < tk < ..., lim
k→∞

tk = ∞,

and Uk : R+ ×Rl → RN denotes the control input at each impulsive instant tk, k = 1, 2, ....
It works as follows. Let x(t) = x(t, t0, φ) be a solution of system (2.3). The point Pt(t, x(t))
begins its motion from the initial point Pt0(t0, x(t0)) with x(t0) = φ(t0) and moves along the
state trajectory {(t, x(t)) : t ≥ t0 and x(t) = x(t, t0, φ)} until the time t1 at which the point
Pt1(t1, x(t1)) is mapped into Pt1(t1, x(t+1 )) immediately, where x(t+1 ) = x(t1) + U1(t1, y(t1)).
Then the motion Pt continues to move further along the trajectory set {(t, x(t)) : t ≥ t1 and
x(t) = x(t; t1, xt1) where xt1(s) = x(t1 + s) for s ∈ [−τ, 0]} until the time t2 when the point
Pt2(t2, x(t2)) is transferred to Pt2(t2, x(t+2 )), where x(t+2 ) = x(t2) + U2(t2, y(t2)). This process
continues as long as the solution of system (2.3) with initial condition xtk(s) = x(tk + s), s ∈
[−τ, 0] exists. According to the above control mechanism, the impulsive controller can be writ-
ten in the following form of feedback controller:

u(t, y) =
∞

∑
k=1

Uk(t, y(t))δ(t− tk), (2.4)

where δ(·) is the Dirac delta function, then, the impulsive controlled system (2.3):
ẋ = f (t, xt) + u(t, y),
y(t) = ψ(x(t)),
xt0 = φ,

(2.5)

is in the form of an impulsive system
ẋ = f (t, xt), t 6= tk,
∆x(tk) = Uk(tk, y(tk)), k ∈N,
y(t) = ψ(x(t)),
xt0 = φ,

(2.6)

Where ∆x(t) = x(t+)− x(t−). See Subsection 4.4.1 for an example of getting (2.6) from (2.5)
by using the property of the Dirac delta function. If we let hk(t, x) = Uk(t, ψ(x)), then system
(2.6) can be written as the following impulsive system

ẋ = f (t, xt), t 6= tk,
∆x(tk) = hk(tk, x(tk)), k ∈N,
xt0 = φ.

(2.7)

It can be seen that no time-delay is considered in the impulses in (2.7). Similarly, if (2.4) is
a delay-dependent feedback controller (i.e., u(t, y) = ∑∞

k=1 Uk(t, y(t− τ))δ(t− tk), where τ is
the impulse delay), then the impulsive control system can be described by the general form of
impulsive functional differential equations:

ẋ = f (t, xt), t 6= tk,
∆x(t) = Ik(t, xt), t = tk, and k ∈N,
xt0 = φ,

(2.8)
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where Ik : R+ × PC([−τ, 0], RN) → RN. Fundamental results about (2.8) will be introduced
in Section 3.1. However, system (3.1) considered in Section 3.1 is slightly different from (2.8),
and see Remark 3.1.1 for discussions. Lyapunov stability of the system (2.8) can be defined
similarly to the definitions for nonlinear systems in [52]. Now we are in the position to state
the impulsive stabilization problem: subject to the time-delay system (2.3), find an impulsive
control law {tk, Uk} such that the trivial solution of the impulsive delay system (2.8) is stable.

Various stability criteria have been established by employing different kinds of methods,
such as comparison principle [71], Lyapunov functional method [75] and Razumikhin tech-
nique [116]. The Lyapunov functional method and the Lyapunov-Razumikhin technique are
two commonly used approaches to determine sufficient conditions for stability of delay sys-
tems. In terms of the Lyapunov functional method, it is a natural generalization of the second
method of Lyapunov for ordinary differential equations. Compared with the Lyapunov func-
tional method, the Lyapunov-Razumikhin technique is based on utilizing the changing rate of
a function on RN to investigate stabilities of delay systems. For many delay systems, it appears
to be easier to use Razumikhin-type results to establish sufficient conditions for stability than
to construct appropriate Lyapunov functionals [39]. It can been seen from [20] that, even for
linear impulsive delay systems, the Lyapunov functionals are quite complicated. Hence, the
construction of suitable Lyapunov functionals for large-scale dynamical networks will be more
challenging. However, the well-known Razumikhin technique is based on Lyapunov functions,
and doesn’t require Lyapunov function to be decreasing on the whole state space. Furthermore,
when dealing with impulsive stabilization, it is straightforward for the impulse to bring down
the value of a Lyapunov function, whereas, the impulse cannot cut down the value of a func-
tional instantaneously. These properties of Razumikhin technique sometimes make choosing
a suitable Lyapunov function easier than constructing an appropriate Lyapunov functional.
Therefore, it is worthwhile to investigate the stability of time-delay systems using Razumikhin
technique.

Since the method of Lyapunov functionals is a natural generalization of the second method
of Lyapunov for systems without time-delay, the reasoning of sufficient conditions based on the
Lyapunov functional method is normally easier than the reasoning of stability criteria by the
Lyapunov-Razumikhin technique. Furthermore, since the Lyapunov-Razumikhin technique
can be considered as a particular case of the Lyapunov functional method ([69] and [55], Sec-
tion 4.8, p.254), the approach of Lyapunov functionals is ordinarily more general than the
Lyapunov-Razumikhin technique. However, sometimes it seems to be more difficult to con-
struct suitable Lyapunov functionals for stability than using Lyapunov-Razumikhin technique
to establish appropriate Lyapunov functions. Moreover, as far as impulsive effects are con-
cerned, the Lyapunov functional method is more challenging due to the fact that an impulse
occurs at a discrete time normally can not bring down the value of a functional.

On the other hand, one of the most significant problems in the stability analysis of dy-
namical systems is exponential stability. Since it has a more stringent requirement on conver-
gence rate, the exponential stability criteria are more important than the general stability or
asymptotic stability criteria in some practical applications, such as synchronization of dynam-
ical networks [68] and stabilization of cellular neural networks [117]. Recently, many control
problems of dynamical systems have been investigated via delayed impulses in recent years,
such as stabilization of stochastic functional systems [18, 119], synchronization of dynamical
networks [135], and stability analysis of nonlinear impulsive and switched time-delay systems
with delayed impulses [37]. Though the study of dynamical systems subject to impulses with

9



time-delay has drawn increasing research attention (see, e.g., [25, 54]), almost all the existing
works focused on impulses with discrete delays. To our best knowledge, no work about im-
pulses with distributed delays has been reported, and the method of Lyapunov functionals has
not been applied to stability analysis of systems with delayed impulses. In Chapter 3, we will
establish several exponential stability results for system (2.8) with delay-dependent impulses,
by using the method of Lyapunov functionals and Razumikhin technique.

2.3 Stabilization

Stability is one of the essential properties of a dynamical system. Consider a power network
with N identical or different nodes, each of which can generate power and consume power.
Ideally, the power network is required to supply steady power which means the power net-
work is designed to be stable. Actually, faults might happen in the power system. For instance,
a fault in two power lines in Oregon led to blackouts in 11 US states and 2 Canadian provinces,
leaving about 7 million customers without power for up to 16 hours on August 10, 1996 [105].
Since the fault could lead the network to be unstable, it is vital important to apply suitable
controllers to stabilize the power network when it suffers unpredicted faults.

In terms of the mathematical model (2.1), stability of a DN can be defined similarly to the
stability of a dynamical system. Recently, stability of DNs has received lots of research interests,
and numerous stability results have been reported for various types of networks (see, e.g.,
[97, 28, 48]). Actually, stability of a DN can be understood as synchronization of the DN with
its trivial state, or the consensus of the DN. Synchronization and consensus of the DN will be
introduced in the following two sections, most of the the results discussed in which can be
applied to the stability analysis of the corresponding networks.

2.4 Synchronization

Synchronization of a group of dynamical nodes in a complex network topology is one of the
most interesting and significant collective behaviors in DNs (see, e.g., [45, 65, 66, 67, 68, 80, 91,
108, 109, 125, 134, 136]). Recently, synchronization has a wide application in the secure com-
munication between agents of a DN. In terms of secure communication, an illustrative process
is shown in Figure 2.1, which works as follows. At the transmitter, the plain-text is masked
by certain algorithm and then the cipher-text is sent to the receiver. Because of the unknown
masking algorithm, it is very difficult for the eavesdropper to distinguish the cipher-text from
noise and get the original text. Once the receiver gets the masked text, the shared secret key
can be used to recover the original message. Chaos systems are often applied to encrypt and
decrypt the text because of its unpredicted behaviors and its sensitivity to the initial condi-
tions. The initial condition can be used as the shared secret key in the secure communication.
When the transmitter and the receiver synchronize with each other, the receiver can recover
the cipher-text to get the plain-text. When the secure communication is applied to the agents
in a network, the synchronization of all the nodes will guarantee that all the nodes can get the
same original message.

Now we are in the position to give the formal definition of synchronization in a DN.
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Definition 2.4.1 DN (2.1) is said to achieve synchronization if

lim
t→∞
||xi(t)− xj(t)|| = 0, i, j = 1, 2, ..., N.

Remark 2.4.1 Definition 2.4.1 is the most intuitive one of synchronization which is normally called
complete synchronization. Other forms of synchronization are possible, e.g., exponential synchroniza-
tion (e.g., Definition 6.2.1), cluster synchronization [21], lag synchronization [35], and phase synchro-
nization [2].

It can be seen that the synchronization behavior of a DN is closely related to the dynamics of
the individual nodes and the interconnections among them. A possible solution to this control
problem is to add a control input to each of the network nodes. Due to the advantages of the
impulsive control method, this approach has been successfully used for the synchronization of
DNs (see, e.g., [68, 49]). In [68], impulsive synchronization of the general form of DNs has been
studied. By linearization method, local synchronization criteria of impulsive synchronization
were established, and then additional conditions on the dynamics of the isolated nodes were
assumed to generalize these results to get the global synchronization criteria. Based on this in-
novative work, the impulsive synchronization approach has been applied to various networks,
e.g., TS fuzzy DNs [128], switched neural networks [126], and cellular neural networks [29].

In the above mentioned results, appropriate Lyapunov functions or functionals were uti-
lized to analyze the synchronization problems. The construction process of sufficient condi-
tions for synchronization is as follows. The conditions for the Lyapunov candidates on the
impulsive intervals are obtained, while the conditions on the Lyapunov candidates on the im-
pulsive instants are established. Then conditions that connect the restrictions on these two
sufficient conditions will be needed to balance the dynamics of the network and the control
effects of the impulsive controllers at each impulsive instant. According to these three types of
conditions, suitable impulsive controller can be designed to achieve synchronization of DNs.

11



The traditional method to synchronize a DN is to add a controller to each of the network
nodes to tame the node dynamics to approach a desired synchronization trajectory. How-
ever, a DN is normally composed of a large number of high dimensional nodes, and it is
expensive and infeasible to control all of them. Motivated by this practical consideration,
the idea of controlling a small portion of nodes, named pinning control, was introduced in
[113, 76], and many pinning algorithms have been reported for synchronization of DNs (see,
e.g., [129, 115, 78, 107, 61]). Obviously, the pinning control method reduces the control cost to a
certain extent by reducing the amount of controllers added to the nodes. It is worth noting that
the cost of control can be further reduced by combining pinning control and impulsive control,
i.e., adding the impulsive controllers to a small fraction of network nodes. Hence, the notion of
pinning impulsive control has stimulated many interesting pinning impulsive control strate-
gies for synchronization of DNs with and without delays (see, e.g., [67, 91, 46, 136]). To our best
knowledge, no time-delay effects have been considered in pinning impulsive synchronization
problems. In Chapter 5, we will discussion this type of stabilization and synchronization prob-
lems.

2.5 Consensus

Distributed coordination of multi-agent systems (networks of agents or dynamical systems) has
been studied extensively due to its wide range of applications in many areas, such as spacecraft
formation flying [15], multiple robot coordination [103], flocking [110], cooperative control of
vehicle formations [31], and so on. As one of the basic collective behaviors, consensus problems
naturally arise when a group of networked agents are seeking an agreement according to a
certain quantity interest that depends on the state of all agents.

In recent years, various consensus algorithms have been proposed for the multi-agent sys-
tems (see, e.g., [33, 36, 42, 50, 63, 64, 90, 95, 98, 101, 120, 121]). The typical result about aver-
age consensus of multi-agent systems with fixed topology was provided by Olfati-Saber and
Murray in [95], which has shown that if the interaction topology is strongly connected and bal-
anced, then the consensus problem can be solved asymptotically. In [98], Ren and Beard con-
structed classical consensus criteria under dynamically changing topologies, and proved that
if the union of the directed interaction graphs contains a spanning tree frequently enough, then
the consensus can be achieved asymptotically. These verifiable conditions have established
close relations between the connectivity of the interaction topologies and consensus behavior
of the multi-agent systems. However, when the state of agents is subject to abrupt changes
or instantaneous information exchanges with their neighbours (see, e.g., [72]), these typical re-
sults cannot be applied directly to this type of consensus problems. Therefore, the impulsive
consensus method has been developed, and recently has attracted many researchers’ interests
(see, e.g., [36, 121, 33, 64, 42]).

The mechanism of impulsive consensus is based on the strategy of impulsive control which
is to control the state of each agent by using only small samples of the state variables of the
multi-agent system at a sequence of discrete moments. Up to now, much attention has been
paid to the higher order multi-agent systems (see, e.g., [33, 64, 42]). Although there are many
interesting results reported for the impulsive consensus of first-order multi-agent systems, this
research area still worths further investigation, and many existing consensus results can be im-
proved. In [36], a fundamental result has been derived for the impulsive consensus, which says
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that the graphs of continuous-time and impulsive-time topologies containing a spanning tree
respectively is necessary to guarantee the consensus behaviour. However, inspired by the re-
sults in [98], the consensus criteria in [36] may require more graph connections among agents
to achieve the consensus, and the recent results in [90] have shown that a spanning tree in
the union of continuous-time and discrete-time topologies can guarantee the consensus of the
multi-agent system. But, no delay has been considered in those impulsive-time topologies. To
our best knowledge, very few work has been done on the consensus problem of multi-agent
systems with delayed impulses. In [120], a hybrid impulsive consensus protocol is proposed to
achieve the network consensus. However, the continuous-time and the discrete-time topolo-
gies are assumed to be the same, and also are required to share the same communication delay
among agents. Furthermore, distributed delays have not been considered in the impulsive
consensus protocols. In Chapter 4, we will focus on these consensus protocols.
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Chapter 3

Stability of Impulsive Systems with
Time-Delay

This chapter studies exponential stability of general nonlinear time-delay systems with delayed
impulsive effects. Stability results are constructed by using the method of Lyapunov function-
als and Razumikhin technique, respectively. Some results will be used in Chapters 4 and 5.

3.1 Impulsive Systems with Time-Delay

Consider the following impulsive system
ẋ(t) = f (t, xt), t 6= tk,
∆x(t) = Ik(t, xt−), t = tk, k ∈N,
xt0 = φ,

(3.1)

where f , Ik : R+ × PC([−τ, 0], Rn) → Rn, 0 ≤ t0 < t1 < ... < tk < ... with limk→∞ tk = ∞,
∆x(t) = x(t+)− x(t−). Here, we assume x(t) is right-continuous at each tk, i.e., x(t+k ) = x(tk).
xt, xt− ∈ PC([−τ, 0], Rn) are defined as xt(s) = x(t + s), xt−(s) = x(t− + s) for s ∈ [−τ, 0],
respectively. The function φ ∈ PC([−τ, 0], Rn) is the initial condition of the system.

Definition 3.1.1 A function x ∈ PC([t0 − τ, t0 + α],D) where α > 0 and D ⊆ Rn is said to be a
solution of (3.1) if

(i) x is continuous at each t 6= tk in (t0, t0 + α];

(ii) the derivative of x exists and is continuous at all but at most a finite number of points t in (t0, t0 +
α);

(iii) the right-hand derivative of x exists and satisfies the delay differential equation in (3.1) for all
t ∈ [t0, t0 + α);

(iv) x satisfies the delay difference equation in (3.1) at each tk ∈ (t0, t0 + α];
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Figure 3.1: Modeling the control input with impulsive control

(v) x satisfies the initial condition in (3.1).

Remark 3.1.1 Many evolution processes are subject to short-term perturbations whose duration is neg-
ligible in comparison with the duration of the precess (see, [58] and Figure 3.1 for demonstration). Im-
pulsive differential equations are powerful tools to model this type of evolution processes. The term
∆x(tk) in (3.1) characterizes the state jump in the process. x(t+k ) and x(t−k ) represent the state after and
before the jump, respectively. In the literature of impulsive time-delay systems, system state x(t) is com-
monly assumed to be right-continuous at each impulsive instant, i.e., x(t+k ) = x(tk). One advantage
of assuming right-continuous solutions is that the entire initial condition can be incorporated into the
single function φ and we do not need to separately include a extra initial condition specifying the right
limit of the solution at the initial time, i.e., x(t+0 ) (see, [6]). Therefore, when considering the impulse
effects as control inputs, we use system (3.1) to model the impulsive control system with time-delay. To
make the impulsive control system (2.6) to be well-defined according to the fundamental theory of (3.1)
introduced in this chapter, we may transform system (2.6) to the form of (3.1) by rewriting the impulsive
controller (2.4) as follows:

u(t, y) =
∞

∑
k=1

Uk(t, y(t))δ(t− t−k ). (3.2)

See controllers (5.18) and (6.19) for examples.

In this chapter, it is assumed that f (t, 0) ≡ 0 and Ik(t, 0) ≡ 0 for all t ≥ t0 and k ∈ N, then
system (3.1) admits the trivial solution. Furthermore, we make the following assumptions on
system (3.1).

(H1) For each fixed t ∈ R+, f (t, ψ) is a continuous function of ψ on PC([−τ, 0],D).

(H2) f is composite-PC, i.e., for each t0 ∈ R+ and σ > 0, if x ∈ PC([to − τ, t0 + σ],D) and
x is continuous at each t 6= tk in (t0, t0 + σ], then the composite function h defined by
h(t) := f (t, xt) is an element of the function set PC([t0, t0 + σ], Rn).
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(H3) f (t, ψ) is quasi-bounded on R+ × PC([−τ, 0],D), i.e., for each t0 ∈ R+ and σ > 0, and
for each compact set F ⊂ D, there exists some M > 0 such that | f (t, ψ)| ≤ M for all
(t0, ψ) ∈ [t0, t0 + σ]×PC([−τ, 0],F ).

It is shown in [14] that under assumptions (H1), (H2) and (H3), for any initial condition
φ ∈ PC([−τ, 0],D), system (3.1) admits a solution x(t) := x(t, t0, φ) that exists on a maximal
interval [t0 − τ, t0 + T) where 0 < T ≤ ∞.

Before introducing the stability results, we will list the definition of exponential stability for
system (3.1) and definitions related to the Lyapunov function and functional.

Definition 3.1.2 The trivial solution of system (3.1) is said to be exponentially stable (ES), if there exist
positive constants ρ0, M and α such that

‖x(t)‖ ≤ M‖φ‖τe−α(t−t0), t ≥ t0, (3.3)

for any φ ∈ PC([−τ, 0],B(ρ0)). Furthermore, if (3.3) holds for any φ ∈ PC([−τ, 0], Rn), then the
trivial solution of (3.1) is said to be globally exponentially stable (GES).

Definition 3.1.3 Function V : R+×Rn → R+ is said to belong to the class ν0 if the following is true:

1) V is continuous in each of the sets [tk−1, tk) × Rn, and for each x ∈ Rn, t ∈ [tk−1, tk), and
k ∈N, lim(t,y)→(t−k ,x) V(t, y) = V(t−k , x) exists;

2) V(t, x) is locally Lipschitz in all x ∈ Rn, and for all t ≥ t0, V(t, 0) ≡ 0.

Definition 3.1.4 Given a function V ∈ ν0, the upper right-hand derivative D+V(t, ψ(0)) along the
solution of system (3.1) is defined by

D+V(t, ψ(0)) = lim sup
h→0

1
h
[V(t + h, ψ(0) + h f (t, ψ))−V(t, ψ(0))],

where (t, ψ) ∈ [t0, ∞)×PC([−τ, 0], Rn).

Definition 3.1.5 A functional V : R+ ×PC([−τ, 0], Rn)→ R+ belongs to ν∗0 if

1) V is continuous on [tk−1, tk)× PC([−τ, 0], Rn), and lim(t,ψ)→(t−k ,φ) V(t, ψ) = V(t, φ) exists,
for all ψ, φ ∈ PC([−τ, 0], Rn) and k ∈N;

2) V(t, ψ) is locally Lipschitz in ψ on each compact set in PC([−τ, 0], Rn), and V(t, 0) ≡ 0, for all
t ≥ t0;

3) for any x ∈ PC([t0 − τ, ∞), Rn), V(t, xt) is continuous for t ≥ t0.

Definition 3.1.6 Given a functional V ∈ ν∗0 , the upper right-hand derivative D+V(t, ψ) along the
solution of system (3.1) is defined by

D+V(t, ψ) = lim sup
h→0+

1
h
[V(t + h, xt+h(t, ψ))−V(t, ψ)],

for (t, ψ) ∈ R+ ×PC([−τ, 0], Rn).

For simplicity, we may use V′ to represent the upper right-hand derivative D+V in later
sections.
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3.2 The Method of Lyapunov Functionals

In this section, we shall study the global exponential stability of system (3.1). Stability results
will be stated and proved by employing the Lyapunov functional method. Our results show
that delayed impulses play an important role in stabilizing the nonlinear delay systems.

Theorem 3.2.1 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0 , and constants p, c, w1, w2, w3, ρ1 > 0 and
ρ2 ≥ 0, such that

(i) w1||x||p ≤ V1(t, x) ≤ w2||x||p, 0 ≤ V2(t, ψ) ≤ w3||ψ||
p
τ, for t ∈ R+, x ∈ Rn, and ψ ∈

PC([−τ, 0], Rn);

(ii) for V(t, ψ) = V1(t, ψ(0)) + V2(t, ψ),

D+V(t, ψ) ≤ cV(t, ψ),

for t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0], Rn), and k ∈N;

(iii) for k ∈N and ψ ∈ PC([−τ, 0], Rn),

V1(tk, ψ(0) + Ik(tk, ψ)) ≤ ρ1V1(t−k , ψ(0)) + ρ2 sup
s∈[−τ,0]

{V1(t−k + s, ψ(s))};

(iv) ln(ρ + w3
w1
) < −cδ, where ρ = ρ1 + ρ2 and δ = supk∈N{tk+1 − tk}.

Then the trivial solution of system (3.1) is GES.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (3.1) with initial condition xt0 = φ. Let
v1(t) = V1(t, x(t)), v2(t) = V2(t, xt), and v(t) = v1(t) + v2(t). From condition (iv), there exists
a constant α > 0 such that

ln(ρ1 + ρ2eατ +
w3

w1
eατ) = −(α + c)δ. (3.4)

From condition (ii), we have

v(t) ≤ v(tk−1)ec(t−tk−1), for t ∈ [tk−1, tk), k ∈N. (3.5)

Since limk→∞ tk = ∞, there exists an integer i ≥ 1 such that ti − τ ≥ t0, and for t ∈ [t0, ti), we
have

v(t) = v(t)eα(t−t0)e−α(t−t0) ≤ Me−α(t−t0), (3.6)

where M = eα(ti−t0) supt∈[t0,ti)
{v(t)}.

We shall show

v(t) ≤ Me−(α+c)(tk+1−t0)ec(t−t0), for t ∈ [tk, tk+1), k ≥ i. (3.7)

When k = i, we can get from condition (iii) and (3.6) that

v1(ti) ≤ ρ1v1(t−i ) + ρ2 sup
s∈[−τ,0]

{v1(t−i + s)}
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≤ ρ1v(t−i ) + ρ2 sup
s∈[−τ,0]

{v(t−i + s)}

≤ ρ1Me−α(ti−t0) + ρ2Me−α(ti−τ−t0)

= (ρ1 + ρ2eατ)Me−α(ti−t0). (3.8)

By condition (i), (3.6), and the continuity of v2, we get

v2(ti) = v2(t−i ) ≤ w3||xt−i
||pτ = w3 sup

s∈[−τ,0]
||x(t−i + s)||p

≤ w3

w1
sup

s∈[−τ,0]
{v1(t−i + s)}

≤ w3

w1
Me−α(ti−τ−t0)

=
w3

w1
eατ Me−α(ti−t0). (3.9)

Then, (3.8) and (3.9) imply that

v(ti) = v1(ti) + v2(ti)

≤ (ρ1 + ρ2eατ +
w3

w1
eατ)Me−α(ti−t0)

= e−(α+c)δMe−α(ti−t0)

≤ e−(α+c)(ti+1−ti)Me−(α+c)(ti−t0)ec(ti−t0)

= Me−(α+c)(ti+1−t0)ec(ti−t0),

i.e., (3.7) is satisfied for t = ti. For t ∈ (ti, ti+1), we have

v(t) ≤ v(ti)ec(t−ti)

≤ Me−(α+c)(ti+1−t0)ec(t−t0), (3.10)

which implies (3.7) holds for t ∈ (ti, ti+1). Hence, (3.7) is true for k = i.

Next, suppose (3.7) is true for k ≤ j(j > i), and we shall prove (3.7) holds for k = j + 1.

When t = tj+1, we estimate the upper bound of v(t−j+1 + s) for s ∈ [−τ, 0] by considering
the following two cases:

Case 1: t−j+1 + s < ti for some s ∈ [−τ, 0].

Then, (3.6) implies that

v(t−j+1 + s) ≤ Me−α(tj+1+s−t0)

≤ Me−α(tj+1−τ−t0)

= Me−(α+c)(tj+1−t0)ec(tj+1−t0)eατ.
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Case 2: t−j+1 + s ≥ ti for some s ∈ [−τ, 0].

Then, there exists an integer k̂ ≥ i such that t−j+1 + s ∈ [tk̂, tk̂+1). From (3.7), we have

v(t−j+1 + s) ≤ Me−(α+c)(tk̂+1−t0)ec(tj+1+s−t0)

≤ Me−(α+c)(tj+1+s−t0)ec(tj+1+s−t0)

= Me−α(tj+1+s−t0)

≤ Me−α(tj+1−τ−t0)

= Me−(α+c)(tj+1−t0)ec(tj+1−t0)eατ.

Therefore, for all s ∈ [−τ, 0],

v(t−j+1 + s) ≤ Me−(α+c)(tj+1−t0)ec(tj+1−t0)eατ. (3.11)

Then, we can obtain from condition (iii) and (3.11) that

v1(tj+1) ≤ ρ1v1(t−j+1) + ρ2 sup
s∈[−τ,0]

{v1(t−j+1 + s)}

≤ ρ1v(t−j+1) + ρ2 sup
s∈[−τ,0]

{v(t−j+1 + s)}

≤ ρ1Me−(α+c)(tj+1−t0)ec(tj+1−t0) + ρ2Me−(α+c)(tj+1−t0)ec(tj+1−t0)eατ

= (ρ1 + ρ2eατ)Me−(α+c)(tj+1−t0)ec(tj+1−t0). (3.12)

By condition (i), (3.11), and the continuity of v2, we have

v2(tj+1) = v2(t−j+1) ≤ w3||xt−j+1
||pτ = w3 sup

s∈[−τ,0]
||x(t−j+1 + s)||p

≤ w3

w1
sup

s∈[−τ,0]
{v1(t−j+1 + s)}

≤ w3

w1
sup

s∈[−τ,0]
{v(t−j+1 + s)}

≤ w3

w1
eατ Me−(α+c)(tj+1−t0)ec(tj+1−t0). (3.13)

Then, (3.12) and (3.13) imply that

v(tj+1) = v1(tj+1) + v2(tj+1)

≤ (ρ1 + ρ2eατ +
w3

w1
eατ)Me−(α+c)(tj+1−t0)ec(tj+1−t0)

= e−(α+c)δMe−(α+c)(tj+1−t0)ec(tj+1−t0)

≤ e−(α+c)(tj+2−tj+1)Me−(α+c)(tj+1−t0)ec(tj+1−t0)
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= Me−(α+c)(tj+2−t0)ec(tj+1−t0),

i.e., (3.7) is satisfied for t = tj+1. For t ∈ (tj+1, tj+2), we have

v(t) ≤ v(tj+1)ec(t−tj+1)

≤ Me−(α+c)(tj+2−t0)ec(t−t0), (3.14)

which implies (3.7) holds for t ∈ (tj+1, tj+2). Hence, (3.7) holds for k = j + 1. Thus we conclude
from mathematical induction that (3.7) is true for all k ≥ i. Then,

v(t) ≤ Me−(α+c)(tk+1−t0)ec(t−t0)

≤ Me−α(tk+1−t0)

≤ Me−α(t−t0), for t ∈ [tk, tk+1) and k ≥ i. (3.15)

Thus, from condition (i), (3.6), and (3.15), we have

||x(t)||p ≤ 1
w1

v(t) ≤ M
w1

e−α(t−t0), for t ≥ t0,

i.e.,

||x(t)|| ≤
(

M
w1||φ||

p
τ

)1/p

||φ||τe−
α
p (t−t0), for t ≥ t0.

From condition (i), we have

M = eα(ti−t0) sup
t∈[t0,ti)

{v(t)}

≤ v(t0)e(α+c)(ti−t0)

≤ (w2||x(t0)||p + w3||φ||
p
τ)e(α+c)iδ

≤ max{w2, w3}||φ||
p
τe(α+c)iδ,

then,
M

w1||φ||
p
τ

≤ max{w2, w3}
c1

e(α+c)iδ.

Therefore,
||x(t)|| ≤ M̄||φ||τe−

α
p (t−t0), for t ≥ t0,

where M̄ =
(max{w2,w3}

w1
e(α+c)iδ)1/p

> 1. This completes the proof. �

Remark 3.2.1 It can be seen from the proof that the convergence rate of impulsive system (3.1) is α
p ,

and α can be obtained by solving equation (3.4). It can also be observed from condition (iii) and (iv) that
Theorem 3.2.1 throws uniform restrictions on each impulse, i.e., constants ρ1 and ρ2 are independent of
tk(k ∈N), and the upper bound δ of the length of each impulsive interval needs to satisfy the inequality
in condition (iv). Actually, we can get nonuniform conditions for each impulse, which are stated in the
following theorem.
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Theorem 3.2.2 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0 , and constants α, p, c, w1, w2, w3, ρ1k > 0
and ρ2k ≥ 0 (k ∈N), such that

(i) w1||x||p ≤ V1(t, x) ≤ w2||x||p, 0 ≤ V2(t, ψ) ≤ w3||ψ||
p
τ, for t ∈ R+, x ∈ Rn, and ψ ∈

PC([−τ, 0], Rn);

(ii) for V(t, ψ) = V1(t, ψ(0)) + V2(t, ψ),

D+V(t, ψ) ≤ cV(t, ψ),

for all t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0], Rn), and k ∈N;

(iii) for k ∈N and ψ ∈ PC([−τ, 0], Rn),

V1(tk, ψ(0) + Ik(tk, ψ)) ≤ ρ1kV1(t−k , ψ(0)) + ρ2k sup
s∈[−τ,0]

{V1(t−k + s, ψ(s))};

(iv) ln(ρ1k + ρ2keατ + w3
w1

eατ) ≤ −c(tk+1 − tk) for all k ∈N.

Then the trivial solution of system (3.1) is GES.

Proof. Replace equation (3.4) by the inequalities in condition (iv) of Theorem 3.2.2, and the rest
of the proof is similar to that of Theorem 3.2.1. Thus, the detail is omitted. �

Remark 3.2.2 In our results, the Lyapunov functional V is divided into a function part V1 and a func-
tional part V2, which has been widely used when studying the control problem of time-delay systems
(see, e.g., [3]). Nevertheless, these two parts will play different roles in the stability analysis, when it
comes to time-delay systems with impulses. The function V1 plays an important role in describing the
dynamic of impulsive behavior, while the functional V2 is not affected by impulses. Since the constant c
is positive, condition (ii) implies that the impulse-free nonlinear system can be unstable. Hence, Theo-
rem 3.2.1 gives sufficient conditions to design suitable impulsive controllers to stabilize nonlinear delay
systems. Furthermore, condition (iii) allows existence of time-delay in each impulse. In this sense, our
result is more general than the results in [75]. Compared with the stability results in [37], our results
are more general in the sense that the impulses x(t) = gk(x(t−), x((t− d)−)) for t = tk in [37] are
special cases of the impulses considered here ∆x(t) = Ik(t, xt−) for t = tk. Also, Theorem 3.2.1 is a
global result for exponential stability of general nonlinear time-delay systems, while the results in [75]
and [37] are sufficient conditions for local exponential stability of locally Lipschitz time-delay systems.

As a simple illustration of our results, let us consider a linear impulsive differential equation
with time-delay: {

ẋ(t) = ax(t) + bx(t− r), t 6= tk,

∆x(tk) = γ1x(t−k ) + γ2x(tk − d), k ∈N,
(3.16)

where a, b, γ1, γ2 ∈ R and r = d = τ > 0.
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Figure 3.2: Numerical simulations of equation (3.16). In (a), no impulses are considered, i.e.,
γ1 = γ2 = 0, and it can be seen that the state x diverges as t → ∞, while the state x con-
verges with the proposed impulses in (b) with γ1 = −0.73 and γ2 = −0.1. In (c), impulses
with γ1 = 0 and γ2 = −0.1 are considered, and it is shown that the state x diverges though
the impulses slow down the divergence process. In (d), the solution of equation (3.16) with
impulsive parameters γ1 = 0 and γ2 = −0.9 is simulated.

Choose V1(t, x) = x2, V2(t, xt) = |b|
∫ t

t−τ x2(s)ds, and V(t, xt) = V1(t, x) + V2(t, xt), so
condition (i) of Theorem 3.2.1 is satisfied with w1 = w2 = 1, w3 = |b|τ, and p = 2. The upper
right hand derivative of V along equation (3.16) is

V′(t, xt) = 2x(t)x′(t) + |b|x2(t)− |b|x2(t− τ)

22



= 2ax2(t) + 2bx(t)x(t− τ) + |b|x2(t)− |b|x2(t− τ)

≤ 2(a + |b|)V(t, xt),

then condition (ii) of Theorem 3.2.1 holds with c = 2(a + |b|), if a + |b| > 0.

When t = tk, we can get that

V1(tk, x(tk)) = x2(tk) = [(1 + γ1)x(t−k ) + γ2x(tk − τ)]2

= (1 + γ1)
2x2(t−k ) + γ2

2x2(tk − τ) + 2(1 + γ1)γ2x(t−k )x(tk − τ)

≤ (1 + γ1)
2x2(t−k ) + γ2

2x2(tk − τ)

+ ε(1 + γ1)
2x2(t−k ) + ε−1γ2

2x2(tk − τ)

= (1 + ε)(1 + γ1)
2x2(t−k ) + (1 + ε−1)γ2

2x2(tk − τ)

= ρ1V1(t−k , x(t−k )) + ρ2 sup
s∈[−τ,0]

{V1(t−k + s, x(t−k + s))}, (3.17)

where ρ1 = (1 + ε)(1 + γ1)
2, ρ2 = (1 + ε−1)γ2

2, and ε > 0 is a constant. It can be seen that
ρ = ρ1 + ρ2 can be minimized by choosing ε = |γ2|

|1+γ1|
, then ρ = (|1 + γ1| + |γ2|)2. Thus,

condition (iii) of Theorem 3.2.1 is satisfied.

Based on the above discussion and Theorem 3.2.1, we have that if a + |b| > 0 and ln[(|1 +
γ1|+ |γ2|)2 + |b|τ] < −(a + |b|)δ, then the trivial solution of equation (3.16) is GES. The nu-
merical simulation of the impulse-free delay differential equation with a = 1.2, b = 1, τ = 0.1,
and initial condition t0 = 0, φ(s) = 2 for s ∈ [−τ, 0] is shown in Fig. 3.2(a), while the simulation
of the impulsive differential equation is given in Fig. 3.2(b) with γ1 = −0.73, γ2 = −0.1, and
tk − tk−1 = 0.327 for k ∈N.

If γ1 = 0, then ρ1 = 1 + ε > 1. Hence, Theorem 3.2.1 cannot be used to analyze the
stability of system (3.16) according to the estimation method used in (3.17). Simulation result
in Fig. 3.2(c) implies that the impulses with γ2 = −0.1 cannot stabilize the linear delay system.
Compared with the simulation result in Fig 3.2(b), we can see that the linear part γ1x(t−k ) plays
an important role in the stabilization process. However, if we replace the impulsive control gain
considered in Fig. 3.2(c) with γ2 = −0.9, then the numerical simulations in Fig. 3.2(d) show
the corresponding impulsive system is stable. Therefore, in order to apply Theorem 3.2.1 to
investigate the stability of time-delay systems with delayed impulses considered in Fig. 3.2(c)
and 3.2(d), an estimation of the relation between x(t−k ) and x(tk − d) is necessary to guarantee
ρ1 < 1 when testifying condition (iii) of Theorem 3.2.1. This is the key point and main difficult
to deal with systems subject to delayed impulses in the form of ∆x(tk) = Ik(x(tk − d)). Details
will be discussed in Chapter 4 about delayed impulsive control of DNs.

3.3 Razumikhin Technique

In this section, we will study exponential stability of system (3.1) by using Razumikhin tech-
nique and Lyapunov functions. The following theorem gives sufficient conditions for GES of
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system (3.1), which is a direct consequence of Theorem 3.1 in [18] for stochastic impulsive sys-
tems.

3.3.1 Results for General Nonlinear Systems

Theorem 3.3.1 Assume that there exist V ∈ ν0, and constants p, q, c, w1, w2, ρ1 > 0, and ρ2 ≥ 0,
such that

(i) w1||x||p ≤ V(t, x) ≤ w2||x||p, for t ∈ R+ and x ∈ Rn;

(ii) for t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0], Rn), and k ∈N,

D+V(t, ψ(0)) ≤ cV(t, ψ(0)),

whenever V(t + s, ψ(s)) < qV(t, ψ(0)) for all s ∈ [−τ, 0];

(iii) for k ∈N and ψ ∈ PC([−τ, 0], Rn),

V(tk, ψ(0) + Ik(tk, ψ)) ≤ ρ1V(t−k , ψ(0)) + ρ2 sup
s∈[−τ,0]

{V(t−k + s, ψ(s))};

(iv) q > 1
ρ1+ρ2

> ecd, where d = supk∈N{tk+1 − tk}.

Then the trivial solution of system (3.1) is GES.

From Theorem 3.3.1, we can obtain the following result of generalized Halanay-type in-
equalities.

Theorem 3.3.2 For constant α and non-negative constants β, ρ1, and ρ2, the function v ∈ PC([t0 −
τ, ∞), R+) satisfies 

v′(t) ≤ αv(t) + β sup
s∈[−τ,0]

v(t + s), t 6= tk,

v(tk) ≤ ρ1v(t−k ) + ρ2 sup
s∈[−τ,0]

v(t−k + s), k ∈N,

vt0 = ψ,

(3.18)

where ψ ∈ PC([−τ, 0], R+). If α + β ≥ 0 and

1
ρ1 + ρ2

> e(α+
β

ρ1+ρ2
)σ

> 1, (3.19)

where σ = supk∈N{tk − tk−1}, then
lim
t→∞

v(t) = 0.

24



Proof. Since α + β ≥ 0 and ρ1, ρ2 ≥ 0, inequality (3.19) implies that (α + β
ρ1+ρ2

)σ > 0, and then

e(α+
β

ρ1+ρ2
)σ

> 1 and ρ1 + ρ2 < 1. Thus, if (3.19) holds, then there exists a constant q such that

q >
1

ρ1 + ρ2
> e(α+qβ)σ > e(α+

β
ρ1+ρ2

)σ.

According to the above inequality, one can choose a small enough constant λ > 0 such that

q >
eλτ

ρ1 + ρ2eλτ
>

1
ρ1 + ρ2eλτ

> e(α+qβ+λ)σ.

If v(t + s) ≤ qv(t) for all s ∈ [−τ, 0], then (3.19) implies that

v′(t) ≤ αv(t) + β sup
s∈[−τ,0]

v(t + s) ≤ cv(t)

with constant c = α + qβ. Then, inequalities (3.19) are related to the Razumikhin-type condi-
tions in Theorem 3.3.1. The rest proof is similar to that of Theorem 3.1 in [18], and thus omitted.
�
Theorems 3.3.1 and 3.3.2 will be used to study consensus problem of multi-agent systems in
Chapter 4.

3.3.2 Case Study: Nonlinear Systems with Distributed-Delay Dependent
Impulses

Next, consider the following nonlinear time-delay system subject to distributed-delay depen-
dent impulses, which is a special case of system (3.1):

ẋ(t) = f (t, xt), t ∈ [tk−1, tk),

∆x(t) = Ik(t,
∫ t

t−rk

x(s)ds), t = tk, k ∈N,

xt0 = ψ,

(3.20)

where x ∈ Rn, 0 ≤ t0 < t1 < ... < tk < ... with limt→∞ tk = ∞, and ∆x(t) = x(t+) −
x(t−). Here, we assume that x is right-continuous at each t = tk, i.e., x(t+k ) = x(tk). xt ∈
PC([−τ, 0], Rn) is defined as xt(s) = x(t + s) for s ∈ [−τ, 0], where τ denotes the time-delay
in the continuous dynamics of system (3.20). rk ≥ 0 represents the distributed delay in the
impulse satisfying rk ≤ r ≤ τ for all k ∈ N. Assume f : R+ × PC([−τ, 0],D) → Rn and
Ik : R+×D → Rn, whereD ⊆ Rn is an open set, satisfy all the sufficient conditions introduced
in Section 3.1 so that system (3.20) admits a solution x(t) := x(t, t0, ψ) that exists on a maximal
interval [t0 − τ, t0 + T) where 0 < T ≤ ∞, and moreover, suppose f (t, 0) = Ik(t, 0) = 0 for all
k ∈N. Next, we further assume that, for some ρ > 0 and B(ρ) ⊆ D,

(A1) there exists a positive constant L1 such that ‖ f (t, φ)‖ ≤ L1‖φ‖τ for any (t, φ) ∈ R+ ×
PC([−τ, 0],B(ρ));
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(A2) there exists a positive constant L2 such that ‖Ik(t, y)− Ik(t, z)‖ ≤ L2‖y− z‖ for any t ∈ R+

and y, z ∈ B(ρ);

(A3) there exist positive constants σ and σ such that σ ≤ tk − tk−1 ≤ σ for all k ∈N, i.e., all the
impulsive intervals are uniformly bounded;

(A4) there exists a nonnegative integer l such that lσ < r ≤ (l + 1)σ, i.e., there are at most l
impulses on each interval [tk − rk, tk).

Remark 3.3.1 Impulsive system (3.20) can be derived from the following control system

ẋ = f (t, xt) + u(t), (3.21)

with impulsive controller (IC)

u(t) =
∞

∑
k=1

Ik(t,
∫ t

t−rk

x(s)ds)δ(t− tk) (3.22)

where δ(·) is the Delta Dirac function. Recent results about delay-dependent impulsive control of time-
delay systems were reported in [73], and the following form of delay-dependent impulses was considered:

x(tk) = Γkx(tk − ςk), (3.23)

where Γk ∈ Rn and ςk denotes the discrete delay in the impulse. Rewrite (3.23) as ∆x(tk) = −x(t−k ) +
Γkx(tk − ςk), then the corresponding IC is

u(t) =
∞

∑
k=1

[−x(t) + Γkx(t− ςk)]δ(t− t−k ), (3.24)

which depends not only on the states at a history instant (i.e., x(tk − ςk)) but also on the states at
the impulsive time (i.e., x(t−k )). Therefore, sufficient conditions obtained in [73] could guarantee the
IC (3.24) to stabilize the time-delay system, but the authors cannot make conclusion that the delayed
states contribute to the systems stability. However, it can be seen that IC (3.22) relies purely on the
distributed-delay dependent states, i.e., the distributed delays in IC (3.24) play a key role in stabilization
of the nonlinear system.

The objective of the following discussion is to use Lyapunov-Razumikhin method to estab-
lish exponential stability criteria for impulsive system (3.20). We first construct an exponential
stability criterion for system (3.20).

Theorem 3.3.3 Suppose assumptions (A1)-(A4) are satisfied, and there exist a function V ∈ ν0, and
positive constants c1, c2, p, c, q, K1, K2 and ν such that

(i) c1‖x‖p ≤ V(t, x) ≤ c2‖x‖p for all (t, x) ∈ [t0 − τ, ∞)×B(ρ);

(ii) D+V(t, φ(0)) ≤ cV(t, φ(0)) for all t ≥ t0, t 6= tk(k ∈ N) and φ ∈ PC([−τ, 0],B(ρ)),
whenever V(t + s, φ(s)) ≤ qV(t, φ(0)) for all s ∈ [−τ, 0];

(iii) V(t, x + y) ≤ K1V(t, x) + K2V(t, y) for all t = tk and x, y ∈ B(ρ) satisfying x + y ∈ B(ρ);
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(iv) V(t, x + Ik(t, rkx)) ≤ νV(t−, x) for all t = tk and x ∈ B( ρ
1+rL2

);

(v) q > {K1ν + K2
c2
c1
[r2L2(L1 + lL2)]

p}−1 > ecσ,

then the trivial solution of system (3.20) is ES.

Proof: Let d1 = K1ν and d2 = K2
c2
c1
[r2L2(L1 + lL2)]

p. From condition (v), we can find a small
enough constant α such that

q >
eατ̄

d1 + d2eατ̄
>

1
d1 + d2eατ̄

> e(c+α)σ̄, (3.25)

where τ̄ = τ + r. Set q̄ = qe−ατ̄, then (3.25) implies that q̄ > e(c+α)σ > 1. Choose M > 0 such
that q̄c2 < M, then let η = max{r, 1 + rL2, r2L2(L1 + lL2)} and ε = (η p

√
M/c1)

−1ρ. Suppose
x(t) = x(t, t0, ψ) is a solution of (3.20) with (t, ψ) ∈ R+ × PC([−τ, 0],B(ε)), and is exits on a
maximal interval [t0 − τ, t0 + T) where T > 0.

Let V(t) := V(t, x(t)), and we will show that

V(t) ≤ M‖ψ‖p
τe−α(t−t0), for t ∈ [t0, t0 + T). (3.26)

If (3.26) is true, then condition (i) implies

‖x(t)‖ ≤ p
√

M/c1‖ψ‖τe−
α
p (t−t0) ≤ ρ,

i.e., x(t) ∈ B(ρ) for all t ∈ [t0− τ, t0 + T). It then follows from the continuation theorem in [14]
that T = +∞, that is, the global existence of the solution x(t). Therefore, it is sufficient to prove
(3.26) is true for t ≥ t0, and then the global existence of x(t) follows directly.

Set Q(t) := eα(t−t0)V(t), then we will prove

Q(t) < M‖ψ‖p
τ, for t ≥ t0. (3.27)

For t ∈ [t0 − τ, t0], we have

Q(t) ≤ V(t) ≤ c2‖ψ‖
p
τ <

M
q̄
‖ψ‖p

τ < M‖ψ‖p
τ. (3.28)

To prove (3.27), we first show that

Q(t) < M‖ψ‖p
τ, for t ∈ [t0, t1). (3.29)

We prove (3.29) by contradiction. Suppose (3.29) is not true, then there exists a t∗ ∈ [t0, t1) such
that Q(t∗) = M‖ψ‖p

τ and Q(t) < M‖ψ‖p
τ for t < t∗. Note that t∗ 6= t0, since (3.28) implies

Q(t0) < 1
q̄ M‖ψ‖p

τ < M‖ψ‖p
τ. Furthermore, there exists a t∗∗ ∈ (t0, t∗) such that Q(t∗∗) =

1
q̄ M‖ψ‖p

τ and Q(t) > 1
q̄ M‖ψ‖p

τ for t ∈ (t∗∗, t∗]. Therefore, for t ∈ [t∗∗, t∗], t + s ≤ t∗ and

Q(t + s) ≤ M‖ψ‖p
τ ≤ q̄Q(t) for all s ∈ [−τ, 0], which implies that V(t + s) ≤ q̄eαsV(t) ≤ qV(t)
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for s ∈ [−τ, 0]. For t ≤ t∗, Q(t) ≤ M‖ψ‖p
τ implies V(t) ≤ M‖ψ‖p

τe−α(t−t0) and then x(t) ∈
B(ρ). From condition (ii), we can get

D+Q(t) = αeα(t−t0)V(t) + eα(t−t0)D+V(t)

≤ αeα(t−t0)V(t) + ceα(t−t0)V(t)

= (α + c)Q(t), for t ∈ [t∗∗, t∗]. (3.30)

Then, it follows from (3.30) and (3.25) that

Q(t∗) ≤ Q(t∗∗)e(α+c)(t∗−t∗∗) ≤ Q(t∗∗)e(α+c)σ̄

=
1
q̄

M‖ψ‖p
τe(α+c)σ̄ < M‖ψ‖p

τ,

which is a contradiction to the choice of t∗. Hence, (3.29) is true.

Now we assume that, for some m ∈N,

Q(t) < M‖ψ‖p
τ, for t ∈ [t0, tm). (3.31)

and then, we will show that

Q(t) < M‖ψ‖p
τ, for t ∈ [tm, tm+1). (3.32)

First, we claim that
Q(tm) < (d1 + d2eατ̄)M‖ψ‖p

τ. (3.33)

For t ∈ [tm − rm, tm), integrating system (3.20) on both sides from t to t−m yields

x(t−m)− x(t) =
∫ tm

t
f (s, xs)ds +

i0

∑
i=1

Im−i, (3.34)

where i0 := i0(t) denotes the number of impulses on the interval [t, t−m), and we use Im−i to
represent Im−i(tm−i,

∫ tm−i
tm−i−rm−i

x(s)ds) for simplicity. Integrate both sides of (3.34) from tm − rm

to t−m : ∥∥∥rmx(t−m)−
∫ tm

tm−rm
x(s)ds

∥∥∥
=
∥∥∥ ∫ tm

tm−rm

∫ tm

t
f (s, xs)dsdt +

∫ tm

tm−rm

( i0

∑
i=1

Im−i

)
dt
∥∥∥

≤
∫ tm

tm−rm

∫ tm

t
‖ f (s, xs)‖dsdt +

∫ tm

tm−rm

( i0

∑
i=1
‖Im−i‖

)
dt. (3.35)

It can be seen from (3.31) and the definition of ε that both x and
∫ tm−i

tm−i−rm−i
x(s)ds (i = 1, 2, ..., i0)

for t < tm belong to B(ρ). It then follows from (3.35) and assumptions (A1), (A2), and (A4)
that ∥∥∥rmx(t−m)−

∫ tm

tm−rm
x(s)ds

∥∥∥
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≤
∫ tm

tm−rm

∫ tm

t
L1‖xs‖τdsdt +

∫ tm

tm−rm

( i0

∑
i=1

L2

∥∥∥ ∫ tm−i

tm−i−rm−i

x(s)ds
∥∥∥)dt

≤ L1rm

∫ tm

tm−rm
‖xs‖τds + L2rm

l

∑
i=1

∫ tm−i

tm−i−rm−i

‖x(s)‖ds

≤ L1rm

∫ tm

tm−rm
sup

θ∈[−τ,0]
‖x(s + θ)‖ds + L2rm

l

∑
i=1

rm−i sup
θ∈[−rm−i,0]

‖x(tm−i + θ)‖

≤ L1r2
m sup

θ∈[−τ−rm,0]
‖x(t−m + θ)‖+ L2rmrl sup

θ∈[−2r,0]
‖x(t−m + θ)‖

≤ r2(L1 + lL2) sup
θ∈[−τ̄,0]

‖x(t−m + θ)‖. (3.36)

In the second inequality of (3.36), if m − i < 1, we set rm−i = tm−i = 0. Denote ∆Im :=
Im(tm,

∫ tm
tm−rm

x(s)ds)− Im(tm, rmx(t−m)). It follows from (3.36) and assumption (A2) that

‖∆Im‖p ≤ Lp
2

∥∥∥rmx(t−m)−
∫ tm

tm−rm
x(s)ds

∥∥∥p

≤ [r2L2(L1 + lL2)]
p sup

θ∈[−τ̄,0]
‖x(t−m + θ)‖p

≤ 1
c1
[r2L2(L1 + lL2)]

p sup
θ∈[−τ̄,0]

V(t−m + θ). (3.37)

Then, from conditions (iii), (iv), (i), and the definition of ε, we have

V(tm) = V(tm, x(t−m) + Im(tm,
∫ tm

tm−rm
x(s)ds))

= V(tm, x(t−m) + Im(tm, rmx(t−m)) + ∆Im)

≤ K1V(tm, x(t−m) + Im(tm, rmx(t−m))) + K2V(tm, ∆Im)

≤ K1νV(t−m , x(t−m)) + K2c2‖∆Im‖p. (3.38)

Using (3.37), (3.38), and (3.25), we obtain

Q(tm) = eα(tm−t0)V(tm)

≤ K1νQ(t−m) + K2c2eα(tm−t0)‖∆Im‖p

≤ d1Q(t−m) + d2eατ̄ sup
θ∈[−τ̄,0]

Q(t−m + θ)

< (d1 + d2eατ̄)M‖ψ‖p
τ

< M‖ψ‖p
τ, (3.39)

that is, claim (3.33) is true.
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Next, we will prove (3.32) by contradiction. Suppose (3.32) is not true, then there exists a
t ∈ (tm, tm+1) such that Q(t) = M‖ψ‖p

τ and Q(t) < M‖ψ‖p
τ for t < t. On the other hand,

(3.39) implies that there exists a t ∈ (tm, t) such that Q(t) = (d1 + d2eατ̄)M‖ψ‖p
τ and Q(t) >

(d1 + d2eατ̄)M‖ψ‖p
τ for t ∈ (t, t]. Hence, for t ∈ [t, t], t + s ≤ t and Q(t + s) ≤ M‖ψ‖p

τ ≤ (d1 +
d2eατ̄)−1Q(t) for all s ∈ [−τ, 0], which implies that V(t + s) ≤ eαs(d1 + d2eατ̄)−1V(t) ≤ qV(t)
for s ∈ [−τ, 0]. Similar to the discussion of (3.30), we can get from condition (ii) and (3.25) that

Q(t) ≤ Q(t)e(α+c)(t−t)

≤ e(α+c)σ̄(d1 + d2eατ̄)M‖ψ‖p
τ

< M‖ψ‖p
τ,

which is a contradiction to the choice of t. Thus, (3.32) is true, i.e., Q(t) < M‖ψ‖p
τ for t ∈

[t0, tm+1), and then we conclude from mathematical induction that (3.32) is true for all m ∈ N.
Therefore,

‖x(t)‖ ≤ p
√

V(t)/c1 = p
√

Q(t)e−α(t−t0)/c1

≤ p
√

M/c1‖ψ‖τe−
α
p (t−t0),

for t ≥ t0, i.e., the trivial solution of system (3.20) is ES and the proof is complete. �

Remark 3.3.2 The Razumikhin-type condition (ii) in Theorem 3.3.3 characterizes the changing rate
of function V on each impulsive interval. The positive constant c implies that the delay-free system
can be unstable. Therefore, Theorem 3.3.3 shows that an unstable time-delay system can be exponen-
tially stabilized by distributed-delay dependent impulses. Conditions (iii) and (iv) are requirements
on the Lyapunov function V at each impulsive instant. As pointed out in [25], for any positive defi-
nite matrix P, the Lyapunov function V(t, x) = (xTPx)p satisfies condition (iii) with V(t, x + y) ≤
max{2

p
2−1, 1}[(1 + ε)

p
2 V(t, x) + (1 + ε−1)

p
2 V(t, y)] for any ε > 0.

Remark 3.3.3 As a special case of system (3.1), Theorem 3.3.1 can be applied to analyze the stability
property of system (3.20). But, with the locally Lipschitz conditions given in assumptions (A1) and (A2),
Theorem 3.3.1 is not applicable to system (3.20), since it is a global result for ES. However, if f and Ik in
(3.20) satisfy globally Lipschitz conditions, then Theorem 3.3.3 can be derived from Theorem 3.3.1 with
the estimation techniques used in (3.35)-(3.38). These techniques will also be applied in Sections 4.4 and
5.3 when distributed delays are considered in the proposed impulsive controllers.

Now consider the following linear impulsive system with time-delay
ẋ(t) = Ax + Bx(t− τ), t ∈ [tk−1, tk),

∆x(t) = E
∫ t

t−r
x(s)ds, t = tk, k ∈N,

xt0 = ψ,

(3.40)

where A, B, and E are n × n matrices, 0 < r ≤ τ, t0 = 0, and tk = kσ(k ∈ N) with σ > 0.
ψ ∈ PC([−τ, 0], Rn) is the initial condition for system (3.40). It can be seen that conditions
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(A1)-(A4) are satisfied for system (3.40) with L1 = ‖A‖ + ‖B‖, L2 = ‖E‖, σ = σ = σ, and
l = b r

σc where the floor function gives the largest integer less than r
σ .

Next, we will apply Theorem 3.3.3 to establish a GES result for system (3.40).

Theorem 3.3.4 If

σ <
−2 ln µ

λA + 2‖B‖
µ

, (3.41)

where µ = ‖I + rE‖+ r2‖E‖(‖A‖+ ‖B‖+ l‖E‖) and λA = λmax(AT + A), then the trivial solution
of system (3.40) is GES.

Proof: Consider V(x) := V(t, x) = xTx, then condition (i) of Theorem 3.3.3 is satisfied with
c1 = c2 = 1 and p = 2.

For t 6= tk and any ε > 0, we have

V′(x) = [Ax + Bx(t− τ)]Tx + xT[Ax + Bx(t− τ)]

≤ λAxTx + 2‖B‖ · ‖x‖ · ‖x(t− τ)‖

≤ λAV(x) + ‖B‖(ε‖x‖2 + ε−1‖x(t− τ)‖2)

≤ [λA + (ε + ε−1q)‖B‖]V(x), (3.42)

whenever V(x(t+ s)) ≤ qV(x(t)) for s ∈ [−τ, 0]. To get a less conservative estimation in (3.42),
we can minimize the term ε + ε−1q for ε > 0. Then, condition (ii) in Theorem 3.3.3 is satisfied
with c = minε>0{λA + (ε + ε−1q)‖B‖} = λA + 2

√
q‖B‖.

For t = tk, we can conclude from Remark 3.3.2 that V(x + y) ≤ (1+ ε)V(x) + (1+ ε−1)V(y)
for any ε > 0, then condition (iii) holds with K1 = 1 + ε and K2 = 1 + ε−1. Condition (iv) is
satisfied with ν = ‖I + rE‖2. Moreover, if q > 1

κ > ecσ with κ = K1ν + K2
c2
c1

Lp
2(L1r2 + L2r2l)p,

then Theorem 3.3.3 implies that system (3.40) is ES. However, κ = (1 + ε)‖I + rE‖2 + (1 +
ε−1)‖E‖2r4(‖A‖+ ‖B‖+ l‖E‖)2 depends on the positive parameter ε. To obtain a larger upper
bound for σ, we minimize κ for ε > 0, then we have minε>0 κ = µ2.

On the other hand, (3.41) implies that there exist a q with q > 1
µ2 and q− 1

µ2 small enough

such that σ < −2 ln µ
c < −2 ln µ

λA+2‖B‖/µ
, i.e., 1

µ2 > ecσ. With the choice of q, we have q > 1
µ2 > ecσ.

Hence, condition (v) holds.

Up to now, conditions (A1)-(A4) and all the conditions in Theorem 3.3.3 are satisfied with
ρ = ∞, then we can conclude from Theorem 3.3.3 that systems (3.40) is GES. �

Remark 3.3.4 Inequality (3.41) in Theorem 3.3.4 gives an upper bound of σ explicitly, which is a com-
mon condition for admissible impulsive sequences in most of the impulsive control literature. On the
other hand, parameter µ in (3.41) depends on l. If σ is small enough (l large enough) such that µ ≥ 1,
then (3.41) cannot be satisfied for any σ > 0. Therefore, a lower bound of σ is contained in (3.41) im-
plicitly. See the following example for details about how to get all the possible values of σ for the stability
of system (3.40) from Theorem 3.3.4.
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Figure 3.3: State trajectories of system (3.40) with different choices of σ. (a) System response
without impulses (σ = ∞). (b) Impulsive stabilization with σ = 0.37 ∈ Ω. (c) Impulsive
stabilization with σ = 0.1 ∈ Ω. (d) Impulsive control with σ = 0.02 6∈ Ω. Note that, for σ =
0.02 in (d), the distributed-delay dependent impulses fail to stabilize the time-delay system,
which means that frequent impulses (small σ) may lead to the failure of the controller with
distributed delays for stabilization of time-delay systems.
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Consider linear impulsive system (3.40) with parameters given as follows:

A =

−0.01 −0.26 −0.13
−0.16 0.14 0.17
0.05 0.32 0.25

 , B =

−0.31 0.08 0.14
−0.28 0.13 0.25
0.11 0.16 0.13


E = −2.5I, τ = 1, and r = 0.2. Then, λA = 1.0029, ‖A‖ = 0.5412, ‖B‖ = 0.5028, and
‖I + rE‖ = 0.5.

Next, we will use Theorem 3.3.4 to identify the admissible impulsive sequences for stabi-
lization of system (3.40) with the given parameters:

• l = 0, that is, no impulse in the interval [tk − r, tk). Then, µ = 0.6044 and −2 ln µ
λA+2‖B‖/µ

∣∣
l=0 =

0.3776. Thus, l = b r
σc = 0 implies that 0.2 = r ≤ σ, and (3.41) implies σ < 0.3776. We can

conclude from Theorem 3.3.4 that system (3.40) is GES for any σ ∈ [0.2, 0.3776).

• l = 1, that is, there is one impulse in [tk − r, tk). Then, µ = 0.8544 and −2 ln µ
λA+2‖B‖/µ

∣∣
l=1 =

0.1444. l = b r
σc = 1 implies that σ < r ≤ 2σ, then r/2 ≤ σ < r. on the other hand,

(3.41) implies σ < 0.1444. Therefore, system (3.40) is GES if σ ∈ [r/2, r) ∩ (0, 0.1444) =
[0.1, 0.1444).

• If there are two impulses on [tk − r, tk), then l = 2 and µ = 1.1044 > 1. Hence, for any
l ≥ 2, we get µ > 1, and (3.41) fails to hold for any σ > 0.

Based on the above analysis, the trivial solution of system (3.40) is GES if σ ∈ Ω := [0.1, 0.1444)
∪[0.2, 0.3776). Numerical simulations of system (3.40) are shown in Fig. 3.3 with initial condi-
tion ψ(s) = (4, 4, 4)T for s ∈ [−τ, 0]. We conclude the analysis with the following algorithm for
the application of Theorem 3.3.4.

Algorithm 1. Computation the admissible set Ω for σ

require: r, E

1. l = 0, bdd = 0

2. µ = ‖I + rE‖+ r2‖E‖(‖A‖+ ‖B‖)

3. Ω = Φ (initialed with empty set)

4. while µ < 1 do

5. bdd← −2 ln µ
λA+2‖B‖/µ

6. if l = 0 then

7. Ω← [r, ∞) ∩ (0, bdd)

8. else

9. Ω← Ω ∪ ([ r
l+1 , r

l ) ∩ (0, bdd))
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10. end if

11. l ← l + 1

12. µ← ‖I + rE‖+ r2‖E‖(‖A‖+ ‖B‖+ l‖E‖)

13. end while

14. return Ω

If the set Ω obtained from Algorithm 1. is not empty, then Theorem 3.3.4 can be applied to
design suitable impulsive sequences for stabilization of system (3.40) with given parameters r
and E.
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Chapter 4

Consensus of Multi-Agent Systems

This chapter studies the consensus problem of multi-agent systems with both fixed and switch-
ing topologies. In Section 4.2, a hybrid consensus protocol is proposed to take into consid-
eration of continuous-time communications among agents and delayed instantaneous infor-
mation exchanges on a sequence of discrete times. In Section 4.3, a novel hybrid consensus
protocol with dynamically changing interaction topologies is designed to take the time-delay
into account in both the continuous-time communication among agents and the instantaneous
information exchange at discrete-time moments. Section 4.4 studies the consensus problem of
networked multi-agent systems. Distributed delays are considered in both the agent dynamics
and the proposed impulsive consensus protocols.

4.1 Network Topology

In this section, we introduce some preliminary notions in graph theory.

Let G = (V , E) be a digraph (or directed graph) of order n with the set of nodes V = {v1, v2,
..., vn} and the set of edges E ⊆ V ×V . An edge of G is denoted by (vi, vj) which means the node
vj can receive information from node vi, and then vi and vj are called parent and child nodes,
respectively. The index set of neighbors of node vi is denoted by Ni = {vj ∈ V | (vj, vi) ∈ E}.
For a given matrix A = [aij]n×n, the digraph of A, denoted by G(A) = (V , EA), is the directed
graph of order n with the set of nodes V and the set of edges EA ⊆ V × V such that an edge
(vj, vi) exists if and only if aij 6= 0.

Next, we will introduce some terminology for the digraph G (i.e., G = (V , E) or G = G(A) =
(V , EA) ). A directed path of digraph G is a sequence of edges (vi1 , vi2), (vi2 , vi3), (vi3 , vi4),... in
digraph G. A digraph G is called strongly connected if there is a directed path connecting
any two arbitrary nodes in G. A directed tree is a digraph such that there is only one root
(that is, no edge points to this node) in it, and every node except the root has exactly one
parent. A spanning tree of digraph G is a directed tree that connects all the nodes of G. Let
Ḡ = {G1,G2, ...,GM} denote the set of all possible digraphs defined for V . Then the union of a
group of digraphs {Gi1 ,Gi2 , ...,Gim} ⊆ Ḡ is defined as a digraph with nodes given by the set V ,
and the edge set is given by the union of the edge sets Gij , j = 1, 2, ..., m.

A weighted digraph GA = (V , E ,A) is a digraph G = (V , E) associated with a weighted
adjacency matrix A = [αij]n×n with nonnegative adjacency elements αij such that (vj, vi) ∈ E
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if and only if αij > 0. Denote the set {1, 2, ..., n} by I . It is assumed that αii = 0 for all
i ∈ I . The graph Laplacian L of the weighted digraph GA is defined by L := D −A where
D = diag{d1, d2, ..., dn} with element di := ∑j∈Ni

αij which is called the in-degree of node
vi. A weighted digraph GA is said to be balanced if ∑n

j=1,j 6=i αij = ∑n
j=1,j 6=i αji for all i ∈ I .

The following are equivalent (Theorem 1.37, [8]): (i) G is balanced; (ii) 1TL = 0, where 1 =
(1, 1, ..., 1)T is a n× 1 vector; (iii) L+LT is positive semi-definite. If G is balanced and strongly
connected, then 0 is a simple eigenvalue of L+ LT.

4.2 Hybrid Protocols with Impulse Delays

The purpose of this section is to study the consensus problem of multi-agent systems via hy-
brid consensus protocols with impulse delays. Following the idea utilized in [98], we aim to
extend the results in [36] to the case of hybrid continuous-time and delayed impulsive con-
sensus protocols, and then establish verifiable consensus results by using results from graph
theory and matrix theory. The outline of this section is as follows. We introduce the hybrid
consensus protocol in Subsection 4.2.1, and provide some lemmas in graph theory and ma-
trix theory in Subsection 4.2.2. Consensus results are established for multi-agent systems with
fixed topologies and switching topologies in Subsections 4.2.3 and 4.2.4, respectively. Subsec-
tion 4.2.5 contains the discussion of the obtained results, and highlights the contributions of
these results by comparison with the existing ones. Simulations are presented at the end of
Subsection 4.2.5 to demonstrate our theoretical results.

4.2.1 Consensus Protocols

Let xi ∈ R denote the state of node vi, and consider each node of a graph G to be a dynamic
agent with integrator dynamics

ẋi(t) = ui, i ∈ I , (4.1)

where ui is a state feedback. We say ui is a protocol with topology G if the state feedback ui
only depends on the information of vi and its neighbors, i.e., ui = ui(xi1 , xi2 , ..., xim) and the
corresponding set of nodes {vi1 , vi2 , ..., vim} are all taken from the set {vi} ∪Ni.

We say a protocol solves the consensus problem if and only if

lim
t→∞
‖xi(t)− xj(t)‖ = 0 (4.2)

for any i, j ∈ I . Furthermore, we say a protocol ui solves the average-consensus problem if and
only if

lim
t→∞
‖xi(t)− Ave(x(0))‖ = 0

for all i ∈ I , where Ave(x(0)) = 1
n ∑n

j=1 xj(0).

Remark 4.2.1 It can be seen that a consensus problem is specified in terms of two events: 1. propose:
agreement on the agent states as described in (4.2); 2. algorithm: an interaction rule that specifies the
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information exchange among agents. Definition 2.4.1 implies that synchronization problem shares the
same control objective with the consensus problem. However, the controller design for realization of
network synchronization does not necessarily depends on the interaction rule among the network nodes,
while this interaction rule is essential for the protocol design of a consensus problem.

We consider the following consensus protocol which is based on two interaction topologies
GA = (V , E ,A) and GA′ = (V , E ′,A′):

ui(t) = ∑
vj∈Ni

αij[xj(t)− xi(t)] +
∞

∑
k=1

∑
vj∈N ′i

α′ij[xj(t− d)− xi(t− d)]δ(t− tk), (4.3)

where αij (or α′ij) is the (i, j)th entry of the weighted adjacent matrix A (or A′), and Ni (or
N ′i ) denotes the set of node vi’s neighbors in graph GA (or GA′); δ(·) denotes the Dirac delta
function; tk is called impulsive instant, and the time sequence {tk} satisfies 0 < t1 < t2 <
... < tk < ... and limk→∞ tk = ∞; d ≥ 0 denotes the time-delay when processing the impulsive
information according to graph GA′ .

By the definition of δ(·), the collective dynamics of system (4.1) under consensus protocol
(4.3) can be written as an impulsive system:

ẋi(t) = ∑
vj∈Ni

αij[xj(t)− xi(t)], t 6= tk,

∆xi(tk) = ∑
vj∈N ′i

α′ij[xj(tk − d)− xi(tk − d)], k ∈N,
(4.4)

for i ∈ I , where ∆xi(tk) = xi(t+k )− xi(t−k ); xi(t+k ) and xi(t−k ) represent the right and left limit of
xi at tk, respectively. Without loss of generality, we assume that xi(t+k ) = xi(tk), which implies
that xi(t) is right continuous at each impulsive instant tk. Throughout this section, we further
assume that t1 − d ≥ 0, which implies that no information about the states before initial time
t0 = 0 is required, and then the initial conditions xi(0) = xi,0 for i ∈ I are sufficient for the
evolution of system (4.4).

It can be seen that the consensus protocol (4.3) works as follows: on each impulsive interval
(tk, tk+1), the interaction among nodes is connected according to the graph GA, and at each
impulsive instant tk, the nodes exchange information instantaneously according to the topol-
ogy of GA′ . The objective of this section is to determine sufficient conditions on the graphs GA,
GA′ and the impulsive sequence {tk} to guarantee that the consensus protocol (4.3) solves the
consensus problem.

4.2.2 Some Lemmas

A matrix A = [aij]n×n is said to be nonnegative and denoted as A ≥ 0, if all its entries are
nonnegative. For the set of nonnegative matrices, we define an ordering as follows: if A and B
are nonnegative matrices, then A ≥ B implies A− B is a nonnegative matrix. A is a stochastic
matrix, if A is nonnegative and all its row sums are 1. A stochastic matrix P is called indecom-
posable and aperiodic (SIA) if limn→∞ Pn = 1yT, where 1 = (1, 1, ..., 1)T is a n× 1 vector, and
y is some column vector.

Next, we will list some lemmas which will be used in the proof of our results.
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Lemma 4.2.1 [50] Let m ≥ 2 be an integer and P1, P2, ..., Pm be nonnegative n × n matrices with
positive diagonal elements, then

P1P2...Pm ≥ γ(P1 + P2 + ... + Pm),

where γ > 0 can be specified from matrices Pi, i = 1, 2, ..., m.

Lemma 4.2.2 [122] Let Γ be a compact set consisting of n× n SIA matrices with the property that for
any nonnegative integer k and any A1, A2, ..., Ak ∈ Γ (repetitions permitted), Πk

i=1Ai is SIA. Then,
given any infinite sequence A1, A2, A3, ... (repetitions permitted) of matrices from Γ, there exists a
column vector ν such that liml→∞ Πl

i=1Ai = 1νT.

Lemma 4.2.3 [99] For any t > 0, e−Lt is a stochastic matrix with positive diagonal entries, where L is
the graph Laplacian of graph GA = (V , E ,A).

The last lemma is a direct conclusion of Corollary 3.5 and Lemma 3.7 in [98].

Lemma 4.2.4 If A = [aij]n×n is a stochastic matrix with positive diagonal elements, and the digraph
associated with A has a spanning tree, then A is SIA.

4.2.3 Consensus Problem with Fixed Topologies

In this subsection, consensus problem of multi-agent system (4.4) is studied with fixed topolo-
gies, i.e., both the weighted digraphs GA and GA′ in protocol (4.3) are time-invariant. Let
x = (x1, x2, ..., xn)T ∈ Rn, then system (4.4) can be written in a compact form{

ẋ(t) = −Lx(t), t 6= tk,

∆x(tk) = −L′x(tk − d), k ∈N,
(4.5)

where L (or L′) is the graph Laplacian of GA (or GA′).
From Lemma 4.2.3, we know that, for t > 0, e−Lt is a stochastic matrix, which implies that

D := e−Ld −L′ is also a stochastic matrix for t > 0. To establish our main results, we make the
following assumption:

(A1) D has positive diagonal entries.

Since e−Ld has positive diagonal entries, graph GA′ with small enough in-degree d′i (i ∈ I) will
make assumption (A1) hold.

Now we are in the position to introduce one of the main results.

Theorem 4.2.1 Assume that impulsive intervals (tk−1, tk] for k ∈ N are uniformly bounded, that is,
there exist positive constants τmin and τmax such that τmin ≤ tk − tk−1 ≤ τmax for all k ∈ N. Fur-
thermore, suppose that d < τmin and assumption (A1) holds. Then, protocol (4.3) solves the consensus
problem if the union of graphs GA and GA′ contains a spanning tree.
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proof For any t > 0, there exists a positive integer k such that t ∈ [tk−1, tk). Then the solution
of (4.5) with initial condition x(0) = x0 can be obtained by induction:

x(t) = e−L(t−tk−1)De−L(τk−1−d)...De−L(τ1−d)x0, (4.6)

for t ∈ [tk−1, tk), where τk = tk − tk−1 for k ∈N.

It can be seen that protocol (4.3) solves the consensus problem if and only if x(t) → 1ξ as
t→ ∞, where ξ ∈ R is some constant. Next, we will show x(t)→ 1ξ as t→ ∞ is equivalent to
the union of graphs GA and GA′ containing a spanning tree.

Lemma 4.2.3 implies e−Lt is a stochastic matrix with positive diagonal entries (SPD) for any
t > 0. On the other hand, we can get from Lemma 4.2.1 that De−Lt ≥ γ(D + e−Lt) for t > 0,
where γ is some positive constant. Moreover, we know that D is a stochastic matrix, and then
from assumption (A1) we see that D has positive diagonal entries, i.e., D is SPD. Hence, the
matrix De−Lt is a SPD when t > 0.

Next, we claim that, for t > 0, the graph of De−Lt has a spanning tree. Let η = max{di}
andM = η I −L, then the (i, j)th (i 6= j) entry ofM is αij which implies the graph GA and the
graph ofM have the same edge set. Since e−Lt = e−ηteMt ≥ ρM for a given t > 0 and some
ρ > 0, we know that the edge set of GA is a subset of the edge set of the graph associated with
e−Lt. On the other hand, the graph of GA′ and the graph of matrix L′ share the same edge set.
Hence, the union of graphs of GA and GA′ has a spanning tree implies that the union of graphs
of matrices e−Ld and L′ has a spanning tree, which implies the graph of D := e−Ld −L′ has a
spanning tree. Note that De−Lt ≥ γ(D + e−Lt) for t > 0, then the graph of De−Lt(t > 0) has a
spanning tree. The claim is true.

Based on the above discussion, we have shown that, for t > 0, the matrix De−Lt is a SPD,
and the graph of it has a spanning tree. From Lemma 4.2.4, one can get that, for t > 0, the
matrix De−Lt is SIA.

Since the intervals [tk−1, tk) for k ∈ N are uniformly bounded, define a matrix set Θ =
{De−Lt | t ∈ [τmin − d, τmax − d]}, then Θ is compact and all of its elements are SIA matrices.
Therefore, by Lemma 4.2.2, there exists a column vector c such that

lim
k→∞

k−1

∏
i=1
De−L(τi−d) = 1cT. (4.7)

By Lemma 4.2.3, we can see that e−L(t−tk−1) is a stochastic matrix, which implies that the row
sums of it are all 1s. Then, e−L(t−tk−1)1 = 1. Therefore, we can obtain from (4.7) that

e−L(t−tk−1)
k−1

∏
i=1
De−L(τi−d) − 1cT = e−L(t−tk−1)

( k−1

∏
i=1
De−L(τi−d) − 1cT

)
.

Moreover, e−L(t−tk−1) is bounded for t− tk−1 ∈ [τmin, τmax]. From this and (4.7), it follows that

e−L(t−tk−1)
k−1

∏
i=1
De−L(τi−d) → 1cT

as t → ∞. Hence, limt→∞ x(t) = 1ξ with ξ = cTx0, which implies protocol (4.3) solves the
consensus problem. �
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Remark 4.2.2 From the control point of view, it is practical to assume that d < τmin. For an impulsive
protocol with large time-delay d, we can design the continuous-time consensus protocol with long enough
time period of activations (that is, the continuous-time protocol works for a long enough time period)
before the impulsive protocol is activated at each impulsive instant. Then, the condition d < τmin is
naturally satisfied.

4.2.4 Consensus Problem with Switching Topologies

In practice, the links among agents may fail to work, and new links are created as time goes
by, such as the hyper-links in the World Wide Web. To model the dynamic changing of the
topology, we consider the consensus problem of multi-agent systems with switching in both
the continuous-time topology and the impulsive-time topology.

Denote two finite index sets P = {1, 2, ..., p} and Q = {1, 2, ..., q}, and two families of di-
graphs Ω = {Gi : i ∈ P}, Ω′ = {G ′j : j ∈ Q}. Let σ : R+ → P be a piecewise constant and
left-continuous function called ‘continuous-time switching signal’, and s : N → Q be a con-
stant function called ‘discrete-time switching signal’. The collective behavior of system (4.5)
can be written as an impulsive switching system{

ẋ(t) = −Lσ(t)x(t), t ∈ [tk−1, tk),

∆x(tk) = −L′s(k)x(tk − ds(k)), k ∈N,
(4.8)

where Li (or L′j) is the graph Laplacian of Gi (or G ′j) for i ∈ P (or j ∈ Q); and ds(k) ≥ 0 denotes
the delay when processing the impulsive information among agents according to graph G ′s(k)
at impulse time t = tk. If switchings only occur at impulsive instants (i.e., there is no switching
on each impulsive interval), then σ(t) = σ(tk) for t ∈ [tk−1, tk) and k ∈ N, and system (4.8)
reduces to the following system{

ẋ(t) = −Lσ(tk)
x(t), t ∈ [tk−1, tk),

∆x(tk) = −L′s(k)x(tk − ds(k)), k ∈N,
(4.9)

Next, we will construct a consensus criterion for system (4.9).

Theorem 4.2.2 If the following conditions are satisfied:

(i) matrix Dij := e−Lidj −L′j has positive diagonal entries for any i ∈ P and j ∈ Q;

(ii) there exist positive constants τmin and τmax such that τmin ≤ tk − tk−1 ≤ τmax and
ds(k) < tk − tk−1 for all k ∈N;

(iii) there exists a subsequence {tkj} ⊆ {tk} such that intervals (tkj−1
, tkj ] for j ∈ N are uniformly

bounded from above, and the union of graphs across each interval (tkj−1
, tkj ] has a spanning tree,

then protocol (4.3) with switching topologies solves the consensus problem.
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proof Condition (ii) implies that initial conditions x(0) = x0 is well-defined for system (4.9),
and it can be obtained from condition (iii) that there exists a positive constant T such that
tkj − tkj−1

≤ T for all j ∈N. Then, for any interval (tkj−1
, tkj ], the following matrix

kj

∏
i=kj−1+1

Dσ(ti),s(i)e
−Lσ(ti)

(τi−ds(i)) (4.10)

is a product of finite number of matrices. Following the similar argument in Theorem 4.2.1,
we have the matrix (4.10) is SIA, since the union of graphs across the interval (tkj−1

, tkj ] has a
spanning tree.

Next, define the following matrix set

Θ = {∏l
i=1Dpi,qi e

−Lpi (τi−dqi ) | integer l satisfies 1 ≤ l ≤ T/τmin; τi ∈ [τmin, τmax] for
i = 1, 2, ..., l; the union of graphs Gp1 , Gp2 ,...,Gpl and G ′q1

, G ′q2
,...,G ′ql

has a spanning tree }.

As discussed for matrix (4.10), we can see that Θ is a set of SIA matrices. Furthermore, since
all τi’s belong to a closed interval and ∑l

i=1 τi is bounded, the set Θ is compact.

For any t > 0, there exist nonnegative integers k and ĵ such that t ∈ (tk, tk+1] ⊆ (tk ĵ
, tk ĵ+1

],

and then, for t ∈ (tk, tk+1], the solution x(t) can be obtained by mathematical induction, and
then combine the matrices products according to each interval (tkj , tkj+1

] to get the compact
form:

x(t) = H̄ ĵ+1(t)H ĵ(t)x0,

where

H ĵ(t) =
ĵ−1

∑
j=0

kj+1

∏
i=kj+1

Dσ(ti),s(i)e
−Lσ(ti)

(τi−ds(i)),

and

H̄ ĵ+1(t) = e−Lσ(tk+1)
(t−tk)

k

∏
i=k ĵ+1

Dσ(ti),s(i)e
−Lσ(ti)

(τi−ds(i)).

It can be obtained from Lemma 4.2.2 that, there exists a column vector v such that

lim
ĵ→∞
H ĵ(t) = 1vT, (4.11)

since ∏
kj+1
i=kj+1Dσ(ti),s(i)e

−Lσ(ti)
(τi−ds(i)) ∈ Θ for j ≥ 0. Moreover, tk ĵ+1

− tk ĵ
≤ T implies that

H ĵ+1(t) is bounded. Note that H ĵ+1(t) is also a stochastic matrix because it is a product of
stochastic matrices.

Then,

x(t)− 1vTx0 = H ĵ+1(t)H ĵ(t)x0 − 1vTx0 = H ĵ+1(t)
(
H ĵ(t)− 1vT)x0 (4.12)

From (4.11) and (4.12), it follows that limt→∞ x(t) = 1vTx0, i.e., the protocol (4.3) solves the
consensus problem. �
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4.2.5 Discussion and Simulation Results

The contribution of this section can be clarified by comparison with the existing results in [98],
[90], and [120].

Reference [98] shows that the consensus problem can be solved if the union of graphs has
a spanning tree frequently enough. We generalize the result to the hybrid consensus protocol
(4.3). Theorem 4.2.1 and Theorem 4.2.2 imply that the union of graphs of both continuous-time
topologies and impulsive-time topologies across certain bounded time intervals having a span-
ning tree can guarantee the protocol solves the consensus problem. According to our results,
many links in Reference [98] can be replaced by instantaneous connections. The advantage
of this is to overcome the difficulties in construction of continuous-time links among certain
nodes due to their special geography locations or connection cost considerations. Actually, the
impulsive behaviour is an abrupt state jump which can be treated as discrete time dynamic.
In this sense, our results unify the consensus results in [98] for both continuous and discrete
multi-agent systems when d = 0. Furthermore, for the switching topology case, our results are
less conservative than the results in [98] when stimulate the random switching of interaction
graphs. The reason is that, the switching times are only required to be bounded in our results
while the switching times in [98] belong to an infinite set generated by any finite set of positive
numbers.

Compared with the results in [90], we have applied different theoretical methods to gen-
eralize these results to hybrid impulsive consensus with delayed impulsive protocols for the
case of time-invariant topology. For the special case with d = 0 in protocol (4.3), our results are
contained in [90]. Since no delay is considered in [90], in this sense our results are more general
than those in [90]. Furthermore, our results imply that the results in [90] are robust to certain
impulsive delays. In terms of the final equilibrium point, the leader following scenario can be
achieved if the union of the graphs has a spanning tree and there exists only one node in the
union graph as the root of the spanning tree; the average consensus scenario can be realized if
the union of the graphs has a spanning tree and all the digraphs are balanced. We will illustrate
these two scenarios by two numerical examples at the end of this section.

In [120], time delays have been considered in both the continuous and impulsive consensus
protocols. The continuous-time and impulsive-time network topologies are assumed to share
the same structure in [120], and both of these network topologies are required to be strongly
connected. Although time delays are only studied in the impulsive topologies in this paper,
we require much fewer connections between nodes in both of the continuous-time topologies
and the impulsive-time topologies. Moreover, the results in [120] are not applicable to our
consensus problem.

Next, we consider two examples both with 10 agents to illustrate our results and the above
discussion. In the following digraphs, the solid lines represent the edges of digraphs at non-
impulsive time, and the dash lines denote the edges of digraphs at impulsive instants; on each
impulsive interval, all digraphs are assumed to have 0− 1 weights; at each impulsive instant,
the digraph in Example 4.2.1 has equal weight 0.36, while, in Example 4.2.2, all the digraphs at
every impulsive time are supposed to have identical weights 0.48.

Example 4.2.1 Consider fixed network topologies given by Figure 4.1, then the union of the digraph at
non-impulsive time and the digraph at impulsive instants across each impulsive interval has a spanning
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Figure 4.1: Fixed topologies.
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Figure 4.2: Average consensus.

Figure 4.3: Switching topologies.

tree. In this example, choose tk = 2(k− 1) + 14 for k ∈N and d = 1, then assumption (A1) is satisfied
which can be easily checked by using MATLAB. Therefore, Theorem 4.2.1 implies that the protocol (4.3)
can solve the consensus problem. Moreover, both of these two digraphs are balanced. Thus, according
to the previous discussion, the protocol (4.3) can solve the average consensus problem. The initial states
are chosen as x(0) = [10, 8, 4, 2,−4,−6,−8, 1,−2,−5]T so that Ave(x(0)) = 0, and Figure 4.2
confirmed the average consensus of the multi-agent system.
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Figure 4.4: Leader following scenario.

It can be observed from Figure 4.1 that there are two subgraphs in the digraph of non-impulsive time,
and both of them are strongly connected and balanced. According to the result in [95], average consensus
will achieved in each subgraph. In the simulation, the first impulsive instant is chosen to be t1 = 14
so that the average consensus of the two subgraphs can be observed, separately. For the digraph at the
impulsive instants, there is information exchange between the 4th agent and the 8th agent, and the result
in [98] implies that average consensus can be achieved between them for the special case d = 0. Therefore,
the dynamic process of the consensus protocol (4.3) with the topologies given in this example can be
concluded as follows: during each non-impulsive time period, the two subgraphs will tame the state of
each agent approach to each other, according to the corresponding subgraph respectively; the digraph at
each impulsive instant will reduce the difference between the average states of the two subgraphs even
time-delay is considered in the impulses, and then the protocol solves the consensus problem.

Example 4.2.2 Consider the network with delay-free dynamically changing topologies given by Figure
4.3, in which only the agents with information exchange are illustrated and the other agents are omitted.
We assume that the impulse and switching occur simultaneously at each impulsive instant tk = k(k ∈
N), and the switchings happen in the order of the digraphs’ sub-indices. Then the union of these graphs
has a spanning tree, and Theorem 4.2.2 concludes that the consensus problem can be solved. Further
observation will make it clear that no information flows into the 10th agent, which means the 10th agent
is the parent node of the spanning tree. Hence, this consensus problem falls into the leader following
scenario which is demonstrated by the simulation results in Figure 4.4 with the same initial conditions
given in Example 4.2.1. At each time t ≥ t0, it can be seen that there exists only one edge in the graph,
no matter the time t is on a impulsive interval or is the impulsive instant. Compared with Example 4.1
in [36], we require much less edges to solve the consensus problem.
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4.3 Hybrid Impulsive Protocols with Time-Delay

This section investigates consensus problems of multi-agent systems. A novel hybrid consen-
sus protocol with dynamically changing interaction topologies is designed to take the time-
delay into account in both the continuous-time communication among agents and the in-
stant information exchange at discrete-time moments. Using a Halanay-type inequality, we
establish sufficient conditions to guarantee the proposed consensus protocols lead to average-
consensus. It is shown that the networked multi-agent system with time-delay can achieve
average-consensus with appropriate network topologies, designed impulsive instants, and ad-
missible time delays according to our consensus criteria. The rest of this section is organized
as follows. In Subsection 4.3.1, we formulate the consensus problem and propose the hybrid
impulsive consensus protocol. The consensus results for multi-agent systems with fixed and
switching topologies are established, respectively, in Subsection 4.3.2. Two numerical examples
are provided to demonstrate the theoretical results in Subsection 4.3.3. The detailed proofs of
the main results are introduced in Subsection 4.3.4.

4.3.1 Consensus Protocols

We consider the following consensus protocol which is based on the dynamically changing
digraph GA(t) = (V , E(t),A(t)) and the fixed digraph GA′ = (V , E ′,A′):

ui(t) = ∑
vj∈Ni(t)

αij(t)[xj(t− r(t))− xi(t− r(t))]

+
∞

∑
k=1

∑
vj∈N ′i

α′ij[xj(t− τk)− xi(t− τk)]δ(t− tk), (4.13)

where r denotes the time-varying delay in the continuous-time consensus protocol satisfying
0 ≤ r(t) ≤ r̄ (r̄ is a constant), and τk represents the time-delay in the discrete-time consensus
protocol at time t = tk satisfying 0 ≤ τk ≤ τ̄ (τ̄ is a constant and k ∈ N); αij(t) is the (i, j)th
entry of the weighted adjacent matrix A(t) at time t, and Ni(t) denotes the set of node vi’s
neighbors in graph GA at time t; α′ij is the (i, j)th entry of the weighted adjacent matrix A′ at
time tk, and N ′i denotes the set of node vi’s neighbors in graph GA′ at time tk; δ(·) denotes
the Dirac delta function; tk is called impulsive instant, and the time sequence {tk} satisfies
0 < t1 < t2 < ... < tk < ... and limk→∞ tk = ∞.

By the definition of δ(·), the collective dynamics of system (4.1) under consensus protocol
(4.13) can be written as an impulsive system:

ẋi(t) = ∑
vj∈Ni(t)

αij(t)[xj(t− r(t))− xi(t− r(t))], t 6= tk

∆xi(tk) = ∑
vj∈N ′i

α′ij[xj(tk − τk)− xi(tk − τk)],

xit0 = φi

(4.14)

for i ∈ I and k ∈ N, where ∆xi(tk) = xi(t+k ) − xi(t−k ); xi(t+k ) and xi(t−k ) represent the right
and left limit of xi at tk, respectively; we assume that xi(t+k ) = xi(tk), which implies that xi(t)
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is right continuous at each impulsive instant tk; xit0 is defined by xit0(s) = xi(t0 + s) for all
s ∈ [−τ, 0] with τ = max{r̄, τ̄}; φi ∈ PC([−τ, 0], Rn) is the initial condition.

It can be seen that consensus protocol (4.13) works as follows: for t 6= tk, the interaction
among agents is described by the graph GA(t), and at each impulsive instant tk, the nodes
exchange information instantaneously according to the topology of GA′ . The objective of this
section is to derive sufficient conditions on graphs GA(t), GA′ and impulsive sequence {tk} to
guarantee that consensus protocol (4.13) solves the average-consensus problem.

4.3.2 Consensus Results

In this subsection, the consensus properties of impulsive system (4.14) will be analyzed. For
the sake of simplicity, the discussion throughout this section is based on the following assump-
tions:

(A1) uniform impulses: σ = tk − tk−1 for all k ∈N.

(A2) time-invariant impulse delays: τk = τ̄ for all k ∈N.

(A3) assume that all the weighting factors are uniformly upper bounded, i.e., there exists a
constant ᾱ such that αij(t) ≤ ᾱ for all t ≥ t0.

Then, there are ζ impulses on time interval (tk − τ̄, tk) for any k ∈ N, that is, ζ = b τ̄
σc, where

the floor function bχc gives the largest integer less than χ. For non-uniform impulses and/or
time-variant impulse delays, the number of impulses on each time interval (tk − τ̄, tk) is not a
fixed value. However, the analysis of consensus properties can be discussed similarly.

Networks with Fixed Topologies

We start by analyzing multi-agent systems with fixed topology, i.e., the weighted digraph GA′
is time-invariant with L′ as its Laplacian.

Theorem 4.3.1 Suppose that GA(t) is balanced for all t ≥ t0 with L(t) as its Laplacian at time t,
and GA′ is strongly connected and balanced. Let λ2(L′s) denote the second smallest eigenvalue of L′s =
(L′ + L′T)/2, and

ρmin := (
√

1− 2λ2(L′s) + ‖L′‖2 + ndτ̄‖L′‖+ ζ‖L′‖2)2

with d = maxi{supt∈[t0,∞) di(t)}. If ρmin < 1 and

σ <


−√ρmin ln (ρmin)

2l
, i f e−2 < ρmin < 1,

1
el

, i f ρmin ≤ e−2,
(4.15)

where l = supt∈[t0,∞) ‖L(t)‖, then the consensus protocol (4.13) leads to the average-consensus for
agents in (4.1).
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If the digraph GA(t) is time-invariant, i.e., GA = (V , E ,A). Then its LaplacianL is a constant
matrix. We will have the following consensus results.

Theorem 4.3.2 Suppose that GA is balanced, and GA′ is strongly connected and balanced. Let λ2(L′s)
denote the second smallest eigenvalue of L′s = (L′ + L′T)/2, and

ρmin := (
√

1− 2λ2(L′s) + ‖L′‖2 + τ̄‖L′‖‖L‖+ ζ‖L′‖2)2.

If ρmin < 1 and

σ <


−√ρmin ln (ρmin)

2‖L‖ , i f e−2 < ρmin < 1,

1
e‖L‖ , i f ρmin ≤ e−2,

(4.16)

then consensus protocol (4.13) leads to the average-consensus for agents in (4.1).

To prove the above results, we introduce the following displacement vector

b(t) = x(t)− 1a(t),

where x = (x1, x2, ..., xn)T, 1 denotes the column n-vector with all ones, and a(t) = Ave(x(t)) =
1
n ∑n

j=1 xj(t). For balanced graphs GA(t) and GA′ , we have a′(t) = 0, ∆a(tk) = 0 and L(t)a1 =

L′a1 = 0, which imply that a(t) is an invariant quantity for t ≥ 0. Therefore, b(t) evolves
according to the following disagreement dynamics:{

ḃ(t) = −L(t)b(t− r(t)), t 6= tk,

∆b(tk) = −L′b(tk − τ̄), k ∈N.
(4.17)

The consensus analysis is based on the Lyapunov function V(t) = bT(t)b(t) and a Halanay-
type inequality.

It can be seen from Theorems 4.3.1 and 4.3.2 that, to guarantee the consensus, the length σ
of each impulsive interval is closely related to the value of ρmin. In the following discussion,
we take Theorem 4.3.2 for example. If ρmin ≤ e−2, then the upper bound of σ is 1

e‖L‖ . If ρmin ∈

(e−2, 1), define a map g(ρ) =
−√ρ ln(ρ)

2‖L‖ , then we have ġ(ρ) = −(ln ρ+2)
4
√

ρ‖L‖ < 0 for ρ ∈ (e−2, 1).

Therefore, g(ρ) is strictly decreasing on (e−2, 1), i.e., smaller ρmin implies larger upper bound
of σ. On the other hand, the value of ρmin depends on the impulsive delay size τ̄ and also
the length σ of each impulsive interval. If ρmin < e−2, and increase the value of τ̄ such that
the corresponding value of ρmin still belongs to (0, e−2), then the upper bound of σ remains
unchanged. If increasing τ̄ leads to ρmin greater than e−2, then the increase of τ̄ implies decrease
of the upper bound for σ which then may cause the increase of ζ. Based on the above discussion
and Theorem 4.3.2, we can see that the relation between τ̄ and σ needs to be carefully examined
according to (4.16) to guarantee the average consensus.

For a given value of τ̄, Algorithm 2 outlines a computation procedure to obtain the upper
bound bdd σ of the length σ of each impulsive interval from Theorem 4.3.2. If bdd σ obtained
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from Algorithm 2 is positive, then any σ < bdd σ can guarantee the proposed protocol (4.13) to
solve the average-consensus problem. If the impulse delay τ̄ is not prescribed beforehand, suit-
able relations between τ̄ and σ can be constructed as follows: vary τ̄ from 0 to τ̄max, where τ̄max
is an estimation of the upper bound for feasible values of τ̄; for each value of τ̄, obtain a cor-
responding bdd σ from Algorithm 2; varying τ̄ will then yield a sequence of pairs {(τ̄, bdd σ)}
which demonstrates the admissible relations between τ̄ and σ.

Algorithm 2. Computation the upper bound bdd σ of σ

require: L, L′, τ̄

1. ζ = 0, bdd σ = 0, σ = 0

2. ρmin = (
√

1− 2λ2(L′s) + ‖L′‖2 + τ̄‖L′‖‖L‖+ ζ‖L′‖2)2

3. while ρmin < 1 do

4. if ρmin ≤ e−2 then

5. σ = 1
e||L||

6. else

7. σ =
−√ρmin ln (ρmin)

2‖L‖

8. end if

9. if d > (ζ + 1)σ then

10. bddσ = 0

11. else if d ≤ ζσ then

12. bdd σ = d
ζ+1

13. else

14. bdd σ = σ

15. end if

16. ζ ← ζ + 1

17. ρmin ← (
√

1− 2λ2(L′s) + ‖L′‖2 + τ̄‖L′‖‖L‖+ ζ‖L′‖2)2

18. end while

19. return bdd σ
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A similar consensus protocol has been considered in [120] with GA = GA′ and r = τ̄.
However, there are many improvements in our consensus protocol (4.13) compared with that
in [120]. First, different network topologies are considered in the continuous-time and the
discrete-time consensus protocols. Second, the discrete-time network topology is required to
be balanced and strongly connected, while the continuous-time topology is only assumed to
be balanced. Moreover, the delays in the continuous and discrete protocols are considered to
be distinct which is more general than that in [120].

Next, we consider a special case of consensus protocol (4.13), that is, A = 0 (no continuous-
time network topology). It can be seen from Theorem 4.3.1 that

ρmin := (
√

1− 2λ2(L′s) + ‖L′‖2 + ζ‖L′‖2)2,

and if ρmin < 1, then the consensus protocol (4.13) leads to the average-consensus for agents in
(4.1). Actually, if ρmin < 1, then√

1− 2λ2(L′s) + ‖L′‖2 + ζ‖L′‖2 < 1,

i.e., ζ <
1−
√

1−2λ2(L′s)+‖L′‖2

‖L′‖2 . According to the definition of ζ, we have

b τ̄

σ
c < 1−

√
1− 2λ2(L′s) + ‖L′‖2

‖L′‖2 ,

which gives the condition on the relation between τ̄, σ and GA′ to guarantee the average-
consensus. We conclude the above analysis by the following corollary.

Corollary 4.3.1 Suppose that GA′ is strongly connected and balanced and A = 0 in (4.13). If

τ̄ <

(
1−

√
1− 2λ2(L′s) + ‖L′‖2

‖L′‖2 + 1

)
σ, (4.18)

then consensus protocol (4.13) leads to the average-consensus for agents in (4.1).

Networks with Switching Topologies

Next, we consider the consensus problem of multi-agent systems with switching in both the
continuous-time topology and the impulsive-time topology.

Denote two finite index sets P = {1, 2, ..., p}, Q = {1, 2, ..., q}, and two families of time-
invariant digraphs Ω = {Gi : i ∈ P}, Ω′ = {G ′j : j ∈ Q}. Let η : R+ → P be a piecewise con-
stant and right-continuous function called ‘continuous-time switching signal’, and ω : N→ Q
be a constant function called ‘discrete-time switching signal’. Throughout this subsection, we
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assume that all the digraphs in Ω are balanced, and all the digraphs in Ω′ are strongly con-
nected and balanced, then the collective behavior of system (4.17) can be written as a switching
impulsive system {

ḃ(t) = −Lη(t)b(t− r(t)), t ∈ [tk, tk+1),

∆b(tk) = −L′ω(k)b(tk − τ̄), k ∈N,
(4.19)

where Li (or L′j) is the graph Laplacian of Gi (or G ′j) for i ∈ P (or j ∈ Q). If switchings only occur
at impulsive instants (i.e., there is no switching on each impulsive interval), then η(t) = η(tk)
for t ∈ [tk, tk+1) and k ∈N, and system (4.19) reduces to the following system{

ḃ(t) = −Lη(tk)
b(t− r(t)), t ∈ [tk, tk+1),

∆b(tk) = −L′ω(k)b(tk − τ̄), k ∈N.
(4.20)

Denote l = maxi∈P ‖Li‖, l′ = maxj∈Q ‖L′ j‖, and l′s = minj∈Q λ2(L′js), where λ2(L′js) represents

the second smallest eigenvalue of L′js = (L′j + L′
T
j )/2, then define

ρ = (
√

1− 2l′s + l′2 + τ̄l′l + ζl′2)2.

In the following result, sufficient conditions are constructed for consensus of multi-agent
systems with switching topologies.

Theorem 4.3.3 If ρ < 1 and

σ <


−√ρ ln (ρ)

2l
, i f e−2 < ρ < 1,

1
el

, i f ρ ≤ e−2,
(4.21)

then consensus protocol (4.13) leads to the average-consensus for agents in (4.1) under arbitrary switch-
ing signals.

In Theorem 4.3.3, the digraphs in Ω are assumed to be time-invariant. However, if the
digraphs in Ω are dynamically changing, i.e., Ω = {Gi(t) = (V , Ei(t),Ai(t)) : i ∈ P}, then we
can define a dynamically changing digraph G(t) = Gη(t)(t), according to the continuous-time
switching signal. If all the digraphs in Ω are balanced, then the digraph G(t) is balanced for all
t ≥ t0. Hence, protocol (4.13) with switching topologies is a special case of protocol (4.13) with
dynamically changing continuous-time topology and switching discrete-time topologies. The
collective behavior of system (4.17) can then be written as follows{

ḃ(t) = −L(t)b(t− r(t)), t ∈ [tk, tk+1),

∆b(tk) = −L′ω(k)b(tk − τ̄), k ∈N,
(4.22)

where L(t) is the Laplacian of digraph G(t) at time t. We further assume that the weighting
factors of G(t) are uniformly upper bounded, and denote l = supt∈[t0,∞) ‖L(t)‖ and

ρ = (
√

1− 2l′s + l2 + ndτ̄l′ + ζl′2)2,
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Figure 4.5: Discrete-time topology GA′ .

where l and l′ are the same as those defined in Theorem 4.3.3, and d is the same as that defined
in Theorem 4.3.1. Then, we can see that protocol (4.13) with dynamically changing continuous-
time topology leads to the average-consensus for agents in (4.1) under arbitrary discrete-time
switching signals. See Example 4.3.2 for demonstration.

4.3.3 Numerical Simulations

To demonstrate our consensus results, we present two examples of dynamical networks with
four agents. In the first example, we consider the impulsive consensus protocol (with A = 0).

Example 4.3.1 Consider consensus protocol (4.13) with A = 0 and digraph GA′ shown in Figure 4.5
with 0 − 0.1035 weights. It can be seen that GA′ is balanced and strongly connected with ‖L′‖ =

0.2070, λ2(L′s) = 0.1035, and 1−
√

1−2λ2(L′s)+‖L′‖2

‖L′‖2 = 2.0013. Then, Corollary 4.3.1 implies that
τ̄ ≤ 3.0013σ can guarantee the protocol leads to the average-consensus. Figure 4.6 demonstrates the
consensus region which describes the feasible relations between τ̄ and σ. The initial conditions are chosen
so that Ave(x(0)) = 0, τ̄ = 3, and σ = 1, then the average-consensus is confirmed by simulation shown
in Figure 4.7.

In the next example, we consider a hybrid consensus protocol with switching topologies.

Example 4.3.2 Consider a hybrid consensus protocol with switching topologies shown in Figure 4.8
with Ω = {G1(t),G2(t)} and Ω′ = {G ′1,G ′2}. Suppose the digraphs in Ω′ have 0− 0.25 weights,
digraph G1(t) has 0− 0.375 sin(t) weights, and digraph G2(t) has 0− 0.25 cos(t) weights. While the
digraphs in Ω′ are balanced and strongly connected, the 4th node in the digraphs of Ω is isolated. It
can be calculated that ‖L1(t)‖ = 0.75 sin(t), ‖L2(t)‖ = 0.4430 cos(t), and ‖L′1‖ = ‖L′2‖ = 0.5,
λ2(L′1s) = λ2(L′2s) = 0.25, then l′ = 0.5, and l′s = 0.25. Both L1(t) and L2(t) can be written as
products of a trigonometric function and a constant Laplacian, then we can still use inequality (4.31)
to replace the estimation of ΥT

2 Υ2 in (4.29). Therefore, Theorem 4.3.2 is applicable to this example by
replacing l with l = maxt≥t0{L1(t),L2(t)} = 0.75.

In this example, choose r = 4.5. Figure 4.9 illustrates the suitable relations between τ̄ and σ to
guarantee the network consensus with switching topologies. Next, choose τ̄ = 0.1, and σ = 0.12, then
ζ = b τ̄

σc = 0 and ρ = 0.8164 > e−2. Since −
√

ρ ln(ρ)
2l = 0.1222 > σ = 0.12, we can conclude

from Theorem 4.3.3 that protocol (4.13) with switching topologies leads to the average-consensus under
arbitrary switching signals. This is confirmed by the simulation shown in Figure 4.10 with the following
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Figure 4.6: Consensus region for Example 4.3.1: if the point (τ̄, σ) is in the yellow region,
then protocol (4.13) solves the average-consensus problem. The red dot indicates the point
(τ̄, σ) = (3, 1), which is considered in the simulation of Figure 4.7.

continuous-time and discrete-time switching signals:

η(t) =

{
1, i f t ∈ ∪∞

k=1(3.6k− 1.8, 3.6k),
2, i f t ∈ ∪∞

k=1(3.6k, 3.6k + 1.8),
(4.23)

and

ω(k) =

{
1, mod(k, 30) < 15,
2, otherwise,

(4.24)

where mod(·, ·) is the modulo operation which gives the remainder after division. Since the 4th agent in
G1 and G2 is isolated, no switches between only G1 and G2 can achieve the network consensus. Therefore,
the impulsive protocols play an important role in the consensus process: the topologies in G ′1 and G ′2 make
the network topology to be strongly connected, and then the impulsive protocols realize the consensus
convergence.

4.3.4 Proofs

Proof of Theorem 4.3.1

For t 6= tk, take derivative of V(t) along the trajectory of system (4.17), and apply the inequality
xTy + yTx ≤ εxTx + ε−1yTy for any ε > 0. Then we have

V̇(t) = ḃT(t)b(t) + b(t)ḃT(t)
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Figure 4.7: Consensus process of Example 4.3.1.
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Figure 4.8: Switching topologies

= −bT(t− r(t))LT(t)b(t)− bT(t)L(t)b(t− r(t))

≤ εbT(t)b(t) + ε−1bT(t− r(t))LT(t)L(t)b(t− r(t))

≤ εV(t) + ε−1‖L(t)‖2V(t− r(t))

≤ εV(t) + ε−1l2V(t− r(t)) (4.25)

For t = tk, in order to compare V(tk) with V(t−k ), we need to estimate the relation between
b(t−k ) and b(tk − τ̄). To do so, we will integrate both side of (4.17) from tk − d to tk. From
the definition of ζ, we can see that there are ζ impulses on the interval (tk − τ̄, tk). Next, we
conduct the integration process step by step:

S1. Integrating both side of (4.17) from tk − τ̄ to tk−ζ yields

b(t−k−ζ)− b(tk − τ̄) =
∫ tk−ζ

tk−τ̄
−L(t)b(t− r(t))dt,
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Figure 4.9: Consensus region for Example 4.3.2: if the point (τ̄, σ) is in the green region, then
protocol (4.13) solves the average-consensus problem. The red dot indicates the point (τ̄, σ) =
(0.1, 0.12), which is considered in the simulation of Figure 4.10.

b(tk−ζ)− b(t−k−ζ) = −L′b(tk−ζ − τ̄).

S2. Similarly, integrate both side of (4.17) from tk−j to tk−j+1 for j = ζ, (ζ − 1), ..., 3, 2, then we
have

b(t−k−j+1)− b(tk−j) =
∫ tk−j+1

tk−j

−L(t)b(t− r(t))dt,

b(tk−j+1)− b(t−k−j+1) = −L′b(tk−j+1 − τ̄),

for j = ζ, (ζ − 1), ..., 3, 2.

S3. Integrating both side of (4.17) from tk−1 to tk leads to

b(t−k )− b(tk−1) =
∫ tk

tk−1

−L(t)b(t− r(t))dt.

Adding up the equations in the above steps can obtain that

b(tk − τ̄) = b(t−k ) +
∫ tk

tk−τ̄
L(t)b(t− r(t))dt + L′

ζ

∑
i=1

b(tk−i − τ̄),

then,

b(tk) = b(t−k )−L
′b(tk − τ̄) = Υ1 + Υ2 + Υ3, (4.26)

where Υ1 = (I −L′)b(t−k ), Υ2 = −L′
∫ tk

tk−τ̄ L(t)b(t− r(t))dt, and Υ3 = −L′L′ ∑ζ
i=1 b(tk−i − τ̄).
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Figure 4.10: Consensus process of Example 4.3.2.

From (4.26) and applying Lemma 5.2.3, we have

V(tk) = bT(tk)b(tk)

= (Υ1 + Υ2 + Υ3)
T(Υ1 + Υ2 + Υ3)

≤ (1 + ε)ΥT
1 Υ1 + (1 + ε−1)(1 + ξ)ΥT

2 Υ2

+(1 + ε−1)(1 + ξ−1)ΥT
3 Υ3. (4.27)

Since L′ is balanced and strongly connected, we have, for L′s = 1
2(L′ + L′T),

0 = λ1(L′s) < λ2(L′s) ≤ ... ≤ λn(L′s).

Then,

ΥT
1 Υ1 = bT(t−k )(I −L′ −L′T + L′TL′)b(t−k )

≤ (1− 2λ2(L′s) + ‖L′‖2)bT(t−k )b(t
−
k )

= (1− 2λ2(L′s) + ‖L′‖2)V(t−k ). (4.28)

Applying the Schwartz’s inequality yields

ΥT
2 Υ2 ≤ ‖L′‖2

( ∫ tk

tk−τ̄
L(t)b(t− r(t))dt

)T( ∫ tk

tk−τ̄
L(t)b(t− r(t))dt

)
= ‖L′‖2

n

∑
i=1

[ ∫ tk

tk−τ̄

n

∑
j=1

lij(t)bj(t− r(t))dt
]2
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≤ τ̄‖L′‖2
n

∑
i=1

∫ tk

tk−τ̄

( n

∑
j=1

lij(t)bj(t− r(t))
)2

dt

≤ nτ̄‖L′‖2
n

∑
i=1

∫ tk

tk−τ̄

n

∑
j=1

l2
ij(t)b

2
j (t− r(t))dt

≤ nτ̄‖L′‖2
n

∑
i=1

∫ tk

tk−τ̄
l2
ii(t)

n

∑
j=1

b2
j (t− r(t))dt

≤ nd2τ̄‖L′‖2
n

∑
i=1

∫ tk

tk−τ̄
V(t− r(t))dt

≤ (ndτ̄‖L′‖)2 sup
s∈[−(τ̄+r̄),0]

V(t−k + s), (4.29)

where lij(t) denotes the (i, j)th entry of L(t), and then di(t) = lii(t) which is the in-degree of
node vi at time t.

For Υ3, we have

ΥT
3 Υ3 ≤ ‖L′‖4

ζ

∑
i=1

bT(tk−i − τ̄)
ζ

∑
i=1

b(tk−i − τ̄)

≤ ζ‖L′‖4
ζ

∑
i=1

bT(tk−i − τ̄)b(tk−i − τ̄)

= ζ‖L′‖4
ζ

∑
i=1

V(tk−i − τ̄)

≤ ζ2‖L′‖4 sup
s∈[−2τ̄,0]

V(t−k + s). (4.30)

It then follows from (4.28), (4.29), (4.30) and (4.27) that (3.18) holds for v(t) = V(t) and
τ = max{τ̄ + r̄, 2τ̄} in Lemma 3.3.2 with α = ε, β = ε−1l2, ρ1 = (1 + ε)(1− 2λ2(L′s) + ‖L′‖2),
and ρ2 = (1 + ε−1)[(1 + ξ)(ndτ̄‖L′‖)2 + (1 + ξ−1)ζ2‖L′‖4]. Denote ρ = ρ1 + ρ2, then Lemma
3.3.2 implies that if σ < ln(1/ρ)

α+β/ρ then V(t) converges to zero as t goes to infinity, which means
the average-consensus will be achieved.

It can be seen that α, β and ρ depend on the parameters ε, ε and ξ, respectively. Next, we
will specify the values of ε, ε and ξ to maximize ln(1/ρ)

α+β/ρ which is the upper bound of the length
σ for each impulsive interval.

For any given ρ ∈ (0, 1), to maximize ln(1/ρ)
α+β/ρ is equivalent to minimize α+ β/ρ = ε+ 1

ρ ε−1l2

for ε > 0. Define the map H(ε) := ε + 1
ρ ε−1l2, then Ḣ(ε) = 1− l2

ε2ρ
, which implies that, for

ε∗ = l√
ρ , Ḣ(ε∗) = 0 and H(ε∗) = 2l√

ρ . Thus, for given ρ > 0, the maximum of ln(1/ρ)
α+β/ρ is −

√
ρ ln(ρ)
2l .

Next, define a function G(ρ) := −√ρ ln(ρ)
2l for ρ ∈ (0, 1). Then, G(ρ) > 0 and Ġ(ρ) = −2+ln(ρ)

2
√

ρ .

Thus, Ġ(e−2) = 0 and

Ġ(ρ)

{
> 0, i f ρ < e−2

< 0, i f ρ > e−2.
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It can be seen that minε,ξ>0{ρ1 + ρ2} = ρmin, and if ρmin > e−2 then

ρ ≥ ρmin and max
ρ∈[ρmin,1)

{G(ρ)} =
−√ρmin ln(ρmin)

2l
.

On the other hand, if ρmin < e−2, there exist ε and ξ such that ρ = e−2, and then

max
ρ∈[ρmin,1)

{G(ρ)} = 1
el

.

Hence, we have

max
ε,ε,ξ>0

{ ln( 1
ρ )

α + β
ρ

}
=


−√ρmin ln(ρmin)

2l
, i f ρmin > e−2;

1
el

, i f ρmin ≤ e−2,

which completes the proof. �

Proof of Theorem 4.3.2

Since the Laplacian L is a constant matrix, the prove is similar to the proof of Theorem 4.3.1
with (4.25) and (4.29) replaced with the following inequalities, respectively.

V(t) = ḃT(t)b(t) + b(t)ḃT(t)

= −bT(t− r(t))LTb(t)− bT(t)Lb(t− r(t))

≤ εbT(t)b(t) + ε−1bT(t− r(t))LTLb(t− r(t))

≤ εV(t) + ε−1‖L‖2V(t− r(t)),

and

ΥT
2 Υ2 ≤ ‖L′‖2‖L‖2

∫ tk

tk−τ̄
bT(t− r(t))dt

∫ tk

tk−τ̄
b(t− r(t))dt

= ‖L′‖2‖L‖2
n

∑
i=1

[ ∫ tk

tk−τ̄
bi(t− r(t))dt

]2

≤ τ̄‖L′‖2‖L‖2
n

∑
i=1

∫ tk

tk−τ̄
b2

i (t− r(t))dt

= τ̄‖L′‖2‖L‖2
∫ tk

tk−τ̄

n

∑
i=1

b2
i (t− r(t))dt

= τ̄‖L′‖2‖L‖2
∫ tk

tk−τ̄
V(t− r(t))dt

≤ τ̄2‖L′‖2‖L‖2 sup
s∈[−(τ̄+r̄),0]

V(t−k + s). (4.31)

The rest of the proof is omitted. �
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Proof of Theorem 4.3.3

Choose Lyapunov candidate V(t) = bT(t)b(t), and repeat the argument in the proof for The-
orem 4.3.1, and then we can get that (3.18) holds for v(t) = V(t) and τ = max{τ̄ + r̄, 2τ̄} in
Theorem 3.3.2 with α = ε, β = ε−1l2, ρ1 = (1 + ε)(1 − 2l′s + l′2), and ρ2 = (1 + ε−1)[(1 +
ξ)(τ̄l′l)2 + (1 + ξ−1)ζ2l′4]. The rest of the proof is essentially the same as that in the proof for
Theorem 4.3.1, and thus omitted. �

4.4 Impulsive Protocols with Distributed Delays

A networked multi-agent system (NMAS) is a dynamical system consisting of a group of in-
teracting agents, which have their own dynamics, distributed over a network. This section
studies the impulsive consensus problem of NMASs with distributed delays in both agent dy-
namics and impulsive protocols. The objective is to construct sufficient conditions to guarantee
the proposed impulsive consensus protocol leads to the consensus of NMASs with distributed
delays. The rest of this section is organized as follows. In Subsection 4.4.1, we formulate the
consensus problem, and propose a impulsive consensus protocol with distributed delays. Con-
sensus results are established in Subsection 4.4.2 for networks with fixed and switching topolo-
gies, respectively. Numerical simulations are provided in Subsection 4.4.3 to demonstrate these
theoretical results. Subsection 4.4.4 discussed the detailed proof of our consensus results.

4.4.1 Problem Formulations and Consensus Protocols

Consider a NMAS composed of N agents, where the dynamics of the ith agent are described
by a linear system with distributed delay as follows: ẋi(t) = Axi(t) + B

∫ t

t−r
xi(s)ds + ui(t),

xi,t0 = φi,
(4.32)

where i ∈ I := {1, 2, ..., N}, xi ∈ Rn and ui ∈ Rn are the state and control input of agent i; A
and B are n× n constant matrices; r is the system delay; xi,t0 is defined as xi,t0(s) = xi(t0 + s)
for s ∈ [−r, 0]; φi ∈ PC([−r, 0], Rn) is the initial function.

The control input is designed as the following impulsive controller with distributed delays
which is based on digraph GA = (V , E ,A):

ui(t) =
∞

∑
k=1

∑
vj∈Ni

αij

∫ t

t−d
[xj(s)− xi(s)]dsδ(t− tk), (4.33)

where the time sequence {tk} satisfies {tk} ⊆ R, 0 ≤ t1 < t2 < ... < tk < ..., and limt→∞ tk =
∞; δ(·) is the Dirac Delta function; d represents the delay size in each impulse. Throughout
this section, we assume that t1 − d ≥ t0 − r, which is straightforward since controller ui can
only obtain information provided by the agent dynamics, and the initial function φi should be
independent of the delays in the designed controller ui. It is worth noting that controller ui
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only depends on the states of the ith agent vi and its neighbors, then impulsive controller ui
is called a protocol with topology GA. Furthermore, we assume that digraph GA is strongly
connected and balanced.

公式

i

ktt 


t

dt j ssx d)(

j

jiy

Figure 4.11: Accumulated information measurements at impulsive instants.

The control mechanism of (4.33) works as follows. On each impulsive interval (tk, tk+1),
there are no connections among agents, and each agent’s states evolve according to its own
dynamics. At impulsive instant tk, the ith agent receive information from all of its neighbors
instantly, that is, the switch in Figure 4.11 on the edge (vj, vi) is turned on and then off in a
very short time of period, during which information is transfered from agent j to agent i. Since
the time between on and off mode of the switch is tiny, we model the short time information
exchange by instantaneous information delivery, i.e., agent i receives information from agent j
instantly at time tk. The information yji (shown in Figure 4.11) transfered to agent i is the ac-
cumulated information of agent j, that is,

∫ tk
tk−d xj(s)ds. Different from the impulsive protocols

in [36, 63, 120], our consensus protocol does not require each agent’s states to be available at
specific times (e.g., tk or tk − d).

For t = tk and positive constant ε satisfying ε < min{tk− tk−1, tk+1− tk}, it can be seen that
there is only one impulse on time period (tk − ε, tk + ε). With the proposed impulsive protocol
(4.33), integrating both sides of (4.32) from tk − ε to tk + ε yields∫ tk+ε

tk−ε
ẋi(s)ds =

∫ tk+ε

tk−ε

(
Axi(t) + B

∫ t

t−r
xi(s)ds

)
dt

+
∫ tk+ε

tk−ε

(
∑

vj∈Ni

αij

∫ t

t−d
[xj(s)− xi(s)]dsδ(t− tk)

)
dt,

which implies

xi(tk + ε)− xi(tk − ε) =
∫ tk+ε

tk−ε

(
Axi(t) + B

∫ t

t−r
xi(s)ds

)
dt

+ ∑
vj∈Ni

αij

∫ tk

tk−d
[xj(s)− xi(s)]ds.

Let ε→ 0+, then we have

xi(t+k )− xi(t−k ) = ∑
vj∈Ni

αij

∫ tk

tk−d
[xj(s)− xi(s)]ds,
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where xi(t+k ) and xi(t−k ) denote the right and left limit of xi at tk. Denote ∆xi(tk) := xi(t+k )−
xi(t−k ), then system (4.32) can be rewritten as an impulsive system:

ẋi(t) = Axi(t) + B
∫ t

t−r
xi(s)ds, t 6= tk,

∆xi(tk) = ∑
vj∈Ni

αij

∫ tk

tk−d
[xj(s)− xi(s)]ds, k ∈N,

xi,t0 = φi.

(4.34)

Throughout this paper, we suppose xi is right continuous at tk, i.e., xi(t+k ) = xi(tk).

Definition 4.4.1 We say protocol (4.33) leads to the consensus of NMAS (4.32) (or protocol (4.33)
solves the consensus problem), if

lim
t→∞
‖xi(t)− xj(t)‖ = 0, ∀ i, j ∈ I .

Our objective is to construct sufficient conditions to guarantee the proposed protocol ui
solves the consensus problem.

4.4.2 Consensus Results

Throughout this section, we assume that the length of each impulsive interval is fixed, i.e.,
σ = tk − tk−1 for all k ∈ N. Then, there are ζ̄ impulses on time interval (tk − d, tk) for any
k ∈N, that is, ζ̄ = b d

σc, where the floor function bχc gives the largest integer less than χ.

Networks with Fixed Topology

We start by analyzing NMAS (4.34) with fixed topology, i.e., the weighted digraph GA is time-
invariant with L as its Laplacian.

Theorem 4.4.1 Suppose that GA is balanced and strongly connected. Let λ2(L̂) denotes the second
smallest eigenvalue of L̂ = (L+ LT)/2 and

ρmin =
(√

1− 2dλ2(L̂) + d2‖L‖2 + d2‖L‖(‖A‖+ r‖B‖) + d2‖L‖2

√√√√σ
ζ̄

∑
m=1

m2
)2

.

Let a = λmax(A + AT) and b = 2r‖B‖, and assume ρmin < 1. Then, consensus protocol (4.33) leads
to the consensus for agents in (4.32) if either of the following conditions are satisfied:

i) a + b = 0 and σ < 1/b.
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ii) a + b > 0 and

σ <


− ln ρmin

a + b/
√

ρmin
, if ρmin > ρ∗,

− ln ρ∗

a + b/
√

ρ∗
, if ρmin ≤ ρ∗,

where ρ = ρ∗ is the unique solution of algebraic equation:

2(a
√

ρ + b) + b ln ρ = 0, for ρ ∈ (0, 1).

To prove this theorem, we shall transform the consensus problem of NMAS into a stability
analysis problem of an impulsive system.

Denote In (or IN) the n× n (or N × N) identity matrix. Let x̄(t) = 1
N ∑N

i=1 xi(t) = 1
N (1T ⊗

In)x, where 1 = (1, 1, ..., 1)T ∈ RN, x = (xT
1 , xT

2 , ..., xT
N)

T, and ⊗ represents the Kronecker
product. Then, for t = tk, we have

x̄(t+k ) =
1
N
(1T ⊗ In)x(t+k )

=
1
N
(1T ⊗ In)

(
x(t−k )− (L⊗ In)

∫ tk

tk−d
x(s)ds

)
=

1
N
(1T ⊗ In)x(t−k )−

1
N
(1T ⊗ In)(L⊗ In)

∫ tk

tk−d
x(s)ds

= x̄(t−k ),

since (1T ⊗ In)(L⊗ In) = (1TL)⊗ In, and 1TL is a zero vector. It can be seen that the dynamics
of x̄ satisfies the following equations: ˙̄x(t) = Ax̄(t) + B

∫ t

t−r
x̄(s)ds, t 6= tk,

x̄(t+k ) = x̄(t−k ), k ∈N.
(4.35)

Denote ei = xi − x̄ and e = (eT
1 , eT

2 , ..., eT
N)

T, then, from (4.35), we can get the dynamics of ei
described as follows:

ėi(t) = Aei(t) + B
∫ t

t−r
ei(s)ds, t 6= tk,

∆ei(tk) = ∑
vj∈Ni

αij

∫ tk

tk−d
[ej(s)− ei(s)]ds, k ∈N,

ei,t0 = ϕi,

(4.36)

where ϕi(s) = φi(s)− 1
N ∑N

j=1 φj(s) for s ∈ [−r, 0]. Then the dynamics of the NMAS error state
e = (eT

1 , eT
2 , ..., eT

N)
T can be described by the following compact form of impulsive system

ė(t) = Āe(t) + B̄
∫ t

t−r
e(s)ds, t 6= tk,

∆e(tk) = −L̄
∫ tk

tk−d
e(s)ds, k ∈N,

et0 = ϕ,

(4.37)
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where Ā = IN ⊗ A, B̄ = IN ⊗ B, L̄ = L⊗ In, and ϕ = (ϕT
1 , ϕT

2 , ..., ϕT
N)

T ∈ PC([−r, 0], RnN).

It can be seen that if the trivial solution of impulsive system (4.37) is globally asymptotically
stable, then limt→∞ ‖e(t)‖ = 0, which implies limt→∞ ‖ei(t)‖ = 0, and then

lim
t→∞
‖xi(t)− xj(t)‖ = lim

t→∞
‖xi(t)− x̄(t)− (xj(t)− x̄(t))‖

= lim
t→∞
‖ei(t)− ej(t)‖ = 0,

that is, the consensus is reached. However, we apply a global exponential stability result to de-
rive this consensus criterion, and the detailed proof for Theorem 4.4.1 is included in Subsection
4.4.4.

Networks with Switching Topologies

To model the dynamic changing of the topology structures, we consider the consensus problem
of NMASs with switching in the topology of impulsive protocol (4.33).

Denote a finite index set Q = {1, 2, ..., q} with q ∈ N, and a family of weighted digraphs
Ω = {Gi : i ∈ Q}. Let ω : N→ Q be a constant function called ‘discrete-time switching signal’.
Throughout this subsection, we assume that all the digraphs in Ω are strongly connected and
balanced, then the collective behavior of system (4.37) can be written as the following impulsive
system 

ė(t) = Āe(t) + B̄
∫ t

t−r
e(s)ds, t 6= tk,

∆e(tk) = −L̄ω(k)

∫ tk

tk−d
e(s)ds, k ∈N,

et0 = ϕ,

(4.38)

where L̄i = Li ⊗ In, and Li is the graph Laplacian of Gi for i ∈ Q.

Denote
l = max

i∈Q
‖Li‖, l̂ = min

i∈Q
λ2(L̂i),

where λ2(L̂i) represents the second smallest eigenvalue of L̂i = (Li + LT
i )/2, then define

ρs =

(√
1− 2dl̂ + d2l2 + d2l(‖A‖+ r‖B‖) + d2l2

√√√√σ
ζ̄

∑
m=1

m2
)2

.

Theorem 4.4.2 Suppose ρs < 1, then consensus protocol (4.33) leads to the consensus for agents in
(4.32) under arbitrary switching signals if either of the following conditions are satisfied:

i) a + b = 0 and σ < 1/b.
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ii) a + b > 0 and

σ <


− ln ρs

a + b/
√

ρs
, if ρs > ρ∗,

− ln ρ∗

a + b/
√

ρ∗
, if ρs ≤ ρ∗,

where ρ∗ is the same as that defined in Theorem 4.4.1.

4.4.3 Numerical Simulations

Consider dynamical networks with four agents. Figure 4.12 shows two topologies denoted by
G1 and G2, respectively. Both of the digraphs in the figure have 0− 10 weights, and they are
also strongly connected and balanced. It can be calculated that λ2(L̂1) = λ2(L̂2) = 10, and
‖L1‖ = ‖L2‖ = 20. Furthermore, consider

A =

[
2 −1
1 2

]
, B =

[
0.5 0.4
−0.4 0.6

]
,

and r = 0.1, then ‖A‖+ r‖B‖ = 2.9661. It can be seen that a + b = 5.4601 > 0. For impulses,
we consider d = 0.02, and impulsive sequence {tk} is chosen as σ = tk − tk−1 = 0.01 for all
k ∈ N. From the definition of ζ̄, we have ζ̄ = 1, that is, there is only one impulse on each
interval (tk − d, tk).

With the above given parameters, we can calculate that ρmin = 0.938, and then all the con-
ditions of Theorem 4.4.1 are satisfied. For the switching scenario, ρ = ρmin and conditions of
Theorem 4.4.2 holds. We simulate three different situations with initial functions chosen as
φ(s) = (φT

1 , φT
2 , φT

3 , φT
4 )

T = (1, 3, 6, 4, 7, 2, 2, 1)T for all s ∈ [−r, 0].

First, we consider the impulsive consensus protocol with fixed topologies G1 and G2, which
are illustrated in Figure 4.13(a) and 4.13(b), respectively. It is shown in these figures that the
states of each agent tend to converge to each other, and consensus is achieved with the phase
portraits of the agent error states converging to zero in anticlockwise (or clockwise) directions
according to the network topologies G1 (or G2).

Next, we consider the situation where the network topologies are switching between G1 and
G2 with periodic switching signal given in Figure 4.14. It can be seen that the agent states con-
verge to zero in a anticlockwise-clockwise direction switching mode shown in Figure 4.13(c),
the reason for which is that digraphs G1 and G2 share the same connection structure but the
information transfers among agents in reverse directions. Figure 4.13(d) shows that the state
trajectories of system (4.37), which clearly demonstrates that the agent error states converge to
zero, and consensus is reached.

4.4.4 Proofs

In this subsection, we will present the proofs for the main results which rely on a Razumikhin-
type stability result for nonlinear impulsive functional differential equations.
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Figure 4.12: Network topologies with 4 agents.

Proof of Theorem 4.4.1

Rewrite impulsive system (4.37) into the following form of feedback control system:

ė(t) = Āe(t) + B̄
∫ t

t−r
e(s)ds +

∞

∑
k=1
−L̄

∫ t

t−d
e(s)dsδ(t− tk), for t ≥ t0. (4.39)

For t ∈ [tk − d, tk), integrating both side of (4.39) from t to t−k yields

e(t−k )− e(t) =
∫ tk

t
[Āe(s) + B̄

∫ 0

−r
e(s + θ)dθ]ds− L̄

ζ(t)

∑
m=1

∫ tk−m

tk−m−d
e(s)ds, (4.40)

where ζ denotes the number of impulses on (t, tk). Therefore, ζ depends on t, and is a piecewise
constant function defined as follows:

ζ(t) =



0, if t ∈ [tk−1, tk),
1, if t ∈ [tk−2, tk−1),
... ,

...
... ,

...
ζ̄ − 1, if t ∈ [tk−ζ̄ , tk−ζ̄+1),

ζ̄, if t ∈ [tk − d, tk−ζ̄),

(4.41)

which is illustrated in Figure 4.15.

Next, integrate both side of (4.40) from tk − d to t−k to get that

de(t−k )−
∫ tk

tk−d
e(s)ds =

∫ tk

tk−d

( ∫ tk

t
[Āe(s) + B̄

∫ 0

−r
e(s + θ)dθ]ds

)
dt

−L̄
∫ tk

tk−d

( ζ(t)

∑
m=1

∫ tk−m

tk−m−d
e(s)ds

)
dt. (4.42)

For t = tk, we can obtain from (4.37) that

e(tk) = e(t−k )− L̄
∫ tk

tk−d
e(s)ds. (4.43)
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Figure 4.13: Consensus processes: (a) impulsive consensus with digraph G1; (b) impulsive
consensus with digraph G2; (c) impulsive consensus with switchings between digraphs G1 and
G2; (d) state trajectories of the error states ei,j (i = 1, 2, 3, 4 and j = 1, 2).
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Figure 4.14: Periodic switching signal ω(k) for k ∈N.
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Figure 4.15: Illustration of function ζ(t) for t ∈ [tk − d, tk) and relations between time tk − d
and different impulsive instants.

The estimation of the integral
∫ tk

tk−d e(s)ds can be derived from (4.42), and then substitution of
it into (4.43) gives

e(tk) = Υ1 + Υ2 + Υ3, (4.44)

with

Υ1 = (I − dL̄)e(t−k ),

Υ2 = L̄
∫ tk

tk−d

( ∫ tk

t
[Āe(s) + B̄

∫ 0

−r
e(s + θ)dθ]ds

)
dt,
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Υ3 = −L̄2
∫ tk

tk−d

( ζ(t)

∑
m=1

∫ tk−m

tk−m−d
e(s)ds

)
dt,

where I is the nN × nN identity matrix.

Choose the Lyapunov function V(t, e(t)) = eT(t)e(t), and let v(t) = V(t, e(t)), then con-
dition (i) of Theorem 3.3.1 is satisfied with w1 = w2 = 1 and p = 2. Applying the inequality
(x + y + z)T(x + y + z) ≤ (1 + ε)xTx + (1 + ε−1)(1 + ξ)yTy + (1 + ε−1)(1 + ξ−1)zTz for any
ε, ξ > 0, we have

v(tk) = eT(tk)e(tk)

= (Υ1 + Υ2 + Υ3)
T(Υ1 + Υ2 + Υ3)

≤ (1 + ε)ΥT
1 Υ1 + (1 + ε−1)(1 + ξ)ΥT

2 Υ2

+(1 + ε−1)(1 + ξ−1)ΥT
3 Υ3. (4.45)

Since L is balanced and strongly connected, we have, for L̂ = 1
2(L+ LT),

0 = λ1(L̂) < λ2(L̂) ≤ ... ≤ λN(L̂).

Then, from the properties of Kronecker product, we have

ΥT
1 Υ1 = eT(t−k )(I − dL̄ − dL̄T + d2L̄TL̄)e(t−k )

= (1− 2dλ2(L̂) + d2‖L‖2)v(t−k ). (4.46)

Applying the Schwartz’s inequality twice yields

ΥT
2 Υ2 ≤ d

∫ tk

tk−d

(
L̄
∫ tk

t
[Āe(s) + B̄

∫ 0

−r
e(s + θ)dθ]ds

)T

(
L̄
∫ tk

t
[Āe(s) + B̄

∫ 0

−r
e(s + θ)dθ]ds

)
dt

≤ d
∫ tk

tk−d
(tk − t)

( ∫ tk

t
[L̄Āe(s) + L̄B̄

∫ 0

−r
e(s + θ)dθ]T

[L̄Āe(s) + L̄B̄
∫ 0

−r
e(s + θ)dθ]ds

)
dt

≤ d2
∫ tk

tk−d

( ∫ tk

t
[L̄Āe(s) + L̄B̄

∫ 0

−r
e(s + θ)dθ]T

[L̄Āe(s) + L̄B̄
∫ 0

−r
e(s + θ)dθ]ds

)
dt

≤ d3
∫ tk

tk−d
[L̄Āe(s) + L̄B̄

∫ 0

−r
e(s + θ)dθ]T[L̄Āe(s) + L̄B̄

∫ 0

−r
e(s + θ)dθ]ds

≤ d3
∫ tk

tk−d

(
(1 + κ)eT(s)[(LTL)⊗ (AT A)]e(s)
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+ (1 + κ−1)
∫ 0

−r
eT(s + θ)dθ[(LTL)⊗ (BTB)]

∫ 0

−r
e(s + θ)dθ

)
ds

≤ d3‖L‖2
∫ tk

tk−d
[(1 + κ)‖A‖2v(s) + (1 + κ−1)r‖B‖2

∫ 0

−r
v(s + θ)dθ]ds

≤ d4‖L‖2
[
(1 + κ)‖A‖2 sup

s∈[−d,0]
{v(t−k + s)}+ (1 + κ−1)r2‖B‖2 sup

s∈[−r−d,0]
{v(t−k + s)}

]
≤ d4‖L‖2[(1 + κ)‖A‖2 + (1 + κ−1)r2‖B‖2] sup

s∈[−τ1,0]
{v(t−k + s)}, (4.47)

where τ1 = d + r and κ > 0. To minimize the right-hand side of inequality (4.47), choose
κ = r‖B‖

‖A‖ , then we have

ΥT
2 Υ2 ≤ d4‖L‖2(‖A‖+ r‖B‖)2 sup

s∈[−τ1,0]
{v(t−k + s)}. (4.48)

For Υ3, we have

ΥT
3 Υ3 ≤ d‖L‖4

∫ tk

tk−d

( ζ(t)

∑
m=1

∫ tk−m

tk−m−d
e(s)ds

)T( ζ(t)

∑
m=1

∫ tk−m

tk−m−d
e(s)ds

)
dt

≤ d‖L‖4
∫ tk

tk−d
ζ(t)

ζ(t)

∑
m=1

( ∫ tk−m

tk−m−d
e(s)ds

)T( ∫ tk−m

tk−m−d
e(s)ds

)
dt

≤ d2‖L‖4
∫ tk

tk−d
ζ(t)

( ζ(t)

∑
m=1

∫ tk−m

tk−m−d
eT(s)e(s)ds

)
dt

≤ d3‖L‖4
∫ tk

tk−d
ζ(t)

( ζ(t)

∑
m=1

sup
s∈[−d,0]

{v(t−k−m + s)}
)

dt

≤ d3‖L‖4 sup
s∈[−2d,0]

{v(t−k + s)}
∫ tk

tk−d
ζ2(t)dt

≤ d4‖L‖4
(

σ
ζ̄

∑
m=1

m2
)

sup
s∈[−τ2,0]

{v(t−k + s)}, (4.49)

where τ2 = 2d. By the definition of ζ in (4.41) and its illustration in Figure 4.15, the estimation
the integral regarding to ζ(t) in the derivation of (4.49) is as follows:∫ tk

tk−d
ζ2(t)dt = σ(1 + 4 + ... + (ζ̄ − 1)2) + (d− ζ̄σ)ζ̄2

≤ σ(1 + 4 + ... + (ζ̄ − 1)2) + σζ̄2

= σ
ζ̄

∑
m=1

m2.

From (4.46), (4.48), (4.49), and (4.45), we can obtain that

v(tk) ≤ (1 + ε)γ1v(t−k ) + (1 + ε−1)(1 + ξ)γ2 sup
s∈[−τ1,0]

{v(t−k + s)}
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+ (1 + ε−1)(1 + ξ−1)γ3 sup
s∈[−τ2,0]

{v(t−k + s)}

≤ ρ1v(t−k ) + ρ2 sup
s∈[−τ,0]

{v(t−k + s)}, (4.50)

where τ = max{τ1, τ2}, and

ρ1 = (1 + ε)γ1,

ρ2 = (1 + ε−1)[(1 + ξ)γ2 + (1 + ξ−1)γ3],

with

γ1 = 1− 2dλ2(L̂) + d2‖L‖2,

γ2 = d4‖L‖2(‖A‖+ r‖B‖)2,

γ3 = d4‖L‖4
(

σ
ζ̄

∑
m=1

m2
)

.

For t 6= tk, take the derivative of v(t) along the trajectory of system (4.37), apply the in-
equality 2xTy ≤ εxTx + ε−1yTy for any ε > 0, and use the properties of the Kronecker product,
then we have

v̇(t) ≤ [Āe(t) + B̄
∫ t

t−r
e(s)ds]Te(t) + eT(t)[Āe(t) + B̄

∫ t

t−r
e(s)ds]

= eT(t)[IN ⊗ (A + AT)]e(t) + 2eT(t)[IN ⊗ B]
∫ t

t−r
e(s)ds

≤ eT(t)[IN ⊗ (A + AT)]e(t) + εeT(t)[IN ⊗ (BBT)]e(t)

+ ε−1
∫ t

t−r
eT(s)ds

∫ t

t−r
e(s)ds

≤ eT(t)[IN ⊗ (A + AT + εBBT)]e(t) + ε−1r
∫ t

t−r
eT(s)e(s)ds

≤ αv(t) + β sup
s∈[−r,0]

{v(t + s)}

≤ αv(t) + β sup
s∈[−τ,0]

{v(t + s)}, for t 6= tk, (4.51)

where α = λmax(A + AT) + ε‖B‖2 and β = ε−1r2. Since a + b = λmax(A + AT) + 2r‖B‖ ≥ 0,
we have α + β ≥ 0.

We conclude the above discussion with the following inequalities:

v̇(t) ≤ αv(t) + β sup
s∈[−τ,0]

{v(t + s)}, t 6= tk, (4.52a)

v(tk) ≤ ρ1v(t−k ) + ρ2 sup
s∈[−τ,0]

{v(t−k + s)}, k ∈N, (4.52b)
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with α + β ≥ 0, and ρ1, ρ2 > 0. If ρ1 + ρ2 < 1 and

1
ρ1 + ρ2

> e(α+
β

ρ1+ρ2
)σ, (4.53)

then there exists a constant q such that

q >
1

ρ1 + ρ2
> e(α+qβ)σ > e(α+

β
ρ1+ρ2

)σ.

For t 6= tk, if v(t + s) ≤ qv(t) for all s ∈ [−τ, 0], then (4.52a) implies that v′(t) ≤ αv(t) +
β sups∈[−τ,0]{v(t + s)} ≤ cv(t), with constant c = α + qβ > 0. Thus, inequalities (4.52a) are
related to the Razumikhin-type condition (ii) in Theorem 3.3.1. And then, all the conditions of
Theorem 3.3.1 are satisfied. Before making conclusion from Theorem 3.3.1, we need to clarify
that the delay is τ in (4.52a) and (4.52b), which is greater than the system delays r and d in
(4.37) since τ = max{d + r, 2d}. However, the stability result introduced in Theorem 3.3.1 is
still valid for system (4.37) with estimations (4.52a) and (4.52b). The reason is that system (4.37)
is actually a particular case of system (3.1) with delay size τ: let y = e, then

• for t 6= tk,

y′ = Āy + B̄
∫ t

t−r
y(s)ds

= Āy + B̄
∫ 0

−r
y(t + s)ds

= Āy + B̄
∫ 0

−r
yt(s)ds

de f
= f (t, yt);

• for t = tk,

∆y(tk) = −L̄
∫ tk

tk−d
y(s)ds

= −L̄
∫ 0

−d
y(t−k + s)ds

= −L̄
∫ 0

−d
yt−k

(s)ds

de f
= Ik(tk, yt−k

);

• the initial function ψ can be defined as

ψ(s)
de f
=

{
ϕ(s), if s ∈ [−r, 0],

0, if s ∈ [−τ,−r).
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Therefore, we can conclude that, if ρ1 + ρ2 < 1 and (4.53) hold, then system (4.37) is GES, which
implies that protocol (4.33) leads to the consensus for agents in (4.32).

Nevertheless, there are three positive constants ε, ξ, and ε to be determined in (4.53). Denote
ρ = ρ1 + ρ2, then (4.53) implies that σ < ln(1/ρ)

α+β/ρ . For given dynamics of each agent in (4.32) and

network topology in (4.33), we will specify values of ε, ξ, and ε by maximizing ln(1/ρ)
α+β/ρ which is

the upper bound of the length σ for the impulsive interval.

For any ρ ∈ (0, 1), to maximize ln(1/ρ)
α+β/ρ is equivalent to minimize α + β/ρ = λmax(A +

AT) + ε‖B‖2 + ε−1r2/ρ for ε > 0. Define the map H(ε) := λmax(A + AT) + ε‖B‖2 + ε−1r2/ρ,
then H′(ε) = ‖B‖2 − ε−2r2/ρ, which implies that, for ε∗ = r√

ρ‖B‖ , H′(ε∗) = 0 and H(ε∗) =

λmax(A + AT) + 2r‖B‖√
ρ . Hence, for given ρ ∈ (0, 1), we have

max
ε>0

{ ln(1/ρ)

α + β/ρ

}
=

ln(1/ρ)

a + b/
√

ρ
,

where a = λmax(A + AT) and b = 2r‖B‖.

Next, define a function G(ρ) := ln(1/ρ)
a+b/

√
ρ , then G′(ρ) = −2(a

√
ρ+b)+b ln ρ

2
√

ρ(a
√

ρ+b)2 . Define function

F(ρ) := −2(a
√

ρ + b)− b ln ρ, then F′(ρ) = − a
√

ρ+b
ρ < 0 for ρ ∈ (0, 1).

If a + b = 0, then F(1) = 0 and we have that G′(ρ) > 0 for ρ ∈ (0, 1), that is, G(ρ) is strictly
increasing on (0, 1). Moreover, we can yield from ρmin < 1 that there exist ε, ξ > 0 such that
ρ1 + ρ2 = ρ̄ for any ρ̄ ∈ (ρmin, 1). Therefore, σ < supρ∈[ρmin,1){G(ρ)} = limρ→1− G(ρ) = 1/b.

On the other hand, if a + b > 0, then F(1) < 0. Since there exists a small enough ρ̂ ∈ (0, 1)
such that F(ρ̂) > 0, and F is strictly monotone on (0, 1), there exists a unique solution ρ = ρ∗

of the following algebraic equation:

2(a
√

ρ + b) + b ln ρ = 0, for ρ ∈ (0, 1), (4.54)

then we have

G′(ρ) =

{
> 0, if ρ ∈ (0, ρ∗),
< 0, if ρ ∈ (ρ∗, 1).

It can be seen that
min
ε,ξ>0
{ρ1 + ρ2} = (

√
γ1 +

√
γ2 +

√
γ3)

2 = ρmin.

If ρmin > ρ∗, then ρ > ρ∗ for any ε, ξ > 0. Thus, maxρ∈[ρmin,1){G(ρ)} = − ln ρmin
a+b/

√
ρmin

. If ρmin ≤ ρ∗,

then there exist positive ε and ξ such that ρ = ρ∗, and then maxρ∈[ρmin,1){G(ρ)} = − ln ρ∗

a+b/
√

ρ∗ .

Concluding the above selection process yields

σ < max
ε,ε,ξ>0

{ ln(1/ρ)

α + β/ρ

}
=


− ln ρmin

a + b/
√

ρmin
, if ρmin > ρ∗,

− ln ρ∗

a + b/
√

ρ∗
, if ρmin ≤ ρ∗.

The proof is completed. �
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Remark 4.4.1 If a + b = λmax(A + AT) + 2r‖B‖ < 0, then there exists a constant ε > 0 such that
λmax(A + AT) + ε‖B‖+ ε−1r2 < 0. From (4.51), we have

v̇(t) ≤ αv(t) + β sup
s∈[−r,0]

{v(t + s)},

with α + β < 0. By the Hanalay inequality (Lemma on page 378, [38]), we have v(t) will converge to
zero exponentially as t → ∞, when ui(t) ≡ 0 for all i ∈ I and t ≥ t0. This means that each agent
system is exponentially stable. The consensus will be achieved even no control input is added to this
isolated network. Therefore, in Theorem 4.4.1, we have only studied the case of a + b ≥ 0.

Proof of Theorem 4.4.2

Choose Lyapunov function v(t) = eT(t)e(t), and repeat the similar argument as presented in
the previous subsection, then we can get that (4.52b) holds for ρ1 = (1 + ε)(1− 2dl̂ + d2l2) and
ρ2 = (1 + ε−1)[(1 + ξ)d4l2(‖A‖ + r‖B‖)2 + (1 + ξ−1)d4l4σ ∑ζ̄

m=1 m2]. The rest of the proof is
essentially the same as the proof of Theorem 4.4.1, and thus omitted. �

72



Chapter 5

Stabilization and Synchronization of
Dynamical Networks

This chapter studies stabilization and synchronization problems of DNs under pinning impul-
sive control. Throughout this chapter, a pinning algorithm is incorporated with the impulsive
control approach. In Section 5.1, we propose a delay-dependent pinning impulsive controller
to investigate the synchronization of linear delay-free DNs on time scales. Then, in Subsection
5.2.2, we apply the pinning impulsive controller proposed in Section 5.1 to stabilize time-delay
DNs. Results in these two sections show that the delay-dependent pinning impulsive con-
troller can successfully stabilize and synchronize DNs with/without time-delay. However, the
pinning impulsive controller depends on the network states at both impulsive instants and his-
tory times, that is, the contributions of time-delay states to the stabilization or synchronization
processes can not be observed explicitly. Therefore, in Subsection 5.2.3, we design a type of
pinning impulsive controls relies only on the network states at history moments (not on the
states at each impulsive instant). Results show that the proposed pinning impulsive controller
can effectively stabilize the network even though only states at history moments are available
to the pinning controller at each impulsive instants. In Section 5.1 and 5.2, only discrete delays
are considered in the impulsive controllers. We further consider pinning impulsive controllers
with both discrete and distributed time-delay effects, in Section 5.3, to synchronize the drive
and response systems modeled by globally Lipschitz time-delay systems. All the theoretical
results are illustrated by numerical simulations, accordingly.

5.1 Synchronization of Delay-Free Dynamical Networks

During the past decades, the method of impulsive control has been successfully used for syn-
chronization of both continuous and discrete DNs (see, e.g., [68, 80, 134]). It is clear to see that
the continuous and discrete networks are normally investigated separately, and the results con-
cerning discrete DNs are carried quite easily from the corresponding results of their continuous
counterparts. Therefore, it is natural to consider whether it is possible to provide a framework
to study both the continuous and discrete DNs simultaneously. On the other hand, from the
modeling and numerical points of view (see, e.g., [4, 104]), it is more realistic to model a net-
work by DN which incorporates both continuous and discrete times. The recently developed
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theory of time scales, which was initialed by Stefan Hilger in his Ph.D. thesis in 1988, offers
the desired unified method. The purpose of this theory is to unify the existing theory of con-
tinuous and discrete dynamical systems, and extend these theories to dynamical systems on
generalized hybrid (continuous/discrete) domains. The theory of time scales has gained much
attention and is undergoing rapid development in diverse areas (see, e.g., [10], [89], [104]).

Recently, neural networks on time scales have attracted increasing interest, and stability and
synchronization of different kinds of DNs on time scales have been studied (see, e.g., [45, 70]).
In this section, we investigate the synchronization problem of DNs on time scales. A pinning
impulsive control scheme that takes into account of time-delay effects is designed to achieve
synchronization of DNs on time scales with the state of an isolated node. Based on the theory
of time scales and the direct Lyapunov method, a synchronization criterion is established for
linear DNs on general time scales. Our result shows that, by impulsive control a small portion
of nodes, the consensus of DNs on time scales can be achieved. According to our pinning
impulsive control scheme, different numbers of nodes will be selected at each impulsive instant
and time-delay is considered in the pinning impulses. The modeling framework developed in
this section is a unification and generalization of many existing continuous-time and discrete-
time DN models, while the pinning impulsive control scheme is an extension of the existing
control scheme for synchronization of continuous-time DNs. Moreover, the idea of studying
dynamical systems on time scales provide a unified approach to investigate continuous-time
system and its discrete-time counterpart simultaneously.

The outline of this section is as follows. In Subsection 5.1.1, we introduce some basic knowl-
edge for the theory of time scales. In Subsection 5.1.2, we formulate the problem of synchro-
nization for linear DNs on time scales, and propose the pinning delayed-impulsive control
strategy. In Subsection 5.1.3, an impulsive synchronization criterion is established for linear
DNs on general time scales. In Subsection 5.1.4, numerical simulations are given to illustrate
the effectiveness of the proposed control algorithm.

5.1.1 Preliminaries on Time Scales

In this subsection, we recall some basic definitions and properties of time scales which are used
in what follows. Let T be a time scale (an arbitrary nonempty closed subset of the real number
set R). We assume that T is a topological space with relative topology induced from R. If
a, b ∈ T, we then define the interval [a, b] in T by [a, b] := {t ∈ T : a ≤ t ≤ b}. Open intervals
and half-open intervals etc. are defined accordingly.

Definition 5.1.1 The mappings σ, ρ : T→ T defined as

σ(t) = inf{s ∈ T : s > t}
and

ρ(t) = sup{s ∈ T : s < t}
are called forward and backward jump operators, respectively.

A non-maximal element t ∈ T is right-scattered if σ(t) > t and right-dense (rd) if σ(t) = t.
A non-minimal element t ∈ T is left-scattered if ρ(t) < t and left-dense if ρ(t) = t. If T has
a left-scattered maximum m, then Tk = T \ {m}, otherwise, Tk = T. The graininess function
µ : T→ R+ is defined by µ(t) = σ(t)− t.
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Definition 5.1.2 For y : T → R and t ∈ Tk, we define the delta derivative of y(t), y∆(t), to be
the number (when it exists) with the property that for any ε > 0, there is a neighborhood U of t (i.e.,
U = (t− δ, t + δ)

⋂
T for some δ > 0) such that

|y(σ(t))− y(s)− y∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U.

A function f : T → R is rd-continuous provided it is continuous at right-dense points
in T and its left-side limits exist at left-dense points in T. The set of rd-continuous functions
f : T → R will be denoted by Crd = Crd(T, R). If f is continuous at each right-dense point
and each left-dense point, f is said to be continuous function on T.

Definition 5.1.3 Let f ∈ Crd. A function g : T → R is called the anti-derivative of f on T if it is
differentiable on T and satisfies g∆(t) = f (t) for t ∈ T. In this case, we define∫ t

a
f (s)∆s = g(t)− g(a),

where t, a ∈ T.

We say that a function p : T → R is regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ T

holds. The set of all regressive and rd-continuous functions f : T → R is denoted in this
paper by R = R(T, R), and the set of all positively regressive elements of R is denoted by
R+ = R+(T, R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 5.1.4 If p ∈ R, then we define the exponential function on time scale T by ep(t, s) =

exp
( ∫ t

s ξµ(τ)(p(τ))∆τ
)
, for t, s ∈ T, where the cylinder transformation

ξh(z) =


Log(1 + hz)

h
, h 6= 0

z, h = 0

where Log is the natural logarithm function.

Remark 5.1.1 Let α ∈ R be constant. If T = Z, then eα(t, t0) = (1 + α)t−t0 for all t ∈ T. If T = R,
then eα(t, t0) = eα(t−t0) for all t ∈ T. If α ≥ 0, then eα(t, s) ≥ 1 for t ≥ s and t, s ∈ T. Moreover,
for t, s, r ∈ T, eα(t, s) = 1

eα(s,t) and eα(t, r)eα(r, s) = eα(t, s), which will be used in the proof of main
result in this paper.

In the sequel, we present two lemmas from [16] which will be essential to prove our main
result.

Lemma 5.1.1 If f ∈ Crd and t ∈ Tk, then∫ σ(t)

t
f (τ)∆τ = µ(t) f (t).
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Remark 5.1.2 If p ∈ R and t ∈ Tk, then, from Definition 5.1.4 and Remark 5.1.1, we have

ep(σ(t), t) = 1 + µ(t)p(t).

Lemma 5.1.2 Let f ∈ Crd and p ∈ R+. Then, for all t ∈ T, inequality y∆(t) ≤ p(t)y(t) + f (t)
implies that

y(t) ≤ y(t0)ep(t, t0) +
∫ t

t0

ep(t, σ(τ)) f (τ)∆τ.

5.1.2 Problem Formulation

Consider the linear DN of N identical nodes (n-dimensional dynamic systems) on time scale T

x∆
i = Axi + c

N

∑
j=1

gijxj, i = 1, 2, ..., N, (5.1)

where xi = (xi1, xi2, ..., xin)
T ∈ Rn is the state vector of the ith node, A is a n× n matrix, c is the

coupling strength of the network, the coupling configuration matrix G = (gij)N×N represents
the connection topology of the network and is defined as follows: if there is a connection be-
tween the ith node and the jth node (i 6= j), then gij = gji = 1, otherwise, gij = gji = 0, and the
diagonal elements are defined as gii = −∑N

j=1,j 6=i gij.

Clearly, the isolated node of network (5.1) is in the form of

y∆ = Ay, t ∈ T. (5.2)

Let s(t) be the state of an isolated node: s∆ = As. Our goal is to design a pinning impulsive
control scheme to achieve the synchronization among the node states xi(t) and the objective
state s(t), namely, limt→∞ ‖xi(t)− s(t)‖ = 0, for all i = 1, 2, ..., N.

Consider the DN (5.1) under the feedback control,

x∆
i = Axi + c

N

∑
j=1

gijxj + ui(t, xi, s), (5.3)

for i ∈ I := {1, 2, ..., N}, where {ui(t, xi, s), i ∈ I} is the pinning impulsive controller designed
as follows

ui =


∞

∑
k=1

[q1kyi(t) + q2kyi(t− τk)]δ(t− tk), i ∈ Dk ⊆ I ,

0, i 6∈ Dk.

Here, the constant q1k and q2k are the impulsive control gains to be determined, and δ(·) is the
Dirac delta function. The impulsive instant sequence {tk} satisfies {tk} ⊂ T, 0 = t0 < t1 <
t2 < ... < tk < ..., and limt→∞ tk = ∞. τk ≥ 0 denotes the time delay in the pinning impulsive
controller ui at time tk, and there exists a constant τ > 0 such that τk ≤ τ for all k ∈N. The time
sequence {tk − τk} satisfies t1 − τ ≥ t0 and tk − τk ∈ T. yi(t) = xi(t)− s(t) is the error state of
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the ith node at time t, and lk denotes the number of nodes to be controlled at each impulsive
instant tk. The index set Dk = {p1, p2, ..., plk} ⊆ I is defined as follows: pi 6= pj if i 6= j; at the
impulsive instant tk, ‖yi(tk)‖ ≥ ‖yj(tk)‖ if i ∈ Dk and j ∈ I/Dk. Then, we have ]Dk = lk. The
pinning impulsive control mechanism can be explained as follows: at each impulsive instant,
we only control lk nodes that have larger deviations with the trivial state than the rest n − lk
nodes. Throughout the rest of this thesis, we will study various pinning impulsive control
problems evolving around this type of impulsive pinning algorithm.

Remark 5.1.3 Definitions of Dk and ]Dk are borrowed from [67]. However, our control scheme is more
general than the control schemes in [67], since the number lk of nodes controlled at different impulsive
instants are different and the existence of time delay in the pinning controller. Recently, many results
about pinning impulsive control of diverse dynamical networks have been reported in the literature (see,
[46, 67, 66, 108, 136]). However, the results in [46, 136] have some essential errors, see Remark 3.11
of [125] for details. The results in [66] is not applicable to synchronize the dynamical networks without
impulsive effects, and in the results of [108], the pinning adaptive controller played a key role in the
synchronization process. It is worth noting that no time delay is considered in the above mentioned
pinning impulsive control algorithms. Moreover, it is well known that the existence of time delay is a
double-edged sword to the dynamic performance of systems. Therefore, it is worthwhile to study systems
subject to delayed impulses. See the numerical example in Subsection 5.1.4 for detailed discussion of
stabilizing delayed impulses and delayed impulsive perturbations.

By the properties of the Dirac delta function δ(·), system (5.3) can be rewritten as the following
impulsive system, 

x∆
i = Axi + c

N

∑
j=1

gijxj, t 6= tk,

∆xi(tk) = q1kyi(tk) + q2kyi(tk − τk), i ∈ Dk,

(5.4)

where ∆xi(tk) = xi(t+k ) − xi(t−k ), xi(t+k ) and xi(t−k ) denote the right and left limit of xi at tk,
respectively. In this section, we assume that xi(t−k ) = xi(tk). Without loss of generality, in the
following subsection, all the impulsive instants tk are assumed to be right-dense on time scale
T.

Since the synchronization error is defined as yi(t) := xi(t) − s(t), we have the following
error system 

y∆
i = Ayi + c

N

∑
j=1

gijyj, t 6= tk,

∆yi(tk) = q1kyi(tk) + q2kyi(tk − τk), i ∈ Dk,

(5.5)

Hence, DN (5.1) can achieve synchronization with s(t) if and only if ‖yi‖ → ∞ as t→ ∞.

5.1.3 Synchronization Results

In this subsection, we shall establish an impulsive synchronization criterion for linear DN (5.1).
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Theorem 5.1.1 Assume that there exist constants a > 0, εk > 0 and αik (i = 1, 2, ..., N, k ∈N) such
that

(i) HT
i + Hi + µHT

i Hi ≤ αik In for t ∈ (tk, tk+1), where Hi = A + cλi In and λ1, λ2, ..., λN are
eigenvalues of matrix G;

(ii) (ρ1k + ρ2keaτk)ea(tk+1−tk)eαk(tk+1, tk) ≤ 1, where ρ1k = 1− lk
N [1− (1 + εk)(1 + q1k)

2], ρ2k =

(1 + ε−1
k )q2

2k, and αk = max{0, α1k, α2k, ..., αNk}.

Then, DN (5.1) can achieve synchronization with s(t).

Proof: Define y(t) = (yT
1 (t), yT

2 (t), ..., yT
N(t))

T, then the error system (5.5) can be rewritten as
follows {

y∆(t) = (IN ⊗ A)y(t) + c(G⊗ In)y(t), t 6= tk,
∆yi(tk) = q1kyi(tk) + q2kyi(tk − τk), i ∈ Dk,

(5.6)

where ⊗ is the Kronecker product. By matrix decomposition theory, there exists an orthogonal
matrix U = (ν1, ν2, ..., νN) ∈ RN×N such that G = UΛUT where Λ = Diag{λ1, λ2, ...λN}
and νi ∈ RN. Let δi = (νT

i ⊗ In)y and δ = (δT
1 , δT

2 , ..., δT
N)

T, then δ = (UT ⊗ In)y, i.e., y =

(UT ⊗ In)−1δ = (U ⊗ In)δ. From (5.6), we have, for t 6= tk,

(U ⊗ In)δ
∆ = (IN ⊗ A)(U ⊗ In)δ + c(G⊗ In)(U ⊗ In)δ

= (U ⊗ A)δ + c(UΛ⊗ In)δ.

Multiply both side by (U ⊗ In)−1 yields

δ∆ = (UT ⊗ In)(U ⊗ A)δ + c(UT ⊗ In)(UΛ⊗ In)δ

= (IN ⊗ A)δ + c(Λ⊗ In)δ,

which implies δ∆
i = (A+ cλi In)δi, for t 6= tk and i = 1, 2, ..., N. Consider the Lyapunov function

V(t) = yT(t)y(t). By the definition of δ, we can obtain that

V(t) = δT(t)(U ⊗ In)
T(U ⊗ In)δ(t)

= δT(t)(UT ⊗ In)(U ⊗ In)δ(t)

= δT(t)(UTU ⊗ In)δ(t)

= δT(t)δ(t).

For t 6= tk, by calculating the ∆-derivative of V(t) along the trajectories of the system (5.6), we
can get

V∆(t) =
N

∑
i=1

[(δT
i )

∆δi + (δσ
i )

Tδ∆
i ], where δσ

i = δi(σ(t))
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=
N

∑
i=1

[(δT
i )

∆δi + (δi + µδ∆
i )

Tδ∆
i ]

=
N

∑
i=1

δT
i [(A + cλi In)

T + (A + cλi In) + µ(t)(A + cλi In)
T(A + cλi In)]δi

=
N

∑
i=1

δT
i (HT

i + Hi + µHT
i Hi)δi

≤
N

∑
i=1

αikδT
i δi ≤ αkV(t). (5.7)

Since 1 + µ(t)αk > 0 for t ∈ (tk, tk+1), we have, by Lemma 2.2 and (5.7),

V(t) ≤ V(t+k )eαk(t, tk). (5.8)

Next, we shall show

V(tk+1) ≤ V(t+k )eαk(tk+1, tk). (5.9)

If tk+1 is left-dense, then, by the continuity of V(t) and eαk(t, tk), we have

V(tk+1) = lim
t→t−k+1

V(t) ≤ lim
t→t−k+1

V(t+k )eαk(t, tk) = V(t+k )eαk(tk+1, tk).

If tk+1 is left-scattered, then

V(tk+1) = V(ρ(tk+1)) + µ(ρ(tk+1))V∆(ρ(tk+1))

≤ V(ρ(tk+1)) + µ(ρ(tk+1))αkV(ρ(tk+1))

= [1 + µ(ρ(tk+1))αk]V(ρ(tk+1))

= eαk(tk+1, ρ(tk+1))V(ρ(tk+1))

≤ eαk(tk+1, ρ(tk+1))V(t+k )eαk(ρ(tk+1), tk)

= V(t+k )eαk(tk+1, tk).

Thus, (5.9) is proved. For k ∈N, we have

(1− ρ1k) ∑
i 6∈Dk

yT
i (tk)yi(tk) ≤ (1− ρ1k)(N − lk)min

i∈Dk
{yT

i (tk)yi(tk)}

= lk[ρ1k − (1 + εk)(1 + q1k)
2]min

i∈Dk
{yT

i (tk)yi(tk)}

≤ [ρ1k − (1 + εk)(1 + q1k)
2] ∑

i∈Dk

yT
i (tk)yi(tk), (5.10)

then,

V(t+k ) = ∑
i∈Dk

yT
i (t

+
k )yi(t+k ) + ∑

i 6∈Dk

yT
i (t

+
k )yi(t+k )
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= ∑
i 6∈Dk

yT
i (tk)yi(tk) + ∑

i∈Dk

[
(1− q1k)

2yT
i (tk)yi(tk)

+q2
2kyT

i (tk − τk)yi(tk − τk) + 2(1− q1k)q2kyT
i (tk)yi(tk − τk)

]
≤ (1 + εk)(1 + q1k)

2 ∑
i∈Dk

yT
i (tk)yi(tk)

+(1 + ε−1
k )q2

2k ∑
i∈Dk

yT
i (tk − τk)yi(tk − τk) + ∑

i 6∈Dk

yT
i (tk)yi(tk)

≤ ρ1kV(tk) + ρ2kV(tk − τk). (5.11)

Since t1 − τ ≥ t0, we have

V(t) ≤ Me−a(t−t0), t ∈ [t0, t1], (5.12)

where M = ea(t1−t0) supt∈[t0,t1]
{V(t)}. In the following, we shall show that for k ≥ 1

V(t) ≤ M
e−a(tk+1−t0)

eαk(tk+1, t)
, t ∈ (tk, tk+1]. (5.13)

For t = t1, we can get from condition (ii) that

V(t+1 ) ≤ ρ11V(t1) + ρ21V(t1 − τ1)

≤ ρ11Me−a(t1−t0) + ρ21Me−a(t1−τ1−t0)

= M(ρ11 + ρ21eaτ1)e−a(t1−t0)

≤ M
e−a(t2−t0)

eα1(t2, t1)
, (5.14)

then, from (5.8) and Remark 5.1.1, we have

V(t) ≤ V(t+1 )eα1(t, t1) ≤ M
e−a(t2−t0)

eα1(t2, t)
, for t ∈ (t1, t2],

which implies (5.13) is true for k = 1. Next, suppose (5.13) is true for k ≤ j(j > 1), and we shall
prove (5.13) holds for k = j + 1. For t = tj+1, we estimate the upper bound of V(tj+1− τj+1) by
considering the following two cases:

• tj+1 − τj+1 ≤ t1, then

V(tj+1 − τj+1) ≤ Me−a(tj+1−τj+1−t0). (5.15)

• tj+1 − τj+1 > t1, then there exists an integer k̂ ≥ 1 such that tj+1 − τj+1 ∈ (tk̂, tk̂+1], and
then

V(tj+1 − τj+1) ≤ M
e−a(tk̂+1−t0)

eαk̂
(tk̂+1, tj+1 − τj+1)

≤ Me−a(tj+1−τj+1−t0), (5.16)

since αk̂ ≥ 0 and eαk̂
(tk̂+1, tj+1 − τj+1) ≥ 1.
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From (5.15) and (5.16), we obtain

V(t+j+1) ≤ ρ1,j+1V(tj+1) + ρ2,j+1V(tj+1 − τj+1)

≤ M(ρ1,j+1 + ρ2,j+1eaτj+1)e−a(tj+1−t0)

≤ M
e−a(tj+2−t0)

eαj+1(tj+2, tj+1)
,

and then, for t ∈ (tj+1, tj+2],

V(t) ≤ V(t+j+1)eαj+1(t, tj+1)

≤ Me−a(tj+2−t0)
eαj+1(t, tj+1)

eαj+1(tj+2, tj+1)

= M
e−a(tj+2−t0)

eαj+1(tj+2, t)
,

which implies (5.13) is true for k = j + 1. Thus, we conclude from mathematical induction that
(5.13) is true for all k ≥ 1. Then, for t ∈ (tk, tk+1](k ≥ 1),

V(t) ≤ M
e−a(tk+1−t0)

eαk+1(tk+1, t)
≤ Me−a(tk+1−t0) ≤ Me−a(t−t0),

which implies V(t)→ 0 as t→ ∞, i.e., limt→∞ ||y(t)|| = 0. �

Remark 5.1.4 By minimizing the term ρ1k + ρ2keaτk , the constant εk can be specified to make Theorem
5.1.1 less conservative. Define hk(ε) =

lk
N ε(1 + q1k)

2 + ε−1q2
2keaτk , then, for ε = |q2k|

|1+q1k|

√
N
lk

e
1
2 aτk , we

have h′k(ε) = 0, i.e., hk(ε) attains its minimum for ε > 0. Hence,

min
εk>0
{ρ1k + ρ2keaτk} = 1− lk

N
+ [

√
lk
N
|1 + q1k|+ |q2k|e

1
2 aτk ]2.

Since lk denotes the number of nodes to be controlled at impulsive instant tk, lk/N represents the propor-
tion of the impulsively controlled nodes at t = tk. It can be seen from Theorem 5.1.1 that the proportion
lk/N depends not only on the control parameters of the pinning controller but also the structure of the
time scale T, because exponential function eαk(tk+1, tk) is closely related to the graininess function of
time scale T.

Remark 5.1.5 For the right-scattered case of tk, our results are applicable by defining xi(t+k ) to be the
state after the impulse and xi(tk) to be the state before the impulse, that is, the impulse is defined as a
state update at each impulsive instant (as discussed in [81]). Then conditions (i) and (ii) of Theorem
5.1.1 on t are restricted to t+k ≤ t < tk. Therefore, Theorem 5.1.1 can be used as a synchronization
criterion for the discrete DNs. Though the synchronization criterion in Theorem 5.1.1 is established for
DNs on general time scales, for specific time scales we can get some verifiable sufficient conditions. For
example,
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• T = N, then µ ≡ 1, Hi + HT
i + µHT

i Hi = Hi + HT
i + HT

i Hi and

eαk(tk+1, tk) = (1 + αk)
tk+1−tk ;

• T = R, then µ ≡ 0, Hi + HT
i + µHT

i Hi = Hi + HT
i and

eαk(tk+1, tk) = eαk(tk+1−tk).

For time scales with bounded graininess functions (µ(t) ≤ µ̄ for all t ∈ T), Hi + HT
i + µHT

i Hi ≤ Hi +

HT
i + µ̄HT

i Hi and the exponential function eαk(tk+1, tk) can be calculated according to the structure of
the time scale.

5.1.4 Numerical Simulations

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2
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31
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Figure 5.1: Network topology of linear DN (5.1).
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0.7 0.15*j    0.15*j+0.10 0.1     0.15 0.25      0.3 0.4     0.45 0.55     0.6  

Figure 5.2: Demonstration of time scale T.

In this subsection, we present a numerical example to illustrate the proposed result. Con-
sider the linear DN (5.1) on time scale T with n = 2, c = 0.1,

A =

[
−1.2 0.1
−0.2 1.1

]
,

G =


−2 1 0 0 1
1 −2 0 0 1
0 0 −1 1 0
0 0 1 −1 0
1 1 0 0 −2

 ,
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Figure 5.3: Numerical simulations of ||yi|| (i = 1, 2, ..., 5) with different pinning impulsive con-
trollers.

and the time scale

T =
∞⋃

j=0

[
3

20
j,

3
20

j +
1
10

].

(See Figure 5.1 for the network topology and Figure 5.2 for the demonstration of the given time
scale.) Then, λ1 = λ2 = 0, λ3 = −2, and λ4 = λ5 = −3. The graininess function of T is given
by

µ(t) =


0, t ∈

∞⋃
j=0

[
3

20
j,

3
20

j +
1
10

),

0.05, t =
3

20
j +

1
10

, j ∈ Z+,
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which implies that µ(t) ≤ 0.05 for all t ∈ T. Thus, for any t ∈ T, λmax(HT
i + Hi + µ(t)HT

i Hi) ≤
2.52, then we can choose αik ≡ α = 2.52. In order to observe the pinning impulsive control
process clearly, in this example, we consider the network with N = 5 identical nodes, and
the impulsive sequence is chosen as follows: tk = 0.15k + 0.05, for k ∈ N. According to the
structure of the time scale T, we have the following estimation of the exponential function

eα(tk+1, tk) = eα(tk+1, tk+1 − 0.05)eα(tk+1 − 0.05, tk + 0.05)eα(tk + 0.05, tk)

= e0.05α(1 + µα)
(tk+1−0.05)−(tk+0.05)

0.05 e0.05α

= (1 + 0.05α)e0.1α ≈ 1.45.

In the following simulations, let l2k−1 = 4 and l2k = 5 for k ∈ N, that is, controlling 4 nodes
at each odd impulsive instant, and controlling all of the nodes at each even impulsive instant.
Next, we consider the pinning impulsive controller with q1,2k−1 = −0.45, q1,2k = −0.4, τk = 0.1,
and three different types of control gains q2k:

(a) q2,k ≡ 0 for k ∈N, i.e., there is no delay in the pinning impulsive controller;

(b) q2,2k−1 = −0.12 and q2,2k = −0.1 for k ∈N;

(c) q2,2k−1 = 0.12 and q2,2k = 0.1 for k ∈N.

It can be checked that conditions in Theorem 5.1.1 are satisfied for the first three cases with
a = 0.01. In (a), no delay is considered in the pinning impulsive controller, Figure 5.3(a) shows
that the synchronization of DN can be realized. In (b), time delay exists in the pinning con-
troller. Compared with (a), the existence of delay in the pinning controller contribute to the
synchronization of the DN. See Figure 5.3(b) for illustration. On the other hand, the existence
of time delay could be a perturbation to the synchronization process. Hence, in (c), we consider
a pinning impulsive controller with delayed impulsive perturbations, and Figure 5.3(c) shows
that the the existence of delay in the pinning controller slows down the convergence rate of the
synchronization.

5.2 Stabilization of Neural Networks with Time-Delay

Neural networks (NNs) are a family of statistical learning models inspired by the central ner-
vous systems of animals (see, [11]). NNs are generally presented as systems of densely inter-
connected simple elements which model the biological neurons, and send (or receive) messages
to (or from) each other. In recent decades, the research on NNs has attracted the attention of
numerous researchers. This mainly due to their broad applications in many areas including im-
age processing and pattern recognition (see, e.g., [24, 47] ), data fusion [22], odor classification
[5], and solving partial differential equations [44].

This section studies impulsive stabilization problem of time-delay neural networks. Dis-
crete time-delay effects are considered in the impulsive controllers. In Subsection 5.2.2, a pin-
ning impulsive controller is proposed with delay effects. The impulsive controller depends
on not only the network states at each impulsive instant but also the states at history time.
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Sufficient conditions for the stabilization are constructed by using a Razumikhin-type stability
result. In Subsection 5.2.3, the proposed pinning impulsive controller relies only on the net-
work states at history instants, that is, the time-delay states play an key role in the stabilization
process. Stabilization result is obtained by using the Lyapunov functional method. Numerical
examples are provided to demonstrate the theoretical results.

5.2.1 Neural Network Model and Preliminaries

Consider the following time-delay neural network (DNN):

ẋi(t) = −cixi(t) +
n

∑
j=1

aij f j(xj(t)) +
n

∑
j=1

bij f j(xj(t− r)) + Ji, (5.17)

for i ∈ I := {1, 2, ..., n}, where xi ∈ R is the state of the ith neuron; n denotes the number
of neurons in DNN (5.17); f j(xj(t)) denotes the output of the jth neuron at time t; constants
aij and bij represent the strengths of connectivity between neurons i and j at time t and t− r,
respectively; r corresponds to the transmission delay when processing information from the
jth neuron; constant Ji denotes the external bias or input from the outside of the network to the
ith neuron; constant ci denotes the rate with which the ith neuron will reset its potential when
disconnected with the other neurons of the network and external input.

Throughout this section, we assume that fi(0) = Ji = 0 for all i ∈ I . Here we have assumed
Ji = 0 for all i ∈ I . Actually, for nontrivial constant external input Ji, stability analysis of
the equilibrium of DNN (5.17) can be studied similarly by change of variables. Based on our
assumptions, system (5.17) admits the trivial solution.

The objective is to design the following delay-dependent pinning impulsive controller to
exponentially stabilize DNN (5.17):

Ui(t, xi) =


∞

∑
k=1

I(xi(t), xi(t− d))δ(t− t−k ), i ∈ Dl
k,

0, i 6∈ Dl
k,

(5.18)

for i ∈ I , where I : R×R → R and d > 0 denotes the time delay in controller (5.18); the
impulsive instant sequence {tk} satisfies {tk} ⊆ R, 0 ≤ t0 < t1 < ... < tk < ..., and limk→∞ tk =
∞; δ(·) is the Dirac Delta function. Let l denote the number of neurons to be pinned at each
impulsive instant, and the index set Dl

k = {p1, p2, ..., pl} ⊆ I is defined as follows: pi 6= pj if
i 6= j; at the impulsive instant tk, ‖xi(t−k )‖ ≥ ‖xj(t−k )‖ if i ∈ Dl

k and j ∈ I/Dl
k. The definition

of Dl
k is similar to definition of Dk in Section 5.1. The difference is that the same number of

neurons are controlled at different impulsive instants (i.e., lk = l).

The closed-loop system can be written in the following form of nonlinear differential equa-
tions:

ẋi(t) = −cixi(t) +
n

∑
j=1

aij f j(xj(t)) +
n

∑
j=1

bij f j(xj(t− r)) + Ui, (5.19)
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for i = 1, 2, ..., n. Furthermore, we can rewrite system (5.19) into a matrix-form impulsive
system: 

ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t− r)), t ∈ [tk−1, tk),

∆xi(tk) = I(xi(t−k ), xi(tk − d)), i ∈ Dl
k, k ∈N,

xt0 = φ,

(5.20)

where C = diag{c1, c2, ..., cn}, A = (aij)n×n, B = (bij)n×n, f (x) = ( f1(x1), f2(x2), ..., fn(xn))T

and xt0 is defined by xt0(s) = x(t0 + s) for s ∈ [−τ, 0] and τ = max{r, d}; φ = (φ1, φ2, ..., φn)T is
the initial function with φi ∈ PC([−τ, 0], R). Then the pinning impulsive stabilization problem
of DNN (5.17) is transformed into the stability problem of impulsive system (5.20).

The following lemmas will be used in the proof of the main result.

Lemma 5.2.1 For x, y ∈ R, the following inequality holds

2xy ≤ εx2 + ε−1y2,

for any ε > 0.

Lemma 5.2.2 For x, y, z ∈ R, the following inequality holds

(x + y + z)2 ≤ (1 + ε)x2 + (1 + ε−1)(1 + ξ)y2 + (1 + ε−1)(1 + ξ−1)z2,

for any ε, ξ > 0.

Lemma 5.2.3 For ε, ξ > 0, and given constants x, y, z ∈ R, define function

H(ε, ξ) := (1 + ε)x2 + (1 + ε−1)(1 + ξ)y2 + (1 + ε−1)(1 + ξ−1)z2,

then function H attains its minimum Hmin = (|x|+ |y|+ |z|)2 at (ε, ξ) =
( |y|+|z|
|x| , |z||y|

)
.

Remark 5.2.1 Applying Lemma 5.2.1 twice, Lemma 5.2.2 can be proved. Lemma 5.2.3 can be easily
obtained by using the extreme value theory of multivariate functions. Hence, the detailed proofs for
Lemma 5.2.2 and 5.2.3 are omitted. The above lemmas will be used to reduce the conservatism of the
sufficient conditions of our results.

5.2.2 Delay-Dependent Impulsive Control

In this subsection, we consider the pinning impulsive controller with I(xi(t), xi(t − d)) =
γ1xi(t) + γ2xi(t− d), that is,

Ui(t, xi) =


∞

∑
k=1

[γ1xi(t) + γ2xi(t− d)]δ(t− t−k ), i ∈ Dl
k,

0, i 6∈ Dl
k,

(5.21)
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where γ1 and γ2 are impulsive control gains to be determined. Then, the impulsive controlled
DNN (5.17) can be written in the form of an impulsive system:

ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t− r)), t ∈ [tk−1, tk),

∆xi(tk) = γ1xi(t−k ) + γ2xi(tk − d), i ∈ Dl
k, k ∈N,

xt0 = φ.

(5.22)

Throughout this subsection, we make the following assumption:

(A) there exists a constant L such that || f (u)− f (v)|| ≤ L||u− v|| for all u, v ∈ Rn.

The Lipschtiz condition on the nonlinear activation function has been widely considered due
to its significance in the application of NNs (see e.g., [24, 106, 124]). Next, we will use a
Razumikhin-type stability criterion to construct verifiable conditions for the GES of impulsive
DNN (5.22).

Theorem 5.2.1 If the following inequality is satisfied

ρecd < 1, (5.23)

where ρ = 1 − l
n +

(√ l
n |1 + γ1| + |γ2|

)2, c = −2 mini{ci} + 2L(||A|| + ||B||√
ρ ) > 0, and d =

supk∈N{tk+1 − tk}, then the trivial solution of system (5.22) is GES.

Proof: Consider the Lyapunov function V(x) = xTx. Note that condition (i) of Theorem 3.3.1
is satisfied with w1 = w2 = 1 and p = 2. Taking the time-derivative along solutions of (5.22)

V̇(x) = 2xT(t)ẋ(t)

= 2xT(t)
[
− Cx(t) + A f (x(t)) + B f (x(t− r))

]
≤

(
− 2cmin + 2||A||L

)
V(x(t)) + 2||B||L||x(t)||||x(t− r)||

≤
(
− 2cmin + 2||A||L + ||B||Lε−1)V(x(t)) + ε||B||LV(x(t− r)), (5.24)

where cmin = mini{ci} and constant ε > 0. It can be seen from (5.23) that there exists a constant
q > 0 such that

q >
1
ρ
> ec̄d, (5.25)

where c̄ = −2 mini{ci}+ 2L(||A||+√q||B||). If V(x(t+ s)) < qV(x(t)) for all s ∈ [−τ, 0], then
we can obtain from (5.24) that

V̇(x) ≤
[
− 2cmin + 2||A||L + ||B||L(ε−1 + qε)

]
V(x(t)). (5.26)

Define h as a function of ε: h(ε) = −2cmin + 2||A||L+ ||B||L(ε−1 + qε). Then, for ε > 0, function
h attains its minimum value c̄ at ε = 1√

q (that is, h′(ε) = 0 at ε = 1√
q ). Therefore, we can get

from (5.26) that V̇(x) ≤ c̄V(x).
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Given a constant ξ > 0, letting γ̄1 = 1− l
n [1− (1 + ξ)(1 + γ1)

2], then

(1− γ̄1) ∑
i 6∈Dl

k

x2
i (t
−
k ) ≤ (1− γ̄1)(n− l)min

i∈Dl
k

{x2
i (t
−
k )}

= l[γ̄1 − (1 + ξ)(1 + γ1)
2]min

i∈Dl
k

{x2
i (t
−
k )}

≤ [γ̄1 − (1 + ξ)(1 + γ1)
2] ∑

i∈Dl
k

x2
i (t
−
k ),

i.e.,

(1 + ξ)(1 + γ1)
2 ∑

i∈Dl
k

x2
i (t
−
k ) + ∑

i 6∈Dl
k

x2
i (t
−
k ) ≤ γ̄1

n

∑
i=1

x2
i (t
−
k ).

Then, for t = tk, we have

V(x(tk)) = ∑
i∈Dl

k

x2
i (tk) + ∑

i 6∈Dl
k

x2
i (tk)

= ∑
i∈Dl

k

[(1 + γ1)xi(t−k ) + γ2xi(tk − d)]2 + ∑
i 6∈Dl

k

x2
i (tk)

≤ ∑
i∈Dl

k

[(1 + ξ)(1 + γ1)
2x2

i (t
−
k ) + (1 + ξ−1)γ2

2x2
i (tk − d)] + ∑

i 6∈Dl
k

x2
i (tk)

≤ (1 + ξ)(1 + γ1)
2 ∑

i∈Dl
k

x2
i (t
−
k ) + ∑

i 6∈Dl
k

x2
i (tk) + (1 + ξ−1)γ2

2

n

∑
i=1

x2
i (tk − d)

≤ γ̄1V(x(t−k )) + (1 + ξ−1)γ2
2V(x(tk − d))

≤ ρ1V(x(t−k )) + ρ2 sup
s∈[−τ,0]

{V(x(t−k + s))},

where ρ1 = γ̄1, ρ2 = (1 + ξ−1)γ2
2, and constant ξ > 0 to be determined to minimize the value

of ρ1 + ρ2.

Let h̄(ξ) = l
n (1+ γ1)

2ξ + γ2
2ξ−1, then, for ξ = | γ2

1+γ1
|
√

n
l , we have h̄′(ξ) = 0, i.e., h̄(ξ) attains

its minimum for ξ > 0. Hence,

ρ = min
ξ>0
{ρ1 + ρ2} = 1− l

n
+
(√ l

n
|1 + γ1|+ |γ2|

)2
.

Based on the above discussion, we can conclude that all the conditions of Theorem 3.3.1 are
satisfied. Thus, the trivial solution of system (5.22) is GES. �

Remark 5.2.2 Parameter ρ is related to impulsive control gains γ1, γ2 and the ratio l/n. It can be seen
from (5.23) that, the fewer units are controlled at impulsive instants, the more frequently the impulsive
controllers need to be added to the network.
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Numerical Simulations

Next, we will consider an example to demonstrate our theoretical result. In order to observe the
pinning control process clearly, we will investigate a DNN with only two units in the following
example.

Example 5.2.1 Consider DNN (5.17) with n = 2, c1 = c2 = −1, r = 1,

A =

[
2 −0.1
−5 3

]
, B =

[
−1.5 −0.1
−0.2 −2.5

]
,

and f (x) = ( f1(x1), f2(x2))
T with f1(·) = f2(·) = tanh(·). The chaotic attractor of DNN (5.17) is

shown in Figure 5.4.

We consider two types of impulsive controllers:

1) l = 1, i.e., impulsive control one unit at each impulsive instant. Let tk − tk−1 = 0.03,
d = 1, γ1 = −0.868, and γ2 = 0.2, then (5.23) is satisfied. Thus, Theorem 5.2.1 implies
that the trivial solution of (5.22) is GES. See Figure 5.5 for numerical simulations.

2) l = 2, i.e., impulsive control two units at each impulsive instant. Let tk − tk−1 = 0.08, and
d, γ1, γ2 are the same as those in the first scenario, then (5.23) is satisfied and Theorem
5.2.1 implies that the trivial solution of (5.22) is GES. Numerical results are shown in
Figure 5.6.

The initial data in Figure 5.5 and Figure 5.6 is chosen the same as that in Figure 5.4, and
the red dot denotes the state x at initial time t = 0. The vertical (or horizontal) lines in
Figure 5.5(a) represent the state jump of x2 (or x1) while the other state is unchanged.
Since both units are controlled in Figure 5.6(a), no vertical and horizontal lines can be
observed. It can be seen from Figure 5.5 that different unit may be controlled at differ-
ent impulsive instants. This is consistent with our pinning algorithm of controlling the
unit which has the largest state deviation with the equilibrium. However, it is more prac-
tical to control one specific unit at all impulsive instants. Next, we apply the pinning
impulsive controller to the first and second unit at all impulsive instants respectively, and
numerical results are shown in Figure 5.7(a) and 5.7(b). The impulsive control gains γ1,
γ2, and the impulsive sequence {tk} are chosen the same as those in Figure 5.5. Figure
5.7 implies that stabilization cannot be realized via this type of pinning strategy with the
given parameters, and more strict conditions may be required to guarantee the stability
which will be investigated in our future research.

5.2.3 Control via Delayed Impulses

In this subsection, we consider the pinning impulsive controller with I(xi(t), xi(t − d)) =
qxi(t− d), that is,

Ui(t, xi) =


∞

∑
k=1

qxi(t− d)δ(t− t−k ), i ∈ Dl
k,

0, i 6∈ Dl
k,

(5.27)
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Figure 5.4: Chaotic behavior of DNN (5.17) with the parameters given in Example 5.2.1. The
initial data for this simulation is φ(s) = [1,−1]T for s ∈ [−r, 0], and the red dot denotes the
state x at the initial time t = 0.
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(b) State trajectories

Figure 5.5: Impulsive control one unit of DNN (5.17) at each impulsive instant

where q ∈ (−1, 0) is the impulsive control gain to be determined. Then, the impulsive con-
trolled DNN (5.17) can be written in the form of an impulsive system:

ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t− r)), t ∈ [tk−1, tk),

∆xi(tk) = qxi(tk − d), i ∈ Dl
k, k ∈N,

xt0 = φ.

(5.28)
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Figure 5.6: Impulsive control both units of DNN (5.17) at each impulsive instant.
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(b) Control the second unit

Figure 5.7: Impulsive control one specific unit of DNN (5.17) through all the impulsive instants.

Remark 5.2.3 The pinning algorithm introduced in [67] can be treated as a particular case of our pin-
ning delayed-impulsive control strategy (i.e., d = 0). It is worth noting that the existence of time delay
in controller (5.18) brings dramatic difficulties to estimate the relation between the states xi(t−k ) and
xi(tk − d), and then guarantee the delayed impulses contribute to the stabilization process of DNNs.
Though, Section 5.1 and Subsection 5.2.2 have considered the delay state xi(tk − d) in the pinning
impulsive controller, the controller depends on both the state xi(tk) and xi(tk − d), and there is no the-
oretical analysis of how the delay state xi(tk − d) affects the pinning control process. Actually, results
in Section 5.1 have shown that the delay states can either contribute to the stability of the system or
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act as disturbances to the dynamical system. To our best knowledge, this is the first time that a pin-
ning impulsive controller is proposed with delayed impulse effects which depend only on the delay state
xi(tk− d). The detailed discussion of the delay effects on the stabilization process of DNNs can be found
in the following discussion.

Throughout this subsection, we make the following assumption:

(B) there exists a constant Li such that || fi(u)− fi(v)|| ≤ Li||u− v|| for all u, v ∈ R.

Next, we will use Theorem 3.2.1 to construct verifiable conditions for the GES of impulsive
DNN (5.28). For convenience, we define the following notations:

cmin = min
i
{ci},

cmax = max
i
{ci},

L = max
i
{Li},

λ = cmax +
√

ln max
i,j
{|aij|Lj}+

√
ln max

i,j
{|bij|Lj},

ς = b d
σ
c,

where σ = supk∈N{tk − tk−1} , and b·c is the floor function.

Theorem 5.2.2 If there exists a constant ε > 0 such that

ln(ρ + εLr) < −cσ, (5.29)

where

ρ = 1− l
n
+

(√
l
n
(1 + q)− qdλ + q2ς

)2

c = −2cmin + 2||A||L + ε−1||B||2L + εL

σ = tk − tk−1 for all k ∈N,

then the trivial solution of system (5.28) is GES.

Proof. Choose Lyapunov functional V(t, xt) = V1(t, x) + V2(t, xt) with

V1(t, x) = xTx,

V2(t, xt) = εL
∫ t

t−r
xT(s)x(s)ds.

Then, condition (i) of Theorem 3.2.1 is satisfied with w1 = w2 = 1, w3 = εLr, and p = 2.
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Figure 5.8: Schematic figure describing the different impulsive instants and time differences.

For t ∈ [tk−1, tk), differentiate V1 and V2 along the solution of (5.28), then we can get

V′1(t, x) = 2ẋTx

= −2xTCx + 2xT A f (x) + 2xTB f (x(t− r))

≤ −2cminxTx + 2||A||LxTx + 2||B||L||x|| · ||x(t− r)||

≤ (−2cmin + 2||A||L + ε−1||B||2L)xTx + εLxT(t− r)x(t− r),

and

V′2(t, xt) = εLxTx− εLxT(t− r)x(t− r).

Then,

V′(t, xt) ≤ (−2cmin + 2||A||L + ε−1||B||2L + εL)xTx

= cV1(t, x) ≤ cV(t, xt),

which implies condition (ii) of Theorem 3.2.1 is satisfied.

Next, we will show condition (iii) of Theorem 3.2.1 holds. Integrating both sides of (5.19)
from tk − d to tk, then

xi(t−k )− xi(tk − d) =
∫ tk

tk−d
−cixi(s) +

n

∑
j=1

aij f j(xj(s)) +
n

∑
j=1

bij f j(xj(s− r))ds

+
ςk

∑
m=1

qxi(tk−m − d), (5.30)

where ςk denotes the number of impulses added to the ith neuron during the time period
(tk − d, tk).

According to the pinning strategy introduced in (5.27), we have ςk ≤ ς, since some impulses
may be added to other neurons than the ith neuron during this time period. See Fig. 5.8 for
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illustrations. In the figure, we assume that the ith neuron is controlled at t = t−k , i.e., i ∈ Dl
k. The

set {tsj}
ςk
j=1 denotes the collection of the impulsive moments when the ith neuron is pinned on

time interval (tk − d, tk). It can be seen from the definition of ς that ς represents the number of
impulses that the DNN (5.17) subject to on each time interval (tk − d, tk) for k ∈ N. Therefore,
{tsj}

ςk
j=1 is a subset of the set {tj}k−1

j=k−ς, which implies ςk ≤ ς. Only when the ith neuron subjects

to all the impulses on the time interval (tk − d, tk), we have {tsj}
ςk
j=1 = {tj}k−1

j=k−ς, i.e., ςk = ς.

From (5.30) and the second equation of (5.28), we have that, for i ∈ Dl
k,

xi(tk) = xi(t−k ) + qxi(tk − d)

= (1 + q)xi(t−k )− q
∫ tk

tk−d
−cixi(s) +

n

∑
j=1

aij f j(xj(s)) +
n

∑
j=1

bij f j(xj(s− r))ds

− q2
ςk

∑
m=1

xi(tk−m − d).

Let

Υi1 = (1 + q)xi(t−k ),

Υi2 = −q
∫ tk

tk−d
−cixi(s) +

n

∑
j=1

aij f j(xj(s)) +
n

∑
j=1

bij f j(xj(s− r))ds,

Υi3 = −q2
ςk

∑
m=1

xi(tk−m − d).

Then, by Lemma 5.2.2, we have

∑
i∈Dl

k

x2
i (tk) = ∑

i∈Dl
k

{Υi1 + Υi2 + Υi3}2

≤ (1 + ε1) ∑
i∈Dl

k

Υ2
i1 + (1 + ε−1

1 )(1 + ξ1) ∑
i∈Dl

k

Υ2
i2 + (1 + ε−1

1 )(1 + ξ−1
1 ) ∑

i∈Dl
k

Υ2
i3,

(5.31)

for any ε1, ξ1 > 0.

Applying Lemma 5.2.2 and Schwartz’s inequality to the second term of the right hand side
of (5.31), we have

∑
i∈Dl

k

Υ2
i2 ≤ q2 ∑

i∈Dl
k

{ ∫ tk

tk−d
−cixi(s) +

n

∑
j=1

aij f j(xj(s)) +
n

∑
j=1

bij f j(xj(s− r))ds
}2

≤ q2d ∑
i∈Dl

k

∫ tk

tk−d

(
− cixi(s) +

n

∑
j=1

aij f j(xj(s)) +
n

∑
j=1

bij f j(xj(s− r))
)2

ds

≤ q2d
∫ tk

tk−d
(1 + ε2) ∑

i∈Dl
k

c2
i x2

i (s)
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+ (1 + ε−1
2 )(1 + ξ2) ∑

i∈Dl
k

( n

∑
j=1

aij f j(xj(s))
)2

+ (1 + ε−1
2 )(1 + ξ−1

2 ) ∑
i∈Dl

k

( n

∑
j=1

bij f j(xj(s− r))
)2

ds

≤ q2d
∫ tk

tk−d
(1 + ε2)c2

max ∑
i∈Dl

k

x2
i (s)

+ (1 + ε−1
2 )(1 + ξ2)n ∑

i∈Dl
k

n

∑
j=1

a2
ij f 2

j (xj(s))

+ (1 + ε−1
2 )(1 + ξ−1

2 )n ∑
i∈Dl

k

n

∑
j=1

b2
ij f 2

j (xj(s− r))ds

≤ q2d
∫ tk

tk−d
(1 + ε2)c2

max

n

∑
i=1

x2
i (s)

+ (1 + ε−1
2 )(1 + ξ2)n ∑

i∈Dl
k

n

∑
j=1

a2
ijL

2
j x2

j (s)

+ (1 + ε−1
2 )(1 + ξ−1

2 )n ∑
i∈Dl

k

n

∑
j=1

b2
ijL

2
j x2

j (s− r)ds

≤ q2d
∫ tk

tk−d
(1 + ε2)c2

max

n

∑
i=1

x2
i (s)

+ (1 + ε−1
2 )(1 + ξ2)nl max

i,j
{a2

ijL
2
j }

n

∑
i=1

x2
i (s)

+ (1 + ε−1
2 )(1 + ξ−1

2 )nl max
i,j
{b2

ijL
2
j }

n

∑
i=1

x2
i (s− r)ds

≤ q2d2
(
(1 + ε2)c2

max + (1 + ε−1
2 )(1 + ξ2)nl max

i,j
{a2

ijL
2
j }

+ (1 + ε−1
2 )(1 + ξ−1

2 )nl max
i,j
{b2

ijL
2
j }
)

sup
s∈[−r−d,0]

V1(t−k + s, x(t−k + s))

= q2d2λ2 sup
s∈[−r−d,0]

V1(t−k + s, x(t−k + s)), (5.32)

with (ε2, ξ2) =
(√

nl(maxi,j{|aij|Lj}+maxi,j{|bij|Lj})
cmax

,
maxi,j{|bij|Lj}
maxi,j{|aij|Lj}

)
.

For the third term of the right hand side of (5.31), we have

∑
i∈Dl

k

Υ2
i3 = q4 ∑

i∈Dl
k

( ςk

∑
m=1

xi(tk−m − d)
)2

≤ q4ςk ∑
i∈Dl

k

ςk

∑
m=1

x2
i (tk−m − d)

≤ q4ςk

ςk

∑
m=1

n

∑
i=1

x2
i (tk−m − d)
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≤ q4ς2 sup
s∈[−2d,0]

V1(t−k + s, x(t−k + s)). (5.33)

From (5.31), (5.32), and (5.33), we can conclude that

∑
i∈Dl

k

x2
i (tk) ≤ ρ′1 ∑

i∈Dl
k

x2
i (t
−
k ) + ρ2 sup

s∈[−τ1−d,0]
V1(t−k + s, x(t−k + s)), (5.34)

where

τ1 = max{r, d},

ρ′1 = (1 + ε1)(1 + q)2,

ρ2 = (1 + ε−1
1 )(1 + ξ1)q2d2λ2 + (1 + ε−1

1 )(1 + ξ−1
1 )q4ς2.

Let ρ1 = 1− l
n (1− ρ′1), then

(1− ρ1) ∑
i 6∈Dl

k

x2
i (t
−
k ) ≤ (1− ρ1)(n− l)min

i∈Dl
k

{x2
i (t
−
k )}

= l(ρ1 − ρ′1)min
i∈Dl

k

{x2
i (t
−
k )}

≤ (ρ1 − ρ′1) ∑
i∈Dl

k

x2
i (t
−
k ),

i.e.,

ρ′1 ∑
i∈Dl

k

x2
i (t
−
k ) + ∑

i 6∈Dl
k

x2
i (t
−
k ) ≤ ρ1

n

∑
i=1

x2
i (t
−
k ).

Then, for t = tk, we have

V1(tk, x(tk)) = ∑
i∈Dl

k

x2
i (tk) + ∑

i 6∈Dl
k

x2
i (tk)

= ρ′1 ∑
i∈Dl

k

x2
i (t
−
k ) + ρ2 sup

s∈[−τ1−d,0]
V1(t−k + s, x(t−k + s)) + ∑

i 6∈Dl
k

x2
i (tk)

≤ ρ1V1(t−k , x(t−k )) + ρ2 sup
s∈[−τ1−d,0]

{V1(t−k + s, x(t−k + s))}, (5.35)

which implies condition (iii) of Theorem 3.2.1 is satisfied.

Applying Lemma 5.2.3, we have

min
ε1,ξ1>0

{ρ1 + ρ2} = min
ε1,ξ1>0

{
1− l

n
+ (1 + ε1)

l
n
(1 + q)2 + (1 + ε−1

1 )(1 + ξ1)q2d2λ2

+ (1 + ε−1
1 )(1 + ξ−1

1 )q4ς2}
= ρ,
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with (ε1, ξ1) = ( q2ς−qdλ
1+q , −qς

dλ ).

With inequality (5.29), we can see that condition (iv) of Theorem 3.2.1 holds. Actually, there
is a slight difference between (5.35) and the inequality in condition (iii) of Theorem 3.2.1: in
equality (5.35), the last term is defined on interval [−τ1 − d, 0], while the interval in condition
(iii) of Theorem 3.2.1 is [−τ, 0]. Simply replace (3.4) by the following inequality

ln(ρ1 + ρ2eα(τ1+d) +
w3

w1
eατ) = −(α + c)σ,

and we can see that Theorem 3.2.1 is still true. Therefore, we can conclude from Theorem 3.2.1
that the trivial solution of (5.28) is GES. �

Remark 5.2.4 It can be seen that DNN (5.17) can be stabilized by pinning control l neurons of the
network at each impulsive instant, and the number l is closely related to the length δ of each impulsive
interval. Inequality (5.29) implies that the less neurons are controlled at each impulsive instant, the
smaller the length of each impulsive interval is required. It can also be observed that a positive constant
ε is introduced via the Lyapunov functional part V2. For large time-delay (e.g., r > 1

L ), we can pick up
small enough ε > 0 so that εrL < 1 and make inequality (5.29) to be satisfied. Therefore, Theorem 5.2.2
is applicable to NNs with large time-delay size. It is also worth noting that Lemmas 5.2.2 and 5.2.3 are
applied in the proof to reduce the conservatism of the sufficient conditions in Theorem 5.2.2.

Remark 5.2.5 Theorem 5.2.2 gives sufficient conditions to design suitable pinning impulsive controller
(5.27) with uniform impulsive interval and control gain. However, the nonuniform impulsive controller
can also be designed according to Theorem 3.2.2. Moreover, nonlinear impulsive controller Ui(t, xi) =
∑∞

k=1 Ik(t, xi(t − d))δ(t − t−k ) for i ∈ Dl
k can be investigated according to Theorem 3.2.1 and 3.2.2,

if there exist positive constants qk such that the function Ik : R+ × R → R satisfies the following
inequality for k ∈N

|Ik(t, x)| ≤ qk|x|, for any t ∈ R+, and x ∈ R.

The detailed discussions are omitted, since they are identical to the proof of Theorem 5.2.2.

Remark 5.2.6 In this section, we have successfully applied Theorem 3.2.1 and 3.2.2 to study the pin-
ning delayed-impulsive control of DNNs. Actually, since Theorem 3.2.1 and 3.2.2 are stability results
for general nonlinear impulsive systems with delays, these sufficient conditions can be used to study
stabilization and synchronization problems of various dynamical time-delay systems, such as chaotic
systems [9], BAM neural networks [7], Hopfield neural networks [112]. Similar discussions of im-
pulsive discrete-time systems with time-delay can also be investigated by employing the techniques in
[81, 130]. Furthermore, according to the pinning control algorithm introduced in subsection 5.2.1, dif-
ferent neurons will be controlled at different impulsive instants. Therefore, our results do not require the
network to be well connected (i.e., no isolated clusters exist in the network [76]), which is essential in
many existing pinning control strategies (see, e.g., [113, 76, 46, 136, 125]).

In what follows, we will consider three particular cases of our pinning controller (5.27).

For l = n, all the neurons will be controlled at each impulsive instant. Then pinning con-
troller (5.27) reduces to the following delayed impulsive controller:

U(t, x) =
∞

∑
k=1

qx(t− d)δ(t− t−k ), (5.36)
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where U(t, x) = (U1(t, x1), U2(t, x2), ..., Un(t, xn))T. For controller (5.36), we have the following
stabilization result.

Corollary 5.2.1 Suppose inequality (5.29) holds with parameter ρ replaced by

ρ := ρα = (1 + q− qdλ + q2ς)2,

then the trivial solution of system (5.19) is GES.

In the previous discussion, we have assumed that d > 0. Actually, for d = 0, controller
(5.27) reduces to the following pinning impulsive controller (delay-free):

Ui(t, xi) =


∞

∑
k=1

qxi(t)δ(t− t−k ), i ∈ Dl
k

0, i 6∈ Dl
k,

(5.37)

for i = 1, 2, ..., n. Then, for each neuron, ςk = 0. Hence, we can get the following stabilization
result for controller (5.37) with ς = 0.

Corollary 5.2.2 Suppose inequality (5.29) holds with parameter ρ replaced by

ρ := ρβ = 1− l
n
+

l
n
(1 + q)2,

then the trivial solution of system (5.19) is GES.

Furthermore, for both l = n and d = 0, we can get from (5.27) the standard linear impulsive
feedback controller:

U(t, x) =
∞

∑
k=1

qx(t)δ(t− t−k ), (5.38)

and the corresponding stabilization criterion which can be easily derived from Corollary 5.2.1
or Corollary 5.2.2.

Corollary 5.2.3 Suppose inequality (5.29) holds with parameter ρ replaced by

ρ := ργ = (1 + q)2,

then the trivial solution of system (5.19) is GES.

Comparing Corollary 5.2.3 with Corollary 5.2.1 and 5.2.2 can help us to understand the
effects that the time delay in the impulses and the ratio l/n plays on the stabilization process,
respectively.

The main difference between Corollary 5.2.1 and Corollary 5.2.3 lies in the two terms qdλ
and q2ς in parameter ρ which are both related to the impulse delay, and are all original from
(5.30) in the estimation of the relation between states x(t−k ) and x(tk − d). qdλ depends on the
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continuous dynamic of DNN (5.17), while q2ς corresponds to the number of impulses on time
interval (tk − d, tk). Therefore, for fixed impulsive control gain, increasing the impulse delay
size will reduce the length of impulsive interval. However, the permissible impulse delay d is
required to be bounded in Corollary 5.2.1. To guarantee inequality (5.29) is true in Corollary
5.2.1, parameter ρ must be less than 1. Then, we can see from ρα that impulse delay d is bounded
by 1/λ, and satisfies ς < 1−dλ

−q . Intuitively, it is difficult to estimate the relation between states
x(t−k ) and x(tk − d) precisely for large delay size d (e.g. chaotic systems), and then it is not
practical to use the state x(tk − d) as impulsive feedback signal to stabilize the system, which
is in accordance with our theoretical analysis.

Next, we will compare Corollary 5.2.3 with Corollary 5.2.1 to demonstrate how the pinning
algorithm affects the design of impulsive controllers. Define a function F(ω) = 1 + ω[(1 +

q)2 − 1], then F( l
n ) = ρβ and F(1) = ργ. Since F′(ω) < 0, we have F( l

n ) > F(1) (i.e., ρβ > ργ)
for l < n. Therefore, it can be seen from inequality (5.29) that, with the same impulsive control
gain, reducing the number of neurons to be pinned will lead to increasing the frequency that
the impulses added to the network.

Numerical Simulations

Next, we consider DNN (5.17) with parameters given in Example 5.2.1. It has been shown
in [74] that DNN (5.17) with the given parameters has a chaotic attractor, see Figure 5.4 for
illustration. We consider two types of impulsive controllers:

1) controller (5.27) with l = 1, i.e., impulsive control one neuron at each impulsive instant.
Let σ = 0.004, d = 0.002, and q = −0.43, then inequality (5.29) is satisfied with ε =
0.125. Therefore, we can conclude from Theorem 5.2.2 that the given DNN (5.17) can
be exponentially stabilized by the pinning controller (5.27) with control gain q = −0.43.
Numerical simulations can be found in Figure 5.9.

2) l = 2, i.e., impulsive control both neurons at each impulsive instant. Let σ = 0.01, d =
0.02, and q = −0.58, then inequality (5.29) is satisfied with ε = 0.25. Therefore, we can
conclude from Theorem 5.2.2 that the impulsive DNN (5.28) is exponentially stable. See
Figure 5.10 for simulation results.

The initial data in Figure 5.9 and Figure 5.10 is chosen the same as that in Figure 5.9, and the
red dot denotes the state x at initial time t0 = 0. In Figure 5.9 and Figure 5.10, sub-figures (a)
illustrate the phase portrait of DNN (5.17) under the above two distinct impulsive controllers.
In order to observe the pinning impulsive effects and demonstrate the stabilization process,
sub-figures (b), (c), and (d) are provided with the state trajectories of impulsive DNN (5.20).
The vertical (or horizontal) lines in Figure 5.9(a) represent the state jump of x2 (or x1) while
the other state is unchanged. Since both neurons are controlled in Figure 5.10(a), no vertical
and horizontal lines can be observed. It can be seen from Figure 5.9 that different neuron may
be controlled at different impulsive instant. This is consistent with our pinning algorithm of
control the neuron which has the larger state deviation with the equilibrium.

Finally, for the delayed impulsive controller (5.36), we compare our results with those in
[25] and [54]. As discussed in Example 2 of [25], we assume that q = −0.8 and σ = 0.01.
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Figure 5.9: Impulsive control one neuron of DNN (5.17) at each impulsive instant. In this
simulation, the length of the impulsive interval is so small that the phase portrait of the network
states on each impulsive interval can be barely observed. Hence, a small figure is presented in
sub-figure (a) to demonstrate the phase portrait of the network states on the second impulsive
interval [t1, t2). Small serrations in the trajectories of x1 and x2 can be clearly seen in sub-figure
(b) for t < 1, which can be explained by the existence of time-delay in DNN (5.17) with delay
size r = 1. Therefore, the form of serration can also be affected by the network initial data. In
sub-figure (b), the small figure is given to illustrate the pinning algorithm introduced in (5.27).

Then, from [25], we know that the upper bound of d is 0.0194 according to Corollary 2 of [25],
while the upper bound of d is 0.0199 by Corollary 1 of [54]. However, it is worth noting that the
impulse delay in the simulation of Figure 5.10 is d = 0.02, which is larger than the upper bound
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Figure 5.10: Impulsive control both neurons of DNN (5.17) at each impulsive instant. Similar
serrations can also be observed in sub-figure (b), since the same initial data and time-delay are
considered in Example 5.2.1.

of d in both [25] and [54]. Moreover, in our simulation, the impulsive control strength can be
reduced to |q| = 0.58 which is smaller than |q| = 0.8. Hence, our results not only provide new
criteria to design pinning delayed impulsive controller to stabilize the DNN (5.17), but also are
less conservative than the stabilization results constructed in previous literatures [25] and [54]
for delayed impulsive controller (5.36).
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5.3 Synchronization of Nonlinear Time-Delay Systems

This section investigate the synchronization of globally Lipschitz time-delay systems using pin-
ning impulsive control. We propose a novel class of pinning impulsive controllers that takes
into account of both discrete and distributed delays. Verifiable synchronization conditions for
pinning impulsive controller with discrete delay, distributed delay and both of these two types
of delays are established using a Halanay-type inequality, respectively. The theoretical results
provide insight into the feasible relation between the impulse delays and impulse frequency
to guarantee the synchronization of drive and response systems via impulsive control a small
portion of the system states. The findings are illustrated by stability analysis of a linear impul-
sive time-delay system and synchronization control of a nonlinear chaotic time-delay system
with numerical simulations.

5.3.1 Problem Formulation

In this subsection, we formulate the general synchronization synthesis problem. Consider the
drive system {

ẋ(t) = g(t, xt),
xt0 = φ1,

(5.39)

with x ∈ Rn, φ1 ∈ PC([−τ, 0], Rn), g = (g1, g2, ..., gn)T and gi ∈ R× PC([−τ, 0], Rn) → R,
and a response system {

ẏ(t) = g(t, yt) + u(t),
yt0 = φ2,

(5.40)

where y ∈ Rn, φ2 ∈ PC([−τ, 0], Rn), and u(t) := u(t, x, y) is the control input to be designed
to synchronize these two systems, i.e., limt→∞ ‖y(t)− x(t)‖ = 0. For the nonlinear functionals
g, we make the following globally Lipschitz assumptions: for any ψ1, ψ2 ∈ PC([−τ, 0], Rn),

(A1) |gi(t, ψ1)− gi(t, ψ2)| ≤ Li‖ψ1 − ψ2‖τ, for i = 1, 2, ..., n;

(A2) ‖g(t, ψ1)− g(t, ψ2)‖ ≤ K‖ψ1 − ψ2‖τ.

Clearly, (A1) implies (A2) with K =
√

∑n
i=1 L2

i . However, for some functionals (for example,

gi(t, ψ) = ψi(0)), we can derive the Lipschitz constant K smaller than
√

∑n
i=1 L2

i . Hence, we
write assumption (A2) separately.

Construct the pinning impulsive controller as u = (u1, u2, ..., un)T,

ui(t) =


∞

∑
k=1
−
(
q1ei(t− d1) + q2

∫ t

t−d2

ei(s)ds
)
δ(t− tk), if i ∈ Dl

k,

0, otherwise,
(5.41)
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where ei = yi − xi, impulse times tk = t0 + kσ with σ > 0 and k ∈ N; q1 and q2 are impulsive
control gains; d1 and d2 are discrete and distributed delays in the controller, respectively; δ(·)
is the Dirac delta function; the index set Dl

k = {p1, p2, ..., pl} ⊆ I : {1, 2, ..., n} is defined as
follows: pi 6= pj if i 6= j; at the impulsive instant tk, ‖ei(t−k )‖ ≥ ‖ej(t−k )‖ if i ∈ Dl

k and j ∈ I/Dl
k,

that is, l states are controlled at each impulsive instant. Accordingly, under controller (5.41),
the closed-loop response system becomes an impulsive system:

ẏ(t) = g(t, yt), t 6= tk,

∆yi(tk) = −q1ei(tk − d1)− q2

∫ tk

tk−d2

ei(s)ds, k ∈N and i ∈ Dl
k,

yt0 = φ2,

(5.42)

and then, the synchronization error e := y− x = (e1, e2, ..., en)T is governed the error system:
ė(t) = f (t, et), t 6= tk,

∆ei(tk) = −q1ei(tk − d1)− q2

∫ tk

tk−d2

ei(s)ds, k ∈N and i ∈ Dl
k,

et0 = φ,

(5.43)

where f (t, et) = g(t, yt)− g(t, xt) and φ = φ2 − φ1. The objective is to find admissible relations
among the length of impulsive interval σ, impulsive control gains q1 and q2, and impulse delays
d1 and d2 to guarantee e(t)→ 0 as t→ ∞.

5.3.2 Synchronization Criteria

Synchronization results are established by considering the following three scenarios.

Case I: Impulses with only Discrete Delays (i.e., q1 6= 0 and q2 = 0)

The error system (5.43) can be written as follows:
ė(t) = f (t, et), t 6= tk,

∆ei(tk) = −q1ei(tk − d1), k ∈N and i ∈ Dl
k,

et0 = φ.

(5.44)

Let L = maxi{Li} and denote

ρmin := 1− l
n
+
(√ l

n
(1− q1) +

√
lq1d1L + q2

1ζ
)2

,

with ζ = b d1
σ c (that is, the number of impulses on interval [tk − d1, tk)), and then, we can

generalize the results obtained in Section 5.2 to obtain the following synchronization result for
system (5.44).

Theorem 5.3.1 If

σ <

{
G(ρ∗), if ρmin ∈ (0, ρ∗],

G(ρmin), if ρmin ∈ (ρ∗, 1),
(5.45)

with ρ∗ = e−2 and G(ρ) := −√ρ ln(ρ)
2K , then (5.44) achieves synchronization.
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Case II: Impulses with only Distributed Delays (i.e., q1 = 0 and q2 6= 0)

The error system (5.43) can be written as follows:
ė(t) = f (t, et), t 6= tk,

∆ei(tk) = −q2

∫ tk

tk−d2

ei(s)ds, k ∈N and i ∈ Dl
k,

et0 = φ.

(5.46)

It is worth noting that, to our best knowledge, this is the first time to consider distributed delays
in the pinning impulsive controller.

Theorem 5.3.2 If inequality (5.45) is satisfied with ρmin replaced with

ρmin := 1− l
n
+
(√ l

n
(1− q2d2) +

√
lq2d2

2L + q2
2d2

2ς
)2

,

where ς = b d2
σ c (that is, the number of impulses on interval [tk − d2, tk)), then (5.44) achieves synchro-

nization.

Case III: Impulses with Both Discrete and Distributed Delays (i.e., q1 6= 0 and q2 6= 0)

This scenario is a generalization and combination of results in Case I and II.

Theorem 5.3.3 If inequality (5.45) is satisfied with ρmin replaced with

ρmin := 1− l
n
+
(√ l

n
(1− q1 − q2d2) +

√
lq1d1L + q2

1ζ +
√

lq2d2
2L + q2

2d2
2ς
)2

,

where ζ and ς are the same as those defined in Theorem 5.3.1 and 5.3.2, respectively, then (5.44) achieves
synchronization.

5.3.3 Simulation Results

In this subsection, we consider two examples to illustrate our theoretical results. In the first
example, we will study the exponential stability of a linear impulsive system with delays:

Example 5.3.1 Consider the following linear scalar system with discrete delays in both the continuous
and discrete dynamics:

ẋ(t) = Kx(t− τ), t 6= tk,

∆x(tk) = −q1x(tk − d)− q2

∫ tk

tk−d
x(s)ds, k ∈N,

xt0 = φ,

(5.47)

where x ∈ R, K = 0.25, τ = 1 and φ(s) = 2 for s ∈ [−τ, 0].
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It can be seen that assumptions (A1) and (A2) are satisfied with L = K = 0.25. It is shown in
Figure 5.12(a) that if q1 = q2 = 0 (or σ = ∞) the impulse-free system is unstable. In the first
simulation, let q1 = 0.8 and q2 = 0, that is, only discrete delays are considered in the impulses.
Since the state of system (5.47) is scalar, we have n = l = 1. Theorem 5.3.1 implies that if
ρmin < 1 and

σ <

{
e−1/K, ρmin ≤ e−2,

G(ρmin), ρmin > e−2,
(5.48)

where ρmin = (1− q + qdK + ζq2)2, then the trivial solution of (5.47) is GES. Therefore, with
the given system parameters, the stability regions are illustrated in Figure 5.11, which gives the
relation between d and σ to guarantee the exponential stability of system (5.47).

If ζ = 0, then there is no impulse on each impulsive interval (tk − d, tk), i.e., d ≤ σ. The
regions in green and blue in Figure 5.11 demonstrate the feasible relation between σ and d
when ζ = 0. If ζ = 1, then there is one impulse on the interval (tk − d, tk), i.e., σ < d ≤ 2σ.
The red region in Figure 5.11 describes the stability region for this scenario. For ζ ≥ 2, it can be
calculated that ρmin > 1, which implies that conditions of Theorem 5.3.1 can not be satisfied.
Although only sufficient conditions are derived in our results, they are less conservative than
the existing results. For system (5.47), the condition σ < G(ρmin) is equivalent to the condition
of Corollary 1 in [25], which is related to the blue region in Figure 5.11. In our result, we have
improved this condition for small value of ρmin (e.g., ρmin < e−2), and the stability region is
enlarged with the green part.

Next, we simulate the state trajectory of system (5.47) with parameters pair (d, σ) selected
from different regions shown in Figure 5.11. For the point (d, σ) = (0.2, 1.4) in the green re-
gion, it is shown in Figure 5.12(b) that the system can be stabilized by the delayed impulses.
For (d, σ) = (0.3, 0.16) in the red region, stabilization process is illustrated in Figure 5.12(c).
Normally, if no delays exist in the impulsive controller, increasing the acting frequency of im-
pulsive controller will accelerate the stabilization process of dynamical systems. When it comes
to impulses with time delays, reducing the length of impulsive intervals may lead to the insta-
bility of the system. Choose (d, σ) = (0.3, 0.12) in the white region of Figure 5.11. It can be seen
that we reduce the impulsive interval length σ (considered in Figure 5.12(c)) from 0.16 to 0.12.
Figure 5.12(d) shows that impulsive system (5.47) is unstable. Simulation results shown in Fig-
ures 5.12(c) and 5.12(d) inspire that, for given q1 and d, there should be a lower bound of σ to
guarantee the stability of system (5.47). Actually, for q1 = 0.8 and given d > 0, the boundaries
of stability region shown in Figure 5.11 represent the upper and lower bounds of σ. The upper
bound is shown explicitly in (5.48), and the lower bound of σ is restricted in ρmin < 1 and (5.48)
implicitly, since ρmin is closely related to ζ which depends on σ.

In the following simulations, let (d, σ) = (1.39, 1.4). It is shown in Figure 5.13(a) that sys-
tem (5.47) can not be stabilized by impulses with control gain q1 = 0.4 and discrete delays.
However, for q1 = 0 and q2 = 0.4, all the conditions of Theorem 5.3.1 are satisfied, and the
stabilization process are shown in Figure 5.13(b) for impulses with distributed delays. In the
last simulation of Example 5.47, we consider an impulsive controller with q1 = q2 = 0.4 which
is a combination of controllers considered in Figures 5.13(a) and 5.13(b). Theorem 5.3.3 implies
that impulsive control system (5.47), and simulation results are shown in Figure 5.13(c). It can
be observed that the impulses with both discrete and distributed delays stabilize the system
faster than impulses with only distributed delays. The reason is that both the impulses with

105



d
0 0.5 1 1.5

<

0

0.5

1

1.5

Figure 5.11: Stability region: admissible relations between d and σ for stabilization.

discrete delays and the impulses with distributed delays contribute to the system stabilization
which can be seen from Figures 5.13(a) and 5.13(b).

In the next example, we will study the synchronization problem via pinning impulses with
distributed delays.

Example 5.3.2 Consider the drive system (5.39) modeled by the following time-delay system:{
ẋ1(t) = −x1(t) + a1h(x2(t))− b1h(x2(t− τ)),
ẋ2(t) = −x2(t) + a2h(x1(t))− b2h(x1(t− τ)),

(5.49)

where a1 = 1, b1 = −1.9, a2 = 1.71, b2 = −1.037, τ = 1 and h(χ) = sin(2.81χ).

It is shown in [133] that system (5.49) exhibits chaotic behaviors with the above given pa-
rameters, which is illustrated in Figure 5.14. Consider response system with the following
impulsive controller with distributed delays:

ui(t) =


∞

∑
k=1
−q

∫ t

t−d
ei(s)dsδ(t− tk), i ∈ Dl

k,

0, otherwise.
(5.50)

It can be calculated that assumptions (A1) and (A2) hold with L1 = 8.2101, L2 = 7.7836 and
K = 11.3133. In the first simulation, we consider the full-state controller (i.e., l = n = 2)
with q = 17, d = 0.02 and σ = 0.0202. Theorem 5.3.2 implies that synchronization can be
achieved. Numerical results are shown in Figure 5.15(a). Pinning impulsive controller (i.e.,
l=1) is considered in the next simulation with q = 31.82, d = 0.01 and σ = 0.0114. Then all
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Figure 5.12: State trajectory of system (5.47) with q1 = 0.8 and q2 = 0.
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Figure 5.13: State trajectory of system (5.47) with d = 1.39 and σ = 1.4.
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Figure 5.14: Chaotic attractor of system (5.49) with initial condition xt0(s) = (−0.5, 0.71)T for
all s ∈ [−τ, 0].

the conditions of Theorem 5.3.2 are satisfied, which implies the drive and response systems are
synchronized. This is confirmed by simulation as shown in Figure 5.15(b). It can be clearly
observed from this figure that more impulses are added to one state of response system than
the other one when t < 1.

5.3.4 Proofs

Proof of Theorem 5.3.1

For t = tk and i ∈ Dl
k, ei(tk) = ei(t−k ) − q1ei(tk − d1). First, we will estimate the relation

between states ei(t−k ) and ei(tk − d1). Integrating both sides of the system equation of the ith
state in (5.44) from tk − d1 to t−k yields

ei(t−k )− ei(tk − d1) =
∫ tk

tk−d1

fi(t, et)dt−
ζi,k

∑
m=1

q1ei(tk−m − d1), (5.51)

where ζi,k denotes the number of impulses activated on the ith state during time period (tk −
d1, tk). If d1 ≤ σ, then ζi,k = ζ = 0. If d1 > σ, then ζ ≥ 1, ζi,k ≥ 0 and tk−1 ∈ (tk − d, tk).
According to our pinning algorithm, different states might be controlled at different impulsive
instant. This means that, at time t = tk−1, the ith state of the response system may not be
controlled by the pinning impulsive controller, i.e., ζi,k ≤ ζ. Hence, 0 ≤ ζi,k ≤ ζ for all i ∈ Dl

k
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Figure 5.15: Simulations of error states in Example 5.3.2 with initial condition for the drive sys-
tem as given in Figure 5.14 and initial condition for the response system yt0(s) = (0.7,−0.71)T

for all s ∈ [−τ, 0].
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and k ∈N. From (5.44) and (5.51), we have ei(tk) = Υ1 + Υ2 + Υ3 with

Υ1 = (1− q1)ei(t−k ),

Υ2 = q1

∫ tk

tk−d1

fi(t, et)dt,

Υ3 = −q2
1

ζi,k

∑
m=1

ei(tk−m − d1). (5.52)

Choose the Lyapunov function v(t) = eT(t)e(t), then

Υ2
2 = q2

1

( ∫ tk

tk−d1

fi(t, et)dt
)2

≤ q2
1d1

∫ tk

tk−d1

f 2
i (t, et)dt

≤ q2
1d1

∫ tk

tk−d1

L2
i ‖et‖2

τdt

≤ q2
1d1

∫ tk

tk−d1

L2
i sup

s∈[−τ,0]
{‖e(t + s)‖2}dt

≤ q2
1d2

1L2
i sup

s∈[−τ−d1,0]
{‖e(t−k + s)‖2}

= q2
1d2

1L2
i sup

s∈[−τ−d1,0]
{v(t−k + s)},

Υ2
3 = q4

1

( ζi,k

∑
m=1

ei(tk−m − d1)
)2

≤ q4
1ζi,k

ζi,k

∑
m=1

e2
i (tk−m − d1) (5.53)

For any ε, ξ > 0, we have

∑
i∈Dl

k

e2
i (tk) = ∑

i∈Dl
k

(Υ1 + Υ2 + Υ3)
2

≤ ∑
i∈Dl

k

{(1 + ε)Υ2
1 + (1 + ε−1)[(1 + ξ)Υ2

2 + (1 + ξ−1)Υ2
3]}

≤ (1 + ε)(1− q1)
2 ∑

i∈Dl
k

e2
i (t
−
k )

+ (1 + ε−1)(1 + ξ)
(

∑
i∈Dl

k

L2
i

)
q2

1d2
1 sup

s∈[−τ−d1]

{v(t−k + s)}

+ (1 + ε−1)(1 + ξ−1)q4
1 ∑

i∈Dl
k

ζi,k

ζi,k

∑
m=1

e2
i (tk−m − d1) (5.54)

For the last term on the right-hand side of the above inequality, we have the following

111



estimation:

∑
i∈Dl

k

ζi,k

ζi,k

∑
m=1

e2
i (tk−m − d1) ≤ ζ

ζi,k

∑
m=1

∑
i∈Dl

k

e2
i (tk−m − d1)

≤ ζ
ζi,k

∑
m=1

n

∑
i=1

e2
i (tk−m − d1)

= ζ
ζi,k

∑
m=1

v(tk−m − d1)

≤ ζ2 sup
s∈[−2d1,0]

{v(t−k + s)}. (5.55)

Hence, we obtain from (5.54) and (5.55) that

∑
i∈Dl

k

e2
i (tk) ≤ ρ′1 ∑

i∈Dl
k

e2
i (t
−
k ) + ρ2 sup

s∈[−r,0]
{v(t−k + s)} (5.56)

where

r = max{τ + d1, 2d1},

ρ′1 = (1 + ε)(1− q1)
2,

ρ2 = (1 + ε−1)[(1 + ξ)lq2
1d2

1L2 + (1 + ξ−1)q4
1ζ2].

Let ρ1 = 1− l
n (1− ρ′1), then

(1− ρ1) ∑
i 6∈Dl

k

e2
i (tk) ≤ (1− ρ1)(n− l)min

i∈Dl
k

{e2
i (t
−
k )}

= l(ρ1 − ρ′1)min
i∈Dl

k

{e2
i (t
−
k )}

≤ (ρ1 − ρ′1) ∑
i∈Dl

k

e2
i (t
−
k ),

which implies that

ρ′1 ∑
i∈Dl

k

e2
i (t
−
k ) + ∑

i 6∈Dl
k

e2
i (t
−
k ) ≤ ρ1

n

∑
i=1

e2
i (t
−
k ).

Then, for t = tk, we have

v(tk) = ∑
i∈Dl

k

e2
i (t
−
k ) + ∑

i 6∈Dl
k

e2
i (t
−
k )

≤ ρ′1 ∑
i∈Dl

k

e2
i (t
−
k ) + ∑

i 6∈Dl
k

e2
i (t
−
k ) + ρ2 sup

s∈[−r,0]
{v(t−k + s)}

112



≤ ρ1v(t−k ) + ρ2 sup
s∈[−r,0]

{v(t−k + s)}. (5.57)

On the other hand, for t 6= tk and ε > 0, we get

v̇(t) = f T(t, et)e(t) + eT(t) f (t, et)

≤ εeT(t)e(t) + ε−1 f T(t, et) f (t, et)

≤ εv(t) + ε−1K2‖et‖2
τ

≤ εv(t) + ε−1K2 sup
s∈[−τ,0]

{v(t + s)}

≤ αv(t) + β sup
s∈[−r,0]

{v(t + s)} (5.58)

with α = ε and β = ε−1K2.

To apply Theorem 3.3.2, define

ψ(s) =

{
φ(s), if s ∈ [−τ, 0],

0, if s ∈ [−r,−τ),

then, ψ ∈ PC([−r, 0], Rn). Since α, β > 0, we can conclude from Theorem 3.3.2 that if ρ1 + ρ2 <

1 and 1
ρ1+ρ2

> e(α+
β

ρ1+ρ2
)σ then v(t) → 0 as t → ∞, i.e., synchronization between drive and

response systems can be achieved.

Denote ρ = ρ1 + ρ2 < 1, then (3.19) implies σ < ln(1/ρ)
α+β/ρ . Next, we will determine the values

of ε, ε and ξ in α, β, ρ1 and ρ2 by maximizing the upper bound of σ, that is, ln(1/ρ)
α+β/ρ .

For any ρ ∈ (0, 1), to maximize ln(1/ρ)
α+β/ρ is equivalent to minimize α + β/ρ = ε + ε−1K2/ρ for

ε > 0. Define the map H(ε) := ε + ε−1K2/ρ, then H′(ε) = 1− ε−2K2/ρ, which implies that,
for ε∗ = K√

ρ , H′(ε∗) = 0 and H(ε∗) = 2K√
ρ . Hence, for given ρ ∈ (0, 1), we have

max
ε>0

{ ln(1/ρ)

α + β/ρ

}
=

√
ρ ln(1/ρ)

2K
= G(ρ).

For function G(ρ) with ρ ∈ (0, 1), we have G′(ρ) = −2+ln ρ
4
√

ρK and G′(ρ∗) = 0. Then,

G′(ρ)

{
> 0, if ρ ∈ (0, ρ∗),
< 0, if ρ ∈ (ρ∗, 1),

i.e., G(ρ) is strictly increasing for ρ ∈ (0, ρ∗), and strictly decreasing for ρ ∈ (ρ∗, 1). From
Lemma 5.2.3, we have ρmin = minε,ξ>0{ρ1 + ρ2}. If ρmin ≤ ρ∗, then there exist ε, ξ > 0 such that
(ρ1 + ρ2)|(ε,ξ) = ρ∗, and σ < maxρ∈[ρmin,1){G(ρ)} = maxρ∈[ρmin,ρ∗]{G(ρ)} = G(ρ∗). If ρmin > ρ∗,
then σ < maxρ∈[ρmin,1){G(ρ)} = G(ρmin). Therefore,

σ < max
ε,ε,ξ>0

{ ln(1/ρ)

α + β/ρ

}
=

{
G(ρ∗), if ρ ∈ (0, ρ∗],

G(ρmin), if ρ ∈ (ρ∗, 1).

The proof is complete. �
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Proof of Theorem 5.3.2

For i ∈ Dl
k and t = tk, we will estimate the relation between xi(t−k ) and

∫ tk
tk−d2

xi(s)ds. For
t ∈ [tk − d2, tk), integrating both sides of the system equation of the ith state in (5.46) from t to
t−k yields

ei(t−k )− ei(t) =
∫ tk

t
fi(s, es)ds− q2

ςi(t)

∑
m=1

∫ 0

−d2

ei(tk−m + s)ds, (5.59)

where ςi(t) denotes the number of impulses activated onto the ith state during time period
(t, tk). Similar to the discussion of ζi,k in the previous subsection, it can be seen that ςi depends
not only on t but also on the pinning algorithm, and 0 ≤ ςi(t) ≤ ς for t ∈ [tk − d2, tk). Next,
integrate both sides of (5.59) from tk − d2 to t−k , and then we get

d2ei(t−k )−
∫ tk

tk−d2

ei(t)dt =
∫ tk

tk−d2

∫ tk

t
fi(s, es)dsdt− q2

∫ tk

tk−d2

ςi(t)

∑
m=1

∫ 0

−d2

ei(tk−m + s)dsdt,

which implies

ei(tk) = ei(t−k )− q2

∫ tk

tk−d2

ei(s)ds = Γ1 + Γ2 + Γ3,

with

Γ1 = (1− q2d2)ei(t−k ),

Γ2 = q2

∫ tk

tk−d2

∫ tk

t
fi(s, es)dsdt,

Γ3 = −q2
2

∫ tk

tk−d2

ςi(t)

∑
m=1

∫ 0

−d2

ei(tk−m + s)dsdt.

Choose the Lyapunov function v(t) = eT(t)e(t), then

Γ2
2 = q2

2

( ∫ tk

tk−d2

∫ tk

t
fi(s, es)dsdt

)2

≤ q2
2d2

∫ tk

tk−d2

( ∫ tk

t
fi(s, es)ds

)2
dt

≤ q2
2d2

∫ tk

tk−d2

(tk − t)
∫ tk

t
f 2
i (s, es)dsdt

≤ q2
2d2

2

∫ tk

tk−d2

∫ tk

t
f 2
i (s, es)dsdt

≤ q2
2d2

2

∫ tk

tk−d2

∫ tk

t
L2

i ‖es‖2
−τdsdt

≤ q2
2d3

2L2
i

∫ tk

tk−d2

sup
s∈[−τ,0]

{‖e(t + s)‖2}dt
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≤ q2
2d4

2L2
i sup

s∈[−τ−d2,0]
{v(t−k + s)},

Γ2
3 = q4

2

( ∫ tk

tk−d2

ςi(t)

∑
m=1

∫ 0

−d2

ei(tk−m + s)dsdt
)2

≤ q4
2d2

∫ tk

tk−d2

( ςi(t)

∑
m=1

∫ 0

−d2

ei(tk−m + s)ds
)2

dt

≤ q4
2d2

∫ tk

tk−d2

ςi(t)
ςi(t)

∑
m=1

∫ 0

−d2

(
ei(tk−m + s)ds

)2
dt

≤ q4
2d2

2

∫ tk

tk−d2

(
ςi(t)

ςi(t)

∑
m=1

∫ 0

−d2

e2
i (tk−m + s)ds

)
dt.

Then, for any ε, ξ > 0,

∑
i∈Dl

k

e2
i (tk) ≤ (1 + ε)(1− q2d2)

2 ∑
i∈Dl

k

e2
i (t
−
k )

+ (1 + ε−1)(1 + ξ)q2
2d4

2

(
∑

i∈Dl
k

L2
i

)
sup

s∈[−τ−d2,0]
{v(t−k + s)}

+ (1 + ε−1)(1 + ξ−1)q4
2d2

2 ∑
i∈Dl

k

∫ tk

tk−d2

(
ςi(t)

ςi(t)

∑
m=1

∫ 0

−d2

e2
i (tk−m + s)ds

)
dt.

For the last term on the right-hand side of the above inequality, we have

∑
i∈Dl

k

∫ tk

tk−d2

(
ςi(t)

ςi(t)

∑
m=1

∫ 0

−d2

e2
i (tk−m + s)ds

)
dt ≤

n

∑
i=1

∫ tk

tk−d2

(
ς

ς

∑
m=1

∫ 0

−d2

e2
i (tk−m + s)ds

)
dt

≤ d2ς
ς

∑
m=1

∫ 0

−d2

v(tk−m + s)ds

≤ d2
2ς2 sup

s∈[−2d2,0]
{v(t−k + s)}.

Therefore, we have (5.56) satisfied with

r = max{τ + d2, 2d2},

ρ′1 = (1 + ε)(1− q2d2)
2,

ρ2 = (1 + ε−1)[(1 + ξ)lq2
2d4

2L2 + (1 + ξ−1)q4
2d4

2ζ2].

Similarly, let ρ1 = 1 − l
n (1 − ρ′1), and then we have (5.57) satisfied. The rest of the proof is

essentially the same as the proof of Theorem 5.3.1. �
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Proof of Theorem 5.3.3

For i ∈ Dl
k and t = tk, we can get from (5.51) and (5.59) that ei(tk) = Ξ1 + Ξ2 + Ξ3 with

Ξj = Υj + Γj for j = 1, 2, 3. For ξ1, ξ2 > 0 and Lyapunov function v(t) = eT(t)e(t), we have

∑
i∈Dl

k

Ξ2
2 = ∑

i∈Dl
k

(Υ2 + Γ2)
2

≤ ∑
i∈Dl

k

(1 + ξ1)Υ2
2 + (1 + ξ−1

1 )Γ2
2

≤ ∑
i∈Dl

k

[(1 + ξ1)q2
1d2

1 + (1 + ξ−1
1 )q2

2d4
2]L

2
i sup

s∈[−r,0]
{v(t−k + s)}

≤ [(1 + ξ1)q2
1d2

1 + (1 + ξ−1
1 )q2

2d4
2]lL

2 sup
s∈[−r,0]

{v(t−k + s)}

∑
i∈Dl

k

Ξ2
3 = ∑

i∈Dl
k

(Υ3 + Γ3)
2

≤ ∑
i∈Dl

k

[
(1 + ξ2)Υ2

3 + (1 + ξ−1
2 )Γ2

3

]

≤ ∑
i∈Dl

k

[
(1 + ξ2)q4

1ζk

ζk

∑
m=1

e2
i (tk−m − d1)

+(1 + ξ−1
2 )q4

2d2
2

∫ tk

tk−d2

(
ςi(t)

ςi(t)

∑
m=1

∫ 0

−d2

e2
i (tk−m + s)ds

)
dt
]

≤ [(1 + ξ2)q4
1ζ2 + (1 + ξ−1

2 )q4
2d4

2ς2] sup
s∈[−r,0]

{v(t−k + s)}.

Here, r = max{τ + d1, τ + d2, 2d1, 2d2}. Then,

∑
i∈Dl

k

e2
i (tk) = ∑

i∈Dl
k

(Ξ1 + Ξ2 + Ξ3)
2

≤ (1 + ε) ∑
i∈Dl

k

Ξ2
1 + (1 + ε−1)

[
(1 + ξ) ∑

i∈Dl
k

Ξ2
2 + (1 + ξ−1) ∑

i∈Dl
k

Ξ2
3

]
≤ ρ′1 ∑

i∈Dl
k

e2
i (t
−
k ) + ρ2 sup

s∈[−r,0]
{v(t−k + s)},

where

ρ′1 = (1 + ε)(1− q1 − q2d2)
2,

ρ2 = (1 + ε−1)
{
(1 + ξ)[(1 + ξ1)q2

1d2
1 + (1 + ξ−1

1 )q2
2d4

2]lL
2

+(1 + ξ−1)[(1 + ξ2)q4
1ζ2 + (1 + ξ−1

2 )q4
2d4

2ς2]
}

.

The rest proof is similar to the proof of Theorem 5.3.1, and thus omitted. �
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Chapter 6

Applications to Systems and Networks
Governed by PDEs

In this chapter, we apply the pinning algorithm discussed in Chapter 5 to the impulsive control
problems of systems and networks governed by partial differential equations (PDEs). Section
6.1 studies the pinning impulsive stabilization and synchronization of spatiotemporal chaos
in Gray-Scott model, which is a delay-free dynamical system modeled by PDEs. Section 6.2
extends the study to synchronization of reaction-diffusion neural networks with time-varying
delays, which is described by time-delay PDEs.

6.1 Stabilization and Synchronization of Gray-Scott Model

This section investigates the impulsive control and synchronization problem of spatiotemporal
chaos in Gray-Scott model. Based on the Lyapunov function method, a class of pinning impul-
sive controller is designed to stabilize and synchronize the spatiotemporal chaos in Gray-Scott
model.

6.1.1 Introduction of Gray-Scott Model

Gray-Scott model is one of the typical reaction-diffusion systems which has a wide variety of
spatiotemporal structures[34]:

∂u1

∂t
= −u1u2

2 + a(1− u1) + d1∇2u1

∂u2

∂t
= u1u2

2 − (a + b)u2 + d2∇2u2

(6.1)

where u1 and u2 are the concentrations of chemical species U1 and U2, respectively, a is the
inflow rate, a + b is the removal rate of U2 from the reaction, and d1 and d2 are the diffusion
coefficients of the two species, for more details about the Gray-Scott model refer to [51] and
[93].
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Figure 6.1: Spatiotemporal evolutions of u1 and u2.

In this section, we consider the one-dimensional version of Gray-Scott model with a =
0.028, b = 0.053, d1 = 2 × 10−5 and d2 = 10−5. Since E0 = (1, 0) is a trivial steady state,
it is necessary to add certain perturbation to it to obtain non-trivial pattern from the initial
state (1, 0). The initial conditions are chosen to be (u1(0, x), u2(0, x))T = (1, 0)T with strong
perturbations in the center region, and the periodic boundary conditions are given by u1(t, 0) =
u1(t, L) = 1 and u2(t, 0) = u2(t, L) = 0. The spatiotemporal chaotic evolutions of the 1-D
system (6.1) are shown in Figure 6.1.

6.1.2 Impulsive Synchronization of Gray-Scott Model

In this subsection, we shall discuss the impulsive synchronization of one dimensional Gray-
Scott model with another identical system starting from different initial states.

Let the following one-dimensional Gray-Scott model serve as the drive system:

∂u1

∂t
= −u1u2

2 + a(1− u1) + d1
∂2u1

∂x2

∂u2

∂t
= u1u2

2 − (a + b)u2 + d2
∂2u2

∂x2

u(0, x) = u0(x), x ∈ [0, L],

u(t, 0) = u(t, L) = h, t ∈ R+,

(6.2)
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where u(t, x) = (u1(t, x), u2(t, x))T, and the response system is given by

∂v1

∂t
= −v1v2

2 + a(1− v1) + d1
∂2v1

∂x2 , t 6= tk,

∂v2

∂t
= v1v2

2 − (a + b)v2 + d2
∂2v2

∂x2 , t 6= tk,

∆v(t, x) = Ik(e(t, x)), t = tk, x ∈ [0, L], k ∈N

v(0, x) = v0(x), x ∈ [0, L],

v(t, 0) = v(t, L) = h, t ∈ R+,

(6.3)

where a, b, d1 and d2 are chosen as in the previous section, L = 2.5, v(t, x) = (v1(t, x), v2(t, x))T,
u0 and v0 are different initial conditions, h(t) = (h1, h2)

T is the periodic boundary condition for
both systems with constants h1, h2 ≥ 0. Since the Gray-Scott model exhibits chaotic behaviors,
the same Gray-Scott systems will evolve differently if they have different initial conditions, and
states u and v are uniformly bounded which is a very important property that will be used in
the proof of our main results.

Remark 6.1.1 Theorem 1 in [43] implies that system (6.2) admits an unique global (classical) solution.
The case for system (6.3) with impulses is essentially the same, by an argument using the method of
steps over all the impulse intervals.

In (6.3), Ik : R2 → R2, ∆v(t, x) = v(t+, x)− v(t−, x) where v(t+, x) and v(t−, x) denote the
right limit and left limit of v(t, x) at t, respectively. e(t, x) = u(t, x)− v(t, x) denotes the error
state of the drive system and response system. The sequence {tk} satisfies 0 = t0 < t1 < t2 <
...tn < ..., and limn→∞ tn = ∞.

According to (6.2) and (6.3), the error system will be given

∂e1

∂t
= −u1u2

2 + v1v2
2 − ae1 + d1

∂2e1

∂x2 , t 6= tk,

∂e2

∂t
= u1u2

2 − v1v2
2 − (a + b)e2 + d2

∂2e2

∂x2 , t 6= tk,

∆e(t, x) = Ik(e(t, x)), t = tk, x ∈ [0, L], k ∈N

e(0, x) = e0(x), x ∈ [0, L],

e(t, 0) = e(t, L) = 0, t ∈ R+,

(6.4)

where e0(x) = u0(x)− v0(x).

Definition 6.1.1 Suppose that u(t, x) : R+ × [0, L] → Rm for some m > 0, where u is of class
L2[0, L] with respect to x. Then ‖ · ‖2 is defined by

‖u(t, ·)‖2 :=
[ ∫ L

0
‖u(t, x)‖2dx

]1/2
,

where ‖ · ‖ is the Euclidean norm.
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Definition 6.1.2 We say that synchronization of the drive system (6.2) and the response system (6.3)
are achieved under impulsive controller {tk, Ik} if

lim
t→∞
‖u(t, ·)− v(t, ·)‖2 = 0.

We can see that to explore the synchronization of the two systems (6.2) and (6.3) is equiva-
lent to investigating the attractive property of the error states:

lim
t→∞
‖e(t, ·)‖2 = 0.

In order to force the response system (6.3) to synchronize with the drive system (6.2), we
design the following impulsive controller:

Ik(e(tk, x)) =

{
−qei(tk, x), i = Dk,

0, i 6= Dk,
(6.5)

where the constant q ∈ (0, 1] is the impulsive strength to be designed, and the index Dk is
defined as follows: for the impulsive instant tk, one can reorder the error states e1(tk, x) and
e2(tk, x) such that ‖ej1(tk, x)‖2 ≥ ‖ej2(tk, x)‖2, then the index Dk is defined as Dk = j1. We can
see that the controller is only added to one state of the response system (6.3) at each impulsive
instant.

In [53], sufficient conditions about uniform impulsive controller is designed, which requires
an upper bound for each impulsive interval. In order to improve these sufficient conditions,
we introduce the following definition.

Definition 6.1.3 ([65]Average Impulsive Interval) The average impulsive interval of impulsive se-
quence ζ = {tk} is less than Ta, if there exist a positive integer N0 and a positive number Ta, so that
Nζ(T, t) ≥ T−t

Ta
− N0, ∀T ≥ t ≥ 0, where Nζ(T, t) denotes the number of impulsive times of the

impulsive sequence ζ in the time interval (t, T).

According to this definition, there is no requirement on the upper bound of each impulsive
interval, which is necessary for the impulsive control scheme in [53]. Before introducing the
main results about the synchronization problem, we need the following lemma from [53].

Lemma 6.1.1 Let f (u1, u2) := u1u2 be defined over the set S = {(u1, u2)
T ∈ R2 : 0 ≤ |u1| ≤

β1 and 0 ≤ |u2| ≤ β2}. Then the function f satisfies Lipschitz condition on S with Lipschitz constant

given by L0 := β2

√
β2

1 + 4β2
1. In other words, for every (u1, u2)

T, (v1, v2)
T ∈ S, we have

| f (u1, u2)− f (v1, v2)| ≤ L0‖(u1 − v1, u2 − v2)‖.

Now we are in the position to introduce the main result to guarantee the synchronization
of the drive system (6.2) and the response system (6.3).
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Theorem 6.1.1 Suppose the average impulsive interval of the impulsive sequence ζ = {tk} is less than

Ta. Let ρ = 1− q(2− q)/2, and β = 4β2

√
β2

1 + 4β2
2 − 2a, where

βi := max
{

sup
t∈R+

|ui(t, x)|, sup
t∈R+

|vi(t, x)|
}

for i = 1, 2. If ln ρ
Ta

+ β < 0, then the synchronization of the drive system (6.2) and the response system
(6.3) is achieved.

Proof. Consider the following Lyapunov function (or energy function)

V(t) :=
1
2

∫ L

0
eT(t, x)e(t, x)dx =

1
2

∫ L

0

(
e2

1(t, x) + e2
1(t, x)

)
dx.

For t ∈ (tk−1, tk], k ∈N, we have, by (6.4) and Lemma 6.1.1,

V̇(t) =
∫ L

0

(
e1

∂e1

∂t
+ e2

∂e2

∂t

)
dx

=
∫ L

0

[
− (u1u2

2 − v1v2
2)e1 − ae2

1 + d1e1
∂2e1

∂x2

+ (u1u2
2 − v1v2

2)e2 − (a + b)e2 + d2e2
∂2e2

∂x2

]
dx

≤
∫ L

0

[
|u1u2

2 − v1v2
2|(|e1|+ |e2|)

]
dx +

∫ L

0

[
− ae2

1 − (a + b)e2
2
]
dx

+
∫ L

0

[
d1e1

∂2e1

∂x2 + d2e2
∂2e2

∂x2

]
dx

≤ 2β2

√
β2

1 + 4β2
2

∫ L

0
‖e‖2dx−

∫ L

0

[
ae2

1 + (a + b)e2
2
]
dx

+
∫ L

0

[
d1e1

∂2e1

∂x2 + d2e2
∂2e2

∂x2

]
dx

≤
(

2β2

√
β2

1 + 4β2
2 − a

) ∫ L

0
‖e‖2dx +

∫ L

0

[
d1e1

∂2e1

∂x2 + d2e2
∂2e2

∂x2

]
dx (6.6)

Applying integration by parts to the second term of (6.6), we have, by the periodic boundary
condition,

∫ L

0
ei

∂2ei

∂x2 dx = ei
∂ei

∂x

∣∣∣∣L
0
−
∫ L

0

(
∂ei

∂x

)2

dx = −
∫ L

0

(
∂ei

∂x

)2

dx ≤ 0, i = 1, 2,

Thus, for t ∈ (tk−1, tk]

V̇(t) ≤
(

2β2

√
β2

1 + 4β2
2 − a

) ∫ L

0
‖e‖2dx = βV(t). (6.7)
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Since q ∈ (0, 1), we have ρ ∈ (0, 1) and ρ− (1− q)2 = 1− ρ. Setting i = Dk and j 6= Dk, we
get

(1− ρ)
∫ L

0
e2

j (tk, x)dx ≤ (1− ρ)
∫ L

0
e2

i (tk, x)dx

= [ρ− (1− q)2]
∫ L

0
e2

i (tk, x)dx

i.e.,

(1− q)2
∫ L

0
e2

i (tk, x)dx +
∫ L

0
e2

j (tk, x)dx ≤ ρ
∫ L

0

(
e2

1(tk, x) + e2
2(tk, x)

)
dx

= ρ
∫ L

0
‖e(tk, x)‖2dx

Then, for any k ∈N, we yield

V(t+k ) =
1
2

∫ L

0

(
e2

1(t
+
k , x) + e2

2(t
+
k , x)

)
dx

=
1
2

∫ L

0
e2

i (t
+
k , x)dx +

1
2

∫ L

0
e2

j (t
+
k , x)dx

=
1
2

∫ L

0
(1− q)2e2

i (tk, x)dx +
1
2

∫ L

0
e2

j (tk, x)dx

≤ 1
2

ρ
∫ L

0
‖e(tk, x)‖2dx

≤ ρV(tk). (6.8)

By (6.7) and (6.8), we have the following inequality system:
V̇(t) ≤ βV(t), t 6= tk,

V(t+k ) ≤ ρV(tk), k ∈N,

V(t0) =
1
2

∫ L

0
‖e0(x)‖2dx

(6.9)

According to (6.9), we have, for any t ∈ R+,

V(t) ≤ V(t0)eβ(t−t0)ρNζ(t,t0), (6.10)

where Nζ denotes the number of impulsive instants in the time interval (t0, t).

Since the average impulsive interval is less than Ta, it follows from the Definition 6.1.3 and
(6.10) that

V(t) ≤ V(t0)eβ(t−t0)ρ
t−t0

Ta −N0

= V(t0)ρ
−N0e(

ln ρ
Ta +β)(t−t0) (6.11)

Since ln ρ
Ta

+ β < 0, we have
lim
t→∞

V(t) = 0,

i.e., limt→∞ ‖e(t, ·)‖2 = 0, which implies that the synchronization of the drive system (6.2) and
the response system (6.3) is achieved. �
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Remark 6.1.2 Based on Lyapunov function method, the impulsive synchronization criterion has been
established. Compared with the existing result in [53], there are two improvements of this criterion: we
derived an upper bound for the average impulsive interval which is less conservative than the criterion in
[53] since there is no strict restriction on the upper bound of each impulsive interval; pinning impulsive
controller is designed which is added to one state of the Gray-Scott model at each impulsive instant. Let
Ta be the upper bound of each impulsive interval and control all the states of the system (6.3) at each
time, then the Theorem 6.1.1 will reduce to a special case of the result in [53].

Remark 6.1.3 The criterion presented in Theorem 6.1.1 is closely related to the system parameters, the
average impulsive interval Ta and the impulsive strength q. From Theorem 6.1.1, we can get the upper
bound for the average impulsive interval:

Ta <
1
β

ln
(
1− q(2− q)/2

)
. (6.12)

However, the criterion in Theorem 6.1.1 is a sufficient condition, which means that the synchronization
of the drive system (6.2) and system (6.3) can be realized even if (6.12) does not hold.

6.1.3 Impulsive Stabilization of Gray-Scott Model

Since E0 = (1, 0)T is a trivial state of the Gray-Scott model, if choose u0(x) = h(t) = (1, 0)T,
then we have, from system (6.2), (u1(t, x), u2(t, x))T ≡ (1, 0)T.

Therefore, the synchronization problem of the drive system (6.2) and the response system
(6.3) reduces to the stability problem of the equilibrium E0 of the following impulsive partial
differential system:

∂v1

∂t
= −v1v2

2 + a(1− v1) + d1
∂2v1

∂x2 , t 6= tk,

∂v2

∂t
= v1v2

2 − (a + b)v2 + d2
∂2v2

∂x2 , t 6= tk,

∆v(t, x) = Ik(v(t, x)), t = tk, x ∈ [0, L], k ∈N,
v(0, x) = v0(x), x ∈ [0, L],

v(t, 0) = v(t, L) = h, t ∈ R+,

(6.13)

where h = (h1, h2)
T = (1, 0)T.

The impulsive controller is designed as follows:

Ik(v(tk, x)) =

{
−q(hi − vi(tk, x)), i = Dk,

0, i 6= Dk,
(6.14)

where the index Dk is defined the same as in the controller (6.5) with e(t, x) = h− v(t, x).

We have the following stability result about the impulsive system (6.13), the proof of which
is similar as the proof of Theorem 6.1.1, and thus omitted.
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Figure 6.2: State trajectories of the error system (6.4) : (a) uniform impulsive intervals; (b)
nonuniform impulsive intervals.

Theorem 6.1.2 Suppose the average impulsive interval of the impulsive sequence ζ = {tk} is less than

Ta. Let ρ = 1− q(2− q)/2 and β = 4β2

√
β2

1 + 4β2
2− 2a, where β1 := max

{
supt∈R+ |v1(t, x)|, 1

}
and β2 := supt∈R+ |v2(t, x)|. If ln ρ

Ta
+ β < 0, then the equilibrium E0 of the impulsive system (6.13) is

globally asymptotically stable.

Remark 6.1.4 From Theorem 6.1.2, we see that based on the Lyapunov function method the states of the
one-dimensional Gray-Scott model are driven to the equilibrium E0 = (1, 0)T effectively by a pinning
impulsive controller. Actually, from the proof of Theorem 6.1.1, we can see that the equilibrium E0 of
the impulsive system (6.13) is globally exponentially stable with the convergence rate −1

2(
ln ρ
Ta

+ β).
In the following numerical simulations, we choose Ta = 0.1 and q = 0.78 which implies that all the
conditions of Theorem 6.1.2 are satisfied. Uniform impulsive intervals are chosen in Figure 6.2(a) with
tk+1 − tk = 0.1, while t2k − t2k−1 = 0.04 and t2k+1 − t2k = 0.16 > Ta are selected in Figure 6.2(b).
We can see from Figure 6.2 that the equilibrium E0 of system (6.13) is asymptotically stable.

6.2 Synchronization of Reaction-Diffusion Neural Networks
with Time-Delay

In practice, reaction-diffusions are inevitable in some applications of neural networks due to,
for example, the noneven electromagnetic field in which electrons are moving [59] and the dif-
fusion effects in biological systems (see, e.g., [92], [111]). Therefore, it is necessary to consider
the state activations that vary in both space and time, leading to neural networks in the form
of partial differential equations. In recent years, impulsive partial differential equations have
received a great deal of attentions (see, e.g., [40], [102], [19], [12]), and impulsive control and sta-
bilization has been shown to be a powerful tool in applications of various neural networks with
reaction-diffusions (see, [125], [59], [41], [1]). Due to the advantages of the pinning impulsive
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control and the existence of time-delay, the study of pinning impulsive control and synchro-
nization of reaction-diffusion neural networks with delays is an interesting and challenging
research area yet to be fully developed. However, to the best of our knowledge, little work has
been done on this topic, and the existing results in [125] is inconvincible as mentioned in Re-
mark 6.2.8. Moreover, the pinning impulsive control schemes for delayed dynamical networks
obtained in [109] and [77] can not be applied and extended directly to the synchronization
problem of neural networks with both reaction-diffusion terms and time-varying delays.

In order to fill the research gap discussed above, this section studies the pinning impul-
sive synchronization problem of reaction-diffusion neural networks with time-varying delays.
There are several difficulties to conduct this research. First, to apply pinning impulsive control
method, it is necessary and difficult to select appropriate neurons to control at each impulsive
instant (see Example 6.2.1 for detailed discussion). Second, for networks with delays, it is prac-
tically needed to establish sufficient conditions to guarantee the synchronization of networks
with various delay sizes. The Lyapunov-Krasovskii functional method is one of the main ap-
proach to study the stability and synchronization of dynamical networks with time-varying
delays. However, the previous two difficulties tighten the restriction on constructing feasible
functional candidates when applying the method of Lyapunov-Krasovskii functionals. In this
section, we introduce a type of Lyapunov-Krasovskii functionals and a pinning algorithm to
overcome the above difficulties, and sufficient conditions are derived to guarantee the syn-
chronization of neural networks with small and large time-delay, respectively. The pinning
algorithm in this section is more general that the one in [67] and [91] for synchronization of
stochastic dynamical networks, since we can control different amount of nodes at distinct im-
pulsive instants while the number of nodes to be controlled is fixed for all impulsive times in
[67] and [91]. The Lyapunov-Krasovskii functional candidate is divided into a function part
and a functional part. The function part plays an important role to carry over the pinning al-
gorithm and handle the effects that impulses act on the Lyapunov-Krasovskii functional. The
idea of constructing Lyapunov-Krasovskii functional candidate and the mathematical analy-
sis approach used in this section can also be applied to extend our pinning impulsive control
scheme to control problems of various dynamical systems with time-delay.

The rest of this section is organized as follows. In Subsection 6.2.1, the control problem of
the reaction-diffusion neural networks with time-varying delays is formulated, and the pin-
ning algorithm on selecting neurons to add the impulsive controllers is introduced. The main
synchronization results are presented in Subsection 6.2.2 with some discussions. Numerical
simulations and further discussions are conducted in Subsection 6.2.3. The detailed proofs of
the main results are given in Subsection 6.2.4.

6.2.1 Network Model and Problem Formulation

Consider the following reaction-diffusion neural network with time-varying delays:

∂ui(t, x)
∂t

=
m

∑
l=1

∂

∂xl

(
dil

∂ui(t, x)
∂xl

)
− ciui(t, x) +

n

∑
j=1

aij f j(uj(t, x))

+
n

∑
j=1

bij f j(uj(t− τij(t), x)) + Ji, i = 1, 2, ..., n, (6.15)
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where x = (x1, x2, ..., xm)T ∈ Ω ⊂ Rm is the space variable with Ω = {x = (x1, x2, ..., xm)T :
|xk| ≤ hk, k = 1, 2, ..., m}, and hk (k = 1, 2, ..., m) are positive constants; ui(t, x) denotes the
state of the ith neuron at time t and in space x; the activation function f j(uj(t, x)) stands for
the output of the jth neuron at time t and in space x. Ji, ci, aij and bij are constants: Ji is the
external bias or input to the ith neuron; ci > 0 represents the rate with which the ith neuron will
reset its potential to the resting state when disconnected from the network and under external
input Ji; aij and bij are the connection weights between neurons. τij denotes the transmission
time-varying delay from the jth neuron to the ith neuron; dil > 0 is the transmission diffusion
coefficient along the ith neuron.

Throughout this section, we make the following assumptions on time-varying delays and
activation functions:

(A1) There exist positive constants τ and δij such that

0 ≤ τij(t) ≤ τ and τ̇ij(t) ≤ δij < 1,

for all i, j ∈ {1, 2, ..., n}.

(A2) There exists a constant Li such that

| fi(u)− fi(v)| ≤ Li|u− v|,

for all u, v ∈ R and i = 1, 2, ..., n.

Remark 6.2.1 (A1) implies that the time-delay in network (6.15) is bounded and
d(t−τij(t))

dt > 0, i.e.,
t − τij(t) is increasing. Intuitively, as time t increases, the delay dependence of the state ui(t, x) is
increasing. Thus, it is straightforward to make this assumption. In terms of the activation function,
various neural networks possess the properties concluded in assumption (A2) (see e.g., bidirectional
memory networks [32] and BAM networks [23]).

The Dirichlet boundary condition of system (6.15) is given by

ui(t, x) = 0, (6.16)

for (t, x) ∈ [t0 − τ,+∞)× ∂Ω and i = 1, 2, ..., n, where t0 is the initial time, and ∂Ω denotes the
boundary of Ω. The initial value of system (6.15) is given as follows:

ui(t0 + s, x) = φi(s, x), (6.17)

for (s, x) ∈ [−τ, 0]×Ω and i = 1, 2, ..., n, where φ = (φ1, φ2, ...φn)T ∈ C([−τ, 0]×Ω, Rn). For
φ ∈ C([−τ, 0]×Ω, Rn) and a given s ∈ [−τ, 0], define the following norm:

‖φ(s, ·)‖2 =

( n

∑
i=1

∫
Ω

φ2
i (s, x)dx

)1/2

.

Similarly, for u = (u1, u2, ..., un)T ∈ C([0, ∞)×Ω, Rn) and a given t ≥ 0, we define the follow-
ing norm:

‖u(t, ·)‖2 =

( n

∑
i=1

∫
Ω

u2
i (t, x)dx

)1/2

.
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Let us introduce a drive system in the form of (6.15) with Dirichlet boundary condition
(6.16) and initial condition (6.17), and a response system in the form of

∂vi(t, x)
∂t

=
m

∑
l=1

∂

∂xl

(
dil

∂vi(t, x)
∂xl

)
− civi(t, x) +

n

∑
j=1

aij f j(vj(t, x))

+
n

∑
j=1

bij f j(vj(t− τij(t), x)) + Ji + Ui(t, x),

vi(t0 + s, x) = ϕi(s, x), (s, x) ∈ [−τ, 0]×Ω,
vi(t, x) = 0, (t, x) ∈ [t0 − τ, ∞)× ∂Ω,

(6.18)

where Ui is the control input to the ith neuron yet to be designed, and ϕ = (ϕ1, ϕ2, ..., ϕn)T ∈
C([−τ, 0] × Ω, Rn). Without loss of generality, we assume that ϕ(s, x) 6≡ φ(s, x) for (s, x) ∈
[−τ, 0]×Ω so that the synchronization behavior can be observed.

Definition 6.2.1 Drive system (6.15) and response system (6.18) are said to be exponentially synchro-
nized under controller U(t, x), if there exist constants µ > 0 and M ≥ 1 such that

‖u(t, ·)− v(t, ·)‖2 ≤ Me−µ(t−t0) sup
s∈[−τ,0]

‖ϕ(s, ·)− φ(s, ·)‖2,

for all t ≥ t0, where U = (U1, U2, ..., Un)T, u = (u1, u2, ..., un)T, and v = (v1, v2, ..., vn)T. The
constant µ is called the synchronization rate.

The objective of this section is to exponentially synchronize system (6.18) with (6.15) by de-
signing a suitable impulsive controller U(t, x). In order to force the trajectory of network (6.18)
to approach the trajectory of network (6.15) exponentially, we design the following pinning
impulsive controller

Ui(t, x) =


∞

∑
k=1
−qkei(t, x)δ(t− t−k ), i ∈ Dk,

0, i 6∈ Dk,
(6.19)

where i = 1, 2, ..., n, and qk ∈ (0, 1) is the impulsive control gain to be determined. The im-
pulsive instant sequence {tk} satisfies {tk} ⊂ R, 0 ≤ t0 < t1 < t2 < ... < tk < ...., and
limk→∞ tk = ∞. δ(·) is the Dirac delta function. The error state ei(t, x) = vi(t, x) − ui(t, x)
represents the state difference of the two networks (6.15) and (6.18). lk denotes the number of
neurons to be pinned at each impulsive instant. Similar to the definition introduced in Section
5.1, we have the index set Dk = {p1, p2, ..., plk} ⊆ I := {1, 2, ..., n} defined as follows: pi 6= pj
if i 6= j; at the impulsive instant tk, ‖ei(t−k , ·)‖2 ≥ ‖ej(t−k , ·)‖2 if i ∈ Dk and j ∈ I/Dk. Then,
we have ]Dk = lk where 0 < lk ≤ n. The pinning impulsive synchronization mechanism is
illustrated in Figure 6.3.

The response system (6.18) with the pinning impulsive controller (6.19) can be rewritten in
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Figure 6.3: Pinning impulsive synchronization mechanism. Si and Ri represent the ith neurons
of network (6.15) and (6.18), respectively. fi depicts all the activation functions corresponding
to the ith neuron of the network.

the form of an impulsive system

∂vi(t, x)
∂t

=
m

∑
l=1

∂

∂xl

(
dil

∂vi(t, x)
∂xl

)
− civi(t, x) +

n

∑
j=1

aij f j(vj(t, x))

+
n

∑
j=1

bij f j(vj(t− τij(t), x)) + Ji, t 6= tk,

∆vi(tk, x) = −qkei(t−k , x), i ∈ Dk, ]Dk = lk, k ∈N,

vi(t0 + s, x) = ϕi(s, x), (s, x) ∈ [−τ, 0]×Ω,
vi(t, x) = 0, (t, x) ∈ [t0 − τ, ∞)× ∂Ω,

(6.20)

where ∆vi(tk, x) = vi(t+k , x)− vi(t−k , x), vi(t+k , x) and vi(t−k , x) denote the right and left limit of
vi at tk, respectively.

Remark 6.2.2 It is shown in [118] that, under assumptions (A1) and (A2), system (6.15) with the
Dirichlet boundary condition (6.16) and initial condition (6.17) admits a unique global solution. The
existence of solution to system (6.20) can be guaranteed by the existence results of reaction-diffusion
equations in [57] and the method of steps, since discrete delays are considered in the system.

Throughout this section, we always assume that vi(t, x) is right continuous at tk(k ∈ N),
i.e., limt→t+k

vi(t, x) = vi(tk, x) for all x ∈ Ω. Then, by introducing the error state ei, we have
the following error system

∂ei(t, x)
∂t

=
m

∑
l=1

∂

∂xl

(
dil

∂ei(t, x)
∂xl

)
− ciei(t, x) +

n

∑
j=1

aij f̂ j(ej(t, x))

+
n

∑
j=1

bij f̂ j(ej(t− τij(t), x)), t 6= tk,

∆ei(tk, x) = −qkei(t−k , x), i ∈ Dk, ]Dk = lk, k ∈N,

ei(t0 + s, x) = ϕi(s, x)− φi(s, x), (s, x) ∈ [−τ, 0]×Ω,
ei(t, x) = 0, (t, x) ∈ [t0 − τ, ∞)× ∂Ω,

(6.21)

128



where f̂ j(ej(·, x)) = f j(vj(·, x)) − f j(uj(·, x)) for j = 1, 2, ..., n. It can be seen from (6.21) and
Definition 6.2.1 that if ‖e(t, ·)‖2 converges to zero exponentially as t→ ∞, then the drive system
(6.15) and the response system (6.18) can be exponentially synchronized.

Remark 6.2.3 Designing an appropriate pinning impulsive controller contains four aspects:

• How many neurons need to be pinned?

• Which neurons need to be selected?

• When does the impulsive control input need to be added to the neurons?

• How strong does the impulsive control gain need to be?

The pinning impulsive control scheme (6.19) is inspired by the idea in [67] and [91] for nonlinear
networks without delays and reaction-diffusions. The difficulties of applying the pinning impulsive
control scheme (6.19) to networks with time-delay and reaction-diffusion terms will be discussed in
detail in Remark 6.2.6. Up to now, we have designed only the control strategy about which neurons
need to be controlled at each impulsive instant by control scheme (6.19), i.e., controlling lk neurons that
have larger state difference than the other n− lk neurons. Other aspects of designing a suitable pinning
impulsive controller will be investigated in Subsection 6.2.3. Sufficient conditions on suitable relations
among the impulsive instant tk, impulsive control gain qk, and the number of neurons to be pinned lk
will be established. Furthermore, different neurons may be selected to pin at different impulsive instant
according to our pinning control mechanism (6.19). Therefore, we do not need the assumption about the
connectivity of the network which is necessary in [125]. However, there is a fatal error in [125], which
will be discussed in Remark 6.2.8.

6.2.2 Synchronization Results

In this subsection, exponential synchronization criteria for reaction-diffusion neural networks
with time-varying delays are established, and these results will also be discussed. For conve-
nience, we introduce the following notations. Let

ρk = 1− lk
n

qk(2− qk), k ∈N,

λ = max
1≤j≤n

{ n

∑
i=1

ξ−1
ij |bij|Lj

1− δij

}
,

c = max
1≤i≤n

{
− 2ci −

π2

2

m

∑
l=1

dil

h2
l
+

n

∑
j=1

(
εij|aij|Lj + ξij|bij|Lj + ε−1

ji |aji|Li +
ξ−1

ji |bji|Li

1− δji

)}
,

where εij and ξij (i, j = 1, 2, ..., n) are positive real numbers.

Now we are in the position to state our main results, proofs of which will be presented in
Subsection 6.2.4.
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Theorem 6.2.1 Suppose assumptions (A1) and (A2) hold, c > 0 and τ ≤ tk − tk−1 for all k ∈ N.
Moreover, if there exist positive constants ξij, εij (i, j = 1, 2, ..., n), and α such that

ln(ρk + λτ) ≤ −(α + c)(tk+1 − tk), k ∈N, (6.22)

then the drive system (6.15) and the response system (6.18) are exponentially synchronized by the pin-
ning impulsive controller (6.19).

Remark 6.2.4 It can be seen from the proof of Theorem 6.2.1 that the synchronization rate is α
2 which

is closely related to the system parameters λ, c, controller parameters ρk and the length of impulsive
intervals tk+1 − tk (k ∈ N). Since ρk depends on the impulsive control gain qk and the number of
neurons to be pinned at each impulsive instant tk, inequality (6.22) gives us a guide line of balancing the
values of qk, lk and tk+1 − tk to obtain a suitable pinning impulsive controller. However, the condition
τ ≤ tk− tk−1 implies that the size of time-delay τ is a lower bound of the impulsive intervals. Therefore,
large time-delay in network (6.15) may render Theorem 6.2.1 invalid. In order to resolve this issue, we
have the following result.

Theorem 6.2.2 Suppose assumptions (A1) and (A2) hold, and c > 0. Furthermore, if there exist
positive constants ξij, εij (i, j = 1, 2, ..., n), and α such that

ln(ρk + λτeατ) ≤ −(α + c)(tk+1 − tk), k ∈N, (6.23)

then the drive system (6.15) and the response system (6.18) can be exponentially synchronized by the
pinning impulsive controller (6.19).

Remark 6.2.5 In this result, we do not need the condition τ ≤ tk − tk−1, i.e., the length of impulsive
interval tk − tk−1 can be less that the size of time-delay. Therefore, Theorem 6.2.2 is applicable to net-
works with relatively large delays. However, it can be seen that the exponential term eατ on the left-hand
side of (6.23) makes (6.23) supply a more conservative condition on the choice of ρk and tk+1 − tk than
condition (6.22) does for networks with small enough delays. Therefore, Theorem 6.2.1 and 6.2.2 give us
sufficient conditions to design appropriate pinning impulsive controllers to synchronize networks (6.15)
and (6.18) with small or large time-delay. Illustrative examples are presented in Subsection 6.2.3.

Remark 6.2.6 The Lyapunov-Krasovskii functional candidates in proofs of Subsection 6.2.4 are divided
into two parts: a function part and a functional part. This kind of structure has been widely used in
literature when stability of dynamical systems with delays is investigated (see, e.g., [125], [41], [137]).
However, no pinning impulsive synchronization result has been reported for delayed networks by the
method of Lyapunov-Krasovskii functionals. In this section, there are two reasons to consider this type
of Lyapunov-Krasovskii functionals. First, it is straightforward for an impulse to alter the value of a
function instantaneously. Thus, the value of the function part can be effectively reduced by the impulse,
whereas the functional part is not affected by the impulse (see [69] for a similar discussion of impulsive
delay systems). However, this fact brings dramatic difficulties to the theoretic reasoning of our main
results. Second, the quadratic form of the function part makes it possible for us to generalize the pin-
ning impulsive control strategy in [67] for networks without time-delay to synchronization problems of
reaction-diffusion networks with time-varying delays.
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Remark 6.2.7 Another commonly considered boundary condition for reaction-diffusion neural net-
works is the Neumann boundary condition

∂ui(t, x)
∂n̂

=

(
∂ui(t, x)

∂x1
,

∂ui(t, x)
∂x2

, ...,
∂ui(t, x)

∂xm

)T

· n̂ = 0,

for (t, x) ∈ [t0 − τ, ∞) × ∂Ω, where n̂ is the outward unit normal vector of ∂Ω, and the dot is the
inner product. Clearly, Lemma 6.2.1 in Subsection 6.2.4 is not valid for the Neumann boundary condi-
tion. However, our method is still applicable to the synchronization problem of reaction-diffusion neural
networks with Neumann boundary conditions. For instance, (6.31) can be replaced by the following
estimation: ∫

Ω
ei(t, x)

m

∑
l=1

∂

∂xl

(
dil

∂ei(t, x)
∂xl

)
dx ≤ 0.

Then replacing c by

c = max
1≤i≤n

{
− 2ci +

n

∑
j=1

(
εij|aij|Lj + ξij|bij|Lj + ε−1

ji |aji|Li +
ξ−1

ji |bji|Li

1− dji

)}
,

which is independent of the reaction-diffusion coefficients dil, Theorem 6.2.1 and 6.2.2 can be applied
to design suitable pinning impulsive controllers to achieve synchronization of delayed reaction-diffusion
networks (6.15) and (6.18) with Neumann boundary conditions. Furthermore, the technique, which is
used in this section for designing the Lyapunov-Krasovskii functionals combined with the pinning im-
pulsive control strategy, is also applicable for neural networks with distributed delays and various types
of neural networks, such as BAM neural networks, stochastic neural networks, fuzzy neural networks,
and discrete-time neural networks.

Remark 6.2.8 The pinning impulsive synchronization of reaction-diffusion neural networks has re-
cently been studied in [125]. By using Lyapunov function, Halanay-type inequality, and comparison
method, sufficient conditions have been obtained to design appropriate impulsive controllers to pin the
same neurons at each impulsive instant, which is different from our pinning impulsive mechanism.
Moreover, there is a fatal error in the proof of the main result in [125]. In the proof of Theorem 6.2.1
in [125], the estimation of (3.32) is based on the assumption that (3.14) and (3.15) are true. However,
(3.13) does not imply that (3.14) and (3.15) hold, and there is no condition in Theorem 3.1 of [125] to
guarantee (3.14) and (3.15) are true. Hence, the proof for Theorem 3.1 in [125] is not sufficient, and the
corresponding results lack theoretical support.

Remark 6.2.9 In Theorems 6.2.1 and 6.2.2, two types of assistant parameters ξij and εij are used to
reduce the conservatism of estimations in (6.22) and (6.23). These parameters make Theorems 6.2.1 and
6.2.2 flexible in dealing with networks with various system coefficients. For instance, to use Theorem
6.2.1 or Theorem 6.2.2, the parameter λ in (6.22) or (6.23) is required to make λτ or λτeατ less than
1. For networks with large delay size, parameters ξij can be chose to make λ small enough, then The-
orem 6.2.1 or 6.2.2 can be applied to design suitable pinning impulsive controllers to realize network
synchronization. For more details, see examples in Subsection 6.2.3.

If the uniform impulsive controller is considered in (6.19), i.e., lk = l, qk = q, and tk− tk−1 =
T for all k ∈N, then we have the following synchronization result.
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Theorem 6.2.3 Suppose assumptions (A1) and (A2) hold, and c > 0. Furthermore, if there exist
positive constants ξij, εij (i, j = 1, 2, ..., n) such that

ln(ρ + λτ) < −cT, (6.24)

where ρ = 1− l
n q(2− q), then the drive system (6.15) and the response system (6.18) can be exponen-

tially synchronized by the pinning impulsive controller (6.19).

Remark 6.2.10 It can be observed from (6.24) that there exists a positive constant α such that

ln(ρ + λτ) = −(α + c)T, (6.25)

or

ln(ρ + λτeατ) = −(α + c)T, (6.26)

which implies (6.22) or (6.23) is satisfied. Therefore, Theorem 6.2.3 can be proved. Moreover, if τ ≤ T,
then the convergence rate α can be estimated by (6.25). Otherwise, α can be obtained by solving (6.26).

6.2.3 Numerical Simulations and Discussions

In this section, we present two examples to demonstrate our main results. In order to clearly
observe the pinning impulsive control process in the simulation results, we will consider neural
networks with only two neurons, i.e., n = 2. In the first example, we consider the synchroniza-
tion problem of reaction-diffusion neural networks with time-invariant delays.

Example 6.2.1 Consider a delay reaction-diffusion neural network described by (6.15) with Dirichlet
boundary condition (6.16) and initial condition (6.17), where t0 = 0, m = 1, n = 2, Ω = [−4, 4],
d1 = d2 = 0.1, c1 = c2 = 1, τ11 = τ22 = 1, τ12 = τ21 = 0.5, f1(·) = f2(·) = tanh(·), J1 = J2 = 0,
and

[aij]2×2 =

[
2 −0.1
−5 3

]
, [bij]2×2 =

[
−1.5 −0.1
−0.2 −2.5

]
.

It can be easily verified that assumption (A1) is satisfied with τ = 1 and δij = 0 for i, j = 1, 2,
and assumption (A2) is satisfied with L1 = L2 = 1. The chaotic behavior of neural network
(6.15) with the given initial data are shown in Fig. 6.4.

For

[ξij]2×2 =

[
10 1
1 10

]
, and [εij]2×2 =

[
1 1

0.36 1

]
,

one can get the following estimations: λ = 0.36, c1 = 31.4264, and c2 = 31.4375. Then,
c = 31.4375. In this example, we first consider the impulsive controller (6.19) with lk = n = 2,
tk − tk−1 = 0.02, and qk = 0.59 for all k ∈ N; then, (6.23) is satisfied with α = 0.01. Therefore,
we can conclude from Theorem 6.2.2 that the drive system (6.15) can be exponentially synchro-
nized with the response system (6.18) under impulsive controller (6.19). Figure 6.5 shows that
trajectories of the synchronization error states ei(t, x), i = 1, 2. It can be seen that there are
visible serrations in the trajectories of ei when t is less than 1, which can be clearly observed in
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Figure 6.4: State trajectories of network (6.15) with the parameters given in Example 6.2.1 and
initial data φ1(s, x) = 0.5 cos(πx

8 ), φ2(s, x) = 0.4 cos(πx
8 ), for s ∈ [−τ, 0] and x ∈ Ω. The

spatio-temporal chaotic behavior can be clearly observed in the above figures.

Figure 6.5: Synchronization errors e1 and e2. The initial data of the drive system (6.15) is chosen
the same as that in Figure 6.4, and the initial conditions of the response system (6.18) are given
by ϕ1(s, x) = 0.4 cos(πx

8 ), ϕ2(s, x) = 0.6 cos(πx
8 ), for s ∈ [−τ, 0] and x ∈ Ω. It can be seen that

the synchronization between the drive and response systems can be realized.

Figure 6.6 for ‖ei‖2 (i = 1, 2). This phenomena can be explained by the existence of time-delay
with delay size 1 in the network, which verifies our discussion of the impact of the delay size
on the synchronization rate in Remark 6.2.5.

Next, consider a pinning impulsive controller with lk = 1, tk− tk−1 = 0.004, and qk = 0.9 for
k ∈ N, i.e., control one neuron at each impulsive instant. Then, all the conditions of Theorem
6.2.2 are satisfied, and numerical simulations are shown in Figure 6.7(a). Compared with the
pinning impulsive control method in [125], we need to select a small fraction of neurons to pin
at each impulsive instant according to our pinning algorithm, while no conditions are required

133



0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

||e
1||
2

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

||e
2||
2

Figure 6.6: Synchronization errors e1 and e2 in norm. The effects of time-delay in the synchro-
nization process can be clearly observed.

on how to select neurons to control in [125]. Actually, selection of suitable neurons to pin is
necessary when applying pinning impulsive control approach. From the simulation results in
Figure 6.7(b) and Figure 6.7(c), we can conclude that the pinning neurons need to be carefully
selected to achieve the network synchronization, which verifies our theoretical analysis of the
deficiency of the results in [125]. It is worth noting that the pinning strategy introduced in this
section is one of the feasible selection methods of the pinning neurons to realize the network
synchronization. In this sense, we have overcome the deficiency of the main result in [125].

Compared with the full-state impulsive controller, fewer neurons are required to be con-
trolled at each impulsive instant. Moreover, by comparison of the numerical results shown in
Figure 6.7(b) and Figure 6.7(c), we can see that our pinning algorithm is more efficient in syn-
chronizing the networks. Though, the pinning method considered in Figure 6.7(c) (pinning a
specific number of neurons at all the impulsive time) requires less information of the neurons’
states, our simulations have shown that we need to look more deep into the dynamics of each
isolated neurons, the network topology and their relations to figure out how to select appropri-
ate neurons to stimulate, and, moreover, this pinning approach only applies to a specific class
of networks that need to be classified, since even a simple linear system may not be stabilizable
via this pinning impulsive control method. For example, consider the linear system ẏ = Ay,

where y = [y1, y2]
T ∈ R2 and A =

[
2 1
1 2

]
. No matter how frequently the impulsive con-

troller is added to state y1, state y2 will blow up (that is, as y1 approaches zero, the linear part
ẏ2 = 2y2 will dominate the evolution of state y2). Our future research will focus on figuring out
conditions on the network dynamics and topologies to guarantee the validity of this pinning
impulsive control method.

If the initial conditions of the drive system (6.15) are the same as its equilibrium, then system
(6.15) reduces to a system with constant states. Thereafter, the synchronization problem of
(6.15) and (6.18) reduces to the stabilization problem of system (6.15). When dil = 0 (i =
1, 2, ..., n and l = 1, 2, ..., m), our results can be applied to delayed neural networks without
reaction-diffusion terms. In order to show the effectiveness of Theorem 6.2.1, we consider the
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Figure 6.7: Synchronization processes via different pinning impulsive controllers. For these
three sub-figures, the impulsive time sequence and impulsive control gains are chosen to be the
same: tk− tk−1 = 0.004 and qk = 0.9 for all k ∈N. Different pinning algorithms are introduced
as follows. (a): pinning control the response system according to the pinning strategy in (6.19)
with lk = 1; (b): impulsive control the second neuron of the response system at each impulsive
instant; (c): impulsive control the first neuron of the response system. It can be seen that
synchronization can be achieved in (a) and (c), and the synchronization time in (c) is greater
than 10 unit of time which is dramatically lager than that in (a). However, the synchronization
can not be achieved in (b).

following example with small delay size.

Example 6.2.2 Consider the following delayed neural network

u̇i(t) = −ciui(t) +
n

∑
j=1

aij f (uj(t)) +
n

∑
j=1

bij f (uj(t− τ(t))) + Ji, i = 1, 2, (6.27)
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where c1 = 1, c2 = 0.5, J1 = J2 = 2, f (u) = 1
2(|u + 1| − |u− 1|) for u ∈ R, τ(t) = 0.01et

1+et for t ≥ 0,
and

[aij]2×2 =

[
0.5 0.5
0.5 1

]
, [bij]2×2 =

[
−1.5 −1.5
−1 −0.5

]
.

By direct computation, we know that u∗ = (0.5, 4.5)T is the unique equilibrium of system (6.27),
and f satisfies assumption (A2) with L = 1. For the time-delay τ(t), we have τ(t) ≤ 0.01 and
τ̇(t) ≤ 0.0025. Then τ = 0.01 and δ = δij = 0.0025. For ξij = εij = 1 (i, j = 1, 2), we have
λ = 2.5253 and c = max{c1, c2} = 5.5253. Design three different impulsive controllers in the
form of (6.19) with e1(t) = u1(t)− 0.5 and e2(t) = u2(t)− 4.5, and then numerical results are
shown in Figure 6.8.

6.2.4 Proofs

In this section, we present the proofs for the main results in Subsection 6.2.2, which are based
on the Lyapunov-Krasovskii functional method and a Poincare-type inequality presented in
the following lemma (see [137]).

Lemma 6.2.1 Let w(x) = w(x1, x2, ..., xm) be a real-valued function defined on Ω. If w(x) ∈ C1(Ω)
and w(x) |∂Ω= 0, then ∫

Ω
w2(x)dx ≤

( 2
π

)2
h2

i

∫
Ω

∣∣∣∂w(x)
∂xi

∣∣∣2dx.

Proof of Theorem 6.2.1

Consider the following Lyapunov-Krasovskii functional:

V(t) = V1(t) + V2(t),

where

V1(t) =
n

∑
i=1

∫
Ω

e2
i (t, x)dx,

and

V2(t) =
n

∑
i=1

n

∑
j=1

γij

∫ t

t−τij(t)

( ∫
Ω

e2
j (s, x)dx

)
ds,

where γij =
ξ−1

ij |bij|Lj

1−δij
(i, j = 1, 2, ..., n). The proof is divided into the following three steps.

Step 1: estimation of V̇(t) on each impulsive interval and V(t) at each impulsive instant.

First, differentiate V(t) along the trajectory of the error system (6.21) for t ∈ [tk−1, tk). For
V1(t),

V̇1(t) =
n

∑
i=1

∫
Ω

2ei(t, x)
∂ei(t, x)

∂t
dx
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Figure 6.8: Simulation results of Example 6.2.2. Parameters of the three simulations are given
as follows. (a): tk − tk−1 = 0.15, qk = 0.64 and lk = 2 (k ∈ N), i.e., impulsive control of both
neurons of network (6.27); (b): tk − tk−1 = 0.05, qk = 0.68, lk = 1 (k ∈ N), i.e., impulsive
control of one neuron at each impulsive instant; (c): t2k−1− t2k−2 = 0.05 and t2k − t2k−1 = 0.15,
q2k−1 = 0.64 and q2k = 0.68, l2k−1 = 1 and l2k = 2 (k ∈N), i.e., impulsive control of one neuron
at each odd impulsive instant and two neurons at each even impulsive instant. All sufficient
conditions of Theorem 6.2.1 are satisfied with α = 0.01, and simulation results imply that the
equilibrium of system (6.27) can be exponentially stabilized.

=
n

∑
i=1

∫
Ω

{
2

m

∑
l=1

ei(t, x)
∂

∂xl

(
dil

∂ei(t, x)
∂xl

)
− 2cie2

i (t, x) + 2
n

∑
j=1

aijei(t, x) f̂ j(ej(t, x))

+ 2
n

∑
j=1

bijei(t, x) f̂ j(ej(t− τij(t), x))

}
dx. (6.28)
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Then, we have the following inequalities:

2
n

∑
j=1

aijei(t, x) f̂ j(ej(t, x)) ≤ 2
n

∑
j=1
|aij||ei(t, x)|| f̂ j(ej(t, x))|

≤
n

∑
j=1

2|aij|Lj|ei(t, x)||ej(t, x)|

≤
n

∑
j=1
|aij|Lj(εije2

i (t, x) + ε−1
ij e2

j (t, x)), (6.29)

and

2
n

∑
j=1

bijei(t, x) f̂ j(ej(t− τij(t), x)) ≤ 2
n

∑
j=1
|bij||ei(t, x)|| f̂ j(ej(t− τij(t), x))|

≤
n

∑
j=1

2|bij|Lj|ei(t, x)||ej(t− τij(t), x)|

≤
n

∑
j=1
|bij|Lj(ξije2

i (t, x) + ξ−1
ij e2

j (t− τij(t), x)). (6.30)

By the Dirichlet boundary condition (6.16), Divergence theorem, and Lemma 6.2.1, we get∫
Ω

m

∑
l=1

ei(t, x)
∂

∂xl

(
dil

∂ei(t, x)
∂xl

)
dx

=
∫

Ω

m

∑
l=1

∂

∂xl

(
ei(t, x)dil

∂ei(t, x)
∂xl

)
dx−

∫
Ω

m

∑
l=1

dil

(
∂ei(t, x)

∂xl

)2

dx

=
∫

∂Ω

(
ei(t, x)dil

∂ei(t, x)
∂xl

)m

l=1
· n̂ds−

∫
Ω

m

∑
l=1

dil

(
∂ei(t, x)

∂xl

)2

dx

= −
∫

Ω

m

∑
l=1

dil

(
∂ei(t, x)

∂xl

)2

dx

= −
m

∑
l=1

[
dil

h2
l

h2
l

∫
Ω

(
∂ei(t, x)

∂xl

)2

dx

]

≤ −
(π

2
)2
( m

∑
l=1

dil

h2
l

) ∫
Ω

e2
i (t, x)dx. (6.31)

For V2(t), we have

V̇2(t) =
n

∑
i=1

n

∑
j=1

γij

{ ∫
Ω

e2
j (t, x)dx−

∫
Ω

e2
j (t− τij(t), x)(1− τ̇ij(t))dx

}

≤
n

∑
i=1

n

∑
j=1

γij

∫
Ω

e2
j (t, x)dx−

n

∑
i=1

n

∑
j=1

γij(1− δij)
∫

Ω
e2

j (t− τij(t), x)dx. (6.32)

Then, from (6.28) to (6.32), we get, for t ∈ [tk−1, tk),

V̇(t) = V̇1(t) + V̇2(t)
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≤
n

∑
i=1

{
− π2

2

m

∑
l=1

dil

h2
l

∫
Ω

e2
i (t, x)dx− 2ci

∫
Ω

e2
i (t, x)dx +

n

∑
j=1

εij|aij|Lj

∫
Ω

e2
i (t, x)dx

+
n

∑
j=1

ε−1
ij |aij|Lj

∫
Ω

e2
j (t, x)dx +

n

∑
j=1

ξij|bij|Lj

∫
Ω

e2
i (t, x)dx +

n

∑
j=1

γij

∫
Ω

e2
j (t, x)dx

}
= cV1(t)

≤ cV(t). (6.33)

Next, we investigate the impact that the impulses play on the Lyapunov-Krasovskii func-
tional. For k ∈ N, define βk = minj∈Dk{

∫
Ω e2

j (t
−
k , x)dx}. From the pinning algorithm intro-

duced with impulsive controller (6.19), one can have that, for any i 6∈ Dk, and j ∈ Dk,∫
Ω

e2
i (t
−
k , x)dx ≤

∫
Ω

e2
j (t
−
k , x)dx,

which implies that, for i 6∈ Dk,∫
Ω

e2
i (t
−
k , x)dx ≤ min

j∈Dk
{
∫

Ω
e2

j (t
−
k , x)dx} = βk. (6.34)

Hence, by (6.34), we obtain

(1− ρk) ∑
i 6∈Dk

∫
Ω

e2
i (t
−
k , x)dx ≤ (1− ρk)(n− lk)βk

= [ρk − (1− qk)
2]lkβk

≤ [ρk − (1− qk)
2] ∑

i∈Dk

∫
Ω

e2
i (t
−
k , x)dx,

which yields

V1(tk) =
n

∑
i=1

∫
Ω

e2
i (tk, x)dx

= ∑
i∈Dk

∫
Ω

e2
i (tk, x)dx + ∑

i 6∈Dk

∫
Ω

e2
i (tk, x)dx

= ∑
i∈Dk

∫
Ω
(1− qk)

2e2
i (t
−
k , x)dx + ∑

i 6∈Dk

∫
Ω

e2
i (t
−
k , x)dx

≤ ρk ∑
i∈Dk

∫
Ω

e2
i (t
−
k , x)dx + ρk ∑

i 6∈Dk

∫
Ω

e2
i (t
−
k , x)dx

= ρkV1(t−k ), k ∈N. (6.35)

For V2(t), we get

V2(tk) = V2(t−k ), k ∈N. (6.36)
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Now, we conclude from (6.33), (6.35), and (6.36) with the following inequalities:

V̇(t) ≤ cV(t), t ∈ [tk−1, tk), (6.37a)

V1(tk) ≤ ρkV1(t−k ), (6.37b)

V2(tk) = V2(t−k ), k ∈N. (6.37c)

Step 2: mathematical induction.

We claim that

V(t) ≤ Me−(α+c)(tk−t0)ec(t−t0), t ∈ [tk−1, tk), (6.38)

for all k ∈N, where M = V(t0)e(α+c)(t1−t0). We use mathematical induction to show that claim
(6.38) is true. For t ∈ [t0, t1), we can get from (6.37a) that

V(t) ≤ V(t0)ec(t−t0)

= V(t0)e(α+c)(t1−t0)e−(α+c)(t1−t0)ec(t−t0)

= Me−(α+c)(t1−t0)ec(t−t0). (6.39)

Then, (6.37b) and (6.39) imply that

V1(t1) ≤ ρ1V1(t−1 ) ≤ ρ1V(t−1 ) ≤ ρ1Me−(α+c)(t1−t0)ec(t1−t0), (6.40)

and we can obtain from (6.37c) that

V2(t1) = V2(t−1 )

=
n

∑
i=1

n

∑
j=1

γij

∫ t1

t1−τij(t1)

( ∫
Ω

e2
j (s, x)dx

)
ds

≤
n

∑
i=1

n

∑
j=1

γij

∫ t1

t1−τ

( ∫
Ω

e2
j (s, x)dx

)
ds

≤ max
1≤j≤n

{ n

∑
i=1

γij

} n

∑
j=1

∫ t1

t1−τ

( ∫
Ω

e2
j (s, x)dx

)
ds

= λ
∫ t1

t1−τ
‖e(s, ·)‖2

2ds

≤ λτ sup
s∈[−τ,0]

{
‖e(t−1 + s, ·)‖2

2
}

, (6.41)

and, from the condition τ ≤ t1 − t0 and (6.39), we get

sup
s∈[τ,0]

{
‖e(t−1 + s, ·)‖2

2
}
= sup

s∈[τ,0]

{
V1(t−1 + s)

}
≤ Me−(α+c)(t1−t0)ec(t1−t0). (6.42)

Thus,

V2(t1) ≤ λτMe−(α+c)(t1−t0)ec(t1−t0). (6.43)
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It follows from (6.40), (6.43), and (6.22) that

V(t1) = V1(t1) + V2(t1)

≤ (ρ1 + λτ)Me−(α+c)(t1−t0)ec(t1−t0)

≤ Me−(α+c)(t2−t0)ec(t1−t0).

Then, for t ∈ [t1, t2), we have

V(t) ≤ V(t1)ec(t−t1)

≤ Me−(α+c)(t2−t0)ec(t−t0), (6.44)

i.e., claim (6.38) holds for k = 2.

Next, we suppose (6.38) holds for k = j (j > 2), i.e.,

V(t) ≤ Me−(α+c)(tj−t0)ec(t−t0), t ∈ [tj−1, tj).

We shall show that (6.38) holds for k = j + 1. As discussed in (6.40), (6.41), and (6.42), we can
get

V(tj) = V1(tj) + V2(tj)

≤ (ρj + λτ)Me−(α+c)(tj−t0)ec(tj−t0)

≤ Me−(α+c)(tj+1−t0)ec(tj−t0),

then, for t ∈ [tj, tj+1),

V(t) ≤ V(tj)ec(t−tj)

≤ Me−(α+c)(tj+1−t0)ec(t−t0),

which implies that (6.38) holds for all k ∈N.

Step 3: convergence estimation.

From (6.38), we have, for t ∈ [tk−1, tk),

V(t) ≤ Me−(α+c)(tk−t0)ec(t−t0)

≤ Me−α(tk−t0)

≤ Me−α(t−t0)

= V(t0)e(α+c)(t1−t0)e−α(t−t0)

≤ (1 + λτ) sup
s∈[t0−τ,t0]

{
‖e(s, ·)‖2

2
}

e(α+c)(t1−t0)e−α(t−t0),
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i.e.,

‖e(t, ·)‖2 =
√

V1(t) ≤
√

V(t) ≤ M̄ sup
s∈[t0−τ,t0]

{
‖e(s, ·)‖2

}
e−

α
2 (t−t0),

for t ≥ t0, where M̄ =
[
(1 + λτ)e(α+c)(t1−t0)

]1/2
> 1. This completes the proof. �

Proof of Theorem 6.2.2

Consider the same Lyapunov-Krasovskii functional given in previous proof. Base on the dis-
cussion in the proof of Theorem 6.2.1, we have that (6.37a), (6.37b), and (6.37c) are true. Since
limk→∞ tk = ∞, there exists an integer i ≥ 1 such that ti − τ ≥ t0, and for t ∈ [t0, ti), we have

V(t) = V(t)eα(t−t0)e−α(t−t0) ≤ Me−α(t−t0), (6.45)

where M = supt∈[t0−τ,ti)

{
V(t)

}
eα(ti−t0).

Next, we shall show that

V(t) ≤ Me−(α+c)(tk+1−t0)ec(t−t0), (6.46)

for t ∈ [tk, tk+1), and k ≥ i. When k = i, we obtain from (6.45) that t0 ≤ ti + s ≤ ti for
s ∈ [−τ, 0], and

sup
s∈[τ,0]

{
‖e(t−i + s, ·)‖2

2
}

= sup
s∈[τ,0]

{
V1(t−i + s)

}
≤ Me−α(ti−τ−t0)

= Me−(α+c)(ti−t0)ec(ti−t0)eατ. (6.47)

Similar to the estimations of V1(ti) and V2(ti) in (6.40) and (6.41), we have

V(ti) = V1(ti) + V2(ti)

≤ ρiV1(t−i ) + V2(t−i )

≤ ρi Me−α(ti−t0) + λτeατ Me−(α+c)(ti−t0)ec(ti−t0)

= (ρi + λτeατ)Me−(α+c)(ti−t0)ec(ti−t0)

≤ Me−(α+c)(ti+1−t0)ec(ti−t0),

which, along with (6.37a), implies

V(t) ≤ Me−(α+c)(ti+1−t0)ec(t−t0) for t ∈ [ti, ti+1). (6.48)

Similar to the proof of Theorem 6.2.1, we can conclude by mathematical induction that (6.46)
holds for all k ≥ i. Then, for t ∈ [tk, tk+1) (k ≥ i), we have

V(t) ≤ Me−(α+c)(tk−t0)ec(t−t0) ≤ Me−α(tk−t0) ≤ Me−α(t−t0). (6.49)
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Hence, from (6.45) and (6.49), we can see that

V(t) ≤ Me−α(t−t0), t ≥ t0.

It follows that
‖e(t, ·)‖2

2 ≤ V(t) ≤ Me−α(t−t0), t ≥ t0,

i.e.,
‖e(t, ·)‖2 ≤ M̄ sup

s∈[t0−τ,t0]

{
‖e(s, ·)‖2

}
e−

α
2 (t−t0), t ≥ t0,

where M̄ =
√

M
sups∈[t0−τ,t0]

{
‖e(s,·)‖2

} > 1. Therefore, the proof is complete. �

Remark 6.2.11 The main difference between this proof and proof of Theorem 6.2.1 lies in the estimation
of (6.47). Without the condition on the relation between the delay size and the length of impulsive
interval, the impulsive interval that time ti− τ belongs to can not be exactly located. Therefore, different
estimation techniques are used in (6.42) and (6.47), respectively.
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Chapter 7

Conclusions and Future Research

In the present thesis, we have investigated impulsive control problems of dynamical networks.
Stabilization, consensus, and synchronization issues related to networks have been studied.
Particular emphasis has been given to dynamical networks with time-delay and subject to
delay-dependent impulsive effects. In this chapter, we highlight the contributions of this thesis,
and suggest possible future research related to topics we have considered in the thesis.

7.1 Stability Analysis

In Chapter 3, we have considered time-delay systems with delay-dependent impulses. By
using the method of Lyapunov functionals and Razumikhin technique, global exponential sta-
bility results have been obtained for general nonlinear time-delay systems with delayed im-
pulses. An exponential stability result for a class of locally Lipschitz time-delay systems subject
to distributed-delay dependent impulses has been established by the Razumikhin technique.
Linear impulsive systems with time-delay have been investigated with numerical simulations
to demonstrate our theoretical results.

In this chapter, we have focused on impulsive stabilization of time-delay systems, that
is, the delay-dependent impulses stabilize the time-delay systems. However, impulse is a
double-edge sword, i.e., it could also destroy the stability of a delay system or lead to poor
performance. Therefore, future research could be done on stability analysis of systems sub-
ject to delay-dependent impulsive perturbations (see, for example [132]). For systems with
distributed-delay dependent impulses, future research can be directed to establish stability cri-
teria by using the method of Lyapunov functionals.

7.2 Impulsive Consensus

Chapter 4 has studied the consensus problem of multi-agent systems with both fixed and
switching topologies. A hybrid consensus protocol has been proposed to take into consid-
eration of continuous-time communications among agents and delayed instant information
exchanges on a sequence of discrete times. Based on the proposed algorithms, the multi-agent
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systems with the hybrid consensus protocols are described in the form of impulsive systems
or impulsive switching systems. By employing results from matrix theory and algebraic graph
theory, some sufficient conditions for the consensus of multi-agent systems with fixed and
switching topologies have been established, respectively. Our results show that, for small im-
pulse delays, the hybrid consensus protocols can solve the consensus problem if the union of
continuous-time and impulsive-time interaction digraphs contains a spanning tree frequently
enough.

By taking into account of time-delay, a new type of hybrid impulsive consensus protocols
with dynamically changing interaction topologies has been proposed. Sufficient conditions on
the relation among network topologies, the delay size, and the length of impulsive interval
have been established to guarantee the average-consensus via the proposed consensus proto-
cols. It is worth noting that only the discrete-time delay has been considered in the impulsive
consensus protocols, and the impulsive intervals have been assumed to have equal length in the
theoretical analysis. However, for more general hybrid consensus protocols with time-variant
delays and nonuniform impulsive intervals, sufficient conditions on average-consensus of the
corresponding networked multi-agent systems can be established similarly, according to the
theoretical method introduced in Section 4.3.

We have also investigated the impulsive consensus of networked multi-agent systems. An
impulsive consensus protocol with distributed delays has been designed. By comparing the
agent states at the impulse instant and the distributed-delayed states and applying a Razu-
mikhin type stability result, we have obtained sufficient conditions under which the proposed
consensus protocol leads to the network consensus. The sufficient conditions provide the rela-
tion among the length of each impulsive interval, the impulse delay size, and the graph Lapla-
cians to guarantee the network consensus. Although only distributed delays have been consid-
ered in agent dynamics, the technique used in Section 4.4 is applicable to the scenario of agents
with discrete and/or time-variant delays.

For the impulsive consensus protocols, Section 4.3 has assumed that all the impulse-time
digraphs are balanced and strongly connected. However, it has been shown in [90] that, for the
hybrid consensus protocol (4.13) without time-delay (i.e., τ̄ = r = 0), if the union of graphs
GA and GA′ are balanced and strongly connected, the average-consensus can be guaranteed.
Therefore, the results in [90] inspire us to generalize these results to the time-delay scenario.

7.3 Pinning Impulsive Control

Chapter 5 has incorporated a pinning algorithm with the impulsive control approach. We have
introduced the dynamical networks on time scales and studied the synchronization problem
of linear networks in Section 5.1. A pinning delayed-impulsive controller has been designed
to achieve the synchronization of dynamical networks on time scales. Some sufficient condi-
tions have been established which guarantee the synchronization of linear networks on time
scales. In this section, we have focused on the theoretical analysis of synchronization of linear
networks on time scales. However, dynamical networks on time scales have tremendous ap-
plication potential. Actually, network (5.1) can be used to model the opinion formation process
of a group of people over a specific working schedule which can be represented by a time scale.
System (5.2) denotes the opinion evolution of a single person, and the connection topology de-
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scribes how the people in the group communicate with each other. Then the synchronization
can be explained as a common opinion formation among these people. As discussed in Remark
5.1.4, the structure of time scales will effect the synchronization process of a network. This im-
plies that the opinion formation indeed depends on the communication and working schedule,
which then helps to arrange a suitable working schedule for the opinion formation purpose.
For the future work, we will study more practical applications of dynamical networks on time
scales and the corresponding control problems.

Section 5.2 has studied impulsive stabilization problem of neural networks with time-delay.
We have successfully applied the pinning impulsive controller proposed in Section 5.1 for the
linear delay-free networks to stabilize the networks with time-delay. We have also proposed a
pinning impulsive controller depending only on the network states at history moments which
is different from the one designed in Section 5.1. It has been shown that the global exponen-
tial stabilization of delayed neural networks can be effectively realized by controlling a small
portion of neurons in the networks via delayed impulses, and, for fixed impulsive control gain,
increasing the impulse delay or decreasing the number of neurons to be pinned at the impulsive
moments will lead to high frequency of impulses added the corresponding neurons. Numer-
ical examples have been provided to illustrate the theoretical results, which demonstrate that
our results are less conservative than the results reported in the existing literature when the
proposed pinning controller reduces to the full-state impulsive controller.

We have investigated the synchronization of globally Lipschitz time-delay systems using
impulsive control in Section 5.3. We have proposed a novel class of pinning impulsive con-
trollers that takes into account of both discrete and distributed delays. Verifiable synchroniza-
tion conditions for pinning impulsive controller with discrete delay, distributed delay and both
of these two type delays have been established using a Halanay-type inequality, respectively.
The theoretical results provide insight into the feasible relation between the impulse delays and
impulse frequency to guarantee the synchronization of drive and response systems via impul-
sive control a small portion of the system states. The findings have been illustrated by stability
analysis of a linear impulsive time-delay system and synchronization control of a nonlinear
chaotic time-delay system with numerical simulations.

Throughout Chapters 5 and 6, one pinning algorithm has been considered, which implies
that different units of a network (or states of a system) might be controlled at distinct impul-
sive instants. For networks with large amount of nodes, this pinning algorithm will lead to
huge computational work when comparing the network states at each impulsive instants. For
future research, it would be interesting and challenging to study sufficient conditions on net-
work topology to guarantee the synchronization of networks by pinning the same nodes at the
impulsive instants (see discussions with numerical simulations in Section 5.2 and Section 6.2).
Furthermore, when individual networks are connected by means of additional links among
them, networks of networks arise (see [56]). Then, it may be possible to extend our approach
to synchronize this type of generalized networks.

7.4 Systems Governed by PDEs

In Chapter 6, the pinning impulsive controller considered in Chapter 5 has been successfully
applied to stabilize and synchronize systems and networks modeled by PDEs. Impulsive con-
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trol and synchronization of spatiotemporal chaos of Gray-Scott model, a system governed by
delay-free PDEs, have been studied in Section 6.1. In Section 6.2, the exponential synchroniza-
tion of reaction-diffusion neural networks with time-varying delays has been studied. A pin-
ning impulsive control algorithm proposed for dynamical networks without time-delay has
been successfully generalized to control neural networks with both reaction-diffusion terms
and time-varying delays. In order to overcome the difficulty of utilizing this pinning algorithm
to control networks with time-delay, a Lyapunov-Krasovskii functional with two parts (a func-
tion part and a functional part) has been constructed. The function part is chosen as a quadratic
form to carry over the pinning algorithm in [67] to neural networks with time-delay and han-
dle the impulsive effects. Two sets of sufficient conditions have been derived to design suitable
pinning impulsive controllers to synchronize the delayed reaction-diffusion neural networks
with small and large delay size, respectively.

When processing the impulsive information in the controller, it is natural and practical to
consider the time-delay effects in the pinning impulsive controller as discussed in Chapter 5
for networks modeled by ODEs. Future work could be done on synchronization of networks
governed by PDEs via pinning impulsive controller with delay effects.
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